Knowledge

Chemical potential

Source đź“ť

2843:
from that area until the chemical potential went back to zero; likewise, if the chemical potential somewhere was less than zero, photons would spontaneously appear until the chemical potential went back to zero. Since this process occurs extremely rapidly - at least, it occurs rapidly in the presence of dense charged matter or also in the walls of the textbook example for a photon gas of blackbody radiation - it is safe to assume that the photon chemical potential here is never different from zero. A physical situation where the chemical potential for photons can differ from zero are material-filled optical microcavities, with spacings between cavity mirrors in the wavelength regime. In such two-dimensional cases, photon gases with tuneable chemical potential, much reminiscent to gases of material particles, can be observed.
2037:, Gibbs introduced the preliminary outline of the principles of his new equation able to predict or estimate the tendencies of various natural processes to ensue when bodies or systems are brought into contact. By studying the interactions of homogeneous substances in contact, i.e. bodies, being in composition part solid, part liquid, and part vapor, and by using a three-dimensional 2891: 105:. When a ball rolls down a hill, it is moving from a higher gravitational potential (higher internal energy thus higher potential for work) to a lower gravitational potential (lower internal energy). In the same way, as molecules move, react, dissolve, melt, etc., they will always tend naturally to go from a higher chemical potential to a lower one, changing the 3911:
by Ashcroft and Mermin, page 257 note 36. Page 593 of the same book uses, instead, an unusual "flipped" definition, where "chemical potential" is the total chemical potential, which is constant in equilibrium, and "electrochemical potential" is the internal chemical potential; presumably this unusual
128:
and the random motion of molecules. However, it is simpler to describe the process in terms of chemical potentials: For a given temperature, a molecule has a higher chemical potential in a higher-concentration area and a lower chemical potential in a low concentration area. Movement of molecules from
2577:
Electrons in solids have a chemical potential, defined the same way as the chemical potential of a chemical species: The change in free energy when electrons are added or removed from the system. In the case of electrons, the chemical potential is usually expressed in energy per particle rather than
2049:
graph, Gibbs was able to determine three states of equilibrium, i.e. "necessarily stable", "neutral", and "unstable", and whether or not changes will ensue. In 1876, Gibbs built on this framework by introducing the concept of chemical potential so to take into account chemical reactions and states
201:
contains acetic acid. When acid molecules dissociate, the concentration of the undissociated acid molecules (HA) decreases and the concentrations of the product ions (H and A) increase. Thus the chemical potential of HA decreases and the sum of the chemical potentials of H and A increases. When the
2842:
and can very easily and rapidly appear or disappear. Therefore, at thermodynamic equilibrium, the chemical potential of photons is in most physical situations always and everywhere zero. The reason is, if the chemical potential somewhere was higher than zero, photons would spontaneously disappear
2628:
As described above, when describing chemical potential, one has to say "relative to what". In the case of electrons in semiconductors, internal chemical potential is often specified relative to some convenient point in the band structure, e.g., to the bottom of the conduction band. It may also be
2846:
Electric charge is different because it is intrinsically conserved, i.e. it can be neither created nor destroyed. It can, however, diffuse. The "chemical potential of electric charge" controls this diffusion: Electric charge, like anything else, will tend to diffuse from areas of higher chemical
2009:
or combination of elements in given proportions may be considered a substance, whether capable or not of existing by itself as a homogeneous body. This freedom to choose the boundary of the system allows the chemical potential to be applied to a huge range of systems. The term can be used in
2127:
refers to the variation produced by any variations in the state of the parts of the body, and (when different parts of the body are in different states) in the proportion in which the body is divided between the different states. The condition of stable equilibrium is that the value of the
202:
sums of chemical potential of reactants and products are equal the system is at equilibrium and there is no tendency for the reaction to proceed in either the forward or backward direction. This explains why vinegar is acidic, because acetic acid dissociates to some extent, releasing
55:
of the free energy with respect to the amount of the species, all other species' concentrations in the mixture remaining constant. When both temperature and pressure are held constant, and the number of particles is expressed in moles, the chemical potential is the
2797: 3925: 3474: 930: 740: 1144: 2858:
present, electrons cannot be created or destroyed. Therefore, there is an electron chemical potential that might vary in space, causing diffusion. At very high temperatures, however, electrons and positrons can spontaneously appear out of the vacuum
431: 3899:. In this text, total chemical potential is usually called "electrochemical potential", but sometimes just "chemical potential". The internal chemical potential is referred to by the unwieldy phrase "chemical potential in the absence of the field". 1777: 1676: 1277: 623: 1870: 1483: 2347:). The internal chemical potential includes everything else besides the external potentials, such as density, temperature, and enthalpy. This formalism can be understood by assuming that the total energy of a system, 1366:
In thermodynamic equilibrium, when the system concerned is at constant temperature and pressure but can exchange particles with its external environment, the Gibbs free energy is at its minimum for the system, that is
2969: 1361: 3097: 2241: 3922: 2118: 2311: 2462: 1794:
is useful because it relates individual chemical potentials. For example, in a binary mixture, at constant temperature and pressure, the chemical potentials of the two participants A and B are related by
2660:
into the Mulliken electronegativity, it is seen that the Mulliken chemical potential is a finite difference approximation of the electronic energy with respect to the number of electrons, i.e.,
1929:
is the number of moles of B. Every instance of phase or chemical equilibrium is characterized by a constant. For instance, the melting of ice is characterized by a temperature, known as the
2666: 2502: 78:
is zero, as the free energy is at a minimum. In a system in diffusion equilibrium, the chemical potential of any chemical species is uniformly the same everywhere throughout the system.
781:
systems, such as chemical solutions, as it is hard to control the volume and entropy to be constant while particles are added. A more convenient expression may be obtained by making a
3284: 839: 646: 140:
O molecule that is in the solid phase (ice) has a higher chemical potential than a water molecule that is in the liquid phase (water) above 0 Â°C. When some of the ice melts, H
1038: 2863:), so the chemical potential of electrons by themselves becomes a less useful quantity than the chemical potential of the conserved quantities like (electrons minus positrons). 2633:, however, work function varies from surface to surface even on a completely homogeneous material. Total chemical potential, on the other hand, is usually specified relative to 328: 2529: 2054:
If we wish to express in a single equation the necessary and sufficient condition of thermodynamic equilibrium for a substance when surrounded by a medium of constant pressure
97:
Particles tend to move from higher chemical potential to lower chemical potential because this reduces the free energy. In this way, chemical potential is a generalization of
1396: 2392: 1030: 1005: 1927: 1900: 1782:
These different forms for the chemical potential are all equivalent, meaning that they have the same physical content, and may be useful in different physical situations.
834: 3235: 1174: 3201: 3168: 1573: 1535: 3262: 3131: 1682: 1581: 1182: 528: 976: 953: 2365: 3566: 1801: 3634: 2168:. If two locations have different total chemical potentials for a species, some of it may be due to potentials associated with "external" force fields ( 1404: 270:. The electrochemical potential completely characterizes all of the influences on an ion's motion, while the chemical potential includes everything 2851:
are the same. In fact, each conserved quantity is associated with a chemical potential and a corresponding tendency to diffuse to equalize it out.
