Knowledge

Spacecraft electric propulsion

Source đź“ť

22: 2098: 606:. When near a planet, low-thrust propulsion may not offset the gravitational force. An electric rocket engine cannot provide enough thrust to lift the vehicle from a planet's surface, but a low thrust applied for a long interval can allow a spacecraft to manoeuvre near a planet. 198:(Space Electric Rocket Test) spacecraft. It launched on 20 July 1964 and operated for 31 minutes. A follow-up mission launched on 3 February 1970, SERT-2. It carried two ion thrusters, one operated for more than five months and the other for almost three months. 596:
because of the limited electrical power available in a spacecraft. A chemical rocket imparts energy to the combustion products directly, whereas an electrical system requires several steps. However, the high velocity and lower
601:
expended for the same thrust allows electric rockets to run on less fuel. This differs from the typical chemical-powered spacecraft, where the engines require more fuel, requiring the spacecraft to mostly follow an
631: 188:(PPT) that served as actuators of the attitude control system. The PPT propulsion system was tested for 70 minutes on the 14 December 1964 when the spacecraft was 4.2 million kilometers from Earth. 730:
Lev, Dan; Myers, Roger M.; Lemmer, Kristina M.; Kolbeck, Jonathan; Koizumi, Hiroyuki; Polzin, Kurt (June 2019). "The technological and commercial expansion of electric propulsion".
534:, converting electric energy to kinetic energy. Electric potential is generated across a conductive tether by its motion through the Earth's magnetic field. The choice of the metal 854: 126:
On a journey to Mars, an electrically powered ship might be able to carry 70% of its initial mass to the destination, while a chemical rocket could carry only a few percent.
76:) than chemical rockets. Due to limited electric power the thrust is much weaker compared to chemical rockets, but electric propulsion can provide thrust for a longer time. 361:
An electrothermal engine uses a nozzle to convert heat into linear motion, so it is a true rocket even though the energy producing the heat comes from an external source.
574:
Electric propulsion systems can be characterized as either steady (continuous firing for a prescribed duration) or unsteady (pulsed firings accumulating to a desired
358:
of either solid material or magnetic fields. Low molecular weight gases (e.g. hydrogen, helium, ammonia) are preferred propellants for this kind of system.
1386: 274:
Electric propulsion thrusters for spacecraft may be grouped into three families based on the type of force used to accelerate the ions of the plasma:
1432: 354:
to increase the temperature of the bulk propellant. The thermal energy imparted to the propellant gas is then converted into kinetic energy by a
1828: 423: 1366: 1946: 1285: 474: 1392: 787: 1567: 862: 828: 625: 305: 88: 1216:"PROJECT DAEDALUS: THE PROPULSION SYSTEM Part 1; Theoretical considerations and calculations. 2. REVIEW OF ADVANCED PROPULSION SYSTEMS" 1844: 227:
By the early 2010s, many satellite manufacturers were offering electric propulsion options on their satellites—mostly for on-orbit
161:
rocket engine. This early work by GDL has been steadily carried on and electric rocket engines were used in the 1960s on board the
1360: 1215: 339: 1307: 1179: 655: 1407:
Aerospace America, AIAA publication, December 2005, Propulsion and Energy section, pp. 54–55, written by Mitchell Walker.
1397: 1323: 1425: 807: 683: 712: 445:
or by the effect of electromagnetic fields where the electric field is not in the direction of the acceleration. Types:
1749: 1306:, edited by M.L. Cosmo and E.C. Lorenzini, Third Edition December 1997 (accessed 20 October 2010); see also version at 1198: 334: 364:
Performance of electrothermal systems in terms of specific impulse (Isp) is 500 to ~1000 seconds, but exceeds that of
123:. However, electric propulsion is not suitable for launches from the Earth's surface, as it offers too little thrust. 79:
Electric propulsion was first demonstrated in the 1960s and is now a mature and widely used technology on spacecraft.
1823: 103:
of 100 km/s (62 mi/s), which is enough to take a spacecraft to the outer planets of the Solar System (with
99:, orbit raising, or primary propulsion. In the future, the most advanced electric thrusters may be able to impart a 1303: 1034: 53:
technique that uses electrostatic or electromagnetic fields to accelerate mass to high speed and thus generating
2132: 1849: 1418: 311: 418: 1953: 1808: 1777: 1772: 1234: 1154:
Cybulski, Ronald J.; Shellhammer, Daniel M.; Lovell, Robert R.; Domino, Edward J.; Kotnik, Joseph T. (1965).
