Knowledge

Phase transition

Source 📝

1301: 468: 103: 331: 409: 688: 1400:, the second derivative of the free energy with the field, changes discontinuously. Under the Ehrenfest classification scheme, there could in principle be third, fourth, and higher-order phase transitions. For example, the Gross–Witten–Wadia phase transition in 2-d lattice quantum chromodynamics is a third-order phase transition. The Curie points of many ferromagnetics is also a third-order transition, as shown by their specific heat having a sudden change in slope. 1314: 5157: 22: 1615:
magnetic phases coexisting, down to the lowest temperature. First reported in the case of a ferromagnetic to anti-ferromagnetic transition, such persistent phase coexistence has now been reported across a variety of first-order magnetic transitions. These include colossal-magnetoresistance manganite materials, magnetocaloric materials, magnetic shape memory materials, and other materials. The interesting feature of these observations of
2259:
properties of phase transitions: the change of macroscopic behavior and the coherence of a system at a critical point. Phase transitions are prominent feature of motor behavior in biological systems. Spontaneous gait transitions, as well as fatigue-induced motor task disengagements, show typical critical behavior as an intimation of the sudden qualitative change of the previously stable motor behavioral pattern.
5049: 565: 1600:
possibilities. On cooling, some liquids vitrify into a glass rather than transform to the equilibrium crystal phase. This happens if the cooling rate is faster than a critical cooling rate, and is attributed to the molecular motions becoming so slow that the molecules cannot rearrange into the crystal positions. This slowing down happens below a glass-formation temperature
2228:, gel to liquid crystalline phase transitions play a critical role in physiological functioning of biomembranes. In gel phase, due to low fluidity of membrane lipid fatty-acyl chains, membrane proteins have restricted movement and thus are restrained in exercise of their physiological role. Plants depend critically on photosynthesis by 1450:. During such a transition, a system either absorbs or releases a fixed (and typically large) amount of energy per volume. During this process, the temperature of the system will stay constant as heat is added: the system is in a "mixed-phase regime" in which some parts of the system have completed the transition and others have not. 1431:
approximations, which had predicted that it has a simple discontinuity at critical temperature. Instead, the exact specific heat had a logarithmic divergence at the critical temperature. In the following decades, the Ehrenfest classification was replaced by a simplified classification scheme that is
1379:
exhibit a discontinuity in the first derivative of the free energy with respect to some thermodynamic variable. The various solid/liquid/gas transitions are classified as first-order transitions because they involve a discontinuous change in density, which is the (inverse of the) first derivative of
2258:
in the salamander retina, bird flocks gene expression networks in Drosophila, and protein folding. However, it is not clear whether or not alternative reasons could explain some of the phenomena supporting arguments for criticality. It has also been suggested that biological organisms share two key
1614:
falls within this range, then there is an interesting possibility that the transition is arrested when it is partial and incomplete. Extending these ideas to first-order magnetic transitions being arrested at low temperatures, resulted in the observation of incomplete magnetic transitions, with two
1585:
state, and its entropy, density, and so on, depend on the thermal history. Therefore, the glass transition is primarily a dynamic phenomenon: on cooling a liquid, internal degrees of freedom successively fall out of equilibrium. Some theoretical methods predict an underlying phase transition in the
1622:
falling within the temperature range over which the transition occurs is that the first-order magnetic transition is influenced by magnetic field, just like the structural transition is influenced by pressure. The relative ease with which magnetic fields can be controlled, in contrast to pressure,
1599:
A disorder-broadened first-order transition occurs over a finite range of temperatures where the fraction of the low-temperature equilibrium phase grows from zero to one (100%) as the temperature is lowered. This continuous variation of the coexisting fractions with temperature raised interesting
2274:
to hydrophobic, causing the former to lie near the globular surface, while the latter lie closer to the globular center. Twenty fractals were discovered in solvent associated surface areas of > 5000 protein segments. The existence of these fractals proves that proteins function near critical
2156:
theory of phase transitions, which states that the thermodynamic properties of a system near a phase transition depend only on a small number of features, such as dimensionality and symmetry, and are insensitive to the underlying microscopic properties of the system. Again, the divergence of the
1673:: each point in the fluid has the same properties, but each point in a crystal does not have the same properties (unless the points are chosen from the lattice points of the crystal lattice). Typically, the high-temperature phase contains more symmetries than the low-temperature phase due to 1403:
In practice, only the first- and second-order phase transitions are typically observed. The second-order phase transition was for a while controversial, as it seems to require two sheets of the Gibbs free energy to osculate exactly, which is so unlikely as to never occur in practice.
1649:, at which the transition between liquid and gas becomes a second-order transition. Near the critical point, the fluid is sufficiently hot and compressed that the distinction between the liquid and gaseous phases is almost non-existent. This is associated with the phenomenon of 1388:, which is the first derivative of the free energy with respect to the external field, is continuous across the transition) but exhibit discontinuity in a second derivative of the free energy. These include the ferromagnetic phase transition in materials such as iron, where the 2278:
In groups of organisms in stress (when approaching critical transitions), correlations tend to increase, while at the same time, fluctuations also increase. This effect is supported by many experiments and observations of groups of people, mice, trees, and grassy plants.
292:. Such a diagram usually depicts states in equilibrium. A phase transition usually occurs when the pressure or temperature changes and the system crosses from one region to another, like water turning from liquid to solid as soon as the temperature drops below the 1951:
The critical exponents are not necessarily the same above and below the critical temperature. When a continuous symmetry is explicitly broken down to a discrete symmetry by irrelevant (in the renormalization group sense) anisotropies, then some exponents (such as
669:). This condition generally stems from the interactions of a large number of particles in a system, and does not appear in systems that are small. Phase transitions can occur for non-thermodynamic systems, where temperature is not a parameter. Examples include: 2151:
More impressively, but understandably from above, they are an exact match for the critical exponents of the ferromagnetic phase transition in uniaxial magnets. Such systems are said to be in the same universality class. Universality is a prediction of the
1736:
and ferromagnetic, can have order parameters for more than one degree of freedom. In such phases, the order parameter may take the form of a complex number, a vector, or even a tensor, the magnitude of which goes to zero at the phase transition.
393:
to equilibrium phase transformation for structural phase transitions. A metastable polymorph which forms rapidly due to lower surface energy will transform to an equilibrium phase given sufficient thermal input to overcome an energetic barrier.
1991:= −0.013 ± 0.003. At least one experiment was performed in the zero-gravity conditions of an orbiting satellite to minimize pressure differences in the sample. This experimental value of α agrees with theoretical predictions based on 1697:
is a measure of the degree of order across the boundaries in a phase transition system; it normally ranges between zero in one phase (usually above the critical point) and nonzero in the other. At the critical point, the order parameter
1578:
far below the melting point of the crystalline phase. This is atypical in several respects. It is not a transition between thermodynamic ground states: it is widely believed that the true ground state is always crystalline. Glass is a
673:, dynamic phase transitions, and topological (structural) phase transitions. In these types of systems other parameters take the place of temperature. For instance, connection probability replaces temperature for percolating networks. 2992:
Kumar, Kranti; Pramanik, A. K.; Banerjee, A.; Chaddah, P.; Roy, S. B.; Park, S.; Zhang, C. L.; Cheong, S.-W. (2006). "Relating supercooling and glass-like arrest of kinetics for phase separated systems: DopedCeFe2and(La,Pr,Ca)MnO3".
5018:, 1991. Very well-written book in "semi-popular" style—not a textbook—aimed at an audience with some training in mathematics and the physical sciences. Explains what scaling in phase transitions is all about, among other things. 1411:
The Ehrenfest classification implicitly allows for continuous phase transformations, where the bonding character of a material changes, but there is no discontinuity in any free energy derivative. An example of this occurs at the
1469:
can broaden a first-order transition. That is, the transformation is completed over a finite range of temperatures, but phenomena like supercooling and superheating survive and hysteresis is observed on thermal cycling.
136:, have identical free energies and therefore are equally likely to exist. Below the boiling point, the liquid is the more stable state of the two, whereas above the boiling point the gaseous form is the more stable. 2128: 2017:
Some model systems do not obey a power-law behavior. For example, mean field theory predicts a finite discontinuity of the heat capacity at the transition temperature, and the two-dimensional Ising model has a
2235:
which are exposed cold environmental temperatures. Thylakoid membranes retain innate fluidity even at relatively low temperatures because of high degree of fatty-acyl disorder allowed by their high content of
1812:, and they have been discovered to have many interesting properties. The phenomena associated with continuous phase transitions are called critical phenomena, due to their association with critical points. 1716:
From a theoretical perspective, order parameters arise from symmetry breaking. When this happens, one needs to introduce one or more extra variables to describe the state of the system. For example, in the
1513:
transition. In contrast to viscosity, thermal expansion and heat capacity of amorphous materials show a relatively sudden change at the glass transition temperature which enables accurate detection using
3516:
Roy, S. B.; Chattopadhyay, M. K.; Chaddah, P.; Moore, J. D.; Perkins, G. K.; Cohen, L. F.; Gschneidner, K. A.; Pecharsky, V. K. (2006). "Evidence of a magnetic glass state in the magnetocaloric material
4736: 2193:
classes. In addition to the critical exponents, there are also universal relations for certain static or dynamic functions of the magnetic fields and temperature differences from the critical value.
1920: 2329:(simultaneous measurement of magnetic and non-magnetic transitions. No temperature limits. Over 2000 °C already performed, theoretical possible up to the highest crystal material, such as 2240:, 18-carbon chain with 3-double bonds. Gel-to-liquid crystalline phase transition temperature of biological membranes can be determined by many techniques including calorimetry, fluorescence, 1408:
replied the criticism by pointing out that the Gibbs free energy surface might have two sheets on one side, but only one sheet on the other side, creating a forked appearance. ( pp. 146--150)
1760:. As the universe expanded and cooled, the vacuum underwent a series of symmetry-breaking phase transitions. For example, the electroweak transition broke the SU(2)×U(1) symmetry of the 522:
transformation, in which a two-component single-phase liquid is cooled and transforms into two solid phases. The same process, but beginning with a solid instead of a liquid is called a
2251:
by recording measurements of the concerned parameter by at series of sample temperatures. A simple method for its determination from 13-C NMR line intensities has also been proposed.
1375:
as a function of other thermodynamic variables. Under this scheme, phase transitions were labeled by the lowest derivative of the free energy that is discontinuous at the transition.
2270:
properties. It has long been known that protein globules are shaped by interactions with water. There are 20 amino acids that form side groups on protein peptide chains range from
4062:
D.Y. Lando and V.B. Teif (2000). "Long-range interactions between ligands bound to a DNA molecule give rise to adsorption with the character of phase transition of the first kind".
4183:
Tkacik, Gasper; Mora, Thierry; Marre, Olivier; Amodei, Dario; Berry II, Michael J.; Bialek, William (2014). "Thermodynamics for a network of neurons: Signatures of criticality".
1392:, which is the first derivative of the free energy with respect to the applied magnetic field strength, increases continuously from zero as the temperature is lowered below the 3339:
Manekar, M. A.; Chaudhary, S.; Chattopadhyay, M. K.; Singh, K. J.; Roy, S. B.; Chaddah, P. (2001). "First-order transition from antiferromagnetism to ferromagnetism inCe(Fe
3653:
Kushwaha, Pallavi; Lakhani, Archana; Rawat, R.; Chaddah, P. (2009). "Low-temperature study of field-induced antiferromagnetic-ferromagnetic transition in Pd-doped Fe-Rh".
2294: 2288: 4579:
Hristovski, R.; Balagué, N. (2010). "Fatigue-induced spontaneous termination point--nonequilibrium phase transitions and critical behavior in quasi-isometric exertion".
2297:
is that when a conflict that is non-violent shifts to a phase of armed conflict, this is a phase transition from latent to manifest phases within the dynamical system.
3054:
Pasquini, G.; Daroca, D. Pérez; Chiliotte, C.; Lozano, G. S.; Bekeris, V. (2008). "Ordered, Disordered, and Coexistent Stable Vortex Lattices inNbSe2Single Crystals".