2176:, etc.), while the rest would be due to "internal" factors (density, temperature, etc.) Therefore, the total chemical potential can be split into 2908: 144:
O molecules convert from solid to the warmer liquid where their chemical potential is lower, so the ice cube shrinks. At the temperature of the
1288: 2164:
The abstract definition of chemical potential given above—total change in free energy per extra mole of substance—is more specifically called
3020: 2190: 4245: 1933:
at which solid and liquid phases are in equilibrium with each other. Chemical potentials can be used to explain the slopes of lines on a
2534:
The phrase "chemical potential" sometimes means "total chemical potential", but that is not universal. In some fields, in particular
2068: 2252: 2397: 124:
to low concentration, until eventually, the concentration is the same everywhere. The microscopic explanation for this is based on
148:, 0 Â°C, the chemical potentials in water and ice are the same; the ice cube neither grows nor shrinks, and the system is in 4112: 4084: 4065: 4016: 3942:
J. Klaers; J. Schmitt; F. Vewinger & M. Weitz (2010). "Bose–Einstein condensation of photons in an optical microcavity".
51:
with respect to the change in the number of atoms or molecules of the species that are added to the system. Thus, it is the
3741: 110: 2640:
In atomic physics, the chemical potential of the electrons in an atom is sometimes said to be the negative of the atom's
319: 315: 2050:
of bodies that are chemically different from each other. In his own words from the aforementioned paper, Gibbs states:
2792:{\displaystyle \mu _{\text{Mulliken}}=-\chi _{\text{Mulliken}}=-{\frac {IP+EA}{2}}=\left}{\delta N}}\right]_{N=N_{0}}.} 311: 304: 4240: 129:
higher chemical potential to lower chemical potential is accompanied by a release of free energy. Therefore, it is a
3592: 4235: 2467: 3268:
with itself and other species . This can be corrected for by factoring in the coefficient of activity of species
245:. In each case the chemical potential of a given species at equilibrium is the same in all phases of the system. 3562: 3469:{\displaystyle \mu _{i}=\mu _{i0}(T,P)+RT\ln(x_{i})+RT\ln(\gamma _{i})=\mu _{i0}(T,P)+RT\ln(x_{i}\gamma _{i}).} 2645: 2173: 925:{\displaystyle \mathrm {d} G=\mathrm {d} U+P\,\mathrm {d} V+V\,\mathrm {d} P-T\,\mathrm {d} S-S\,\mathrm {d} T} 735:{\displaystyle \mathrm {d} U=\sum _{i=1}^{N}\left({\frac {\partial U}{\partial x_{i}}}\right)\mathrm {d} x_{i}} 3683: 519:
is volume. Other work terms, such as those involving electric, magnetic or gravitational fields may be added.
1282:
and the change in Gibbs free energy of a system that is held at constant temperature and pressure is simply
1139:{\displaystyle \mathrm {d} G=-S\,\mathrm {d} T+V\,\mathrm {d} P+\sum _{i=1}^{n}\mu _{i}\,\mathrm {d} N_{i}.} 2875: 426:{\displaystyle \mathrm {d} U=T\,\mathrm {d} S-P\,\mathrm {d} V+\sum _{i=1}^{n}\mu _{i}\,\mathrm {d} N_{i},} 1985:
we suppose an infinitesimal quantity of any substance to be added, the mass remaining homogeneous and its
4225: 2854:
In the case of electrons, the behaviour depends on temperature and context. At low temperatures, with no
2035:
A Method of Geometrical Representation of the Thermodynamic Properties of Substances by Means of Surfaces
136:
Another example, not based on concentration but on phase, is an ice cube on a plate above 0 Â°C. An H
2902:
Generally the chemical potential is given as a sum of an ideal contribution and an excess contribution:
2879: 2649: 2644:. Likewise, the process of chemical potential equalization is sometimes referred to as the process of 2507: 75: 85:
physics, the chemical potential of a system of electrons at zero absolute temperature is known as the
3523: 3503: 3493: 2551: 2169: 1370: 266: 149: 44: 3662: 2370: 2316:
i.e., the external potential is the sum of electric potential, gravitational potential, etc. (where
1965:
Chemical potential was first described by the American engineer, chemist and mathematical physicist
2618: 1946: 1791: 1010: 985: 778: 238: 160: 1905: 1878: 786: 782: 463: 125: 102: 3657: 3518: 3513: 2816: 2606: 2602: 2023: 1942: 795: 308: 4102: 3923:
Introduction to Density Functional Theory of Chemical Reactivity: The so-called Conceptual DFT
3896: 3880: 3823: 3213: 1152: 120:
in a homogeneous environment. In this system, the molecules tend to move from areas with high
4039: 3498: 3173: 3140: 2539: 1772:{\displaystyle \mu _{i}=\left({\frac {\partial F}{\partial N_{i}}}\right)_{T,V,N_{j\neq i}}.} 1671:{\displaystyle \mu _{i}=\left({\frac {\partial H}{\partial N_{i}}}\right)_{S,P,N_{j\neq i}},} 1538: 1272:{\displaystyle \mu _{i}=\left({\frac {\partial G}{\partial N_{i}}}\right)_{T,P,N_{j\neq i}},} 618:{\displaystyle \mu _{i}=\left({\frac {\partial U}{\partial N_{i}}}\right)_{S,V,N_{j\neq i}}.} 234: 210: 3864: 1543: 1505: 4176: 4139: 3961: 3826:. This text uses "internal", "external", and "total chemical potential" as in this article. 3649: 3607: 3488: 3240: 3109: 2653: 1489: 500: 470: 67: 48: 8: 4230: 2586: 2543: 2394:, and an external energy due to the interaction of each particle with an external field, 1978: 130: 117: 59: 4180: 4143: 3965: 3653: 3611: 1865:{\displaystyle d\mu _{\text{B}}=-{\frac {n_{\text{A}}}{n_{\text{B}}}}\,d\mu _{\text{A}}} 958: 935: 4204: 3985: 3951: 3675: 2350: 2336: 2026:). Chemical potential is measured in units of energy/particle or, equivalently, energy/ 1982: 1941:, which in turn can be derived from the Gibbs–Duhem equation. They are used to explain 1938: 637: 52: 43:. The chemical potential of a species in a mixture is defined as the rate of change of 3264:) contained in the solution. This neglects intermolecular interaction between species 4192: 4155: 4108: 4080: 4061: 4022: 4012: 3977: 3737: 3671: 3558: 2657: 2641: 2634: 790: 156: 71: 62: 3679: 2159: 4184: 4147: 4005: 3989: 3969: 3667: 3615: 2812: 2610: 2535: 2344: 2006: 249: 98: 40: 1974: 4130:
Cook, G.; Dickerson, R. H. (1995-08-01). "Understanding the chemical potential".
4098: 3929: 3137:
contained in the solution. The chemical potential becomes negative infinity when
2860: 2832: 2808: 2578:
energy per mole, and the energy per particle is conventionally given in units of
2137: 2046: 1994: 1954: 1478:{\displaystyle \mu _{1}\,\mathrm {d} N_{1}+\mu _{2}\,\mathrm {d} N_{2}+\dots =0.} 441: 106: 36: 28: 3479:
The plots above give a very rough picture of the ideal and non-ideal situation.
2847:
potential to areas of lower chemical potential. Other conserved quantities like
4094: 2975: 2011: 1950: 633: 275: 242: 20: 4188: 777:
with respect to the corresponding species particle number is inconvenient for
4219: 4196: 4159: 2848: 2828: 2630: 2590: 1966: 1934: 1930: 218: 214: 145: 121: 82: 4026: 2018:
for any system undergoing change. Chemical potential is also referred to as
1575:, expressions for the chemical potential may be obtained in terms of these: 16:
Change in energies of a thermodynamic system with respect to particle number
3981: 2594: 2579: 979: 203: 2964:{\displaystyle \mu _{i}=\mu _{i}^{\text{ideal}}+\mu _{i}^{\text{excess}},} 2622: 2617:
chemical potential) varies from the p-type to the n-type side, while the
2598: 2572: 2027: 1356:{\displaystyle \mathrm {d} G=\sum _{i=1}^{n}\mu _{i}\,\mathrm {d} N_{i}.} 222: 172: 86: 3973: 2820: 226: 3941: 3619: 3092:{\displaystyle \mu _{i}^{\text{ideal}}\approx \mu _{i0}+RT\ln(x_{i}),} 2236:{\displaystyle \mu _{\text{tot}}=\mu _{\text{int}}+\mu _{\text{ext}},} 2005:
Gibbs later noted also that for the purposes of this definition, any
773:
This expression of the chemical potential as a partial derivative of
279: 164: 4151: 260:
always tend to go from higher to lower chemical potential, but they
3508: 2855: 2605:
silicon has a higher internal chemical potential of electrons than
1500: 3956: 1997:
of the mass divided by the quantity of the substance added is the
2871: 2160:
Electrochemical, internal, external, and total chemical potential
2145: 2042: 2015: 1986: 508: 452: 230: 209:
Chemical potentials are important in many aspects of multi-phase
198: 2890: 2827:, a chemical potential for electrons, a chemical potential for 2824: 2811:
has applied the definition of chemical potential to systems in
2153: 2113:{\displaystyle \displaystyle \delta (\epsilon -T\eta +P\nu )=0} 2038: 1990: 32: 2306:{\displaystyle \mu _{\text{ext}}=qV_{\text{ele}}+mgh+\cdots ,} 2874:
is related to the number of particles and the temperature by
2867: 2839: 2629:
specified "relative to vacuum", to yield a quantity known as
2457:{\displaystyle U_{\text{ext}}=N(qV_{\text{ele}}+mgh+\cdots )} 636:, so if its differential exists, then the differential is an 2823:, at every point in space there is a chemical potential for 522:
From the above equation, the chemical potential is given by
3010:. Given this definition, the chemical potential of species 74:, the total sum of the product of chemical potentials and 3851:
by Bard and Faulkner, 2nd edition, Section 2.2.4(a), 4–5.