469: 454: 449: 1155: 220:
profile, the weight of equipment needed to convert nuclear energy into electricity, and as a result a small
1355: 2122: 1050: 563: 228: 180:
spacecraft in April 1964, however they operated erratically possibly due to problems with the probe. The
2127: 1311: 139: 116: 1009: 1908: 1767: 1402: 1349: 554:
Some proposed propulsion methods apparently violate currently-understood laws of physics, including:
459: 36: 932: 2137: 1941: 1700: 1674: 1616: 1600: 1590: 436: 1873: 1997: 1970: 1925: 1913: 1893: 1659: 1621: 1595: 1100: 592:
Electrically powered rocket engines provide lower thrust compared to chemical rockets by several
558: 539: 232: 150: 96: 1376: 2048: 1898: 1798: 1540: 1371: 927: 773: 464: 185: 135: 1289: 964:. Washington, D.C.: National Aeronautics and Space Administration, NASA History Div. p. 6 546:. Secondary factors, depending on the application, include cost, strength, and melting point. 1633: 1626: 1441: 915: 509: 369: 326:, including its subtypes Stationary Plasma Thruster (SPT) and Thruster with Anode Layer (TAL) 50: 1403:
A Critical History of Electric Propulsion:The First Fifty Years (1906–1956) - AIAA-2004-3334
587: 1744: 1739: 1643: 1557: 1136: 739: 603: 535: 323: 316: 300: 236: 29: 8: 1903: 1888: 1803: 1690: 1669: 1638: 659: 593: 373: 350:
The electrothermal category groups devices that use electromagnetic fields to generate a
210: 120: 108: 743: 16:
Type of space propulsion using electrostatic and electromagnetic fields for acceleration
2102: 2068: 2033: 1382:
Colorado State University Electric Propulsion and Plasma Engineering (CEPPE) Laboratory
1260: 983: 755: 519: 385: 1363:, University Center for Atmospheric Research, University of Colorado at Boulder, 2000. 1219: 668: 2097: 2063: 2018: 1918: 1818: 1520: 1494: 1176: 759: 575: 408: 365: 296:
in the direction of the acceleration) the device is considered electrostatic. Types:
243: 62: 1014:(Volume 1 ed.). National Aeronautics and Space Administration. pp. 164–165 751: 72:
than chemical rockets because they have a higher exhaust speed (operate at a higher
2083: 2073: 2023: 1729: 1482: 937: 896: 829:"MSNW's plasma thruster just might fire up Congress at hearing on space propulsion" 747: 664: 515: 491: 351: 329: 213: 206: 154: 73: 1354:
The technological and commercial expansion of electric propulsion - D. Lev et al.
1695: 1499: 1465: 1202: 1183: 811: 713:"Electric Propulsion Research at Institute of Fundamental Technological Research" 527: 397: 264: 260: 240: 202: 1330: 1077: 2028: 1963: 1664: 1504: 1101:"Development of Electrojet Engines at the Kurchatov Institute of Atomic Energy" 531: 523: 293: 889:"A Critical History of Electric Propulsion: The First Fifty Years (1906-1956)" 804: 514:
Electrodynamic tethers are long conducting wires, such as one deployed from a
2116: 2038: 1958: 1813: 1782: 1562: 1552: 1547: 1470: 1460: 815: 716: 615: 598: 495: 442: 413: 289: 104: 1195: 578:). These classifications can be applied to all types of propulsion engines. 2043: 2002: 1975: 1734: 1530: 1525: 916:"A Critical History of Electric Propulsion: The First 50 Years (1906–1956)" 381: 283: 221: 146: 92: 1381: 956: 111:. An electric rocket with an external power source (transmissible through 2058: 2053: 1859: 958:
Challenge to Apollo : the Soviet Union and the space race, 1945-1974
888: 134:
The idea of electric propulsion for spacecraft was introduced in 1911 by
1410: 900: 895:. Reston, Virigina: American Institute of Aeronautics and Astronautics. 538:
to be used in an electrodynamic tether is determined by factors such as
2078: 1535: 628:, a list of past and proposed spacecraft which used electric propulsion 619: 268: 173: 69: 58: 392:"Elektro" satellite are equipped with them. Electrothermal systems by 21: 401: 162: 941: 26: 153:(GDL) commenced development of electric rocket engines. Headed by 87:
satellites have used electric propulsion for decades. As of 2019,
1854: 1487: 1356:
The technological and commercial expansion of electric propulsion
543: 393: 100: 80: 157:, in the early 1930s he created the world's first example of an 1477: 1455: 1153: 893:
40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
389: 355: 217: 195: 181: 177: 166: 84: 54: 1324:"Why Shawyer's 'electromagnetic relativity drive' is a fraud" 112: 855:"Electric Propulsion for Future Space Missions (PowerPoint)" 1162: 377: 224:, which would take a century to achieve the desired speed. 192: 33: 172:
The first test of electric propulsion was an experimental
1377:
Robert G. Jahn and Edgar Y. Choueiri. Electric Propulsion
1036:
Developments of Rocketry and Space Technology in the USSR
691: 388:", "Meteor-Priroda", "Resurs-O" satellite series and the 1288:(in Russian). Novosti Kosmonavtiki. 1999. Archived from 816:
Geoffrey A. Landis: Science. papers available on the web
774:"Choueiri, Edgar Y. (2009). New dawn of electric rocket" 441:
Electromagnetic thrusters accelerate ions either by the
191:
The first successful demonstration of an ion engine was
142:
had noted such a possibility in his personal notebook.
1372:
Choueiri, Edgar Y. (2009). New dawn of electric rocket
1367:
Distributed Power Architecture for Electric Propulsion
216:
in 1973, but the approach was rejected because of its
729: 518:, which can operate on electromagnetic principles as 805:
Geoffrey A. Landis. Laser-powered Interstellar Probe
380:, electrothermal engines entered use in 1971; the 1235:"Electric-propulsion Satellites Are All the Rage" 61:in orbit. The propulsion system is controlled by 2114: 632:Rocket propulsion technologies (disambiguation) 500:A photonic drive interacts only with photons. 424:Variable specific impulse magnetoplasma rocket 1426: 1135:Administrator, NASA Content (14 April 2015). 1134: 859:Electric Propulsion for Future Space Missions 475:Magnetic field oscillating amplified thruster 1156:"Results from SERT I Ion Rocket Flight Test" 1098: 1092: 1001: 861:. NASA Glenn Research Center. Archived from 678: 676: 288:If the acceleration is caused mainly by the 1130: 1128: 1126: 1039:. Novosti Press Pub. House. pp. 12–13. 626:List of spacecraft with electric propulsion 306:NASA Solar Technology Application Readiness 68:Electric thrusters typically use much less 1433: 1419: 1286:"Native Electric Propulsion Engines Today" 1232: 1226: 1205:page at Astronautix (Accessed 1 July 2010) 1055:NASA Space Science Data Coodinated Archive 650: 648: 646: 1440: 1177:"SPACE ELECTRIC ROCKET TEST II (SERT II)" 931: 673: 235:operators were beginning to use them for 1845:Atmosphere-breathing electric propulsion 1296: 1258: 1147: 1123: 913: 907: 886: 503: 254: 20: 1032: 1026: 1007: 954: 948: 852: 643: 340:Nano-particle field extraction thruster 201:Electrically powered propulsion with a 2115: 1075: 988:History of Russian Soviet Cosmonautics 569: 1414: 1233:de Selding, Peter B. (20 June 2013). 