Knowledge

Chemical energy

Source đź“ť

1369: 1393: 1405: 1381: 278:. The confusion in terminology arises from the fact that in other areas of physics not dominated by entropy, all potential energy is available to do useful work and drives the system to spontaneously undergo changes of configuration, and thus there is no distinction between "free" and "non-free" potential energy (hence the one word "potential"). However, in systems of large entropy such as 39:
and transform into other substances. Some examples of storage media of chemical energy include batteries, food, and gasoline (as well as oxygen gas, which is of high chemical energy due to its relatively weak double bond and indispensable for chemical-energy release in gasoline combustion). Breaking
209:. However, under conditions of constant pressure, as in reactions in vessels open to the atmosphere, the measured heat change is not always equal to the internal energy change, because pressure-volume work also releases or absorbs energy. (The heat change at constant pressure is equal to the 51:
Energy that can be released or absorbed because of a reaction between chemical substances is equal to the difference between the energy content of the products and the reactants, if the initial and final temperature is the same. This change in energy can be estimated from the
205:, the internal energy of formation of the product molecules. The internal energy change of a chemical process is equal to the heat exchanged if it is measured under conditions of constant volume and equal initial and final temperature, as in a closed container such as a 48:, which may be either absorbed by or evolved from a chemical system. If reactants with relatively weak electron-pair bonds convert to more strongly bonded products, energy is released. Therefore, relatively weakly bonded and unstable molecules store chemical energy. 232:. Food is similar to hydrocarbon and carbohydrate fuels, and when it is oxidized to carbon dioxide and water, the energy released is analogous to the heat of combustion (though assessed differently than for a hydrocarbon fuel—see 128: 203: 266:
is used to indicate the potential of a substance to undergo a change of configuration, be it in the form of a chemical reaction, spatial transport, particle exchange with a reservoir, etc. It is
239:
Chemical potential energy is a form of potential energy related to the structural arrangement of atoms or molecules. This arrangement may be the result of
279: 444:
Merckel, R. D.; Labuschagne, F. J. W. J.; Heydenrych, M. D. (2019). "Oxygen consumption as the definitive factor in predicting heat of combustion",
382: 243:
within a molecule or interactions between them. Chemical energy of a chemical substance can be transformed to other forms of energy by a
247:. For example, when a fuel is burned, the chemical energy of molecular oxygen and the fuel is converted to heat. Green plants transform 63: 141: 482: 1102: 294:
is derived)—which (appears to) drive the system forward spontaneously as the global entropy increases (in accordance with the