2898:
in solution for (left) ideal and (right) real solutions
2585:
Chemical potential plays an especially important role in
1488:
Use of this equality provides the means to establish the
253: 3635:"Chemical potential–a quantity in search of recognition" 3170:, but this does not lead to nonphysical results because 35:
that can be absorbed or released due to a change of the
3006:) is defined as the chemical potential of pure species 3861:
Electrochemistry at Metal and Semiconductor Electrodes
2652:
scale. By inserting the energetic definitions of the
4205:"Values of the chemical potential of 1300 substances" 4093: 3287: 3243: 3216: 3176: 3143: 3112: 3023: 2911: 2669: 2510: 2470: 2400: 2373: 2353: 2255: 2193: 2072: 2071: 1908: 1881: 1804: 1685: 1584: 1546: 1508: 1407: 1373: 1291: 1185: 1155: 1041: 1013: 988: 961: 938: 842: 798: 649: 531: 331: 39:
of the given species, e.g. in a chemical reaction or
4209:
Eduard-Job-Foundation for Thermo- and Matterdynamics
3771: 2464:. The definition of chemical potential applied to 4004: 3468: 3256: 3229: 3195: 3162: 3125: 3091: 2963: 2791: 2523: 2496: 2456: 2386: 2359: 2305: 2235: 2112: 1921: 1894: 1864: 1771: 1670: 1567: 1529: 1477: 1390: 1355: 1271: 1168: 1138: 1024: 999: 982:is applied to) and using the above expression for 970: 947: 924: 828: 734: 617: 425: 303:(atomic, molecular or nuclear) is defined, as all 4079:(7th ed.). Oxford: Oxford University Press. 4042:, by Jean Letessier, Johann Rafelski, p. 91. 2128:expression in the parenthesis shall be a minimum. 116:A simple example is a system of dilute molecules 4217: 4167:Kaplan, T. A. (2006). "The Chemical Potential". 4002: 2885: 2815:and its associated processes. For example, in a 1495:By making further Legendre transformations from 4075:Atkins, Peter William; Paula, Julio De (2002). 3705: 3703: 3632: 3557:Opacity, Walter F. Huebner, W. David Barfield, 2367:, is the sum of two parts: an internal energy, 2339:and height of the container, respectively, and 482:is the infinitesimal change of particle number 4055: 3820:Thermodynamics in Earth and Planetary Sciences 4129: 3829: 2613:diode at equilibrium the chemical potential ( 2497:{\displaystyle U_{\text{int}}+U_{\text{ext}}} 3893:The Physics of Solids: Essentials and Beyond 3700: 2988:) is dependent on temperature and pressure. 4074: 3935: 1957:for the solvent using chemical potentials. 1499:to other thermodynamic potentials like the 285: 2589:and is closely related to the concepts of 2001:for that substance in the mass considered. 4060:(8th ed.). Oxford University Press. 3955: 3912:terminology was an unintentional mistake. 3803: 3801: 3799: 3781:, p. 968, University Science Books, 1997. 3779:Physical Chemistry – A Molecular Approach 3715: 3661: 3590: 1993:remaining unchanged, the increase of the 1848: 1447: 1418: 1334: 1149:As a consequence, another expression for 1117: 1074: 1059: 913: 898: 883: 868: 404: 361: 346: 3839:, 3rd ed., p. 352, Academic Press, 2008. 2889: 2802: 2324:are the charge and mass of the species, 4056:Atkins, Peter; de Paula, Julio (2006). 3633:Job, G.; Herrmann, F. (February 2006). 2561: 2132:In this description, as used by Gibbs, 4218: 4166: 3807: 3796: 3790: 3765: 3753: 3721: 3709: 3578: 3546: 2566: 2546:, the term "chemical potential" means 495:as particles are added or subtracted. 312:fundamental equation of thermodynamics 155:A third example is illustrated by the 2978:, the chemical potential of species 2894:The chemical potential of component 2838:In the case of photons, photons are 2625:) is constant throughout the diode. 628:This is because the internal energy 4246:Chemical engineering thermodynamics 3237:only depends on the mole fraction ( 2550:chemical potential, while the term 1953:for the solute can be derived from 13: 3877:Physics Of Transition Metal Oxides 3736:, F Mandl, (Wiley, London, 11971) 1715: 1707: 1614: 1606: 1449: 1420: 1375: 1336: 1293: 1215: 1207: 1119: 1076: 1061: 1043: 1015: 990: 915: 900: 885: 870: 855: 844: 718: 697: 689: 651: 561: 553: 406: 363: 348: 333: 14: 4257: 4123: 2648:. This connection comes from the 2524:{\displaystyle \mu _{\text{tot}}} 3593:"The elusive chemical potential" 3133:is the mole fraction of species 2621:(electrochemical potential, or, 2504:yields the above expression for 2062:, this equation may be written: 1949:by the application of pressure. 1902:is the number of moles of A and 4107:(2nd ed.). W. H. Freeman. 4033: 3996: 3915: 3902: 3886: 3870: 3854: 3842: 3813: 3793:, pp. 143–145, section 5.3 3784: 3777:McQuarrie, D. A.; Simon, J. D. 3768:, pp. 150–155, section 5.5 3759: 3591:Baierlein, Ralph (April 2001). 1785: 1391:{\displaystyle \mathrm {d} G=0} 462:is the infinitesimal change of 440:is the infinitesimal change of 282:for more on this terminology.) 264:always go from higher to lower 4169:Journal of Statistical Physics 4040:Hadrons and Quark-Gluon Plasma 4011:. Cambridge University Press. 3895:, by Eleftherios N. Economou, 3747: 3727: 3626: 3584: 3572: 3551: 3540: 3460: 3437: 3419: 3407: 3388: 3375: 3357: 3344: 3326: 3314: 3207:is not present in the system. 