Knowledge

Bond energy

Source 📝

640:, where a more negative lattice energy corresponds to a stronger force of attraction between the ions. Generally, greater differences in electronegativity correspond to stronger ionic bonds. For example, the compound sodium chloride (NaCl) has a lattice energy of -786 kJ/mol with an electronegativity difference of 2.23 between sodium and chlorine. Meanwhile, the compound sodium iodide (NaI) has a lower lattice energy of -704 kJ/mol with a similarly lower electronegativity difference of 1.73 between sodium and iodine. 347: 241: 355:
Although the two bonds are the equivalent in the original symmetric molecule, the bond-dissociation energy of an oxygen–hydrogen bond varies slightly depending on whether or not there is another hydrogen atom bonded to the oxygen atom. Thus, the bond energy of a molecule of water is 461.5 kJ/mol
610: 491: 615:
This ratio is notably lower than 1, indicating that there is a large amount of overlap between the valence electron clouds of the two rhenium atoms. From this data, we can conclude that this is a very strong bond. Experimentally, the Re-Re bond in was found to be a
314:, divided by four. The exact value for a certain pair of bonded elements varies somewhat depending on the specific molecule, so tabulated bond energies are generally averages from a number of selected typical chemical species containing that type of bond. 94: 250:
for a given bond is equal to the energy of the individual components that make up the bond when they are free and unbonded minus the energy of the components when they are bonded together. These energies are given by the
512: 396: 236:{\displaystyle {\begin{array}{lcl}\mathrm {D^{\circ }(R-} X)\ =\Delta H_{f}^{\circ }\mathrm {(R)} +\Delta H_{f}^{\circ }(X)-\Delta H_{f}^{\circ }(\mathrm {R} X)\end{array}}} 330:
of a single type of bond in a given molecule. The bond-dissociation energies of several different bonds of the same type can vary even within a single molecule.
496:
This ratio is slightly larger than 1, indicating that the bond itself is slightly longer than the expected minimum overlap between the two boron atoms'
838: 60:
The bond dissociation energy (enthalpy) is also referred to as bond disruption energy, bond energy, bond strength, or binding energy (abbreviation:
1010:
Cotton, F. A.; Curtis, N. F.; Harris, C. B.; Johnson, B. F. G.; Lippard, S. J.; Mague, J. T.; Robinson, W. R.; Wood, J. S. (1964-09-18).
605:{\displaystyle {\frac {224\ {\text{pm}}}{135\ {\text{pm}}+135\ {\text{pm}}}}={\frac {224\ {\text{pm}}}{270\ {\text{pm}}}}\approx \ 0.83} 636:
of the two atoms bonding together has a major effect on their bond energy. The extent of this effect is described by the compound's
486:{\displaystyle {\frac {175\ {\text{pm}}}{85\ {\text{pm}}+85\ {\text{pm}}}}={\frac {175\ {\text{pm}}}{170\ {\text{pm}}}}\approx 1.03} 265:
The enthalpy of formation of a large number of atoms, free radicals, ions, clusters and compounds is available from the websites of
1132: 1107: 889: 810: 1154: 1082: 1058: 778: 868: 507:
is 135 pm, with a Re–Re bond length of 224 pm in the compound . Taking the same steps as above gives a ratio of
933: 359:
When the bond is broken, the bonding electron pair will split equally to the products. This process is called
803:
CRC Handbook of Chemistry and Physics, 97th Edition (CRC Handbook of Chemistry & Physics) 97th Edition
57:(usually at a temperature of 298.15 K) for all bonds of the same type within the same chemical species. 391:
is 175 pm. Dividing the length of this bond by the sum of each boron atom's radius gives a ratio of
905: 649: 327: 54: 1159: 375:
of the atoms that form the bond to the length of bond itself. For example, the atomic radius of
768: 252: 1011: 692:
Treptow, Richard S. (1995). "Bond Energies and Enthalpies: An Often Neglected Difference".
8: 825:
Luo, Yu-Ran and Jin-Pei Cheng "Bond Dissociation Energies". In Lide, David R. (ed) 2017,
311: 664: 1012:"Mononuclear and Polynuclear Chemistry of Rhenium (III): Its Pronounced Homophilicity" 867:
Madhusha (2017), Difference Between Bond Energy and Bond Dissociation Energy, Pediaa,
1128: 1103: 1078: 1054: 1031: 992: 953: 885: 806: 784: 774: 746: 659: 633: 99: 848: 346: 1023: 984: 945: 852: 843: 736: 728: 701: 629: 497: 1027: 341:
O is the average energy required to break each of the two O–H bonds in sequence:
1051:
Bonding and Structure: Structural Principles in Inorganic and Organic Chemistry
669: 654: 637: 620:. This method of determination is most useful for covalently bonded compounds. 617: 334: 1148: 1035: 996: 957: 847:, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) " 788: 770:
Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 3rd edition
750: 372: 360: 72:). It is defined as the standard enthalpy change of the following fission: R— 32: 906:"Illustrated Glossary of Organic Chemistry - Homolytic cleavage (homolysis)" 856: 741: 500:
clouds. Thus, we can conclude that this bond is a rather weak single bond.
310:) of breaking one molecule of methane into a carbon atom and four hydrogen 363:(homolytic cleavage; homolysis) and results in the formation of radicals. 829:, 97th edition (2016–2017). Boca Raton: Taylor & Francis Group. 9-73. 764: 988: 949: 732: 705: 971:
Atoji, Masao; Wheatley, Peter J.; Lipscomb, William N. (1957-07-01).
380: 20: 972: 337:
is composed of two O–H bonds bonded as H–O–H. The bond energy for H
293: 41: 53:. IUPAC defines bond energy as the average value of the gas-phase 973:"Crystal and Molecular Structure of Diboron Tetrachloride, B2Cl4" 504: 297: 880:
Lehninger, Albert L.; Nelson, David L.; Cox, Michael M. (2005).
719:
Christian, Jerry D. (1973-03-01). "Strength of Chemical Bonds".
1123:
Huheey, James E.; Keiter, Ellen A.; Keiter, Richard L. (2009).
289: 274: 317: 376: 278: 1125:
Inorganic chemistry: principles of structure and reactivity
869:
Difference Between Bond Energy and Bond Dissociation Energy
270: 266: 1009: 371:
The strength of a bond can be estimated by comparing the
366: 1102:(Fifth ed.). New York: W. H. Freeman and Company. 623: 88:), is usually derived by the thermochemical equation, 970: 515: 399: 97: 1122: 879: 604: 485: 235: 1146: 763: 345: 1053:. New York: Ellis Horwood. pp. 40–42. 800: 318:Bond energy versus bond-dissociation energy 740: 718: 503:In another example, the atomic radius of 1077:(65th ed.). CRC Press. 1984-06-27. 884:(4th ed.). New York: W.H. Freeman. 805:(97th ed.). CRC Press; 97 edition. 1100:Shriver and Atkins' Inorganic Chemistry 691: 383:, while the length of the B–B bond in B 31:) is one measure of the strength of a 1147: 1097: 1048: 931: 927: 925: 367:Predicting the bond strength by radius 827:CRC Handbook of Chemistry and Physics 687: 685: 882:Lehninger principles of biochemistry 1127:(4th ed.). Cambridge: Harper. 1075:Handbook of Chemistry & Physics 922: 624:Factors affecting ionic bond energy 262:º of the components in each state. 