1970: 3412:
Banerjee, A.; Pramanik, A. K.; Kumar, Kranti; Chaddah, P. (2006). "Coexisting tunable fractions of glassy and equilibrium long-range-order phases in manganites".
3465:
Wu W.; Israel C.; Hur N.; Park S.; Cheong S. W.; de Lozanne A. (2006). "Magnetic imaging of a supercooling glass transition in a weakly disordered ferromagnet".
2045:, are defined, examining the power law behavior of a measurable physical quantity near the phase transition. Exponents are related by scaling relations, such as 2293:
Phase transitions have been hypothesised to occur in social systems viewed as dynamical systems. A hypothesis proposed in the 1990s and 2000s in the context of
1637:
in an exhaustive way. Phase coexistence across first-order magnetic transitions will then enable the resolution of outstanding issues in understanding glasses.
4854: 4715: 89:, resulting in an abrupt change in volume. The identification of the external conditions at which a transformation occurs defines the phase transition point. 168: 2144:
It is a remarkable fact that phase transitions arising in different systems often possess the same set of critical exponents. This phenomenon is known as
4724: 1345: 1740:
There also exist dual descriptions of phase transitions in terms of disorder parameters. These indicate the presence of line-like excitations such as
1775:
Progressive phase transitions in an expanding universe are implicated in the development of order in the universe, as is illustrated by the work of
3748: 2148:. For example, the critical exponents at the liquid–gas critical point have been found to be independent of the chemical composition of the fluid. 354:
Phase transitions can also occur when a solid changes to a different structure without changing its chemical makeup. In elements, this is known as
77:. During a phase transition of a given medium, certain properties of the medium change as a result of the change of external conditions, such as 5066: 3956:
Lipa, J.; Nissen, J.; Stricker, D.; Swanson, D.; Chui, T. (2003). "Specific heat of liquid helium in zero gravity very near the lambda point".
1768:. This transition is important to explain the asymmetry between the amount of matter and antimatter in the present-day universe, according to 2051: 653:), the heavier water isotopes (O and H) become enriched in the liquid phase while the lighter isotopes (O and H) tend toward the vapor phase. 1486: 535: 110:, showing whether solid ice, liquid water, or gaseous water vapor is the most stable at different combinations of temperature and pressure. 1925:
The heat capacity of amorphous materials has such a behaviour near the glass transition temperature where the universal critical exponent
1831:
of the system while keeping all the other thermodynamic variables fixed and find that the transition occurs at some critical temperature
5004:
Mussardo G., "Statistical Field Theory. An Introduction to Exactly Solved Models of Statistical Physics", Oxford University Press, 2010.
1440:
In the modern classification scheme, phase transitions are divided into two broad categories, named similarly to the Ehrenfest classes:
5094: 2372: 2022:
divergence. However, these systems are limiting cases and an exception to the rule. Real phase transitions exhibit power-law behavior.
572:
shows two concurrent phase changes. The transition from solid to liquid, and gas to liquid (shown by the white condensed water vapour).
1586:
hypothetical limit of infinitely long relaxation times. No direct experimental evidence supports the existence of these transitions.
2006:< 1, the enthalpy stays finite). An example of such behavior is the 3D ferromagnetic phase transition. In the three-dimensional 304:) in such a way that it can be brought past a phase transition point without undergoing a phase transition. The resulting state is 161: 1509:
the phase transition is second-order for both normal-state–mixed-state and mixed-state–superconducting-state transitions) and the
2927: 1645:
In any system containing liquid and gaseous phases, there exists a special combination of pressure and temperature, known as the
1413: 139:
Common transitions between the solid, liquid, and gaseous phases of a single component, due to the effects of temperature and/or
499:
are more complicated than transitions involving a single compound. While chemically pure compounds exhibit a single temperature
1653:, a milky appearance of the liquid due to density fluctuations at all possible wavelengths (including those of visible light). 1338: 538:
reaction consists of change from a liquid and to a combination of a solid and a second liquid, where the two liquids display a
530:
transformation, in which a two-component single-phase solid is heated and transforms into a solid phase and a liquid phase. A
4838: 4528: 3816: 3725: 2819: 2700: 2524: 4905: 1607:, which may depend on the applied pressure. If the first-order freezing transition occurs over a range of temperatures, and 1863: 1713:
system undergoing a phase transition. For liquid/gas transitions, the order parameter is the difference of the densities.
1419:
The first example of a phase transition which did not fit into the Ehrenfest classification was the exact solution of the
3568:
Lakhani, Archana; Banerjee, A.; Chaddah, P.; Chen, X.; Ramanujan, R. V. (2012). "Magnetic glass in shape memory alloy: Ni
2607: 2185:
before the phase transition, as a consequence of lower degree of stability of the initial phase of the system. The large
154: 308:, i.e., less stable than the phase to which the transition would have occurred, but not unstable either. This occurs in 1548: 49:
of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic
4915: 4890: 4882: 2398: 1515: 1331: 1318: 2494: 1979:< 0, the heat capacity has a "kink" at the transition temperature. This is the behavior of liquid helium at the 1523: 382: 359: 325: 1300: 5361: 2244: 1992: 1699: 1646: 1494: 5431: 5356: 5087: 5053: 1093: 645:
occurs during a phase transition, the ratio of light to heavy isotopes in the involved molecules changes. When
449: 221: 5543: 5371: 4997: 2653:
Jaeger, Gregg (1 May 1998). "The Ehrenfest Classification of Phase Transitions: Introduction and Evolution".
2488: 2436: 2404: 2326: 1674: 252: 4828: 4009:
Kleinert, Hagen (1999). "Critical exponents from seven-loop strong-coupling φ4 theory in three dimensions".
5553: 5426: 5171: 4988: 3895:
Leonard, F.; Delamotte, B. (2015). "Critical exponents can be different on the two sides of a transition".
2475: 2448: 1560: 1268: 748: 621: 5609: 5604: 4974: 4614:
Moret, Marcelo; Zebende, Gilney (January 2007). "Amino acid hydrophobicity and accessible surface area".
3170:
Lubchenko, V. Wolynes; Wolynes, Peter G. (2007). "Theory of Structural Glasses and Supercooled Liquids".
2318:(simultaneous measurement of magnetic and non-magnetic transitions. Limited up to about 800–1000 °C) 2206: 1453:
Familiar examples are the melting of ice or the boiling of water (the water does not instantly turn into
511:
resulting in a temperature span where solid and liquid coexist in equilibrium. This is often the case in
288:
For a single component, the most stable phase at different temperatures and pressures can be shown on a
5599: 4894: 1273: 898: 467: 378: 2743: 5080: 3846: 2716:
Gross, David J. (1980), "Possible third-order phase transition in the large N lattice gauge theory",
2624: 1787: 1372: 1163: 838: 658: 650: 4544:
Diedrich, F. J.; Warren, W. H. Jr. (1995). "Why change gaits? Dynamics of the walk-run transition".
2315: 1808:
Continuous phase transitions are easier to study than first-order transitions due to the absence of
5578: 5477: 5107: 2457: 2330: 2255: 2254:
It has been proposed that some biological systems might lie near critical points. Examples include
1769: 1556: 1158: 1153: 679: 670: 2957:
Imry, Y.; Wortis, M. (1979). "Influence of quenched impurities on first-order phase transitions".
1243: 5472: 1729:. However, note that order parameters can also be defined for non-symmetry-breaking transitions. 1405: 1397: 848: 1253: 5497: 5487: 5237: 5232: 4971:
Constitutions of matter : mathematically modelling the most everyday of physical phenomena
4755: 1506: 1238: 1178: 1148: 1098: 818: 708: 546: 417: 85:. This can be a discontinuous change; for example, a liquid may become gas upon heating to its 3715: 3201: 4984: 2387: 2221:, and cooperative ligand binding to DNA and proteins with the character of phase transition. 2153: 1955: 1765: 1502: 1278: 893: 878: 642: 5416: 5176: 5007: 4947: 4800: 4717:
Complexity Theory and Conflict Transformation: An Exploration of Potential and Implications
4680: 4623: 4418: 4361: 4296: 4227: 4028: 3975: 3914: 3861: 3672: 3603: 3534: 3474: 3431: 3370: 3295: 3240: 3189: 3135: 3073: 3012: 2966: 2777: 2765: 2563: 1670: 1650: 868: 758: 508: 503:
between solid and liquid phases, mixtures can either have a single melting point, known as
492: 296:. In exception to the usual case, it is sometimes possible to change the state of a system 278: 70: 2305:
A variety of methods are applied for studying the various effects. Selected examples are:
1819:. The most important one is perhaps the exponent describing the divergence of the thermal 639:
in the laws of physics during the early history of the universe as its temperature cooled.
381:
occurs as one of the many phase transformations in carbon steel and stands as a model for
8: 5391: 5283: 5273: 5186: 5141: 3615: 2413: 2321: 1678: 1533: 1108: 918: 768: 301: 4951: 4804: 4684: 4627: 4521:
Dynamic Patterns: The Self-Organization of Brain and Behavior (Complex Adaptive Systems)
4422: 4365: 4342:
Mora, Thierry; Bialek, William (2011). "Are biological systems poised at criticality?".
4300: 4231: 4146:"Determination of membrane lipid phase transition temperature from 13-C NMR intensities" 4032: 3979: 3918: 3865: 3676: 3607: 3538: 3478: 3435: 3374: 3299: 3244: 3193: 3139: 3077: 3016: 2970: 2769: 2567: 2201:
Phase transitions play many important roles in biological systems. Examples include the
456:. A simplified but highly useful model of magnetic phase transitions is provided by the 124:
Phase transitions commonly refer to when a substance transforms between one of the four
5538: 5467: 5301: 4763: 4696: 4670: 4501: 4475: 4439: 4408: 4396: 4377: 4351: 4319: 4286: 4274: 4250: 4217: 4206:"Social interactions dominate speed control in poising natural flocks near criticality" 4205: 4184: 4087: 4044: 4018: 3991: 3965: 3938: 3904: 3877: 3785: 3742: 3696: 3662: 3635: 3593: 3498: 3447: 3421: 3394: 3360: 3321: 3264: 3213: 3179: 3126:
Ojovan, M.I. (2013). "Ordering and structural changes at the glass-liquid transition".
3105: 3063: 3036: 3002: 2789: 2755: 2670: 2584: 2553: 2541: 2469: 2463: 2336: 2267: 2232: 1820: 1791: 1757: 1745: 1532:
Apart from isolated, simple phase transitions, there exist transition lines as well as
1248: 1223: 971: 962: 413: 403: 386: 343: 335: 3873: 3443: 2744:"Top eigenvalue of a random matrix: large deviations and third order phase transition" 5568: 5563: 5533: 5492: 5381: 5333: 5318: 5211: 5181: 5021: 4966: 4959: 4935: 4911: 4886: 4834: 4788: 4658: 4639: 4596: 4561: 4524: 4493: 4489: 4444: 4324: 4255: 4165: 4161: 4126: 4122: 4106: 4079: 4048: 3930: 3812: 3805: 3721: 3700: 3688: 3639: 3627: 3619: 3550: 3490: 3386: 3313: 3268: 3256: 3205: 3160:
Gotze, Wolfgang. "Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory."
3147: 3097: 3089: 3040: 3028: 2909: 2891: 2852: 2815: 2793: 2781: 2696: 2674: 2628: 2589: 2542:"Phase diagram for the transition from photonic crystals to dielectric metamaterials" 2520: 2427: 2353: 1980: 1816: 1803: 1761: 1733: 1682: 1666: 1662: 1581: 1466: 1428: 1393: 1218: 1063: 953: 873: 662: 636: 603: 504: 425: 363: 339: 74: 4145: 4091: 3995: 3942: 3881: 3789: 3762:
Clark, J.B.; Hastie, J.W.; Kihlborg, L.H.E.; Metselaar, R.; Thackeray, M.M. (1994).