3083: 3070: 2749: 2743: 2646:electronegativity equalization 2451: 2417: 2387:{\displaystyle U_{\text{int}}} 2174:gravitational potential energy 2100: 2076: 1007:, a differential relation for 1: 4048: 2886:Ideal vs. non-ideal solutions 1025:{\displaystyle \mathrm {d} G} 1000:{\displaystyle \mathrm {d} U} 473:in thermal equilibrium, and d 3534: 1969:. He defined it as follows: 1922:{\displaystyle n_{\text{B}}} 1895:{\displaystyle n_{\text{A}}} 451:the infinitesimal change of 7: 4132:American Journal of Physics 3756:, pp. 126, section 4.1 3712:, pp. 141, section 6.4 3642:European Journal of Physics 3600:American Journal of Physics 3581:, pp. 227, section 9.2 3482: 3210:This equation assumes that 2866:The chemical potentials of 2345:acceleration due to gravity 2182:external chemical potential 2178:internal chemical potential 92: 76:stoichiometric coefficients 10: 4264: 4077:Atkins' Physical Chemistry 4058:Atkins' Physical Chemistry 3672:10.1088/0143-0807/27/2/018 3529: 2650:Mulliken electronegativity 2570: 2020:partial molar Gibbs energy 1960: 745:for independent variables 4189:10.1007/s10955-005-8067-x 4003:Baierlein, Ralph (2003). 3524:Thermodynamic equilibrium 3504:Excess chemical potential 3494:Electrochemical potential 3278:. This correction yields 3106:is the gas constant, and 2552:electrochemical potential 2170:electric potential energy 1492:for a chemical reaction. 829:{\displaystyle G=U+PV-TS} 322:infinitesimal processes: 267:electrochemical potential 4241:Thermodynamic properties 3879:, by Sadamichi Maekawa, 3230:{\displaystyle \mu _{i}} 3014:in an ideal solution is 2876:Bose–Einstein statistics 2619:total chemical potential 2166:total chemical potential 1947:melting-point depression 1169:{\displaystyle \mu _{i}} 836:. From the differential 286:Thermodynamic definition 239:liquid-liquid extraction 4236:Chemical thermodynamics 3849:Electrochemical Methods 3196:{\displaystyle x_{i}=0} 3163:{\displaystyle x_{i}=0} 787:thermodynamic potential 783:Legendre transformation 307:quantities are, by the 290:The chemical potential 113:to chemical potential. 103:gravitational potential 99:"potentials" in physics 3822:by Jibamitra Ganguly, 3519:Thermodynamic activity 3514:Partial molar property 3470: 3258: 3231: 3197: 3164: 3127: 3093: 2965: 2899: 2880:Fermi–Dirac statistics 2793: 2525: 2498: 2458: 2388: 2361: 2307: 2237: 2130: 2114: 2024:partial molar property 2003: 1943:colligative properties 1923: 1896: 1866: 1773: 1672: 1569: 1568:{\displaystyle F=U-TS} 1531: 1530:{\displaystyle H=U+PV} 1479: 1392: 1357: 1323: 1273: 1170: 1140: 1106: 1026: 1001: 972: 949: 926: 830: 736: 681: 619: 427: 393: 314:. This holds for both 3932:, retrieved May 2016. 3499:Equilibrium chemistry 3471: 3259: 3257:{\displaystyle x_{i}} 3232: 3198: 3165: 3128: 3126:{\displaystyle x_{i}} 3094: 2966: 2893: 2803:Sub-nuclear particles 2794: 2540:semiconductor physics 2526: 2499: 2459: 2389: 2362: 2308: 2238: 2115: 2052: 1971: 1924: 1897: 1867: 1774: 1673: 1570: 1539:Helmholtz free energy 1532: 1480: 1393: 1358: 1303: 1274: 1171: 1141: 1086: 1027: 1002: 973: 950: 927: 831: 737: 661: 620: 428: 373: 235:partition coefficient 211:equilibrium chemistry 3921:Morell, Christophe, 3489:Chemical equilibrium 3285: 3241: 3214: 3174: 3141: 3110: 3021: 2909: 2667: 2654:ionization potential 2562:Systems of particles 2558:chemical potential. 2508: 2468: 2398: 2371: 2351: 2253: 2191: 2069: 1967:Josiah Willard Gibbs 1906: 1879: 1802: 1792:Gibbs–Duhem equation 1683: 1582: 1544: 1506: 1490:equilibrium constant 1405: 1371: 1289: 1183: 1153: 1039: 1011: 986: 959: 936: 840: 796: 647: 529: 501:absolute temperature 471:thermodynamic system 329: 68:chemical equilibrium 49:thermodynamic system 4181:2006JSP...122.1237K 4144:1995AmJPh..63..737C 3974:10.1038/nature09567 3966:2010Natur.468..545K 3909:Solid State Physics 3734:Statistical Physics 3654:2006EJPh...27..353J 3612:2001AmJPh..69..423B 3203:means that species 3038: 2957: 2939: 2587:solid-state physics 2567:Electrons in solids 2544:solid-state physics 206:into the solution. 131:spontaneous process 4226:Physical chemistry 3928:2017-08-28 at the 3837:Physical Chemistry 3466: 3254: 3227: 3193: 3160: 3123: 3089: 3024: 2961: 2943: 2925: 2900: 2817:quark–gluon plasma 2789: 2521: 2494: 2454: 2384: 2357: 2337:electric potential 2303: 2233: 2110: 2109: 2033:In his 1873 paper 1983:hydrostatic stress 1939:Clapeyron equation 1919: 1892: 1862: 1769: 1668: 1565: 1527: 1475: 1398:. It follows that 1388: 1353: 1269: 1166: 1136: 1022: 997: 971:{\displaystyle TS} 968: 948:{\displaystyle PV} 945: 922: 826: 732: 638:exact differential 615: 423: 111:conjugate variable 53:partial derivative 25:chemical potential 4114:978-0-7167-1088-2 4086:978-0-19-879285-7 4067:978-0-19-870072-2 4018:978-0-521-65838-6 3950:(7323): 545–548. 3863:, by Norio Sato, 3620:10.1119/1.1336839 3036: 2955: 2937: 2807:In recent years, 2761: 2724: 2693: 2677: 2658:electron affinity 2642:electronegativity 2635:electrical ground 2518: 2491: 2478: 2430: 2408: 2381: 2360:{\displaystyle U} 2279: 2263: 2227: 2214: 2201: 2148:of the body, and 1916: 1889: 1859: 1846: 1843: 1833: 1815: 1729: 1628: 1229: 791:Gibbs free energy 711: 575: 515:is pressure, and 157:chemical reaction 72:phase equilibrium 63:Gibbs free energy 4253: 4212: 4200: 4175:(6): 1237–1260. 