1137:"Glenn Contributions to Deep Space 1" 1099:Shchepetilov, V. A. (December 2018). 984:"Gas Dynamic Laboratory (in Russian)" 826: 684:"Electric versus Chemical Propulsion" 581: 1033:Glushko, Valentin (1 January 1973). 976: 119:) has a theoretical possibility for 13: 1750:Field-emission electric propulsion 1398:Public Lessons Learned Entry: 0736 1259:DeFelice, David (18 August 2015). 1008:Chertok, Boris (31 January 2005). 430: 335:Field-emission electric propulsion 239:insertion in place of traditional 14: 2149: 1824:Microwave electrothermal thruster 1343: 669:10.1038/scientificamerican0209-58 588:Reaction engine § Energy use 480: 345: 2096: 1076:LePage, Andrew (28 April 2014). 887:Choueiri, Edgar (26 June 2004). 715:. 16 August 2011. Archived from 549: 277: 1316: 1278: 1252: 1208: 1189: 1169: 1069: 1043: 920:Journal of Propulsion and Power 880: 752:10.1016/j.actaastro.2019.03.058 618:, a proposed system powered by 396:(MR-510) are currently used on 1954:Pulsed nuclear thermal rocket‎ 1850:High Power Electric Propulsion 1350:NASA Jet Propulsion Laboratory 846: 820: 798: 780: 766: 723: 705: 688:Electric Spacecraft Propulsion 292:(i.e. application of a static 43:Spacecraft electric propulsion 1: 1809:Helicon double-layer thruster 1778:Electrodeless plasma thruster 1773:Magnetoplasmadynamic thruster 637: 470:Helicon Double Layer Thruster 455:Magnetoplasmadynamic thruster 450:Electrodeless plasma thruster 827:Boyle, Alan (29 June 2017). 184:spacecraft also carried six 176:carried on board the Soviet 95:use electric propulsion for 57:to modify the velocity of a 7: 1387:Stationary plasma thrusters 914:Choueiri, Edgar Y. (2004). 656:New dawn of electric rocket 609: 485: 317:Radiofrequency ion thruster 259:These types of rocket-like 107:), but is insufficient for 10: 2154: 654:Choueiri, Edgar Y. (2009) 585: 507: 489: 434: 281: 158: 129: 2094: 2011: 1990: 1934: 1881: 1872: 1837: 1791: 1768:Pulsed inductive thruster 1760: 1722: 1713: 1683: 1652: 1609: 1583: 1576: 1513: 1448: 1393:electric space propulsion 1361:Electric (Ion) Propulsion 1304:Tethers In Space Handbook 1182:27 September 2011 at the 460:Pulsed inductive thruster 37:Jet Propulsion Laboratory 1942:Nuclear pulse propulsion 1701:Electric-pump-fed engine 1601:Hybrid-propellant rocket 1591:Liquid-propellant rocket 1105:Physics of Atomic Nuclei 622:from the Sun or any star 564:EM Drive or Cannae Drive 437:Plasma propulsion engine 249: 91:operated throughout the 1998:Beam-powered propulsion 1971:Fission-fragment rocket 1926:Nuclear photonic rocket 1894:Nuclear electric rocket 1660:Staged combustion cycle 1596:Solid-propellant rocket 1201:25 October 2010 at the 559:Quantum Vacuum Thruster 540:electrical conductivity 400:A2100 satellites using 233:communication satellite 231:—while some commercial 186:Pulsed Plasma Thrusters 151:Gas Dynamics Laboratory 2049:Non-rocket spacelaunch 1899:Nuclear thermal rocket 1799:Pulsed plasma thruster 1186:(Accessed 1 July 2010) 955:Siddiqi, Asif (2000). 