3451: 3398: 3217: 2608:
Semiconductors and Semimetals. Vol 100. Photonic Crystal Metasurface Optoelectronics
102: 5523: 5146: 5060: 4955: 4878: 4808: 4728: 4688: 4631: 4588: 4553: 4485: 4434: 4430: 4426: 4369: 4314: 4304: 4245: 4235: 4157: 4118: 4075: 4071: 4036: 3983: 3926: 3922: 3869: 3775: 3680: 3611: 3542: 3502: 3482: 3439: 3378: 3325: 3303: 3248: 3197: 3143: 3109: 3085: 3081: 3020: 2974: 2883: 2844: 2773: 2725: 2662: 2579: 2571: 2347: 2218: 1567: 923: 888: 883: 843: 783: 743: 549:, in which a single phase is cooled and separates into two different compositions. 204: 66: 46: 4700: 4505: 4381: 3252: 2369: – Property of some chemical elements to exist in two or more different forms 2262:
The characteristic feature of second order phase transitions is the appearance of
5513: 5366: 5103: 4921: 4781: 4777: 2942: 2482: 2210: 1233: 1183: 1053: 808: 720: 553: 539: 367: 125: 50: 4692: 4592: 2472: – Mathematical theory on behavior of connected clusters in a random graph 2445: – Theory of continuous phase transitions of second order phase transitions 2002:< 1, the heat capacity diverges at the transition temperature (though, since 1823:
by approaching the transition. For instance, let us examine the behavior of the
5311: 5306: 5263: 5196: 5191: 4901: 4862: 4635: 4557: 4040: 3987: 3684: 3546: 3382: 3024: 2872:"The Ehrenfest Classification of Phase Transitions: Introduction and Evolution" 2381: 2237: 1948:. Its actual value depends on the type of phase transition we are considering. 1741: 1498: 1368: 1305: 1283: 1263: 1258: 1213: 1133: 1068: 966: 853: 698: 666: 585: 512: 429: 330: 293: 115: 4927: 4812: 4373: 2515:
Askeland, Donald R.; Haddleton, Frank; Green, Phil; Robertson, Howard (1996).
408: 5593: 5548: 5528: 5451: 5411: 5346: 5278: 5201: 5031: 5015: 4870: 3692: 3623: 3554: 3390: 3093: 3032: 2978: 2895: 2856: 2785: 2442: 2202: 2010:
for uniaxial magnets, detailed theoretical studies have yielded the exponent
1824: 1776: 1722: 1718: 1710: 1706: 1526: 1389: 994: 975: 957: 858: 778: 625: 500: 433: 371: 289: 129: 119: 86: 4732: 4309: 4240: 3780: 3763: 2729: 2289:
Complex system approach to peace and armed conflict § Phase transitions
1725:, whose direction was spontaneously chosen when the system cooled below the 1188: 128:
to another. At the phase transition point for a substance, for instance the
5573: 5446: 5441: 5436: 5401: 5351: 5268: 4978: 4643: 4600: 4497: 4448: 4328: 4259: 4083: 3934: 3631: 3494: 3317: 3260: 3209: 3101: 2593: 1780: 1575: 1536:, when varying external parameters like the magnetic field or composition. 1424: 1208: 1198: 1168: 1128: 1123: 1103: 948: 928: 788: 610: 480: 313: 309: 257: 240: 5072: 4565: 4169: 4130: 2887: 2666: 424:
Phase transitions can also describe the change between different kinds of
5482: 5376: 5288: 4773: 4769: 4464:"From physics to biology by extending criticality and symmetry breakings" 3970: 3426: 3365: 3184: 3007: 2418: 2309: 2271: 2229: 2214: 2007: 1815:
Continuous phase transitions can be characterized by parameters known as
1809: 1726: 1462: 1454: 1447: 1420: 1228: 1203: 1173: 1118: 1113: 1045: 687: 646: 534:
reaction is a peritectoid rection, except involving only solid phases. A
531: 484: 457: 445: 441: 78: 4826: 4791:(1974). "The renormalization group in the theory of critical behavior". 2871: 2848: 2575: 2123:{\displaystyle \beta =\gamma /(\delta -1),\quad \nu =\gamma /(2-\eta ).} 606:
in certain metals and ceramics when cooled below a critical temperature.
316:, for example. Metastable states do not appear on usual phase diagrams. 25:
This diagram shows the nomenclature for the different phase transitions.
5421: 5396: 5323: 5293: 5227: 5206: 4023: 3764:"Definitions of terms relating to phase transitions of the solid state" 2241: 1984: 1519: 1510: 1458: 1138: 980: 773: 613:
properties in artificial photonic media as their parameters are varied.
592: 527: 518:
There are also a number of phase transitions involving three phases: a
453: 390: 305: 264: 2812:
Elements of classical thermodynamics: for advanced students of physics
1505:
the phase transition is second-order at zero external field and for a
4397:"Zipf's law and criticality in multivariate data without fine-tuning" 3486: 2421: – Mathematical model of ferromagnetism in statistical mechanics 2366: 2019: 1854: 1490: 1193: 1143: 1016: 863: 763: 581: 523: 471:
A binary phase diagram showing the most stable chemical compounds of
355: 347: 297: 34: 5156: 5012:
Fractals, chaos, power laws : minutes from an infinite paradise
4546:
Journal of Experimental Psychology. Human Perception and Performance
4463: 3308: 3283: 2133:
It can be shown that there are only two independent exponents, e.g.
1485:. They are characterized by a divergent susceptibility, an infinite 21: 5558: 5386: 4107:"C NMR studies of lipid fatty acyl chains of chloroplast membranes" 3909: 2835:
Austin, J. B. (November 1932). "Heat Capacity of Iron - A Review".
2558: 1571: 1552: 753: 596: 519: 472: 233: 140: 82: 4856:
Ice Phase Transition as a sample of finite system phase transition
4675: 4480: 4413: 4356: 4291: 4222: 4189: 3667: 3598: 3338: 3068: 2760: 5518: 5406: 5341: 5258: 5253: 2263: 2181:. Connected to the previous phenomenon is also the phenomenon of 1073: 1058: 1021: 1012: 1007: 496: 444:. Another example is the transition between differently ordered, 216: 30: 1623:
raises the possibility that one can study the interplay between
5127: 5048: 4938:(1974). "The Renormalization Group and the epsilon-Expansion". 4874: 4858:, (Physics Education (India) Volume 32. No. 2, Apr - Jun 2016) 4707: 2514: 1026: 1002: 733: 629: 476: 437: 194: 58: 1797: 1756:
Symmetry-breaking phase transitions play an important role in
564: 5136: 5122: 3053: 2690: 2497: – Field theory involving topological effects in physics 2341: 1031: 728: 617: 569: 189: 133: 107: 54: 16:
Physical process of transition between basic states of matter
4900: 4830:
Chaos, Phase Transitions, Topology Change and Path Integrals
3761: 3515: 3411: 2991: 2375: – Chemical reaction whose product is also its catalyst 4821:
Lectures on Phase Transitions and the Renormalization Group
4659:"Correlations, risk and crisis: From physiology to finance" 4657:
Gorban, A.N.; Smirnova, E.V.; Tyukina, T.A. (August 2010).
3652: 3464: 3847:"Topologically disordered systems at the glass transition" 3567: 2196: 2173:. As a consequence, at a phase transition one may observe 1371:
classified phase transitions based on the behavior of the
5132: 3955: 2248: 1972:, the exponent of the susceptibility) are not identical. 738: 199: 62: 5026:
Introduction to Phase Transitions and Critical Phenomena
4272: 4061: 2914:
Introduction to Phase Transitions and Critical Phenomena
2814:(Repr ed.). Cambridge: Univ. Pr. pp. 140–141. 2407: – Shift of atomic positions in a crystal structure 374:) are all examples of solid to solid phase transitions. 4395:
Schwab, David J; Nemenman, Ilya; Mehta, Pankaj (2014).
3714:
Ivancevic, Vladimir G.; Ivancevic, Tijiana, T. (2008).
2748:
Journal of Statistical Mechanics: Theory and Experiment
2423:
Pages displaying short descriptions of redirect targets
2409:
Pages displaying short descriptions of redirect targets
2377:
Pages displaying short descriptions of redirect targets
2165:
There are also other critical phenomena; e.g., besides
4977:, 1996. Contains a detailed pedagogical discussion of 3833:
Cosmogenesis, The Development of Order in the Universe
2742:
Majumdar, Satya N; Schehr, Grégory (31 January 2014).
2282: 4663:
Physica A: Statistical Mechanics and Its Applications
4656: 4273:
Krotov, D; Dubuis, J O; Gregor, T; Bialek, W (2014).
4203: 4182: 2439: – Noncontact variant of atomic force microscopy 2054: 1958: 1915:{\displaystyle C\propto |T_{\text{c}}-T|^{-\alpha }.} 1866: 1665:
process. For instance, the cooling of a fluid into a
1497:. Examples of second-order phase transitions are the 5028:(Oxford University Press, Oxford and New York 1971). 3509: 3332: 3121: 3119: 2691:
Blundell, Stephen J.; Katherine M. Blundell (2008).