4163: 4118: 4090: 4071: 4043: 4037: 4031: 4030: 4010: 4000: 3994: 3993: 3959: 3939: 3933: 3919: 3913: 3906: 3900: 3890: 3884: 3874: 3868: 3858: 3852: 3846: 3840: 3835:Mortimer, R. G. 3833: 3827: 3817: 3811: 3805: 3794: 3788: 3782: 3775: 3769: 3763: 3757: 3751: 3745: 3731: 3725: 3719: 3713: 3707: 3698: 3697: 3695: 3694: 3688: 3682:. Archived from 3665: 3639: 3630: 3624: 3623: 3597: 3588: 3582: 3576: 3570: 3555: 3549: 3544: 3475: 3473: 3472: 3467: 3459: 3458: 3449: 3448: 3406: 3405: 3387: 3386: 3356: 3355: 3313: 3312: 3297: 3296: 3263: 3261: 3260: 3255: 3253: 3252: 3236: 3234: 3233: 3228: 3226: 3225: 3202: 3200: 3199: 3194: 3186: 3185: 3169: 3167: 3166: 3161: 3153: 3152: 3132: 3130: 3129: 3124: 3122: 3121: 3098: 3096: 3095: 3090: 3082: 3081: 3054: 3053: 3037: 3034: 3032: 2970: 2968: 2967: 2962: 2956: 2953: 2951: 2938: 2935: 2933: 2921: 2920: 2835:, and so forth. 2813:particle physics 2798: 2796: 2795: 2790: 2785: 2784: 2783: 2782: 2766: 2762: 2760: 2752: 2735: 2725: 2720: 2703: 2695: 2694: 2691: 2679: 2678: 2675: 2554:is used to mean 2536:electrochemistry 2530: 2528: 2527: 2522: 2520: 2519: 2516: 2503: 2501: 2500: 2495: 2493: 2492: 2489: 2480: 2479: 2476: 2463: 2461: 2460: 2455: 2432: 2431: 2428: 2410: 2409: 2406: 2393: 2391: 2390: 2385: 2383: 2382: 2379: 2366: 2364: 2363: 2358: 2312: 2310: 2309: 2304: 2281: 2280: 2277: 2265: 2264: 2261: 2242: 2240: 2239: 2234: 2229: 2228: 2225: 2216: 2215: 2212: 2203: 2202: 2199: 2119: 2117: 2116: 2111: 2058:and temperature 2007:chemical element 1928: 1926: 1925: 1920: 1918: 1917: 1914: 1901: 1899: 1898: 1893: 1891: 1890: 1887: 1871: 1869: 1868: 1863: 1861: 1860: 1857: 1847: 1845: 1844: 1841: 1835: 1834: 1831: 1825: 1817: 1816: 1813: 1778: 1776: 1775: 1770: 1765: 1764: 1763: 1762: 1734: 1730: 1728: 1727: 1726: 1713: 1705: 1695: 1694: 1677: 1675: 1674: 1669: 1664: 1663: 1662: 1661: 1633: 1629: 1627: 1626: 1625: 1612: 1604: 1594: 1593: 1574: 1572: 1571: 1566: 1536: 1534: 1533: 1528: 1484: 1482: 1481: 1476: 1462: 1461: 1452: 1446: 1445: 1433: 1432: 1423: 1417: 1416: 1397: 1395: 1394: 1389: 1378: 1362: 1360: 1359: 1354: 1349: 1348: 1339: 1333: 1332: 1322: 1317: 1296: 1278: 1276: 1275: 1270: 1265: 1264: 1263: 1262: 1234: 1230: 1228: 1227: 1226: 1213: 1205: 1195: 1194: 1175: 1173: 1172: 1167: 1165: 1164: 1145: 1143: 1142: 1137: 1132: 1131: 1122: 1116: 1115: 1105: 1100: 1079: 1064: 1046: 1031: 1029: 1028: 1023: 1018: 1006: 1004: 1003: 998: 993: 977: 975: 974: 969: 954: 952: 951: 946: 931: 929: 928: 923: 918: 903: 888: 873: 858: 847: 835: 833: 832: 827: 779:condensed-matter 741: 739: 738: 733: 731: 730: 721: 716: 712: 710: 709: 708: 695: 687: 680: 675: 654: 624: 622: 621: 616: 611: 610: 609: 608: 580: 576: 574: 573: 572: 559: 551: 541: 540: 432: 430: 429: 424: 419: 418: 409: 403: 402: 392: 387: 366: 351: 336: 309:phenomenological 250:electrochemistry 41:phase transition 4263: 4262: 4256: 4255: 4254: 4252: 4251: 4250: 4216: 4215: 4203: 4152:10.1119/1.17844 4126: 4121: 4115: 4104:Thermal Physics 4099:Herbert Kroemer 4095:Kittel, Charles 4087: 4068: 4051: 4046: 4038: 4034: 4019: 4007:Thermal Physics 4001: 3997: 3940: 3936: 3930:Wayback Machine 3920: 3916: 3907: 3903: 3891: 3887: 3875: 3871: 3859: 3855: 3847: 3843: 3834: 3830: 3818: 3814: 3806: 3797: 3789: 3785: 3776: 3772: 3764: 3760: 3752: 3748: 3732: 3728: 3720: 3716: 3708: 3701: 3692: 3690: 3686: 3663:10.1.1.568.9205 3637: 3631: 3627: 3595: 3589: 3585: 3577: 3573: 3556: 3552: 3545: 3541: 3537: 3532: 3485: 3454: 3450: 3444: 3440: 3398: 3394: 3382: 3378: 3351: 3347: 3305: 3301: 3292: 3288: 3286: 3283: 3282: 3277: 3248: 3244: 3242: 3239: 3238: 3221: 3217: 3215: 3212: 3211: 3181: 3177: 3175: 3172: 3171: 3148: 3144: 3142: 3139: 3138: 3117: 3113: 3111: 3108: 3107: 3077: 3073: 3046: 3042: 3033: 3028: 3022: 3019: 3018: 2997: 2987: 2952: 2947: 2934: 2929: 2916: 2912: 2910: 2907: 2906: 2888: 2861:pair production 2833:electric charge 2809:thermal physics 2805: 2778: 2774: 2767: 2753: 2736: 2734: 2730: 2729: 2704: 2702: 2690: 2686: 2674: 2670: 2668: 2665: 2664: 2601:. For example, 2575: 2569: 2564: 2515: 2511: 2509: 2506: 2505: 2488: 2484: 2475: 2471: 2469: 2466: 2465: 2427: 2423: 2405: 2401: 2399: 2396: 2395: 2378: 2374: 2372: 2369: 2368: 2352: 2349: 2348: 2330: 2276: 2272: 2260: 2256: 2254: 2251: 2250: 2224: 2220: 2211: 2207: 2198: 2194: 2192: 2189: 2188: 2162: 2138:internal energy 2070: 2067: 2066: 2047:internal energy 1963: 1913: 1909: 1907: 1904: 1903: 1886: 1882: 1880: 1877: 1876: 1856: 1852: 1840: 1836: 1830: 1826: 1824: 1812: 1808: 1803: 1800: 1799: 1788: 1752: 1748: 1735: 1722: 1718: 1714: 1706: 1704: 1700: 1699: 1690: 1686: 1684: 1681: 1680: 1651: 1647: 1634: 1621: 1617: 1613: 1605: 1603: 1599: 1598: 1589: 1585: 1583: 1580: 1579: 1545: 1542: 1541: 1507: 1504: 1503: 1457: 1453: 1448: 1441: 1437: 1428: 1424: 1419: 1412: 1408: 1406: 1403: 1402: 1374: 1372: 1369: 1368: 1344: 1340: 1335: 1328: 1324: 1318: 1307: 1292: 1290: 1287: 1286: 1252: 1248: 1235: 1222: 1218: 1214: 1206: 1204: 1200: 1199: 1190: 1186: 1184: 1181: 1180: 1160: 1156: 1154: 1151: 1150: 1127: 1123: 1118: 1111: 1107: 1101: 1090: 1075: 1060: 1042: 1040: 1037: 1036: 1014: 1012: 1009: 1008: 989: 987: 984: 983: 960: 957: 956: 937: 934: 933: 914: 899: 884: 869: 854: 843: 841: 838: 837: 797: 794: 793: 764: 758: 751: 726: 722: 717: 704: 700: 696: 688: 686: 682: 676: 665: 650: 648: 645: 644: 598: 594: 581: 568: 564: 560: 552: 550: 546: 545: 536: 532: 530: 527: 526: 490: 481: 442:internal energy 414: 410: 405: 398: 394: 388: 377: 362: 347: 332: 330: 327: 326: 298: 288: 182: 143: 139: 109:, which is the 107:particle number 95: 37:particle number 17: 12: 11: 5: 4261: 4260: 4249: 4248: 4243: 4238: 4233: 4228: 4214: 4213: 4201: 4164: 4138:(8): 737–742. 