522:, by converting their 465:Pulsed plasma thruster 370:monopropellant rockets 267:to obtain thrust from 136:Konstantin Tsiolkovsky 39: 2133:Spacecraft propulsion 1715:Electrical propulsion 1442:Spacecraft propulsion 586:Further information: 510:Electrodynamic tether 504:Electrodynamic tether 255:Ion and plasma drives 51:spacecraft propulsion 24: 1947:Antimatter-catalyzed 1745:Hall-effect thruster 1558:Solar thermal rocket 853:Palaszewski, Bryan. 810:22 July 2012 at the 374:bipropellant rockets 330:Colloid ion thruster 324:Hall-effect thruster 301:Gridded ion thruster 237:geosynchronous orbit 149:research laboratory 145:On 15 May 1929, the 32:in operation at the 1889:Direct Fusion Drive 1804:Vacuum arc thruster 1691:Pressure-fed engine 1670:Gas-generator cycle 1577:Chemical propulsion 1514:Physical propulsion 901:10.2514/6.2004-3334 868:on 23 November 2021 744:2019AcAau.159..213L 660:Scientific American 604:inertial trajectory 594:orders of magnitude 570:Steady vs. unsteady 121:interstellar flight 117:photovoltaic panels 109:interstellar travel 89:over 500 spacecraft 47:electric propulsion 2123:Russian inventions 2103:Spaceflight portal 2069:Reactionless drive 2034:Aerogravity assist 1874:Nuclear propulsion 1336:on 25 August 2014. 1080:. The Space Review 1011:Rockets and People 792:scholar.google.com 719:on 16 August 2011. 582:Dynamic properties 366:cold gas thrusters 205:was considered by 40: 2128:Soviet inventions 2110: 2109: 2064:Atmospheric entry 2019:Orbital mechanics 1986: 1985: 1868: 1867: 1819:Resistojet rocket 1709: 1708: 1684:Intake mechanisms 1617:Liquid propellant 1521:Cold gas thruster 1165:. NASA-TN-D-2718. 1078:"…Try, try again" 732:Acta Astronautica 404:as a propellant. 63:power electronics 2145: 2100: 2084:Alcubierre drive 2074:Field propulsion 2024:Orbital maneuver 2012:Related concepts 1879: 1878: 1730:Colloid thruster 1720: 1719: 1581: 1580: 1483:Specific impulse 1435: 1428: 1421: 1412: 1411: 1338: 1337: 1335: 1329:. Archived from 1328: 1320: 1314: 1300: 1294: 1293: 1282: 1276: 1275: 1273: 1271: 1261:"Ion Propulsion" 1256: 1250: 1249: 1247: 1245: 1230: 1224: 1223: 1222:on 28 June 2013. 1218:. Archived from 1212: 1206: 1193: 1187: 1173: 1167: 1166: 1160: 1151: 1145: 1144: 1132: 1121: 1120: 1118: 1116: 1096: 1090: 1089: 1087: 1085: 1073: 1067: 1066: 1064: 1062: 1047: 1041: 1040: 1030: 1024: 1023: 1021: 1019: 1005: 999: 998: 996: 994: 980: 974: 973: 971: 969: 963: 952: 946: 945: 935: 911: 905: 904: 884: 878: 877: 875: 873: 867: 850: 844: 843: 841: 839: 824: 818: 802: 796: 795: 788:"Google Scholar" 784: 778: 777: 770: 764: 763: 727: 721: 720: 709: 703: 702: 700: 698: 680: 671: 652: 516:tether satellite 492:Laser propulsion 372:, and even most 261:reaction engines 229:attitude control 214:Project Daedalus 155:Valentin Glushko 74:specific impulse 2153: 2152: 2148: 2147: 2146: 2144: 2143: 2142: 2138:Electric motors 2113: 2112: 2111: 2106: 2090: 2007: 1982: 1930: 1864: 1833: 1787: 1761:Electromagnetic 1756: 1705: 1696:Pump-fed engine 1679: 1648: 1605: 1572: 1509: 1500:Rocket equation 1466:Reaction engine 1444: 1439: 1346: 1341: 1333: 1326: 1322: 1321: 1317: 1310:; available on 1301: 1297: 1292:on 6 June 2011. 