2453:
Pages displaying wikidata descriptions as a fallback
2432:
Pages displaying wikidata descriptions as a fallback
2392:
Pages displaying wikidata descriptions as a fallback
2217:, liquid crystal-like transitions in the process of 2189:
of a continuous phase transition split into smaller
1427:. The exact specific heat differed from the earlier 428:. The most well-known is the transition between the 4827:Ivancevic, Vladimir G; Ivancevic, Tijana T (2008), 4725:
Department of Peace Studies, University of Bradford
4394: 3646: 3561: 4518: 3804: 3713: 3047: 2485: – Thin layer of liquid in a superfluid state 2122: 1964: 1914: 595:geometry on coverage and temperature, such as for 4778:Fundamentals of Multiphase Heat Transfer and Flow 4578: 3116: 2985: 2944:Fundamentals of Multiphase Heat Transfer and Flow 2384: – Major stage of a crystallization process 1929:= 0.59 A similar behavior, but with the exponent 5591: 3894: 3169: 1827:near such a transition. We vary the temperature 665:for some choice of thermodynamic variables (cf. 552:Non-equilibrium mixtures can occur, such as in 4713: 4543: 4150:Journal of Biochemical and Biophysical Methods 2741: 2460: – Different known phase of states matter 1501:transition, superconducting transition (for a 584:between solid and liquid, such as one of the " 545:Separation into multiple phases can occur via 515:, where the two components are isostructural. 440:materials, which occurs at what is called the 385:. Order-disorder transitions such as in alpha- 370:, or from one amorphous structure to another ( 5088: 4461: 4111:Indian Journal of Biochemistry and Biophysics 2629:"Fundamentals of Stable Isotope Geochemistry" 2623: 1339: 389:. As with states of matter, there are also a 162: 4613: 4468:Progress in Biophysics and Molecular Biology 4098: 3845:Ojovan, Michael I.; Lee, William E. (2006). 3747:: CS1 maint: multiple names: authors list ( 2648: 2646: 1705:An example of an order parameter is the net 1589: 1461:mixture of liquid water and vapor bubbles). 1384:are continuous in the first derivative (the 92: 5102: 4933: 4204:Bialek, W; Cavagna, A; Giardina, I (2014). 2539: 2275:points of second-order phase transitions. 2157:correlation length is the essential point. 1798:Critical exponents and universality classes 1363: 366:to another, from a crystalline solid to an 338:, distinguishing between several different 37:, and other related fields like biology, a 5095: 5081: 5036:Statistical Mechanics of Phase Transitions 4341: 3284:"Materials science: Metal turned to glass" 2956: 2686: 2684: 2373:Autocatalytic reactions and order creation 1764:into the U(1) symmetry of the present-day 1685:, which only occurs at low temperatures). 1380:the free energy with respect to pressure. 1346: 1332: 686: 169: 155: 5061:Interactive Phase Transitions on lattices 4760:Basic Notions of Condensed Matter Physics 4674: 4479: 4462:Longo, G.; Montévil, M. (1 August 2011). 4438: 4412: 4355: 4318: 4308: 4290: 4249: 4239: 4221: 4188: 4022: 3969: 3908: 3844: 3779: 3666: 3597: 3425: 3364: 3307: 3231:Greer, A. L. (1995). "Metallic Glasses". 3202:10.1146/annurev.physchem.58.032806.104653 3183: 3067: 3006: 2929:Transport Phenomena in Multiphase Systems 2759: 2643: 2583: 2557: 2430: – apparent change of physical state 1751: 1435: 452:, magnetic structures, such as in cerium 4008: 3802: 2517:The Science and Engineering of Materials 1987:state, for which experiments have found 563: 466: 407: 329: 101: 20: 4143: 4104: 2908: 2809: 2681: 2197:Phase transitions in biological systems 568:A small piece of rapidly melting solid 143:are identified in the following table: 132:, the two phases involved - liquid and 5592: 4787: 3720:. Berlin: Springer. pp. 176–177. 3281: 3125: 2869: 2837:Industrial & Engineering Chemistry 2834: 2652: 1937:, applies for the correlation length. 1432:able to incorporate such transitions. 358:, whereas in compounds it is known as 73:and the states of matter have uniform 5076: 4742:from the original on 26 November 2022 3230: 2876:Archive for History of Exact Sciences 2715: 2655:Archive for History of Exact Sciences 2344:(measurement of magnetic transitions) 2312:(measurement of magnetic transitions) 2160: 1385: 3854:Journal of Physics: Condensed Matter 3586:Journal of Physics: Condensed Matter 3414:Journal of Physics: Condensed Matter 2805: 2803: 2390: – materials science phenomenon 1944:is positive. This is different with 1594: 4981:'s solution of the 2-D Ising Model. 4895:physik.fu-berlin.de readable online 3172:Annual Review of Physical Chemistry 2519:. Chapman & Hall. p. 286. 2283:Phase transitions in social systems 1688: 1543:. They are continuous but break no 1529:of second-order phase transitions. 1414:supercritical liquid–gas boundaries 97: 13: 4883:World Scientific (Singapore, 1989) 4749: 2401: – Thermoanalytical technique 2025:Several other critical exponents, 1661:Phase transitions often involve a 1640: 1358: 412:A phase diagram showing different 14: 5621: 5042: 5001:, Pergamon Press, 3rd Ed. (1994). 4907:Critical Properties of φ-Theories 2932:, Elsevier, Burlington, MA, 2006, 2800: 2540:Rybin, M.V.; et al. (2015). 2491: – Process in quantum optics 2399:Differential scanning calorimetry 1547:. The most famous example is the 1539:Several transitions are known as 1516:differential scanning calorimetry 657:Phase transitions occur when the 559: 509:liquidus and solidus temperatures 416:in the same crystal structure of 5155: 5047: 5038:, Oxford University Press, 1992. 4867:Gauge Fields in Condensed Matter 4490:10.1016/j.pbiomolbio.2011.03.005 3148:10.1016/j.jnoncrysol.2013.10.016 2778:10.1088/1742-5468/2014/01/P01012 2495:Topological quantum field theory 2466: – Crystal growth technique 2451: – crystal growth technique 1732:Some phase transitions, such as 1721:phase, one must provide the net 1677:, with the exception of certain 1541:infinite-order phase transitions 1313: 1312: 1299: 383:displacive phase transformations 326:Polymorphism (materials science) 275: 273: 244: 225: 4650: 4607: 4572: 4537: 4512: 4455: 4388: 4335: 4266: 4197: 4176: 4137: 4055: 4002: 3949: 3888: 3838: 3825: 3796: 3755: 3707: 3458: 3405: 3275: 3224: 3163: 3154: 2950: 2935: 2920: 2902: 2863: 2828: 2300: 2245:electron paramagnetic resonance 2087: 1993:variational perturbation theory 1465:and Michael Wortis showed that 106:A simplified phase diagram for 4470:. Systems Biology and Cancer. 4431:10.1103/PhysRevLett.113.068102 4344:Journal of Statistical Physics 4275:"Morphogenesis at criticality" 4076:10.1080/07391102.2000.10506578 3927:10.1103/PhysRevLett.115.200601 3616:10.1088/0953-8984/24/38/386004 3086:10.1103/PhysRevLett.100.247003 2947:, Springer, New York, NY, 2020 2735: 2709: 2617: 2600: 2533: 2508: 2114: 2102: 2081: 2069: 1896: 1874: 1574:and other liquids that can be 1561:two-dimensional electron gases 1549:Kosterlitz–Thouless transition 1483:"continuous phase transitions" 1382:Second-order phase transitions 1: 5544:Macroscopic quantum phenomena 4998:Course of Theoretical Physics 3253:10.1126/science.267.5206.1947 2502: 2489:Superradiant phase transition 2437:Kelvin probe force microscope 2405:Diffusionless transformations 2327:Perturbed angular correlation 1681:(e.g. the formation of heavy 1675:spontaneous symmetry breaking 1544: 1476:Second-order phase transition 1444:First-order phase transitions 1377:First-order phase transitions 576:Other phase changes include: 319: 5554:Order and disorder (physics) 4960:10.1016/0370-1573(74)90023-4 4904:; Verena Schulte-Frohlinde. 4853:M.R. Khoshbin-e-Khoshnazar, 4823:, Perseus Publishing (1992). 4714:Diane Hendrick (June 2009), 4162:10.1016/0165-022X(90)90097-V 4123:10.1016/0165-022X(91)90019-S 3811:. Harvard University Press. 2870:Jaeger, Gregg (1 May 1998). 2606:Eds. Zhou, W., and Fan. S., 2476:Continuum percolation theory 2449:Laser-heated pedestal growth 491:Phase transitions involving 334:A phase diagram showing the 7: 4975:University of Chicago Press 4693:10.1016/j.physa.2010.03.035 4593:10.1016/j.humov.2010.05.004 4519:Kelso, J. A. Scott (1995). 3874:10.1088/0953-8984/18/50/007 3444:10.1088/0953-8984/18/49/L02 2941:Faghri, A., and Zhang, Y., 2926:Faghri, A., and Zhang, Y., 2810:Pippard, Alfred B. (1981). 2695:. Oxford University Press. 2693:Concepts in Thermal Physics 2359: 2187:static universality classes 1983:from a normal state to the 1656: 1493:decay of correlations near 462: 397: 10: 5626: 4993:Statistical Physics Part 1 4636:10.1103/PhysRevE.75.011920 4558:10.1037/0096-1523.21.1.183 4041:10.1103/PhysRevD.60.085001 3988:10.1103/PhysRevB.68.174518 3835:, Oxford Univ. Press, 1991 3803:Chaisson, Eric J. (2001). 3768:Pure and Applied Chemistry 3685:10.1103/PhysRevB.80.174413 3547:10.1103/PhysRevB.74.012403 3383:10.1103/PhysRevB.64.104416 3025:10.1103/PhysRevB.73.184435 2916:. Oxford: Clarendon Press. 