13: 844:Compendium of Chemical Terminology 682: 219: 197: 167: 157: 135: 116: 104: 14: 1171: 246:This equation tells us that the 1116: 1091: 1067: 1042: 1003: 977:The Journal of Chemical Physics 964: 938:The Journal of Chemical Physics 898: 873: 861: 849:Bond energy (mean bond energy) 832: 819: 794: 757: 712: 226: 215: 191: 185: 160: 154: 126: 113: 1: 1028:10.1126/science.145.3638.1305 801:Haynes, William (2016–2017). 721:Journal of Chemical Education 694:Journal of Chemical Education 675: 35:. It is sometimes called the 1098:Atkins; et al. (2009). 932:Slater, J. C. (1964-11-15). 7: 643: 16:Strength of a chemical bond 10: 1176: 934:"Atomic Radii in Crystals" 328:bond-dissociation energies 306:is the enthalpy change (∆ 1155:Chemical bond properties 650:Bond-dissociation energy 326:) is the average of all 55:bond-dissociation energy 857:10.1351/goldbook.B00701 361:homolytic bond cleavage 281:. Most authors use the 1049:Alcock, N. W. (1990). 606: 487: 350: 237: 607: 488: 349: 253:enthalpy of formation 238: 47:average bond enthalpy 513: 397: 285:values at 298.15 K. 95: 1022:(3638): 1305–1307. 773:, New York: Wiley, 379:is estimated at 85 214: 184: 152: 665:Isodesmic reaction 602: 483: 356:(110.3 kcal/mol). 351: 233: 231: 200: 170: 138: 84:, denoted by Dº(R— 1134:978-0-06-042995-9 1109:978-1-4292-1820-7 989:10.1063/1.1743668 950:10.1063/1.1725697 944:(10): 3199–3204. 910:www.chem.ucla.edu 891:978-0-7167-4339-2 733:10.1021/ed050p176 706:10.1021/ed072p497 660:Ionization energy 634:electronegativity 598: 591: 588: 584: 575: 571: 558: 555: 551: 541: 537: 528: 524: 475: 472: 468: 459: 455: 442: 439: 435: 425: 421: 412: 408: 288:For example, the 131: 1167: 1139: 1138: 1120: 1114: 1113: 1095: 1089: 1088: 1071: 1065: 1064: 1046: 1040: 1039: 1007: 1001: 1000: 968: 962: 961: 929: 920: 919: 917: 916: 902: 896: 895: 877: 871: 865: 859: 836: 830: 823: 817: 816: 798: 792: 791: 761: 755: 754: 744: 742:2060/19980004003 716: 710: 709: 689: 611: 609: 608: 603: 596: 592: 590: 589: 586: 582: 577: 576: 573: 569: 564: 559: 557: 556: 553: 549: 542: 539: 535: 530: 529: 526: 522: 517: 498:valence electron 492: 490: 489: 484: 476: 474: 473: 470: 466: 461: 460: 457: 453: 448: 443: 441: 440: 437: 433: 426: 423: 419: 414: 413: 410: 406: 401: 242: 240: 239: 234: 232: 222: 213: 208: 183: 178: 163: 151: 146: 129: 122: 112: 111: 1175: 1174: 1170: 1169: 1168: 1166: 1165: 1164: 1145: 1144: 1143: 1142: 1135: 1121: 1117: 1110: 1096: 1092: 1085: 1073: 1072: 1068: 1061: 1047: 1043: 1008: 1004: 969: 965: 930: 923: 914: 912: 904: 903: 899: 892: 878: 874: 866: 862: 837: 833: 824: 820: 813: 799: 795: 781: 762: 758: 717: 713: 690: 683: 678: 646: 630:ionic compounds 626: 585: 578: 572: 565: 563: 552: 538: 531: 525: 518: 516: 514: 511: 510: 469: 462: 456: 449: 447: 436: 422: 415: 409: 402: 400: 398: 395: 394: 390: 386: 369: 340: 333:For example, a 320: 305: 296:bond energy in 260: 230: 229: 218: 209: 204: 179: 174: 153: 147: 142: 107: 103: 102: 98: 96: 93: 92: 17: 12: 11: 5: 1173: 1163: 1162: 1160:Binding energy 1157: 1141: 1140: 1133: 1115: 1108: 1090: 1083: 1066: 1059: 1041: 1002: 983:(1): 196–199. 963: 921: 897: 890: 872: 860: 831: 818: 812:978-1498754286 811: 793: 779: 756: 711: 680: 679: 677: 674: 673: 672: 670:Lattice energy 667: 662: 657: 655:Binding energy 652: 645: 642: 638:lattice energy 625: 622: 618:quadruple bond 601: 595: 581: 568: 562: 548: 545: 534: 521: 482: 479: 465: 452: 446: 432: 429: 418: 405: 388: 384: 368: 365: 353: 352: 338: 335:water molecule 319: 316: 303: 258: 244: 243: 228: 225: 221: 217: 212: 207: 203: 199: 196: 193: 190: 187: 182: 177: 173: 169: 166: 162: 159: 156: 150: 145: 141: 137: 134: 128: 125: 121: 118: 115: 110: 106: 101: 100: 15: 9: 6: 4: 3: 2: 1172: 1161: 1158: 1156: 1153: 1152: 1150: 1136: 1130: 