1284: 1283: 1279: 1269: 1267: 1257: 1253: 1243: 1241: 1231: 1227: 1214: 1213: 1209: 1203:Wayback Machine 1194: 1190: 1184:Wayback Machine 1174: 1170: 1158: 1152: 1148: 1133: 1124: 1114: 1112: 1097: 1093: 1083: 1081: 1074: 1070: 1060: 1058: 1049: 1048: 1044: 1031: 1027: 1017: 1015: 1006: 1002: 992: 990: 982: 981: 977: 967: 965: 961: 953: 949: 933:10.1.1.573.8519 912: 908: 885: 881: 871: 869: 865: 851: 847: 837: 835: 825: 821: 812:Wayback Machine 803: 799: 786: 785: 781: 772: 771: 767: 728: 724: 711: 710: 706: 696: 694: 682: 681: 674: 653: 644: 640: 612: 590: 584: 572: 552: 528:electric energy 512: 506: 498: 488: 483: 439: 433: 431:Electromagnetic 398:Lockheed Martin 348: 286: 280: 265:electric energy 257: 252: 241:chemical rocket 203:nuclear reactor 165:spacecraft and 132: 97:station keeping 49:) is a type of 17: 12: 11: 5: 2151: 2141: 2140: 2135: 2130: 2125: 2108: 2107: 2095: 2092: 2091: 2089: 2088: 2087: 2086: 2081: 2071: 2066: 2061: 2056: 2051: 2046: 2041: 2036: 2031: 2029:Gravity assist 2026: 2021: 2015: 2013: 2009: 2008: 2006: 2005: 2000: 1994: 1992: 1991:External power 1988: 1987: 1984: 1983: 1981: 1980: 1979: 1978: 1968: 1967: 1966: 1964:Bussard ramjet 1956: 1951: 1950: 1949: 1938: 1936: 1932: 1931: 1929: 1928: 1923: 1922: 1921: 1916: 1911: 1906: 1896: 1891: 1885: 1883: 1876: 1870: 1869: 1866: 1865: 1863: 1862: 1857: 1852: 1847: 1841: 1839: 1835: 1834: 1832: 1831: 1826: 1821: 1816: 1811: 1806: 1801: 1795: 1793: 1792:Electrothermal 1789: 1788: 1786: 1785: 1780: 1775: 1770: 1764: 1762: 1758: 1757: 1755: 1754: 1753: 1752: 1747: 1742: 1732: 1726: 1724: 1717: 1711: 1710: 1707: 1706: 1704: 1703: 1698: 1693: 1687: 1685: 1681: 1680: 1678: 1677: 1672: 1667: 1665:Expander cycle 1662: 1656: 1654: 1650: 1649: 1647: 1646: 1641: 1636: 1634:Monopropellant 1631: 1630: 1629: 1624: 1613: 1611: 1607: 1606: 1604: 1603: 1598: 1593: 1587: 1585: 1578: 1574: 1573: 1571: 1570: 1565: 1560: 1555: 1550: 1545: 1544: 1543: 1533: 1528: 1523: 1517: 1515: 1511: 1510: 1508: 1507: 1505:Thermal rocket 1502: 1497: 1492: 1491: 1490: 1485: 1475: 1474: 1473: 1468: 1458: 1452: 1450: 1446: 1445: 1438: 1437: 1430: 1423: 1415: 1409: 1408: 1405: 1400: 1395: 1390: 1384: 1379: 1374: 1369: 1364: 1358: 1352: 1345: 1344:External links 1342: 1340: 1339: 1315: 1295: 1277: 1251: 1225: 1207: 1188: 1168: 1146: 1122: 1091: 1068: 1042: 1025: 1000: 975: 947: 942:10.2514/1.9245 926:(2): 193–203. 906: 879: 845: 819: 797: 779: 765: 722: 704: 672: 641: 639: 636: 635: 634: 629: 623: 611: 608: 583: 580: 571: 568: 567: 566: 561: 551: 548: 524:kinetic energy 508:Main article: 505: 502: 487: 484: 482: 481:Non-ion drives 479: 478: 477: 472: 467: 462: 457: 452: 435:Main article: 432: 429: 428: 427: 421: 416: 411: 347: 346:Electrothermal 344: 343: 342: 337: 332: 327: 321: 320: 319: 314: 309: 294:electric field 282:Main article: 279: 276: 256: 253: 251: 248: 159:electrothermal 140:Robert Goddard 131: 128: 15: 9: 6: 4: 3: 2: 2150: 2139: 2136: 2134: 2131: 2129: 2126: 2124: 2121: 2120: 2118: 2105: 2104: 2099: 2093: 2085: 2082: 2080: 2077: 2076: 2075: 2072: 2070: 2067: 2065: 2062: 2060: 2057: 2055: 2052: 2050: 2047: 2045: 2042: 2040: 2039:Oberth effect 2037: 2035: 2032: 2030: 2027: 2025: 2022: 2020: 2017: 2016: 2014: 2010: 2004: 2001: 1999: 1996: 1995: 1993: 1989: 1977: 1974: 1973: 1972: 1969: 1965: 1962: 1961: 1960: 1959:Fusion rocket 