1146: 821: 1288: 1229: 1239: 1409: 769: 295: 1328: 587: 475: 283: 317:
Schmidt-Rohr, K. (2018). "How Batteries Store and Release Energy: Explaining Basic Electrochemistry",
1234: 1092: 754: 699: 679: 674: 287: 275: 408:
Schmidt-Rohr, K. (2015). "Why Combustions Are Always Exothermic, Yielding About 418 kJ per Mole of O
1431: 1163: 507: 1385: 1323: 1308: 704: 684: 286:) of which this chemical potential energy is a part, is separated from the amount of that energy— 836: 732: 659: 649: 530: 468: 776: 567: 224:, which is the energy mostly of the weak double bonds of molecular oxygen released due to a 1224: 1197: 1175: 1082: 1015: 764: 694: 639: 366: 214: 8: 1303: 1246: 1168: 1141: 826: 689: 664: 370: 1283: 1261: 1251: 1087: 291: 263: 221: 32: 20: 1392: 1185: 1010: 871: 831: 801: 786: 759: 669: 572: 512: 502: 354: 244: 36: 1344: 1318: 1313: 1293: 1278: 1119: 1109: 889: 816: 552: 374: 271: 255:, and electrical energy can be converted to chemical energy and vice versa through 1373: 1354: 1268: 1035: 950: 806: 796: 781: 644: 594: 545: 452: 420: 325: 256: 131: 1349: 1298: 1273: 1077: 1042: 975: 965: 881: 861: 856: 841: 811: 791: 749: 727: 709: 609: 599: 535: 252: 1425: 1397: 1256: 1216: 1180: 1136: 1062: 1025: 943: 866: 634: 629: 582: 562: 240: 41: 1153: 1097: 1047: 1030: 851: 624: 557: 248: 1158: 1124: 998: 988: 931: 914: 899: 846: 744: 233: 206: 53: 1192: 1114: 1052: 1020: 960: 654: 378: 225: 1202: 1129: 1003: 983: 955: 894: 282:, the total amount of energy present (and conserved according to the 135: 57: 938: 919: 904: 604: 210: 1072: 614: 619: 540: 491: 45: 123:{\displaystyle \Delta {U_{f}^{\circ }}_{\mathrm {reactants} }} 251:
to chemical energy (mostly of oxygen) through the process of
198:{\displaystyle \Delta {U_{f}^{\circ }}_{\mathrm {products} }} 993: 926: 909: 577: 229: 460: 144: 66: 431:Moore, J. W; Stanitski, C. L., Jurs, P. C. (2005). 197: 122: 404: 402: 400: 1423: 217:, if initial and final temperatures are equal). 335: 333: 35:that is released when the substances undergo a 453:https://doi.org/10.1016/j.apenergy.2018.10.111 397: 311: 476: 421:http://dx.doi.org/10.1021/acs.jchemed.5b00333 326:http://dx.doi.org/10.1021/acs.jchemed.8b00479 60:and products. It can also be calculated from 330: 228:reaction and often applied in the study of 483: 469: 438: 346: 16:Energy released from chemical substances 425: 274:itself, but is more closely related to 1424: 1103:Integrated gasification combined cycle 1147:Radioisotope thermoelectric generator 822:Quantum chromodynamics binding energy 464: 385:from the original on October 18, 2020 352: 343:, 3rd edition. Prentice Hall. p. 302. 1380: 435:, 2nd edition. Brooks Cole. p. 242. 1404: 1289:World energy supply and consumption 13: 189: 186: 183: 180: 177: 174: 171: 168: 145: 114: 111: 108: 105: 102: 99: 96: 93: 90: 67: 14: 1443: 433:Chemistry – The Molecular Science 1403: 1391: 1379: 1368: 1367: 339:McMurry, J.; Fay, R. C. (2001). 