2286: 1801: 899:Spin gapless semiconductor 622:Bose–Einstein condensation 401: 379:martensitic transformation 323: 113: 5506: 5460: 5332: 5246: 5220: 5164: 5153: 5115: 4813:10.1103/revmodphys.46.597 4374:10.1007/s10955-011-0229-4 1788:relational order theories 1590:Characteristic properties 1557:quantum phase transitions 1446:are those that involve a 1373:thermodynamic free energy 839:Electronic band structure 671:quantum phase transitions 659:thermodynamic free energy 651:equilibrium fractionation 507:, or they have different 93:Types of phase transition 5579:Thermo-dielectric effect 5478:Enthalpy of vaporization 5172:Bose–Einstein condensate 2979:10.1103/physrevb.19.3580 2458:List of states of matter 2331:tantalum hafnium carbide 2295:peace and armed conflict 1770:electroweak baryogenesis 1563:, belong to this class. 1423:, discovered in 1944 by 1364:Ehrenfest classification 749:Bose–Einstein condensate 680:Condensed matter physics 616:Quantum condensation of 5473:Enthalpy of sublimation 4401:Physical Review Letters 4310:10.1073/pnas.1324186111 4241:10.1073/pnas.1324045111 3781:10.1351/pac199466030577 3056:Physical Review Letters 2730:10.1103/PhysRevD.21.446 2207:coil-globule transition 1965:{\displaystyle \gamma } 1568:liquid–glass transition 1551:in the two-dimensional 1398:magnetic susceptibility 5488:Latent internal energy 5238:Color-glass condensate 4581:Human Movement Science 4064:J. Biomol. Struct. Dyn 2316:Mössbauer spectroscopy 2124: 1966: 1916: 1752:Relevance in cosmology 1702:will usually diverge. 1507:Type-II superconductor 1436:Modern classifications 637:breaking of symmetries 632:is an example of this. 591:The dependence of the 573: 547:spinodal decomposition 488: 421: 418:Manganese monosilicide 362:. The change from one 351: 111: 26: 5298:Magnetically ordered 5056:at Wikimedia Commons 5008:Schroeder, Manfred R. 4784:Switzerland AG, 2020. 4144:YashRoy, R C (1990). 2888:10.1007/s004070050021 2667:10.1007/s004070050021 2546:Nature Communications 2388:Abnormal grain growth 2183:enhanced fluctuations 2175:critical slowing down 2154:renormalization group 2125: 1967: 1917: 1766:electromagnetic field 1679:accidental symmetries 1503:Type-I superconductor 894:Topological insulator 643:Isotope fractionation 628:transition in liquid 567: 470: 411: 333: 105: 65:, and in rare cases, 24: 5177:Fermionic condensate 5067:Universality classes 4924:on 26 February 2008. 4833:, Berlin: Springer, 3717:Complex Nonlinearity 3128:J. Non-Cryst. Solids 2226:biological membranes 2191:dynamic universality 2052: 1956: 1864: 1849:, the heat capacity 1671:translation symmetry 1651:critical opalescence 1570:is observed in many 1534:multicritical points 912:Electronic phenomena 759:Fermionic condensate 71:thermodynamic system 5392:Chemical ionization 5284:Programmable matter 5274:Quantum spin liquid 5142:Supercritical fluid 4952:1974PhR....12...75W 4881:", pp. 1–742, 4877:; Disorder Fields, 4805:1974RvMP...46..597F 4685:2010PhyA..389.3193G 4628:2007PhRvE..75a1920M 4423:2014PhRvL.113f8102S 4366:2011JSP...144..268M 4301:2014PNAS..111.3683K 4232:2014PNAS..111.7212B 4105:Yashroy RC (1987). 4033:1999PhRvD..60h5001K 3980:2003PhRvB..68q4518L 3919:2015PhRvL.115t0601L 3866:2006JPCM...1811507O 3860:(50): 11507–11520. 3677:2009PhRvB..80q4413K 3608:2012JPCM...24L6004L 3539:2006PhRvB..74a2403R 3479:2006NatMa...5..881W 3436:2006JPCM...18L.605B 3375:2001PhRvB..64j4416M 3300:2007Natur.448..758T 3282:Tarjus, G. (2007). 3245:1995Sci...267.1947G 3239:(5206): 1947–1953. 3194:2007ARPC...58..235L 3140:2013JNCS..382...79O 3078:2008PhRvL.100x7003P 3017:2006PhRvB..73r4435K 2971:1979PhRvB..19.3580I 2849:10.1021/ie50275a006 2770:2014JSMTE..01..012M 2576:10.1038/ncomms10102 2568:2015NatCo...610102R 2414:Ehrenfest equations 2322:Neutron diffraction 2233:thylakoid membranes 919:Quantum Hall effect 414:magnetic structures 387:titanium aluminides 177: 75:physical properties 5610:Critical phenomena 5605:Physical phenomena 5539:Leidenfrost effect 5468:Enthalpy of fusion 5233:Quark–gluon plasma 4967:Krieger, Martin H. 4764:Perseus Publishing 2910:Stanley, H. Eugene 2470:Percolation theory 2464:Micro-pulling-down 2337:Raman Spectroscopy 2209:in the process of 2161:Critical phenomena 2120: 1962: 1912: 1821:correlation length 1817:critical exponents 1792:order and disorder 1669:breaks continuous 1487:correlation length 1306:Physics portal 574: 526:transformation. A 489: 422: 404:Magnetic structure 352: 340:crystal structures 336:allotropes of iron 146: 112: 27: 5600:Phase transitions 5587: 5586: 5569:Superheated vapor 5564:Superconductivity 5534:Equation of state 5382:Flash evaporation 5334:Phase transitions 5319:String-net liquid 5212:Photonic molecule 5182:Degenerate matter 5063:with Java applets 5052:Media related to 4879:Phase Transitions 4840:978-3-540-79356-4 4669:(16): 3193–3217. 4616:Physical Review E 4530:978-0-262-61131-2 4285:(10): 3683–3688. 4216:(20): 7212–7217. 4011:Physical Review D 3958:Physical Review B 3818:978-0-674-00342-2 3727:978-3-540-79357-1 3655:Physical Review B 3527:Physical Review B 3353:Physical Review B 3294:(7155): 758–759. 2995:Physical Review B 2843:(11): 1225–1235. 2821:978-0-521-09101-5 2718:Physical Review D 2702:978-0-19-856770-7 2526:978-0-412-53910-7 2428:Jamming (physics) 2354:X-ray diffraction 2171:critical dynamics 1981:lambda transition 1885: 1804:critical exponent 1762:electroweak field 1683:virtual particles 1667:crystalline solid 1663:symmetry breaking 1595:Phase coexistence 1582:quenched disorder 1467:quenched disorder 1394:Curie temperature 1356: 1355: 1064:Granular material 832:Electronic phases 609:The emergence of 604:superconductivity 602:The emergence of 505:congruent melting 426:magnetic ordering 364:crystal structure 286: 285: 148:Phase transitions 5617: 5524:Compressed fluid 5159: 5104:States of matter 5097: 5090: 5083: 5074: 5073: 5051: 4963: 4925: 4920:. Archived from 4850: 4849: 4847: 4819:Goldenfeld, N., 4816: 4744: 4743: 4741: 4722: 4711: 4705: 4704: 4678: 4654: 4648: 4647: 4611: 4605: 4604: 4576: 4570: 4569: 4541: 4535: 4534: 4516: 4510: 4509: 4483: 4459: 4453: 4452: 4442: 4416: 4392: 4386: 4385: 4359: 4339: 4333: 4332: 4322: 4312: 4294: 4270: 4264: 4263: 4253: 4243: 4225: 4201: 4195: 4194: 4192: 4180: 4174: 4173: 4141: 4135: 4134: 4102: 4096: 4095: 4059: 4053: 4052: 4026: 4006: 4000: 3999: 3973: 3971:cond-mat/0310163 3953: 3947: 3946: 3912: 3892: 3886: 3885: 3851: 3842: 3836: 3829: 3823: 3822: 3810: 3807:Cosmic Evolution 3800: 3794: 3793: 3783: 3759: 3753: 3752: 3746: 3738: 3736: 3734: 3711: 3705: 3704: 3670: 3650: 3644: 3643: 3601: 3565: 3559: 3558: 3513: 3507: 3506: 3487:10.1038/nmat1743 3467:Nature Materials 3462: 3456: 3455: 3429: 3427:cond-mat/0611152 3409: 3403: 3402: 3368: 3366:cond-mat/0012472 3336: 3330: 3329: 3311: 3279: 3273: 3272: 3228: 3222: 3221: 3187: 3185:cond-mat/0607349 3167: 3161: 3158: 3152: 3151: 3123: 3114: 3113: 3071: 3051: 3045: 3044: 3010: 3008:cond-mat/0602627 2989: 2983: 2982: 2965:(7): 3580–3585. 2954: 2948: 2939: 2933: 2924: 2918: 2917: 2906: 2900: 2899: 2867: 2861: 2860: 2832: 2826: 2825: 2807: 2798: 2797: 2763: 2739: 2733: 2732: 2713: 2707: 2706: 2688: 2679: 2678: 2650: 2641: 2640: 2638: 2636: 2621: 2615: 2613:, Elsevier, 2019 2604: 2598: 2597: 2587: 2561: 2537: 2531: 2530: 2512: 2454: 2433: 2424: 2410: 2393: 2378: 2348:Thermogravimetry 2219:DNA condensation 2167:static functions 2129: 2127: 2126: 2121: 2101: 2068: 1971: 1969: 1968: 1963: 1921: 1919: 1918: 1913: 1908: 1907: 1899: 1887: 1886: 1883: 1877: 1853:typically has a 1689:Order parameters 1524:phenomenological 1481:are also called 1478: 1477: 1348: 1341: 1334: 1321: 1316: 1315: 1308: 1304: 1303: 924:Spin Hall effect 814:Phase transition 784:Luttinger liquid 721:States of matter 704:Phase transition 690: 676: 675: 580:Transition to a 178: 171: 164: 157: 145: 126:states of matter 98:States of matter 51:states of matter 47:physical process 39:phase transition 5625: 5624: 5620: 5619: 5618: 5616: 5615: 5614: 5590: 5589: 5588: 5583: 5514:Baryonic matter 5502: 5456: 5427:Saturated fluid 5367:Crystallization 5328: 5302:Antiferromagnet 5242: 5216: 5160: 5151: 5111: 5101: 5045: 4928:readable online 4918: 4902:Kleinert, Hagen 4845: 4843: 4841: 4782:Springer Nature 4752: 4750:Further reading 4747: 4739: 4720: 4712: 4708: 4655: 4651: 4612: 4608: 4577: 4573: 4542: 4538: 4531: 4517: 4513: 4460: 4456: 4393: 4389: 4340: 4336: 4271: 4267: 4202: 4198: 4181: 4177: 4142: 4138: 4103: 4099: 4060: 4056: 4007: 4003: 3954: 3950: 3897:Phys. Rev. Lett 3893: 3889: 3849: 3843: 3839: 3830: 3826: 3819: 3801: 3797: 3760: 3756: 3740: 3739: 3732: 3730: 3728: 3712: 3708: 3651: 3647: 3583: 3579: 3575: 3571: 3566: 3562: 3524: 3520: 3514: 3510: 3473:(11): 881–886. 