1957: 1955: 1952: 1948: 1945: 1944: 1943: 1940: 1939: 1937: 1933: 1927: 1924: 1920: 1917: 1915: 1912: 1910: 1907: 1905: 1902: 1901: 1900: 1897: 1895: 1892: 1890: 1887: 1886: 1884: 1882:Closed system 1880: 1877: 1875: 1871: 1861: 1858: 1856: 1853: 1851: 1848: 1846: 1843: 1842: 1840: 1836: 1830: 1827: 1825: 1822: 1820: 1817: 1815: 1814:Arcjet rocket 1812: 1810: 1807: 1805: 1802: 1800: 1797: 1796: 1794: 1790: 1784: 1783:Plasma magnet 1781: 1779: 1776: 1774: 1771: 1769: 1766: 1765: 1763: 1759: 1751: 1748: 1746: 1743: 1741: 1738: 1737: 1736: 1733: 1731: 1728: 1727: 1725: 1723:Electrostatic 1721: 1718: 1716: 1712: 1702: 1699: 1697: 1694: 1692: 1689: 1688: 1686: 1682: 1676: 1675:Tap-off cycle 1673: 1671: 1668: 1666: 1663: 1661: 1658: 1657: 1655: 1651: 1645: 1644:Tripropellant 1642: 1640: 1637: 1635: 1632: 1628: 1625: 1623: 1620: 1619: 1618: 1615: 1614: 1612: 1608: 1602: 1599: 1597: 1594: 1592: 1589: 1588: 1586: 1582: 1579: 1575: 1569: 1566: 1564: 1563:Photon rocket 1561: 1559: 1556: 1554: 1553:Magnetic sail 1551: 1549: 1548:Electric sail 1546: 1542: 1539: 1538: 1537: 1534: 1532: 1529: 1527: 1524: 1522: 1519: 1518: 1516: 1512: 1506: 1503: 1501: 1498: 1496: 1493: 1489: 1486: 1484: 1481: 1480: 1479: 1476: 1472: 1471:Reaction mass 1469: 1467: 1464: 1463: 1462: 1461:Rocket engine 1459: 1457: 1454: 1453: 1451: 1447: 1443: 1436: 1431: 1429: 1424: 1422: 1417: 1416: 1413: 1406: 1404: 1401: 1399: 1396: 1394: 1391: 1388: 1385: 1383: 1380: 1378: 1375: 1373: 1370: 1368: 1365: 1362: 1359: 1357: 1353: 1351: 1348: 1347: 1332: 1325: 1319: 1313: 1309: 1305: 1299: 1291: 1287: 1281: 1266: 1262: 1255: 1240: 1236: 1229: 1221: 1217: 1211: 1204: 1200: 1197: 1192: 1185: 1181: 1178: 1172: 1164: 1157: 1150: 1142: 1138: 1131: 1129: 1127: 1110: 1106: 1102: 1095: 1079: 1072: 1056: 1052: 1046: 1038: 1037: 1029: 1013: 1012: 1004: 989: 985: 979: 960: 959: 951: 943: 939: 934: 929: 925: 921: 917: 910: 902: 898: 894: 890: 883: 864: 860: 856: 849: 834: 830: 823: 817: 813: 809: 806: 801: 793: 789: 783: 775: 769: 761: 757: 753: 749: 745: 741: 737: 733: 726: 718: 714: 708: 693: 689: 685: 679: 677: 670: 666: 662: 661: 657: 651: 649: 647: 642: 633: 630: 627: 624: 621: 617: 616:Magnetic sail 614: 613: 607: 605: 600: 599:reaction mass 595: 589: 579: 577: 565: 562: 560: 557: 556: 555: 550:Controversial 547: 545: 541: 537: 533: 529: 525: 521: 517: 511: 501: 497: 496:Photon rocket 493: 476: 473: 471: 468: 466: 463: 461: 458: 456: 453: 451: 448: 447: 446: 444: 443:Lorentz force 438: 425: 422: 420: 417: 415: 412: 410: 407: 406: 405: 403: 399: 395: 391: 387: 383: 379: 375: 371: 367: 362: 359: 357: 353: 341: 338: 336: 333: 331: 328: 325: 322: 318: 315: 313: 310: 307: 304: 303: 302: 299: 298: 297: 295: 291: 290:Coulomb force 285: 278:Electrostatic 275: 272: 270: 266: 262: 247: 245: 242: 238: 234: 230: 225: 223: 219: 215: 212: 208: 204: 199: 197: 194: 189: 187: 183: 179: 175: 170: 168: 164: 160: 156: 152: 148: 143: 141: 137: 127: 124: 122: 118: 114: 110: 106: 105:nuclear power 102: 98: 94: 90: 86: 82: 77: 75: 71: 66: 64: 60: 56: 52: 48: 44: 38: 35: 31: 30:Hall thruster 28: 23: 19: 2101: 2044:Space launch 1976:Fission sail 1904:Radioisotope 1735:Ion thruster 1714: 1653:Power cycles 1639:Bipropellant 1531:Steam rocket 1526:Water rocket 1331:the original 1318: 1298: 