1: 304: 134:of formation of the reactant 7: 284:first law of thermodynamics 10: 1448: 490: 18: 1363: 1337: 1213: 1093:Fossil fuel power station 1061: 974: 880: 755:Electric potential energy 720: 700:Thermodynamic temperature 680:Thermodynamic free energy 675:Thermodynamic equilibrium 521: 498: 288:thermodynamic free energy 213:change, in this case the 1164:Concentrated solar power 19:Not to be confused with 705:Volume (thermodynamics) 685:Thermodynamic potential 588:Mass–energy equivalence 660:Quantum thermodynamics 650:Laws of thermodynamics 531:Conservation of energy 220:A related term is the 199: 124: 777:Interatomic potential 568:Energy transformation 355:"Appreciating Oxygen" 353:Weiss, H. M. (2008). 200: 125: 1225:Efficient energy use 1198:Airborne wind energy 1176:Solar thermal energy 1083:Electricity delivery 695:Thermodynamic system 640:Irreversible process 215:enthalpy of reaction 142: 64: 1247:Energy conservation 1169:Photovoltaic system 1142:Nuclear power plant 827:Quantum fluctuation 690:Thermodynamic state 665:Thermal equilibrium 371:2008JChEd..85.1218W 164: 86: 33:chemical substances 1284:Sustainable energy 1262:Energy development 1252:Energy consumption 1088:Energy engineering 379:10.1021/ed085p1218 292:chemical potential 264:chemical potential 222:heat of combustion 195: 150: 120: 72: 21:chemical potential 1419: 1418: 1186:Solar power tower 832:Quantum potential 670:Thermal reservoir 573:Energy transition 262:The similar term 245:chemical reaction 37:chemical reaction 31:is the energy of 1439: 1407: 1406: 1395: 1383: 1382: 1371: 1370: 1345:Carbon footprint 1279:Renewable energy 1120:Hydroelectricity 1110:Geothermal power 553:Energy condition 485: 478: 471: 462: 461: 455: 442: 436: 429: 423: 406: 395: 394: 392: 390: 350: 344: 337: 328: 315: 280:chemical systems 272:potential energy 207:bomb calorimeter 204: 202: 201: 196: 194: 193: 192: 165: 163: 158: 129: 127: 126: 121: 119: 118: 117: 87: 85: 80: 1447: 1446: 1442: 1441: 1440: 1438: 1437: 1436: 1432:Chemical energy 1422: 1421: 1420: 1415: 1359: 1355:Waste-to-energy 1333: 1269:Energy security 1215: 1209: 1065: 1057: 1036:Natural uranium 970: 951:Mechanical wave 882:Energy carriers 876: 716: 645:Isolated system 523: 517: 494: 489: 459: 458: 443: 439: 430: 426: 411: 407: 398: 388: 386: 351: 347: 338: 331: 316: 312: 307: 257:electrochemical 167: 166: 159: 154: 149: 148: 143: 140: 139: 132:internal energy 89: 88: 81: 76: 71: 70: 65: 62: 61: 29:Chemical energy 24: 17: 12: 11: 5: 1445: 1435: 1434: 1417: 1416: 1414: 1413: 1401: 1389: 1377: 1364: 1361: 1360: 1358: 1357: 1352: 1350:Jevons paradox 1347: 1341: 1339: 1335: 1334: 1332: 1331: 1326: 1321: 1316: 1311: 1306: 1301: 1296: 1291: 1286: 1281: 1276: 1274:Energy storage 1271: 1266: 1265: 1264: 1254: 1249: 1244: 1243: 1242: 1237: 1232: 1221: 1219: 1211: 1210: 1208: 1207: 1206: 1205: 1200: 1190: 1189: 1188: 1183: 1173: 1172: 1171: 1166: 1156: 1151: 1150: 1149: 1144: 1134: 1133: 1132: 1127: 1122: 1112: 1107: 1106: 1105: 1100: 1090: 1085: 1080: 1078:Electric power 1075: 1069: 1067: 1059: 1058: 1056: 1055: 1050: 1045: 1040: 1039: 1038: 1028: 1023: 1018: 1013: 1008: 1007: 1006: 1001: 996: 986: 980: 978: 976:Primary energy 972: 971: 969: 968: 963: 958: 953: 