3463: 3459: 3410: 3406: 3350: 3346: 3342: 3337: 3333: 3309:10.1038/448758a 3280: 3276: 3229: 3225: 3168: 3164: 3159: 3155: 3124: 3117: 3052: 3048: 2990: 2986: 2955: 2951: 2940: 2936: 2925: 2921: 2907: 2903: 2868: 2864: 2833: 2829: 2822: 2808: 2801: 2740: 2736: 2714: 2710: 2703: 2689: 2682: 2651: 2644: 2634: 2632: 2622: 2618: 2605: 2601: 2538: 2534: 2527: 2513: 2509: 2505: 2500: 2483:Superfluid film 2452: 2431: 2422: 2408: 2391: 2376: 2362: 2303: 2291: 2285: 2256:neural networks 2211:protein folding 2205:formation, the 2199: 2163: 2097: 2064: 2053: 2050: 2049: 1957: 1954: 1953: 1900: 1895: 1894: 1882: 1878: 1873: 1865: 1862: 1861: 1848: 1837: 1806: 1800: 1754: 1734:superconducting 1695:order parameter 1691: 1659: 1643: 1641:Critical points 1636: 1629: 1621: 1613: 1606: 1597: 1592: 1518:measurements. 1475: 1474: 1438: 1406:Cornelis Gorter 1386:order parameter 1366: 1361: 1359:Classifications 1352: 1311: 1298: 1297: 1290: 1289: 1288: 1088: 1080: 1079: 1078: 1054:Amorphous solid 1048: 1038: 1037: 1036: 1015: 997: 987: 986: 985: 974: 972:Antiferromagnet 965: 963:Superparamagnet 956: 943: 942:Magnetic phases 935: 934: 933: 913: 905: 904: 903: 833: 825: 824: 823: 809:Order parameter 803: 802:Phase phenomena 795: 794: 793: 723: 713: 661:of a system is 562: 554:supersaturation 540:miscibility gap 513:solid solutions 465: 406: 400: 368:amorphous solid 328: 322: 300:(as opposed to 186: 183: 175: 122: 100: 95: 69:. A phase of a 17: 12: 11: 5: 5623: 5613: 5612: 5607: 5602: 5585: 5584: 5582: 5581: 5576: 5571: 5566: 5561: 5556: 5551: 5546: 5541: 5536: 5531: 5526: 5521: 5516: 5510: 5508: 5504: 5503: 5501: 5500: 5495: 5493:Trouton's rule 5490: 5485: 5480: 5475: 5470: 5464: 5462: 5458: 5457: 5455: 5454: 5449: 5444: 5439: 5434: 5429: 5424: 5419: 5414: 5409: 5404: 5399: 5394: 5389: 5384: 5379: 5374: 5369: 5364: 5362:Critical point 5359: 5354: 5349: 5344: 5338: 5336: 5330: 5329: 5327: 5326: 5321: 5316: 5315: 5314: 5309: 5304: 5296: 5291: 5286: 5281: 5276: 5271: 5266: 5264:Liquid crystal 5261: 5256: 5250: 5248: 5244: 5243: 5241: 5240: 5235: 5230: 5224: 5222: 5218: 5217: 5215: 5214: 5209: 5204: 5199: 5197:Strange matter 5194: 5192:Rydberg matter 5189: 5184: 5179: 5174: 5168: 5166: 5162: 5161: 5154: 5152: 5150: 5149: 5144: 5139: 5130: 5125: 5119: 5117: 5113: 5112: 5100: 5099: 5092: 5085: 5077: 5071: 5070: 5069:from Sklogwiki 5064: 5044: 5043:External links 5041: 5040: 5039: 5029: 5019: 5005: 5002: 4989:Lifshitz, E.M. 4982: 4964: 4931: 4916: 4898: 4860: 4851: 4839: 4824: 4817: 4799:(4): 597–616. 4793:Rev. Mod. Phys 4785: 4767: 4756:Anderson, P.W. 4751: 4748: 4746: 4745: 4706: 4649: 4606: 4587:(4): 483–493. 4571: 4552:(1): 183–202. 4536: 4529: 4511: 4474:(2): 340–347. 4454: 4387: 4350:(2): 268–302. 4334: 4265: 4196: 4175: 4156:(4): 353–356. 4136: 4117:(6): 177–178. 4097: 4070:(5): 903–911. 4054: 4024:hep-th/9812197 4001: 3964:(17): 174518. 3948: 3903:(20): 200601. 3887: 3837: 3831:David Layzer, 3824: 3817: 3795: 3774:(3): 577–594. 3754: 3726: 3706: 3661:(17): 174413. 3645: 3592:(38): 386004. 3581: 3577: 3573: 3569: 3560: 3522: 3518: 3508: 3457: 3404: 3359:(10): 104416. 3348: 3344: 3340: 3331: 3274: 3223: 3162: 3153: 3115: 3062:(24): 247003. 3046: 3001:(18): 184435. 2984: 2949: 2934: 2919: 2901: 2862: 2827: 2820: 2799: 2734: 2724:(2): 446–453, 2708: 2701: 2680: 2642: 2616: 2599: 2532: 2525: 2506: 2504: 2501: 2499: 2498: 2492: 2486: 2480: 2479: 2478: 2467: 2461: 2455: 2446: 2440: 2434: 2425: 2416: 2411: 2402: 2396: 2395: 2394: 2382:Crystal growth 2379: 2370: 2363: 2361: 2358: 2357: 2356: 2351: 2345: 2339: 2334: 2333:4215 °C.) 2324: 2319: 2313: 2302: 2299: 2284: 2281: 2238:linolenic acid 2198: 2195: 2169:there is also 2162: 2159: 2131: 2130: 2119: 2116: 2113: 2110: 2107: 2104: 2100: 2096: 2093: 2090: 2086: 2083: 2080: 2077: 2074: 2071: 2067: 2063: 2060: 2057: 1961: 1923: 1922: 1911: 1906: 1903: 1898: 1893: 1890: 1881: 1876: 1872: 1869: 1846: 1835: 1802:Main article: 1799: 1796: 1753: 1750: 1700:susceptibility 1690: 1687: 1658: 1655: 1647:critical point 1642: 1639: 1634: 1627: 1619: 1611: 1604: 1596: 1593: 1591: 1588: 1457:, but forms a 1437: 1434: 1369:Paul Ehrenfest 1365: 1362: 1360: 1357: 1354: 1353: 1351: 1350: 1343: 1336: 1328: 1325: 1324: 1323: 1322: 1309: 1292: 1291: 1287: 1286: 1281: 1276: 1271: 1266: 1261: 1256: 1251: 1246: 1241: 1236: 1231: 1226: 1221: 1216: 1211: 1206: 1201: 1196: 1191: 1186: 1181: 1176: 1171: 1166: 1161: 1156: 1151: 1146: 1141: 1136: 1131: 1126: 1121: 1116: 1111: 1106: 1101: 1096: 1090: 1089: 1086: 1085: 1082: 1081: 1077: 1076: 1071: 1069:Liquid crystal 1066: 1061: 1056: 1050: 1049: 1044: 1043: 1040: 1039: 1035: 1034: 1029: 1024: 1019: 1010: 1005: 999: 998: 995:Quasiparticles 993: 992: 989: 988: 984: 983: 978: 969: 960: 954:Superdiamagnet 951: 945: 944: 941: 940: 937: 936: 932: 931: 926: 921: 915: 914: 911: 910: 907: 906: 902: 901: 896: 891: 886: 881: 879:Thermoelectric 876: 874:Superconductor 871: 866: 861: 856: 854:Mott insulator 851: 846: 841: 835: 834: 831: 830: 827: 826: 822: 821: 816: 811: 805: 804: 801: 800: 797: 796: 792: 791: 786: 781: 776: 771: 766: 761: 756: 751: 746: 741: 736: 731: 725: 724: 719: 718: 715: 714: 712: 711: 706: 701: 695: 692: 691: 683: 682: 655: 654: 649:condenses (an 640: 633: 614: 607: 600: 599:on iron (110). 589: 586:liquid crystal 561: 560:Other examples 558: 464: 461: 450:incommensurate 399: 396: 321: 318: 294:freezing point 284: 283: 281: 276: 274: 272: 268: 267: 262: 260: 255: 250: 246: 245: 243: 238: 236: 231: 227: 226: 224: 219: 214: 212: 208: 207: 202: 197: 192: 187: 184: 181: 174: 173: 166: 159: 151: 116:vapor pressure 99: 96: 94: 91: 15: 9: 6: 4: 3: 2: 5622: 5611: 5608: 5606: 5603: 5601: 5598: 5597: 5595: 5580: 5577: 5575: 5572: 5570: 5567: 5565: 5562: 5560: 5557: 5555: 5552: 5550: 5549:Mpemba effect 5547: 5545: 5542: 5540: 5537: 5535: 5532: 5530: 5529:Cooling curve 5527: 5525: 5522: 5520: 5517: 5515: 5512: 5511: 5509: 5505: 5499: 5496: 5494: 5491: 5489: 5486: 5484: 5481: 5479: 5476: 5474: 5471: 5469: 5466: 5465: 5463: 5459: 5453: 5452:Vitrification 5450: 5448: 5445: 5443: 5440: 5438: 5435: 5433: 5430: 5428: 5425: 5423: 5420: 5418: 5417:Recombination 5415: 5413: 5412:Melting point 5410: 5408: 5405: 5403: 5400: 5398: 5395: 5393: 5390: 5388: 5385: 5383: 5380: 5378: 5375: 5373: 5370: 5368: 5365: 5363: 5360: 5358: 5357:Critical line 5355: 5353: 5350: 5348: 5347:Boiling point 5345: 5343: 5340: 5339: 5337: 5335: 5331: 5325: 5322: 5320: 5317: 5313: 5310: 5308: 5305: 5303: 5300: 5299: 5297: 5295: 5292: 5290: 5287: 5285: 5282: 5280: 5279:Exotic matter 5277: 5275: 5272: 5270: 5267: 5265: 5262: 5260: 5257: 5255: 5252: 5251: 5249: 5245: 5239: 5236: 5234: 5231: 5229: 5226: 5225: 5223: 5219: 5213: 5210: 5208: 5205: 5203: 5200: 5198: 5195: 5193: 5190: 5188: 5185: 5183: 5180: 5178: 5175: 5173: 5170: 5169: 5167: 5163: 5158: 5148: 5145: 5143: 5140: 5138: 5134: 5131: 5129: 5126: 5124: 5121: 5120: 5118: 5114: 5109: 5105: 5098: 5093: 5091: 5086: 5084: 5079: 5078: 5075: 5068: 5065: 5062: 5059: 5058: 5057: 5055: 5054:Phase changes 5050: 5037: 5033: 5032:Yeomans J. M. 5030: 5027: 5023: 5022:H. E. Stanley 5020: 5017: 5016:W. H. Freeman 5013: 5009: 5006: 5003: 5000: 4999: 4994: 4990: 4986: 4983: 4980: 4976: 4972: 4968: 4965: 4961: 4957: 4953: 4949: 4946:(2): 75–199. 4945: 4941: 4937: 4932: 4929: 4923: 4919: 4917:981-02-4659-5 4913: 4909: 4908: 4903: 4899: 4896: 4892: 4891:9971-5-0210-0 4888: 4884: 4880: 4876: 4872: 4871:Superfluidity 4868: 4864: 4861: 4859: 4857: 4852: 4842: 4836: 4832: 4831: 4825: 4822: 4818: 4814: 4810: 4806: 4802: 4798: 4794: 4790: 4786: 4783: 4779: 4775: 4771: 4768: 4765: 4761: 4757: 4754: 4753: 4738: 4734: 4730: 4726: 4719: 4718: 4710: 4702: 4698: 4694: 4690: 4686: 4682: 4677: 4672: 4668: 4664: 4660: 4653: 4645: 4641: 4637: 4633: 4629: 4625: 4622:(1): 011920. 4621: 4617: 4610: 4602: 4598: 4594: 4590: 4586: 4582: 4575: 4567: 4563: 4559: 4555: 4551: 4547: 4540: 4532: 4526: 4523:. MIT Press. 4522: 4515: 4507: 4503: 4499: 4495: 4491: 4487: 4482: 4477: 4473: 4469: 4465: 4458: 4450: 4446: 4441: 4436: 4432: 4428: 4424: 4420: 4415: 4410: 4407:(6): 068102. 4406: 4402: 4398: 4391: 4383: 4379: 4375: 4371: 4367: 4363: 4358: 4353: 4349: 4345: 4338: 4330: 4326: 4321: 4316: 4311: 4306: 4302: 4298: 4293: 4288: 4284: 4280: 4276: 4269: 4261: 4257: 4252: 4247: 4242: 4237: 4233: 4229: 4224: 4219: 4215: 4211: 4207: 4200: 4191: 4186: 4179: 4171: 4167: 4163: 4159: 4155: 4151: 4147: 4140: 4132: 4128: 4124: 4120: 4116: 4112: 4108: 4101: 4093: 4089: 4085: 4081: 4077: 4073: 4069: 4065: 4058: 4050: 4046: 4042: 4038: 4034: 4030: 4025: 4020: 4017:(8): 085001. 4016: 4012: 4005: 3997: 3993: 3989: 3985: 3981: 3977: 3972: 3967: 3963: 3959: 3952: 3944: 3940: 3936: 3932: 3928: 3924: 3920: 3916: 3911: 3906: 3902: 3898: 3891: 3883: 3879: 3875: 3871: 3867: 3863: 3859: 3855: 3848: 3841: 3834: 3828: 3820: 3814: 3809: 3808: 3799: 3791: 3787: 3782: 3777: 3773: 3769: 3765: 3758: 3750: 3744: 3729: 3723: 3719: 3718: 3710: 3702: 3698: 3694: 3690: 3686: 3682: 3678: 3674: 3669: 3664: 3660: 3656: 3649: 3641: 3637: 3633: 3629: 3625: 3621: 3617: 3613: 3609: 3605: 3600: 3595: 3591: 3587: 3564: 3556: 3552: 3548: 3544: 3540: 3536: 3533:(1): 012403. 