1126: 1119: 1111: 1105: 1101: 1094: 1086: 1084:0-8493-0465-2 1080: 1076: 1070: 1062: 1060:9780134652535 1056: 1052: 1045: 1037: 1033: 1029: 1025: 1021: 1017: 1013: 1006: 998: 994: 990: 986: 982: 978: 974: 967: 959: 955: 951: 947: 943: 939: 935: 928: 926: 911: 907: 901: 893: 887: 883: 876: 870: 864: 858: 854: 850: 846: 845: 840: 835: 828: 822: 814: 808: 804: 797: 790: 786: 782: 780:9780471854722 776: 772: 771: 766: 760: 752: 748: 743: 738: 734: 730: 726: 722: 715: 707: 703: 699: 695: 688: 686: 681: 671: 668: 666: 663: 661: 658: 656: 653: 651: 648: 647: 641: 639: 635: 631: 621: 619: 613: 599: 593: 579: 566: 560: 546: 543: 532: 519: 508: 506: 501: 499: 494: 480: 477: 463: 450: 444: 430: 427: 416: 403: 392: 382: 378: 374: 364: 362: 357: 348: 344: 343: 342: 336: 331: 329: 325: 322:Bond energy ( 315: 313: 309: 302: 299: 295: 291: 286: 284: 280: 276: 272: 268: 263: 261: 254: 249: 223: 210: 205: 201: 194: 188: 180: 175: 171: 164: 148: 143: 139: 132: 123: 119: 108: 91: 90: 89: 87: 83: 79: 75: 71: 67: 63: 58: 56: 52: 51:bond strength 48: 44: 43: 42:bond enthalpy 38: 34: 33:chemical bond 30: 26: 22: 1124: 1118: 1099: 1093: 1074: 1069: 1050: 1044: 1019: 1015: 1005: 980: 976: 966: 941: 937: 913:. Retrieved 909: 900: 881: 875: 863: 842: 834: 826: 821: 802: 796: 769: 765:March, Jerry 759: 724: 720: 714: 697: 693: 627: 614: 509: 502: 495: 393: 373:atomic radii 370: 358: 354: 332: 323: 321: 307: 300: 287: 282: 264: 256: 247: 245: 85: 81: 77: 73: 69: 65: 61: 59: 50: 46: 40: 36: 28: 24: 18: 25:bond energy 1149:Categories 915:2019-11-27 727:(3): 176. 700:(6): 497. 676:References 1036:0036-8075 997:0021-9606 958:0021-9606 789:642506595 751:0021-9584 594:≈ 478:≈ 211:∘ 198:Δ 195:− 181:∘ 168:Δ 149:∘ 136:Δ 120:− 109:∘ 37:mean bond 21:chemistry 767:(1985), 644:See also 312:radicals 294:hydrogen 1016:Science 505:rhenium 298:methane 1131:  1106:  1081:  1057:  1034:  995:  956:  888:  809:  787:  777:  749:  632:, the 597:  583:  570:  550:  536:  523:  467:  454:  434:  420:  407:  290:carbon 277:, and 275:CODATA 130:  80:. The 76:→ R + 839:IUPAC 377:boron 304:(C–H) 279:IUPAC 68:, or 49:, or 1129:ISBN 1104:ISBN 1079:ISBN 1055:ISBN 1032:ISSN 993:ISSN 954:ISSN 886:ISBN 807:ISBN 785:OCLC 775:ISBN 747:ISSN 600:0.83 481:1.03 271:NASA 267:NIST 1024:doi 1020:145 985:doi 946:doi 853:doi 851:". 737:hdl 729:doi 702:doi 628:In 580:270 567:224 547:135 533:135 520:224 464:170 451:175 404:175 283:BDE 248:BDE 82:BDE 62:BDE 19:In 1151:: 1030:. 1018:. 1014:. 991:. 981:27 979:. 975:. 952:. 942:41 940:. 936:. 924:^ 908:. 841:, 783:, 745:. 735:. 725:50 723:. 698:72 696:. 684:^ 612:. 587:pm 574:pm 554:pm 540:pm 527:pm 493:. 471:pm 458:pm 438:pm 431:85 424:pm 417:85 411:pm 387:Cl 381:pm 324:BE 301:BE 273:, 269:, 66:BE 64:, 45:, 39:, 29:BE 23:, 1137:. 1112:. 1087:. 1063:. 1038:. 1026:: 999:. 987:: 960:. 948:: 918:. 894:. 855:: 815:. 753:. 739:: 731:: 708:. 704:: 561:= 544:+ 445:= 428:+ 389:4 385:2 339:2 308:H 292:– 259:f 257:H 255:Δ 227:) 224:X 220:R 216:( 206:f 202:H 192:) 189:X 186:( 176:f 172:H 165:+ 161:) 158:R 155:( 144:f 140:H 133:= 127:) 124:X 117:R 114:( 105:D 86:X 78:X 74:X 70:D 27:(

Index

chemistry
chemical bond
bond enthalpy
bond-dissociation energy
enthalpy of formation
NIST
NASA
CODATA
IUPAC
carbon
hydrogen
methane
radicals
bond-dissociation energies
water molecule

homolytic bond cleavage
atomic radii
boron
pm
valence electron
rhenium
quadruple bond
ionic compounds
electronegativity
lattice energy
Bond-dissociation energy
Binding energy
Ionization energy
Isodesmic reaction

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.