948: 947: 946: 936: 935: 934: 924: 923: 922: 917: 907: 902: 897: 892: 886: 884: 878: 877: 875: 874: 869: 864: 859: 854: 849: 844: 839: 834: 829: 824: 819: 814: 809: 804: 799: 794: 789: 784: 779: 774: 773: 772: 762: 757: 752: 747: 742: 737: 736: 735: 724: 722: 718: 717: 715: 714: 713: 712: 707: 702: 697: 692: 687: 682: 677: 672: 667: 662: 657: 652: 647: 642: 637: 632: 627: 622: 617: 612: 610:Entropic force 607: 600:Thermodynamics 597: 592: 591: 590: 585: 575: 570: 565: 560: 555: 550: 549: 548: 538: 533: 527: 525: 519: 518: 516: 515: 510: 505: 499: 496: 495: 488: 487: 480: 473: 465: 457: 456: 451:: 1041-1047. 437: 424: 414:J. Chem. Educ. 409: 396: 365:(9): 1218–19. 345: 329: 319:J. Chem. Educ. 309: 308: 306: 303: 253:photosynthesis 241:chemical bonds 191: 188: 185: 182: 179: 176: 173: 170: 162: 157: 153: 147: 116: 113: 110: 107: 104: 101: 98: 95: 92: 84: 79: 75: 69: 42:chemical bonds 40:and re-making 15: 9: 6: 4: 3: 2: 1444: 1433: 1430: 1429: 1427: 1412: 1411: 1402: 1400: 1399: 1394: 1390: 1388: 1387: 1378: 1376: 1375: 1366: 1365: 1362: 1356: 1353: 1351: 1348: 1346: 1343: 1342: 1340: 1336: 1330: 1329:United States 1327: 1325: 1324:South America 1322: 1320: 1317: 1315: 1312: 1310: 1307: 1305: 1302: 1300: 1297: 1295: 1292: 1290: 1287: 1285: 1282: 1280: 1277: 1275: 1272: 1270: 1267: 1263: 1260: 1259: 1258: 1257:Energy policy 1255: 1253: 1250: 1248: 1245: 1241: 1238: 1236: 1233: 1231: 1228: 1227: 1226: 1223: 1222: 1220: 1218: 1212: 1204: 1201: 1199: 1196: 1195: 1194: 1191: 1187: 1184: 1182: 1181:Solar furnace 1179: 1178: 1177: 1174: 1170: 1167: 1165: 1162: 1161: 1160: 1157: 1155: 1152: 1148: 1145: 1143: 1140: 1139: 1138: 1137:Nuclear power 1135: 1131: 1128: 1126: 1123: 1121: 1118: 1117: 1116: 1113: 1111: 1108: 1104: 1101: 1099: 1096: 1095: 1094: 1091: 1089: 1086: 1084: 1081: 1079: 1076: 1074: 1071: 1070: 1068: 1064: 1063:Energy system 1060: 1054: 1051: 1049: 1046: 1044: 1041: 1037: 1034: 1033: 1032: 1029: 1027: 1024: 1022: 1019: 1017: 1016:Gravitational 1014: 1012: 1009: 1005: 1002: 1000: 997: 995: 992: 991: 990: 987: 985: 982: 981: 979: 977: 973: 967: 964: 962: 959: 957: 954: 952: 949: 945: 944:Hydrogen fuel 942: 941: 940: 937: 933: 930: 929: 928: 925: 921: 918: 916: 913: 912: 911: 908: 906: 903: 901: 898: 896: 893: 891: 888: 887: 885: 883: 879: 873: 870: 868: 865: 863: 860: 858: 855: 853: 850: 848: 845: 843: 840: 838: 835: 833: 830: 828: 825: 823: 820: 818: 815: 813: 810: 808: 805: 803: 800: 798: 795: 793: 790: 788: 785: 783: 780: 778: 775: 771: 768: 767: 766: 765:Gravitational 763: 761: 758: 756: 753: 751: 748: 746: 743: 741: 738: 734: 731: 730: 729: 726: 725: 723: 719: 711: 708: 706: 703: 701: 698: 696: 693: 691: 688: 686: 683: 681: 678: 676: 673: 671: 668: 666: 663: 661: 658: 656: 653: 651: 648: 646: 643: 641: 638: 636: 635:Heat transfer 633: 631: 630:Heat capacity 628: 626: 623: 621: 618: 616: 613: 611: 608: 606: 603: 602: 601: 598: 596: 593: 589: 586: 584: 583:Negative mass 581: 580: 579: 576: 574: 571: 569: 566: 564: 563:Energy system 561: 559: 556: 554: 551: 547: 544: 543: 542: 539: 537: 534: 532: 529: 528: 526: 520: 514: 511: 509: 506: 504: 501: 500: 497: 493: 486: 481: 479: 474: 472: 467: 466: 463: 454: 450: 447: 441: 434: 428: 422: 419:: 2094-2099. 