3532: 3528: 3512: 3504: 3500: 3496: 3492: 3488: 3484: 3480: 3476: 3472: 3468: 3461: 3453: 3449: 3445: 3441: 3437: 3433: 3428: 3423: 3419: 3415: 3408: 3400: 3396: 3392: 3388: 3384: 3380: 3376: 3372: 3367: 3362: 3358: 3354: 3335: 3327: 3323: 3319: 3315: 3310: 3305: 3301: 3297: 3293: 3289: 3285: 3278: 3270: 3266: 3262: 3258: 3254: 3250: 3246: 3242: 3238: 3234: 3227: 3219: 3215: 3211: 3207: 3203: 3199: 3195: 3191: 3186: 3181: 3177: 3173: 3166: 3157: 3149: 3145: 3141: 3137: 3133: 3129: 3122: 3120: 3111: 3107: 3103: 3099: 3095: 3091: 3087: 3083: 3079: 3075: 3070: 3065: 3061: 3057: 3050: 3042: 3038: 3034: 3030: 3026: 3022: 3018: 3014: 3009: 3004: 3000: 2996: 2988: 2980: 2976: 2972: 2968: 2964: 2960: 2953: 2946: 2945: 2938: 2931: 2930: 2923: 2915: 2911: 2905: 2897: 2893: 2889: 2885: 2881: 2877: 2873: 2866: 2858: 2854: 2850: 2846: 2842: 2838: 2831: 2823: 2817: 2813: 2806: 2804: 2795: 2791: 2787: 2783: 2779: 2775: 2771: 2767: 2762: 2757: 2754:(1): P01012. 2753: 2749: 2745: 2738: 2731: 2727: 2723: 2719: 2712: 2704: 2698: 2694: 2687: 2685: 2676: 2672: 2668: 2664: 2660: 2656: 2649: 2647: 2630: 2626: 2625:Carol Kendall 2620: 2614: 2611: 2610: 2603: 2595: 2591: 2586: 2581: 2577: 2573: 2569: 2565: 2560: 2555: 2551: 2547: 2543: 2536: 2528: 2522: 2518: 2511: 2507: 2496: 2493: 2490: 2487: 2484: 2481: 2477: 2474: 2473: 2471: 2468: 2465: 2462: 2459: 2456: 2450: 2447: 2444: 2443:Landau theory 2441: 2438: 2435: 2429: 2426: 2420: 2417: 2415: 2412: 2406: 2403: 2400: 2397: 2389: 2386: 2385: 2383: 2380: 2374: 2371: 2368: 2365: 2364: 2355: 2352: 2350:(very common) 2349: 2346: 2343: 2340: 2338: 2335: 2332: 2328: 2325: 2323: 2320: 2317: 2314: 2311: 2308: 2307: 2306: 2298: 2296: 2290: 2280: 2276: 2273: 2269: 2265: 2260: 2257: 2252: 2250: 2246: 2243: 2239: 2234: 2231: 2227: 2222: 2220: 2216: 2212: 2208: 2204: 2203:lipid bilayer 2194: 2192: 2188: 2184: 2180: 2176: 2172: 2168: 2158: 2155: 2149: 2147: 2142: 2140: 2136: 2117: 2111: 2108: 2105: 2098: 2094: 2091: 2088: 2084: 2078: 2075: 2072: 2065: 2061: 2058: 2055: 2048: 2047: 2046: 2044: 2040: 2036: 2032: 2028: 2023: 2021: 2015: 2013: 2009: 2005: 2001: 1996: 1994: 1990: 1986: 1982: 1978: 1973: 1959: 1949: 1947: 1943: 1940:The exponent 1938: 1936: 1932: 1928: 1909: 1904: 1901: 1891: 1888: 1879: 1870: 1867: 1860: 1859: 1858: 1856: 1852: 1845: 1841: 1834: 1830: 1826: 1825:heat capacity 1822: 1818: 1813: 1811: 1805: 1795: 1793: 1789: 1784: 1782: 1778: 1777:Eric Chaisson 1773: 1771: 1767: 1763: 1759: 1749: 1747: 1743: 1738: 1735: 1730: 1728: 1724: 1723:magnetization 1720: 1719:ferromagnetic 1714: 1712: 1711:ferromagnetic 1708: 1707:magnetization 1703: 1701: 1696: 1686: 1684: 1680: 1676: 1672: 1668: 1664: 1654: 1652: 1648: 1638: 1633: 1626: 1618: 1610: 1603: 1587: 1584: 1583: 1577: 1573: 1569: 1564: 1562: 1558: 1554: 1550: 1546: 1542: 1537: 1535: 1530: 1528: 1525: 1521: 1517: 1512: 1508: 1504: 1500: 1499:ferromagnetic 1496: 1492: 1488: 1484: 1480: 1471: 1468: 1464: 1460: 1456: 1451: 1449: 1445: 1441: 1433: 1430: 1426: 1422: 1417: 1415: 1409: 1407: 1401: 1399: 1395: 1391: 1390:magnetization 1387: 1383: 1378: 1374: 1370: 1349: 1344: 1342: 1337: 1335: 1330: 1329: 1327: 1326: 1320: 1310: 1307: 1302: 1296: 1295: 1294: 1293: 1285: 1282: 1280: 1277: 1275: 1272: 1270: 1267: 1265: 1262: 1260: 1257: 1255: 1252: 1250: 1247: 1245: 1242: 1240: 1237: 1235: 1232: 1230: 1227: 1225: 1222: 1220: 1217: 1215: 1212: 1210: 1207: 1205: 1202: 1200: 1197: 1195: 1192: 1190: 1187: 1185: 1182: 1180: 1177: 1175: 1172: 1170: 1167: 1165: 1162: 1160: 1157: 1155: 1152: 1150: 1147: 1145: 1142: 1140: 1137: 1135: 1132: 1130: 1127: 1125: 1122: 1120: 1117: 1115: 1112: 1110: 1107: 1105: 1102: 1100: 1097: 1095: 1094:Van der Waals 1092: 1091: 1084: 1083: 1075: 1072: 1070: 1067: 1065: 1062: 1060: 1057: 1055: 1052: 1051: 1047: 1042: 1041: 1033: 1030: 1028: 1025: 1023: 1020: 1018: 1014: 1011: 1009: 1006: 1004: 1001: 1000: 996: 991: 990: 982: 979: 977: 973: 970: 968: 964: 961: 959: 955: 952: 950: 947: 946: 939: 938: 930: 927: 925: 922: 920: 917: 916: 909: 908: 900: 897: 895: 892: 890: 889:Ferroelectric 887: 885: 884:Piezoelectric 882: 880: 877: 875: 872: 870: 867: 865: 862: 860: 859:Semiconductor 857: 855: 852: 850: 847: 845: 842: 840: 837: 836: 829: 828: 820: 817: 815: 812: 810: 807: 806: 799: 798: 790: 787: 785: 782: 780: 779:Superfluidity 777: 775: 772: 770: 767: 765: 762: 760: 757: 755: 752: 750: 747: 745: 742: 740: 737: 735: 732: 730: 727: 726: 722: 717: 716: 710: 707: 705: 702: 700: 697: 696: 694: 693: 689: 685: 684: 681: 678: 677: 674: 672: 668: 664: 660: 652: 648: 644: 641: 638: 634: 631: 627: 623: 619: 615: 612: 608: 605: 601: 598: 594: 590: 587: 583: 579: 578: 577: 571: 566: 557: 555: 550: 548: 543: 541: 537: 533: 529: 525: 521: 516: 514: 510: 506: 502: 501:melting point 498: 494: 486: 482: 481:mixing ratios 479:at different 478: 474: 469: 460: 459: 455: 451: 447: 443: 439: 435: 431: 430:ferromagnetic 427: 419: 415: 410: 405: 395: 392: 388: 384: 380: 375: 373: 369: 365: 361: 357: 349: 346:(α-iron) and 345: 341: 337: 332: 327: 317: 315: 311: 307: 303: 302:adiabatically 299: 295: 291: 290:phase diagram 282: 280: 279:Recombination 277: 270: 269: 266: 263: 261: 259: 256: 254: 251: 248: 247: 242: 239: 237: 235: 232: 229: 228: 223: 220: 218: 215: 213: 210: 209: 206: 203: 201: 198: 196: 193: 191: 188: 180: 179: 172: 167: 165: 160: 158: 153: 152: 149: 144: 142: 137: 135: 131: 130:boiling point 127: 121: 120:phase diagram 117: 109: 104: 90: 88: 87:boiling point 84: 80: 76: 72: 68: 64: 60: 56: 52: 48: 44: 40: 36: 32: 23: 19: 5574:Superheating 5447:Vaporization 5442:Triple point 5437:Supercooling 5402:Lambda point 5352:Condensation 5269:Time crystal 5247:Other states 5187:Quantum Hall 5046: 5035: 5025: 5014:, New York: 5011: 4996: 4995:, vol. 5 of 4992: 4985:Landau, L.D. 4970: 4943: 4939: 4922:the original 4906: 4885:; Paperback 4875:Vortex lines 4866: 4863:Kleinert, H. 4855: 4844:, retrieved 4829: 4820: 4796: 4792: 4789:Fisher, M.E. 4759: 4716: 4709: 4666: 4662: 4652: 4619: 4615: 4609: 4584: 4580: 4574: 4549: 4545: 4539: 4520: 4514: 4471: 4467: 4457: 4404: 4400: 4390: 4347: 4343: 4337: 4282: 4278: 4268: 4213: 4209: 4199: 4178: 4153: 4149: 4139: 4114: 4110: 4100: 4067: 4063: 4057: 4014: 4010: 4004: 3961: 3957: 3951: 3900: 3896: 3890: 3857: 3853: 3840: 3832: 3827: 3806: 3798: 3771: 3767: 3757: 3731:. Retrieved 3716: 3709: 3658: 3654: 3648: 3589: 3585: 3563: 3530: 3526: 3511: 3470: 3466: 3460: 3420:(49): L605. 3417: 3413: 3407: 3356: 3352: 3334: 3291: 3287: 3277: 3236: 3232: 3226: 3175: 3171: 3165: 3156: 3131: 3127: 3059: 3055: 3049: 2998: 2994: 2987: 2962: 2959:Phys. Rev. B 2958: 2952: 2943: 2937: 2928: 2922: 2913: 2904: 2882:(1): 51–81. 2879: 2875: 2865: 2840: 2836: 2830: 2811: 2751: 2747: 2737: 2721: 2717: 2711: 2692: 2661:(1): 51–81. 2658: 2654: 2633:. Retrieved 2619: 2612: 2609: 2602: 2549: 2545: 2535: 2516: 2510: 2304: 2301:Experimental 2292: 2277: 2261: 2253: 2225: 2223: 2200: 2190: 2186: 2182: 2178: 2174: 2170: 2166: 2164: 2150: 2146:universality 2145: 2143: 2138: 2134: 2132: 2042: 2038: 2034: 2030: 2026: 2024: 2016: 2011: 2003: 1999: 1997: 1988: 1976: 1975:For −1 < 1974: 1950: 1945: 1941: 1939: 1934: 1930: 1926: 1924: 1850: 1843: 1839: 1832: 1828: 1814: 1807: 1785: 1781:David Layzer 1774: 1755: 1739: 1731: 1715: 1704: 1694: 1692: 1660: 1644: 1631: 1624: 1616: 1608: 1601: 1598: 1580: 1565: 1540: 1538: 1531: 1482: 1473: 1472: 1452: 1443: 1442: 1439: 1425:Lars Onsager 1418: 1410: 1402: 1381: 1376: 1367: 1224:von Klitzing 929:Kondo effect 813: 789:Time crystal 769:Fermi liquid 703: 663:non-analytic 656: 611:metamaterial 575: 551: 544: 517: 490: 485:temperatures 446:commensurate 434:paramagnetic 423: 376: 360:polymorphism 353: 314:supercooling 310:superheating 298:diabatically 287: 258:Condensation 241:Vaporization 147: 138: 123: 43:phase change 42: 38: 28: 18: 5483:Latent heat 5432:Sublimation 5377:Evaporation 5312:Ferromagnet 5307:Ferrimagnet 5289:Dark matter 5221:High energy 4934:Kogut, J.; 4869:, Vol. I, " 3178:: 235–266. 2419:Ising Model 2310:Hall effect 2272:hydrophilic 2230:chloroplast 2215:DNA melting 2179:speeding up 2020:logarithmic 2008:Ising model 1998:For 0 < 1933:instead of 1810:latent heat 1727:Curie point 1576:supercooled 1559:, e.g., in 1495:criticality 1463:Yoseph Imry 1448:latent heat 1421:Ising model 1046:Soft matter 967:Ferromagnet 647:water vapor 532:peritectoid 458:Ising Model 442:Curie point 372:polyamorphs 222:Sublimation 150:of matter ( 79:temperature 5594:Categories 5498:Volatility 5461:Quantities 5422:Regelation 5397:Ionization 5372:Deposition 5324:Superglass 5294:Antimatter 5228:QCD matter 5207:Supersolid 5202:Superfluid 5165:Low energy 4770:Faghri, A. 4733:Q126669745 3910:1508.07852 3733:12 October 2559:1507.08901 2503:References 2287:See also: 2268:scale-free 2242:spin label 2014:≈ +0.110. 