4125: 4124:External links 4122: 4120: 4119: 4113: 4101:(1980-01-15). 4091: 4085: 4072: 4066: 4052: 4050: 4047: 4045: 4044: 4032: 4017: 3995: 3934: 3914: 3901: 3885: 3869: 3853: 3841: 3828: 3812: 3810:, pp. 124 3795: 3783: 3770: 3758: 3746: 3726: 3724:, pp. 357 3714: 3699: 3648:(2): 353–371. 3625: 3606:(4): 423–434. 3583: 3571: 3550: 3538: 3536: 3533: 3531: 3528: 3527: 3526: 3521: 3516: 3511: 3506: 3501: 3496: 3491: 3484: 3481: 3477: 3476: 3465: 3462: 3457: 3453: 3447: 3443: 3439: 3436: 3433: 3430: 3427: 3424: 3421: 3418: 3415: 3412: 3409: 3404: 3401: 3397: 3393: 3390: 3385: 3381: 3377: 3374: 3371: 3368: 3365: 3362: 3359: 3354: 3350: 3346: 3343: 3340: 3337: 3334: 3331: 3328: 3325: 3322: 3319: 3316: 3311: 3308: 3304: 3300: 3295: 3291: 3273: 3272:, defined as Îł 3251: 3247: 3224: 3220: 3192: 3189: 3184: 3180: 3159: 3156: 3151: 3147: 3120: 3116: 3100: 3099: 3088: 3085: 3080: 3076: 3072: 3069: 3066: 3063: 3060: 3057: 3052: 3049: 3045: 3041: 3031: 3027: 2992: 2983: 2976:ideal solution 2972: 2971: 2960: 2950: 2946: 2942: 2932: 2928: 2924: 2919: 2915: 2887: 2884: 2882:respectively. 2804: 2801: 2800: 2799: 2788: 2781: 2777: 2773: 2770: 2765: 2759: 2756: 2751: 2748: 2745: 2742: 2739: 2733: 2728: 2723: 2719: 2716: 2713: 2710: 2707: 2701: 2698: 2689: 2685: 2682: 2673: 2609:silicon. In a 2571:Main article: 2568: 2565: 2563: 2560: 2514: 2487: 2483: 2474: 2453: 2450: 2447: 2444: 2441: 2438: 2435: 2426: 2422: 2419: 2416: 2413: 2404: 2377: 2356: 2328: 2314: 2313: 2302: 2299: 2296: 2293: 2290: 2287: 2284: 2275: 2271: 2268: 2259: 2244: 2243: 2232: 2223: 2219: 2210: 2206: 2197: 2161: 2158: 2144:refers to the 2136:refers to the 2121: 2120: 2108: 2105: 2102: 2099: 2096: 2093: 2090: 2087: 2084: 2081: 2078: 2075: 2012:thermodynamics 1962: 1959: 1912: 1885: 1873: 1872: 1855: 1851: 1839: 1829: 1823: 1820: 1811: 1807: 1787: 1784: 1780: 1779: 1768: 1761: 1758: 1755: 1751: 1747: 1744: 1741: 1738: 1733: 1725: 1721: 1717: 1712: 1709: 1703: 1698: 1693: 1689: 1678: 1667: 1660: 1657: 1654: 1650: 1646: 1643: 1640: 1637: 1632: 1624: 1620: 1616: 1611: 1608: 1602: 1597: 1592: 1588: 1564: 1561: 1558: 1555: 1552: 1549: 1526: 1523: 1520: 1517: 1514: 1511: 1486: 1485: 1474: 1471: 1468: 1465: 1460: 1456: 1451: 1444: 1440: 1436: 1431: 1427: 1422: 1415: 1411: 1387: 1384: 1381: 1377: 1364: 1363: 1352: 1347: 1343: 1338: 1331: 1327: 1321: 1316: 1313: 1310: 1306: 1302: 1299: 1295: 1280: 1279: 1268: 1261: 1258: 1255: 1251: 1247: 1244: 1241: 1238: 1233: 1225: 1221: 1217: 1212: 1209: 1203: 1198: 1193: 1189: 1163: 1159: 1147: 1146: 1135: 1130: 1126: 1121: 1114: 1110: 1104: 1099: 1096: 1093: 1089: 1085: 1082: 1078: 1073: 1070: 1067: 1063: 1058: 1055: 1052: 1049: 1045: 1021: 1017: 996: 992: 967: 964: 944: 941: 921: 917: 912: 909: 906: 902: 897: 894: 891: 887: 882: 879: 876: 872: 867: 864: 861: 857: 853: 850: 846: 825: 822: 819: 816: 813: 810: 807: 804: 801: 762: 756: 749: 743: 742: 729: 725: 720: 715: 707: 703: 699: 694: 691: 685: 679: 674: 671: 668: 664: 660: 657: 653: 634:state function 626: 625: 614: 607: 604: 601: 597: 593: 590: 587: 584: 579: 571: 567: 563: 558: 555: 549: 544: 539: 535: 486: 477: 434: 433: 422: 417: 413: 408: 401: 397: 391: 386: 383: 380: 376: 372: 369: 365: 360: 357: 354: 350: 345: 342: 339: 335: 294: 287: 284: 276:electric force 243:chromatography 196: 195: 180: 141: 137: 126:kinetic theory 94: 91: 21:thermodynamics 15: 9: 6: 4: 3: 2: 4259: 4258: 4247: 4244: 4242: 4239: 4237: 4234: 4232: 4229: 4227: 4224: 4223: 4221: 4210: 4206: 4202: 4198: 4194: 4190: 4186: 4182: 4178: 4174: 4170: 4165: 4161: 4157: 4153: 4149: 4145: 4141: 4137: 4133: 4128: 4127: 4116: 4110: 4106: 4105: 4100: 4096: 4092: 4088: 4082: 4078: 4073: 4069: 4063: 4059: 4054: 4053: 4041: 4036: 4028: 4024: 4020: 4014: 4009: 4008: 3999: 3991: 3987: 3983: 3979: 3975: 3971: 3967: 3963: 3958: 3953: 3949: 3945: 3938: 3931: 3927: 3924: 3918: 3910: 3905: 3898: 3894: 3889: 3882: 3878: 3873: 3866: 3862: 3857: 3850: 3845: 3838: 3832: 3825: 3821: 3816: 3809: 3804: 3802: 3800: 3792: 3787: 3780: 3774: 3767: 3762: 3755: 3750: 3743: 3742:0 471 56658 6 3739: 3735: 3730: 3723: 3718: 3711: 3706: 3704: 3689:on 2015-09-24 3685: 3681: 3677: 3673: 3669: 3664: 3659: 3655: 3651: 3647: 3643: 3636: 3629: 3621: 3617: 3613: 3609: 3605: 3601: 3594: 3587: 3580: 3575: 3568: 3564: 3560: 3554: 3548: 3543: 3539: 3525: 3522: 3520: 3517: 3515: 3512: 3510: 3507: 3505: 3502: 3500: 3497: 3495: 3492: 3490: 3487: 3486: 3480: 3463: 3455: 3451: 3445: 3441: 3434: 3431: 3428: 3425: 3422: 3416: 3413: 3410: 3402: 3399: 3395: 3391: 3383: 3379: 3372: 3369: 3366: 3363: 3360: 3352: 3348: 3341: 3338: 3335: 3332: 3329: 3323: 3320: 3317: 3309: 3306: 3302: 3298: 3293: 3289: 3281: 3280: 3279: 3276: 3271: 3267: 3249: 3245: 3222: 3218: 3208: 3206: 3190: 3187: 3182: 3178: 3157: 3154: 3149: 3145: 3136: 3118: 3114: 3105: 3086: 3078: 3074: 3067: 3064: 3061: 3058: 3055: 3050: 3047: 3043: 3039: 3029: 3025: 3017: 3016: 3015: 3013: 3009: 3005: 3001: 2995: 2989: 2986: 2981: 2977: 2958: 2948: 2944: 2940: 2930: 2926: 2922: 2917: 2913: 2905: 2904: 2903: 2897: 2892: 2883: 2881: 2877: 2873: 2869: 2864: 2862: 2857: 2852: 2850: 2849:baryon number 2844: 2841: 2836: 2834: 2830: 2829:baryon number 2826: 2822: 2818: 2814: 2810: 2786: 2779: 2775: 2771: 2768: 2763: 2757: 2754: 2746: 2740: 2737: 2731: 2726: 2721: 2717: 2714: 2711: 2708: 2705: 2699: 2696: 2687: 2683: 2680: 2671: 2663: 2662: 2661: 2659: 