418: 415: 405: 403: 401: 384: 380: 376: 372: 368: 364: 360: 359:J. Chem. Educ 356: 349: 342: 336: 334: 327: 324:: 1801-1810. 323: 320: 314: 310: 302: 300: 298: 293: 289: 285: 281: 277: 273: 269: 265: 260: 258: 254: 250: 246: 242: 237: 235: 231: 227: 223: 218: 216: 212: 208: 160: 155: 151: 137: 133: 82: 77: 73: 59: 55: 54:bond energies 49: 47: 43: 38: 34: 30: 26: 22: 1408: 1396: 1384: 1372: 1154:Oil refinery 1098:Cogeneration 1031:Nuclear fuel 837:Quintessence 739: 625:Free entropy 558:Energy level 522:Fundamental 448: 446:Appl. Energy 445: 440: 432: 427: 416: 413: 387:. Retrieved 362: 358: 348: 340: 321: 318: 313: 296: 290:(from which 267: 261: 249:solar energy 238: 219: 50: 28: 27: 25: 1410:WikiProject 1230:Agriculture 1159:Solar power 1125:Tidal power 999:Natural gas 989:Fossil fuel 932:Latent heat 900:Electricity 276:free energy 259:reactions. 234:food energy 1193:Wind power 1115:Hydropower 1066:components 1021:Hydropower 1011:Geothermal 961:Sound wave 872:Zero-point 802:Mechanical 787:Ionization 760:Electrical 655:Negentropy 536:Energetics 305:References 270:a form of 226:combustion 1304:Australia 1240:Transport 1235:Computing 1203:Wind farm 1130:Wave farm 1004:Petroleum 984:Bioenergy 956:Radiation 895:Capacitor 817:Potential 389:March 13, 341:Chemistry 161:∘ 146:Δ 136:molecules 83:∘ 68:Δ 58:reactants 44:involves 1426:Category 1374:Category 939:Hydrogen 905:Enthalpy 807:Negative 797:Magnetic 782:Internal 740:Chemical 605:Enthalpy 524:concepts 383:Archived 211:enthalpy 1386:Commons 1214:Use and 1073:Biomass 1043:Radiant 890:Battery 862:Thermal 857:Surface 842:Radiant 812:Phantom 792:Kinetic 770:Binding 750:Elastic 733:Nuclear 728:Binding 615:Entropy 513:Outline 503:History 367:Bibcode 56:of the 1398:Portal 1319:Mexico 1314:Europe 1309:Canada 1294:Africa 1217:supply 1026:Marine 915:Fossil 867:Vacuum 620:Exergy 541:Energy 492:Energy 297:second 138:, and 130:, the 46:energy 1338:Misc. 1048:Solar 852:Sound 721:Types 595:Power 546:Units 508:Index 230:fuels 1299:Asia 1053:Wind 994:Coal 966:Work 927:Heat 910:Fuel 847:Rest 745:Dark 710:Work 578:Mass 391:2017 920:Oil 449:235 412:", 375:doi 301:). 299:law 268:not 236:). 1428:: 417:92 399:^ 381:. 373:. 363:85 361:. 357:. 332:^ 322:95 484:e 477:t 470:v 410:2 393:. 377:: 369:: 190:s 187:t 184:c 181:u 178:d 175:o 172:r 169:p 156:f 152:U 115:s 112:t 109:n 106:a 103:t 100:c 97:a 94:e 91:r 78:f 74:U 23:.

Index

chemical potential
chemical substances
chemical reaction
chemical bonds
energy
bond energies
reactants
internal energy
molecules
bomb calorimeter
enthalpy
enthalpy of reaction
heat of combustion
combustion
fuels
food energy
chemical bonds
chemical reaction
solar energy
photosynthesis
electrochemical
chemical potential
potential energy
free energy
chemical systems
first law of thermodynamics
thermodynamic free energy
chemical potential
second law
http://dx.doi.org/10.1021/acs.jchemed.8b00479

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