1985:superfluid 1857:behavior: 1545:symmetries 1520:Lev Landau 1511:superfluid 1429:mean-field 1189:Louis Néel 1179:Schrieffer 1087:Scientists 981:Spin glass 976:Metamagnet 958:Paramagnet 774:Supersolid 626:superfluid 593:adsorption 536:monotectic 528:peritectic 454:antimonide 436:phases of 402:See also: 391:metastable 342:including 324:See also: 320:Structural 306:metastable 265:Ionization 253:Deposition 114:See also: 4940:Phys. Rep 4936:Wilson, K 4774:Zhang, Y. 4676:0905.0129 4481:1103.1833 4414:1310.0448 4357:1012.2242 4292:1309.2614 4223:1307.5563 4190:1407.5946 4049:117436273 3743:cite book 3701:119165221 3693:1098-0121 3668:0911.4552 3640:206037831 3624:0953-8984 3599:1206.2024 3555:1098-0121 3391:0163-1829 3269:220105648 3134:: 79–86. 3094:0031-9007 3069:0803.0307 3041:117080049 3033:1098-0121 2896:1432-0657 2857:0019-7866 2794:119122520 2786:1742-5468 2761:1311.0580 2675:121525126 2552:: 10102. 2367:Allotropy 2112:η 2109:− 2095:γ 2089:ν 2076:− 2073:δ 2062:γ 2056:β 1960:γ 1905:α 1902:− 1889:− 1871:∝ 1855:power law 1786:See also 1758:cosmology 1491:power law 1459:turbulent 1269:Abrikosov 1184:Josephson 1154:Van Vleck 1144:Luttinger 1017:Polariton 949:Diamagnet 869:Conductor 864:Semimetal 849:Insulator 764:Fermi gas 588:" phases. 582:mesophase 524:eutectoid 493:solutions 356:allotropy 350:(γ-iron). 348:austenite 45:) is the 35:chemistry 5559:Spinodal 5507:Concepts 5387:Freezing 4846:14 March 4737:archived 4729:Wikidata 4644:17358197 4601:20619908 4498:21419157 4449:25148352 4329:24516161 4260:24785504 4092:23837885 4084:10798534 3996:55646571 3943:22181730 3935:26613426 3882:96326822 3790:95616565 3632:22927562 3495:17028576 3452:98145553 3399:16851501 3318:17700684 3261:17770105 3218:46089564 3210:17067282 3102:18643617 2912:(1971). 2635:10 April 2627:(2004). 2594:26626302 2360:See also 2266:in some 2264:fractals 1842:is near 1772:theory. 1657:Symmetry 1572:polymers 1553:XY model 1489:, and a 1319:Category 1274:Ginzburg 1249:Laughlin 1209:Kadanoff 1164:Shockley 1149:Anderson 1104:von Laue 754:Bose gas 620:fluids ( 597:hydrogen 520:eutectic 497:mixtures 473:titanium 463:Mixtures 438:magnetic 398:Magnetic 234:Freezing 141:pressure 83:pressure 5519:Binodal 5407:Melting 5342:Boiling 5259:Crystal 5254:Colloid 4979:Onsager 4948:Bibcode 4801:Bibcode 4766:(1997). 4681:Bibcode 4624:Bibcode 4566:7707029 4440:5142845 4419:Bibcode 4362:Bibcode 4320:3956198 4297:Bibcode 4251:4034227 4228:Bibcode 4170:2365951 4131:3428918 4029:Bibcode 3976:Bibcode 3915:Bibcode 3862:Bibcode 3673:Bibcode 3604:Bibcode 3535:Bibcode 3503:9036412 3475:Bibcode 3432:Bibcode 3371:Bibcode 3326:4410586 3296:Bibcode 3241:Bibcode 3233:Science 3190:Bibcode 3136:Bibcode 3110:1568288 3074:Bibcode 3013:Bibcode 2967:Bibcode 2766:Bibcode 2585:4686770 2564:Bibcode 1838:. When 1748:lines. 1555:. Many 1522:gave a 1279:Leggett 1254:Störmer 1239:Bednorz 1199:Giaever 1169:Bardeen 1159:Hubbard 1134:Peierls 1124:Onsager 1074:Polymer 1059:Colloid 1022:Polaron 1013:Plasmon 1008:Exciton 624:). The 618:bosonic 344:ferrite 271:Plasma 230:Liquid 217:Melting 31:physics 5147:Plasma 5128:Liquid 4914:  4889:  4837:  4772:, and 4731:  4701:276956 4699:  4642:  4599:  4564:  4527:  4506:723820 4504:  4496:  4447:  4437:  4382:703231 4380:  4327:  4317:  4258:  4248:  4168:  4129:  4090:  4082:  4047:  3994:  3941:  3933:  3880:  3815:  3788:  3724:  3699:  3691:  3638:  3630:  3622:  3553:  3501:  3493:  3450:  3397:  3389:  3324:  3316:  3288:Nature 3267:  3259:  3216:  3208:  3108:  3100:  3092:  3039:  3031:  2894:  2855:  2818:  2792:  2784:  2699:  2673:  2631:. USGS 2592:  2582:  2523:  2041:, and 1746:defect 1742:vortex 1527:theory 1396:. The 1317:  1284:Parisi 1244:Müller 1234:Rohrer 1229:Binnig 1219:Wilson 1214:Fisher 1174:Cooper 1139:Landau 1027:Magnon 1003:Phonon 844:Plasma 744:Plasma 734:Liquid 699:Phases 667:phases 630:helium 477:nickel 211:Solid 205:Plasma 195:Liquid 67:plasma 61:, and 59:liquid 5137:Vapor 5123:Solid 5116:State 4740:(PDF) 4721:(PDF) 4697:S2CID 4671:arXiv 4502:S2CID 4476:arXiv 4409:arXiv 4378:S2CID 4352:arXiv 4287:arXiv 4218:arXiv 4185:arXiv 4088:S2CID 4045:S2CID 4019:arXiv 3992:S2CID 3966:arXiv 3939:S2CID 3905:arXiv 3878:S2CID 3850:(PDF) 3786:S2CID 3697:S2CID 3663:arXiv 3636:S2CID 3594:arXiv 3499:S2CID 3448:S2CID 3422:arXiv 3395:S2CID 3361:arXiv 3322:S2CID 3265:S2CID 3214:S2CID 3180:arXiv 3106:S2CID 3064:arXiv 3037:S2CID 3003:arXiv 2790:S2CID 2756:arXiv 2671:S2CID 2554:arXiv 2342:SQUID 1744:- or 1709:in a 1455:vapor 1194:Esaki 1119:Bloch 1114:Debye 1109:Bragg 1099:Onnes 1032:Roton 729:Solid 570:argon 190:Solid 134:vapor 108:water 55:solid 5108:list 4987:and 4912:ISBN 4887:ISBN 4873:and 4848:2013 4835:ISBN 4640:PMID 4597:PMID 4562:PMID 4525:ISBN 4494:PMID 4445:PMID 4325:PMID 4279:PNAS 4256:PMID 4210:PNAS 4166:PMID 4127:PMID 4080:PMID 3931:PMID 3813:ISBN 3749:link 3735:2014 3722:ISBN 3689:ISSN 3628:PMID 3620:ISSN 3551:ISSN 3491:PMID 3387:ISSN 3345:0.04 3341:0.96 3314:PMID 3257:PMID 3206:PMID 3098:PMID 3090:ISSN 3029:ISSN 2892:ISSN 2853:ISSN 2816:ISBN 2782:ISSN 2752:2014 2697:ISBN 2637:2014 2590:PMID 2521:ISBN 2247:and 2213:and 2137:and 1790:and 1779:and 1630:and 1566:The 1264:Tsui 1259:Yang 1204:Kohn 1129:Mott 635:The 495:and 483:and 475:and 432:and 377:The 312:and 249:Gas 185:From 118:and 41:(or 5133:Gas 4956:doi 4809:doi 4689:doi 4667:389 4632:doi 4589:doi 4554:doi 4486:doi 4472:106 4435:PMC 4427:doi 4405:113 4370:doi 4348:144 4315:PMC 4305:doi 4283:111 4246:PMC 4236:doi 4214:111 4158:doi 4119:doi 4072:doi 4037:doi 3984:doi 3923:doi 3901:115 3870:doi 3776:doi 3681:doi 3612:doi 3584:". 3543:doi 3525:". 3483:doi 3440:doi 3379:doi 3351:". 3304:doi 3292:448 3249:doi 3237:267 3198:doi 3144:doi 3132:382 3082:doi 3060:100 3021:doi 2975:doi 2884:doi 2845:doi 2774:doi 2726:doi 2663:doi 2580:PMC 2572:doi 2249:NMR 2224:In 2177:or 1693:An 819:QCP 739:Gas 709:QCP 448:or 200:Gas 81:or 63:gas 29:In 5596:: 5135:/ 5034:, 5024:, 5010:, 4991:, 4973:, 4969:, 4954:. 4944:12 4942:. 4930:). 4910:. 4865:, 4807:. 4797:46 4795:. 4780:, 4776:, 4762:, 4758:, 4735:, 4727:, 4723:, 4695:. 4687:. 4679:. 4665:. 4661:. 4638:. 4630:. 4620:75 4618:. 4595:. 4585:29 4583:. 4560:. 4550:21 4548:. 4500:. 4492:. 4484:. 4466:. 4443:. 4433:. 4425:. 4417:. 4403:. 4399:. 4376:. 4368:. 4360:. 4346:. 4323:. 4313:. 4303:. 4295:. 4281:. 4277:. 4254:. 4244:. 4234:. 4226:. 4212:. 4208:. 4164:. 4154:20 4152:. 4148:. 4125:. 4115:24 4113:. 4109:. 4086:. 4078:. 4068:17 4066:. 4043:. 4035:. 4027:. 4015:60 4013:. 3990:. 3982:. 3974:. 3962:68 3960:. 3937:. 3929:. 3921:. 3913:. 3899:. 3876:. 3868:. 3858:18 3856:. 3852:. 3784:. 3772:66 3770:. 3766:. 3745:}} 3741:{{ 3695:. 3687:. 3679:. 3671:. 3659:80 3657:. 3634:. 3626:. 3618:. 3610:. 3602:. 3590:24 3588:. 3582:12 3580:Sn 3578:38 3576:Mn 3572:Co 3570:45 3549:. 3541:. 3531:74 3529:. 3521:Ge 3517:Gd 3497:. 3489:. 3481:. 3469:. 3446:. 3438:. 3430:. 3418:18 3416:. 3393:. 3385:. 3377:. 3369:. 3357:64 3355:. 3343:Al 3320:. 3312:. 3302:. 3290:. 3286:. 3263:. 3255:. 3247:. 3235:. 3212:. 3204:. 3196:. 3188:. 3176:58 3174:. 3142:. 3130:. 3118:^ 3104:. 3096:. 3088:. 3080:. 3072:. 3058:. 3035:. 3027:. 3019:. 3011:. 2999:73 2997:. 2973:. 2963:19 2961:. 2890:. 2880:53 2878:. 2874:. 2851:. 2841:24 2839:. 2802:^ 2788:. 2780:. 2772:. 2764:. 2750:. 2746:. 2722:21 2720:, 2683:^ 2669:. 2659:53 2657:. 2645:^ 2588:. 2578:. 2570:. 2562:. 2548:. 2544:. 2141:. 2037:, 2033:, 2029:, 1995:. 1794:. 1783:. 1416:. 556:. 542:. 182:To 176:) 57:, 53:: 33:, 5110:) 5106:( 5096:e 5089:t 5082:v 4962:. 4958:: 4950:: 4926:( 4897:) 4893:( 4815:. 4811:: 4803:: 4703:. 4691:: 4683:: 4673:: 4646:. 4634:: 4626:: 4603:. 4591:: 4568:. 4556:: 4533:. 4508:. 4488:: 4478:: 4451:. 4429:: 4421:: 4411:: 4384:. 4372:: 4364:: 4354:: 4331:. 4307:: 4299:: 4289:: 4262:. 4238:: 4230:: 4220:: 4193:. 4187:: 4172:. 4160:: 4133:. 4121:: 4094:. 4074:: 4051:. 4039:: 4031:: 4021:: 3998:. 3986:: 3978:: 3968:: 3945:. 3925:: 3917:: 3907:: 3884:. 3872:: 3864:: 3821:. 3792:. 3778:: 3751:) 3737:. 3703:. 3683:: 3675:: 3665:: 3642:. 3614:: 3606:: 3596:: 3574:5 3557:. 3545:: 3537:: 3523:4 3519:5 3505:. 3485:: 3477:: 3471:5 3454:. 3442:: 3434:: 3424:: 3401:. 3381:: 3373:: 3363:: 3349:2 3347:) 3328:. 3306:: 3298:: 3271:. 3251:: 3243:: 3220:. 3200:: 3192:: 3182:: 3150:. 3146:: 3138:: 3112:. 3084:: 3076:: 3066:: 3043:. 3023:: 3015:: 3005:: 2981:. 2977:: 2969:: 2898:. 2886:: 2859:. 2847:: 2824:. 2796:. 2776:: 2768:: 2758:: 2728:: 2705:. 2677:. 2665:: 2639:. 2596:. 2574:: 2566:: 2556:: 2550:6 2529:. 2139:η 2135:ν 2118:. 2115:) 2106:2 2103:( 2099:/ 2092:= 2085:, 2082:) 2079:1 2070:( 2066:/ 2059:= 2043:η 2039:ν 2035:δ 2031:γ 2027:β 2012:α 2004:α 2000:α 1989:α 1977:α 1946:α 1942:ν 1935:α 1931:ν 1927:α 1910:. 1897:| 1892:T 1884:c 1880:T 1875:| 1868:C 1851:C 1847:c 1844:T 1840:T 1836:c 1833:T 1829:T 1635:c 1632:T 1628:g 1625:T 1620:g 1617:T 1612:g 1609:T 1605:g 1602:T 1479:s 1347:e 1340:t 1333:v 487:. 420:. 170:e 163:t 156:v

Index


physics
chemistry
physical process
states of matter
solid
liquid
gas
plasma
thermodynamic system
physical properties
temperature
pressure
boiling point

water
vapor pressure
phase diagram
states of matter
boiling point
vapor
pressure
Phase transitions
v
t
e
Solid
Liquid
Gas
Plasma

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.