2655: 2651: 2647: 2643: 2638: 2636: 2632: 2631:work function 2626: 2624: 2620: 2616: 2612: 2608: 2604: 2600: 2596: 2592: 2591:work function 2588: 2583: 2581: 2574: 2559: 2557: 2553: 2549: 2545: 2541: 2537: 2532: 2512: 2485: 2481: 2472: 2448: 2445: 2442: 2439: 2436: 2433: 2424: 2420: 2414: 2411: 2402: 2375: 2354: 2346: 2342: 2338: 2334: 2327: 2323: 2319: 2300: 2297: 2294: 2291: 2288: 2285: 2282: 2273: 2269: 2266: 2257: 2249: 2248: 2247: 2230: 2221: 2217: 2208: 2204: 2195: 2187: 2186: 2185: 2183: 2179: 2175: 2171: 2167: 2157: 2156:of the body. 2155: 2151: 2147: 2143: 2140:of the body, 2139: 2135: 2129: 2126: 2106: 2103: 2097: 2094: 2091: 2088: 2085: 2082: 2079: 2073: 2065: 2064: 2063: 2061: 2057: 2051: 2048: 2044: 2040: 2036: 2031: 2029: 2025: 2021: 2017: 2013: 2008: 2002: 2000: 1996: 1992: 1988: 1984: 1980: 1976: 1970: 1968: 1958: 1956: 1952: 1948: 1944: 1940: 1937:by using the 1936: 1935:phase diagram 1932: 1931:melting point 1910: 1883: 1853: 1849: 1837: 1827: 1821: 1818: 1809: 1805: 1798: 1797: 1796: 1793: 1783: 1766: 1759: 1756: 1753: 1749: 1745: 1742: 1739: 1736: 1731: 1723: 1719: 1710: 1701: 1696: 1691: 1687: 1679: 1665: 1658: 1655: 1652: 1648: 1644: 1641: 1638: 1635: 1630: 1622: 1618: 1609: 1600: 1595: 1590: 1586: 1578: 1577: 1576: 1562: 1559: 1556: 1553: 1550: 1547: 1540: 1524: 1521: 1518: 1515: 1512: 1509: 1502: 1498: 1493: 1491: 1472: 1469: 1466: 1463: 1458: 1454: 1442: 1438: 1434: 1429: 1425: 1413: 1409: 1401: 1400: 1399: 1385: 1382: 1379: 1350: 1345: 1341: 1329: 1325: 1319: 1314: 1311: 1308: 1304: 1300: 1297: 1285: 1284: 1283: 1266: 1259: 1256: 1253: 1249: 1245: 1242: 1239: 1236: 1231: 1223: 1219: 1210: 1201: 1196: 1191: 1187: 1179: 1178: 1177: 1161: 1157: 1133: 1128: 1124: 1112: 1108: 1102: 1097: 1094: 1091: 1087: 1083: 1080: 1071: 1068: 1065: 1056: 1053: 1050: 1047: 1035: 1034: 1033: 1032:is obtained: 1019: 994: 981: 965: 962: 942: 939: 919: 910: 907: 904: 895: 892: 889: 880: 877: 874: 865: 862: 859: 851: 848: 823: 820: 817: 814: 811: 808: 805: 802: 799: 792: 788: 784: 780: 776: 771: 769: 765: 755: 748: 727: 723: 713: 705: 701: 692: 683: 677: 672: 669: 666: 662: 658: 655: 643: 642: 641: 639: 635: 631: 612: 605: 602: 599: 595: 591: 588: 585: 582: 577: 569: 565: 556: 547: 542: 537: 533: 525: 524: 523: 520: 518: 514: 510: 506: 502: 498: 494: 489: 485: 480: 476: 472: 468: 465: 461: 457: 454: 450: 446: 443: 439: 420: 415: 411: 399: 395: 389: 384: 381: 378: 374: 370: 367: 358: 355: 352: 343: 340: 337: 325: 324: 323: 321: 317: 313: 310: 306: 302: 297: 293: 283: 281: 277: 273: 269: 268: 263: 259: 255: 251: 246: 244: 240: 236: 232: 228: 224: 220: 216: 212: 207: 205: 204:hydrogen ions 200: 194: 190: 186: 185: 184: 178: 174: 170: 166: 162: 158: 153: 151: 147: 146:melting point 134: 132: 127: 123: 122:concentration 119: 114: 112: 108: 104: 100: 90: 88: 84: 83:semiconductor 79: 77: 73: 69: 65: 64: 61: 54: 50: 46: 42: 38: 34: 30: 26: 22: 4208: 4172: 4168: 4135: 4131: 4103: 4076: 4057: 4035: 4006: 3998: 3947: 3943: 3937: 3917: 3908: 3904: 3892: 3888: 3876: 3872: 3860: 3856: 3848: 3844: 3836: 3831: 3819: 3815: 3786: 3778: 3773: 3761: 3749: 3733: 3729: 3717: 3691:. Retrieved 3684:the original 3645: 3641: 3628: 3603: 3599: 3586: 3574: 3553: 3542: 3478: 3274: 3269: 3265: 3209: 3204: 3134: 3103: 3101: 3011: 3007: 3003: 2999: 2993: 2990: 2984: 2979: 2973: 2901: 2895: 2865: 2853: 2845: 2837: 2806: 2639: 2627: 2614: 2611:p–n junction 2595:Fermi energy 2584: 2580:electronvolt 2576: 2555: 2547: 2533: 2340: 2332: 2325: 2321: 2317: 2315: 2245: 2181: 2177: 2165: 2163: 2149: 2141: 2133: 2131: 2124: 2122: 2059: 2055: 2053: 2034: 2032: 2019: 2004: 1998: 1972: 1964: 1955:Raoult's law 1874: 1789: 1786:Applications 1781: 1496: 1494: 1487: 1365: 1281: 1148: 980:product rule 774: 772: 767: 760: 753: 746: 744: 629: 627: 521: 516: 512: 504: 496: 492: 487: 483: 478: 474: 466: 459: 455: 448: 444: 437: 435: 320:irreversible 300: 295: 291: 289: 271: 265: 261: 257: 247: 213:, including 208: 197: 192: 188: 176: 168: 161:dissociation 154: 135: 115: 96: 80: 57: 24: 18: 3881:p. 323 3824:p. 240 3808:Kittel 1980 3791:Atkins 2006 3766:Atkins 2006 3754:Atkins 2006 3722:Kittel 1980 3710:Atkins 2002 3579:Atkins 2002 3567:p. 105 3547:Atkins 2006 2623:Fermi level 2599:Fermi level 2573:Fermi level 1975:homogeneous 1951:Henry's law 785:to another 491:of species 299:of species 223:evaporation 173:acetic acid 150:equilibrium 87:Fermi level 45:free energy 4231:Potentials 4220:Categories 4049:References 3744:, page 88. 3693:2009-02-12 3563:1461487978 2821:QCD matter 2022:(see also 1977:mass in a 1973:If to any 316:reversible 227:solubility 4197:0022-4715 4160:0002-9505 3957:1007.4088 3865:pages 4–5 3658:CiteSeerX 3535:Citations 3452:γ 3435:⁡ 3396:μ 3380:γ 3373:⁡ 3342:⁡ 3303:μ 3290:μ 3219:μ 3068:⁡ 3044:μ 3040:≈ 3026:μ 2945:μ 2927:μ 2914:μ 2856:positrons 2819:or other 2755:δ 2738:δ 2700:− 2688:χ 2684:− 2672:μ 2513:μ 2449:⋯ 2298:⋯ 2258:μ 2222:μ 2209:μ 2196:μ 2098:ν 2089:η 2083:− 2080:ϵ 2074:δ 1999:potential 1854:μ 1822:− 1810:μ 1757:≠ 1716:∂ 1708:∂ 1688:μ 1656:≠ 1615:∂ 1607:∂ 1587:μ 1557:− 1467:⋯ 1439:μ 1410:μ 1326:μ 1305:∑ 1257:≠ 1216:∂ 1208:∂ 1188:μ 1176:results: 1158:μ 1109:μ 1088:∑ 1054:− 908:− 893:− 818:− 698:∂ 690:∂ 663:∑ 603:≠ 562:∂ 554:∂ 534:μ 396:μ 375:∑ 356:− 305:intensive 171:(such as 165:weak acid 118:diffusing 4027:39633743 3982:21107426 3926:Archived 3897:page 140 3680:16146320 3509:Fugacity 3483:See also 2872:fermions 2692:Mulliken 2676:Mulliken 2615:internal 2548:internal 2335:are the 1945:such as 1501:enthalpy 759:, ... , 640:such as 101:such as 93:Overview 58:partial 4177:Bibcode 4140:Bibcode 3990:4349640 3962:Bibcode 3650:Bibcode 3608:Bibcode 3530:Sources 3002:,  2825:photons 2343:is the 2152:is the 2146:entropy 2043:entropy 2016:physics 1987:entropy 1961:History 509:entropy 453:entropy 436:where d 278:. (See 231:osmosis 219:boiling 215:melting 199:Vinegar 31:is the 29:species 4195:  4158:  4111:  4083:  4064:  4025:  4015:  3988:  3980:  3944:Nature 3740:  3678:  3660:  3561:  3102:where 2974:In an 2954:excess 2868:bosons 2840:bosons 2607:p-type 2603:n-type 2597:, and 2582:(eV). 