1290:the original 1280: 1268:. Retrieved 1264: 1254: 1242:. Retrieved 1238: 1228: 1220:the original 1210: 1191: 1175:NASA Glenn, 1171: 1149: 1140: 1113:. Retrieved 1111:(7): 988–999 1108: 1104: 1094: 1082:. Retrieved 1071: 1059:. Retrieved 1054: 1045: 1035: 1028: 1016:. Retrieved 1010: 1003: 991:. Retrieved 987: 978: 966:. Retrieved 957: 950: 923: 919: 909: 892: 882: 870:. Retrieved 863:the original 858: 848: 836:. Retrieved 832: 822: 800: 791: 782: 768: 735: 731: 725: 717:the original 707: 695:. Retrieved 687: 658: 591: 573: 553: 513: 499: 440: 363: 360: 349: 287: 284:Ion thruster 273: 258: 226: 222:acceleration 211:interstellar 200: 190: 171: 169:Mars probe. 144: 133: 125: 93:Solar System 78: 67: 46: 42: 41: 18: 2059:Aerocapture 2054:Aerobraking 1935:Open system 1919:"Lightbulb" 1860:Mass driver 1610:Propellants 1541:Diffractive 1115:28 February 1084:28 February 1061:28 February 872:31 December 738:: 213–227. 697:17 February 663:300, 58–65 207:Tony Martin 138:. Earlier, 2117:Categories 2079:Warp drive 1909:Salt-water 1627:Hypergolic 1536:Solar sail 1270:31 January 1244:6 February 638:References 620:solar wind 520:generators 490:See also: 409:Resistojet 269:propellant 174:ion engine 70:propellant 59:spacecraft 1622:Cryogenic 1308:NASA MSFC 1239:SpaceNews 928:CiteSeerX 838:15 August 760:115682651 536:conductor 419:Microwave 402:hydrazine 376:. In the 163:Voskhod 1 45:(or just 1914:Gas core 1449:Concepts 1199:Archived 1180:Archived 1051:"Zond 1" 833:GeekWire 808:Archived 610:See also 530:, or as 486:Photonic 426:(VASIMR) 386:Meteor-3 81:American 2003:Tethers 1855:MagBeam 1740:Gridded 1495:Staging 1488:Delta-v 993:10 June 968:11 June 814:on the 740:Bibcode 576:impulse 544:density 394:Aerojet 390:Russian 308:(NSTAR) 244:engines 130:History 115:on the 101:delta-v 85:Russian 1829:VASIMR 1478:Thrust 1456:Rocket 1312:scribd 1302:NASA, 1057:. NASA 1018:29 May 930:  758:  542:, and 532:motors 414:Arcjet 382:Soviet 356:nozzle 352:plasma 218:thrust 196:SERT-1 182:Zond 2 178:Zond 1 167:Zond-2 147:Soviet 55:thrust 1838:Other 1584:State 1389:(PDF) 1334:(PDF) 1327:(PDF) 1159:(PDF) 962:(PDF) 866:(PPT) 756:S2CID 312:HiPEP 250:Types 113:laser 1568:WINE 1272:2023 1265:NASA 1246:2015 1196:SERT 1163:NASA 1141:NASA 1117:2024 1086:2024 1063:2024 1020:2022 995:2022 970:2022 874:2011 840:2021 699:2007 494:and 378:USSR 263:use 209:for 193:NASA 83:and 34:NASA 938:doi 897:doi 748:doi 736:159 692:ESA 665:doi 526:to 2119:: 1263:. 1237:. 1161:. 1139:. 1125:^ 1109:81 1107:. 1103:. 1053:. 986:. 936:. 924:20 922:. 918:. 891:. 857:. 831:. 790:. 754:. 746:. 734:. 690:. 686:. 675:^ 645:^ 368:, 271:. 246:. 65:. 27:kW 25:6 1434:e 1427:t 1420:v 1274:. 1248:. 1143:. 1119:. 1088:. 1065:. 1022:. 997:. 972:. 944:. 940:: 903:. 899:: 876:. 842:. 794:. 776:. 762:. 750:: 742:: 701:. 667:: 384:"

Index


kW
Hall thruster
NASA
Jet Propulsion Laboratory
spacecraft propulsion
thrust
spacecraft
power electronics
propellant
specific impulse
American
Russian
over 500 spacecraft
Solar System
station keeping
delta-v
nuclear power
interstellar travel
laser
photovoltaic panels
interstellar flight
Konstantin Tsiolkovsky
Robert Goddard
Soviet
Gas Dynamics Laboratory
Valentin Glushko
electrothermal
Voskhod 1
Zond-2

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