2542:, and 2246:where 2154:volume 2123:Where 2039:volume 1995:energy 1991:volume 1875:where 978:, the 789:: the 469:for a 464:volume 272:except 191:⇌ H + 183:COO): 70:or in 33:energy 23:, the 3986:S2CID 3952:arXiv 3687:(PDF) 3676:S2CID 3638:(PDF) 3596:(PDF) 3035:ideal 2936:ideal 2556:total 1979:state 932:(for 632:is a 280:below 163:of a 66:. At 60:molar 47:of a 27:of a 4193:ISSN 4156:ISSN 4109:ISBN 4081:ISBN 4062:ISBN 4023:OCLC 4013:ISBN 3978:PMID 3738:ISBN 3559:ISBN 2878:and 2870:and 2656:and 2331:and 2320:and 2180:and 2028:mole 2014:and 1989:and 1790:The 1537:and 955:and 318:and 274:the 254:ions 241:and 179:= CH 4185:doi 4173:122 4148:doi 3970:doi 3948:468 3668:doi 3616:doi 2517:tot 2490:ext 2477:int 2429:ele 2407:ext 2380:int 2329:ele 2278:ele 2262:ext 2226:ext 2213:int 2200:tot 1981:of 770:. 766:of 507:is 499:is 458:, d 447:, d 258:not 256:do 248:In 159:of 81:In 19:In 4222:: 4207:. 4191:. 4183:. 4171:. 4154:. 4146:. 4136:63 4134:. 4097:; 4021:. 3984:. 3976:. 3968:. 3960:. 3946:. 3798:^ 3702:^ 3674:. 3666:. 3656:. 3646:27 3644:. 3640:. 3614:. 3604:69 3602:. 3598:. 3565:, 3432:ln 3370:ln 3339:ln 3065:ln 2982:(ÎĽ 2831:, 2637:. 2593:, 2538:, 2531:. 2184:: 2172:, 2030:. 1473:0. 752:, 511:, 503:, 262:do 252:, 237:, 233:, 229:, 225:, 221:, 217:, 175:, 152:. 133:. 89:. 4211:. 4199:. 4187:: 4179:: 4162:. 4150:: 4142:: 4117:. 4089:. 4070:. 4029:. 3992:. 3972:: 3964:: 3954:: 3883:. 3867:. 3696:. 3670:: 3652:: 3622:. 3618:: 3610:: 3569:. 3464:. 3461:) 3456:i 3446:i 3442:x 3438:( 3429:T 3426:R 3423:+ 3420:) 3417:P 3414:, 3411:T 3408:( 3403:0 3400:i 3392:= 3389:) 3384:i 3376:( 3367:T 3364:R 3361:+ 3358:) 3353:i 3349:x 3345:( 3336:T 3333:R 3330:+ 3327:) 3324:P 3321:, 3318:T 3315:( 3310:0 3307:i 3299:= 3294:i 3275:i 3270:i 3266:i 3250:i 3246:x 3223:i 3205:i 3191:0 3188:= 3183:i 3179:x 3158:0 3155:= 3150:i 3146:x 3135:i 3119:i 3115:x 3104:R 3087:, 3084:) 3079:i 3075:x 3071:( 3062:T 3059:R 3056:+ 3051:0 3048:i 3030:i 3012:i 3008:i 3004:P 3000:T 2998:( 2996:0 2994:i 2991:ÎĽ 2985:i 2980:i 2959:, 2949:i 2941:+ 2931:i 2923:= 2918:i 2896:i 2859:( 2787:. 2780:0 2776:N 2772:= 2769:N 2764:] 2758:N 2750:] 2747:N 2744:[ 2741:E 2732:[ 2727:= 2722:2 2718:A 2715:E 2712:+ 2709:P 2706:I 2697:= 2681:= 2486:U 2482:+ 2473:U 2452:) 2446:+ 2443:h 2440:g 2437:m 2434:+ 2425:V 2421:q 2418:( 2415:N 2412:= 2403:U 2376:U 2355:U 2341:g 2333:h 2326:V 2322:m 2318:q 2301:, 2295:+ 2292:h 2289:g 2286:m 2283:+ 2274:V 2270:q 2267:= 2231:, 2218:+ 2205:= 2150:ν 2142:η 2134:ε 2125:δ 2107:0 2104:= 2101:) 2095:P 2092:+ 2086:T 2077:( 2060:T 2056:P 2045:– 2041:– 1915:B 1911:n 1888:A 1884:n 1858:A 1850:d 1842:B 1838:n 1832:A 1828:n 1819:= 1814:B 1806:d 1767:. 1760:i 1754:j 1750:N 1746:, 1743:V 1740:, 1737:T 1732:) 1724:i 1720:N 1711:F 1702:( 1697:= 1692:i 1666:, 1659:i 1653:j 1649:N 1645:, 1642:P 1639:, 1636:S 1631:) 1623:i 1619:N 1610:H 1601:( 1596:= 1591:i 1563:S 1560:T 1554:U 1551:= 1548:F 1525:V 1522:P 1519:+ 1516:U 1513:= 1510:H 1497:U 1470:= 1464:+ 1459:2 1455:N 1450:d 1443:2 1435:+ 1430:1 1426:N 1421:d 1414:1 1386:0 1383:= 1380:G 1376:d 1351:. 1346:i 1342:N 1337:d 1330:i 1320:n 1315:1 1312:= 1309:i 1301:= 1298:G 1294:d 1267:, 1260:i 1254:j 1250:N 1246:, 1243:P 1240:, 1237:T 1232:) 1224:i 1220:N 1211:G 1202:( 1197:= 1192:i 1162:i 1134:. 1129:i 1125:N 1120:d 1113:i 1103:n 1098:1 1095:= 1092:i 1084:+ 1081:P 1077:d 1072:V 1069:+ 1066:T 1062:d 1057:S 1051:= 1048:G 1044:d 1020:G 1016:d 995:U 991:d 966:S 963:T 943:V 940:P 920:T 916:d 911:S 905:S 901:d 896:T 890:P 886:d 881:V 878:+ 875:V 871:d 866:P 863:+ 860:U 856:d 852:= 849:G 845:d 824:S 821:T 815:V 812:P 809:+ 806:U 803:= 800:G 775:U 768:U 763:N 761:x 757:2 754:x 750:1 747:x 728:i 724:x 719:d 714:) 706:i 702:x 693:U 684:( 678:N 673:1 670:= 667:i 659:= 656:U 652:d 630:U 613:. 606:i 600:j 596:N 592:, 589:V 586:, 583:S 578:) 570:i 566:N 557:U 548:( 543:= 538:i 517:V 513:P 505:S 497:T 493:i 488:i 484:N 479:i 475:N 467:V 460:V 456:S 449:S 445:U 438:U 421:, 416:i 412:N 407:d 400:i 390:n 385:1 382:= 379:i 371:+ 368:V 364:d 359:P 353:S 349:d 344:T 341:= 338:U 334:d 301:i 296:i 292:ÎĽ 193:A 189:A 187:H 181:3 177:A 169:A 167:H 142:2 138:2

Index

thermodynamics
species
energy
particle number
phase transition
free energy
thermodynamic system
partial derivative
molar
Gibbs free energy
chemical equilibrium
phase equilibrium
stoichiometric coefficients
semiconductor
Fermi level
"potentials" in physics
gravitational potential
particle number
conjugate variable
diffusing
concentration
kinetic theory
spontaneous process
melting point
equilibrium
chemical reaction
dissociation
weak acid
acetic acid
Vinegar

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