Knowledge

Laser

Source 📝

1002:. But each stimulated emission event returns an atom from its excited state to the ground state, reducing the gain of the medium. With increasing beam power the net gain (gain minus loss) reduces to unity and the gain medium is said to be saturated. In a continuous wave (CW) laser, the balance of pump power against gain saturation and cavity losses produces an equilibrium value of the laser power inside the cavity; this equilibrium determines the operating point of the laser. If the applied pump power is too small, the gain will never be sufficient to overcome the cavity losses, and laser light will not be produced. The minimum pump power needed to begin laser action is called the 3590: 40: 2259: 3367: 2773:. In conjunction, several advantages were expected from two-stage pumping of a three-level system. It was conjectured that the nucleus of an atom, embedded in the near field of a laser-driven coherently-oscillating electron cloud would experience a larger dipole field than that of the driving laser. Furthermore, the nonlinearity of the oscillating cloud would produce both spatial and temporal harmonics, so nuclear transitions of higher multipolarity could also be driven at multiples of the laser frequency. 932: 1979: 2082: 2479:. This type of fiber consists of a fiber core, an inner cladding, and an outer cladding. The index of the three concentric layers is chosen so that the fiber core acts as a single-mode fiber for the laser emission while the outer cladding acts as a highly multimode core for the pump laser. This lets the pump propagate a large amount of power into and through the active inner core region, while still having a high numerical aperture (NA) to have easy launching conditions. 2662: 1309: 853: 8177: 1750: 3599: 1212: 724: 571: 356: 1791: 1324: 1336: 1649: 998:. The resonator typically consists of two mirrors between which a coherent beam of light travels in both directions, reflecting on itself so that an average photon will pass through the gain medium repeatedly before it is emitted from the output aperture or lost to diffraction or absorption. If the gain (amplification) in the medium is larger than the resonator losses, then the power of the recirculating light can rise 912: 2856: 2528: 409: 3271: 3319: 7095: 812: 624: 1021: 1371:) laser. Many types of lasers can be made to operate in continuous-wave mode to satisfy such an application. Many of these lasers lase in several longitudinal modes at the same time, and beats between the slightly different optical frequencies of those oscillations will produce amplitude variations on time scales shorter than the round-trip time (the reciprocal of the 2719: 1457:
approached the maximum possible level, the introduced loss mechanism (often an electro- or acousto-optical element) is rapidly removed (or that occurs by itself in a passive device), allowing lasing to begin which rapidly obtains the stored energy in the gain medium. This results in a short pulse incorporating that energy, and thus a high peak power.
2589:) are semiconductor lasers whose emission direction is perpendicular to the surface of the wafer. VCSEL devices typically have a more circular output beam than conventional laser diodes. As of 2005, only 850 nm VCSELs are widely available, with 1300 nm VCSELs beginning to be commercialized, and 1550 nm devices an area of research. 1830:(later an essential laser-device component). Moreover, in 1958, Prokhorov independently proposed using an open resonator, the first published appearance of this idea. Meanwhile, Schawlow and Townes had decided on an open-resonator laser design – apparently unaware of Prokhorov's publications and Gould's unpublished laser work. 964:. Particles can interact with light by either absorbing or emitting photons. Emission can be spontaneous or stimulated. In the latter case, the photon is emitted in the same direction as the light that is passing by. When the number of particles in one excited state exceeds the number of particles in some lower-energy state, 485:. For this to happen, many of the atoms or molecules must be in the proper excited state so that the photons can trigger them. In most materials, atoms or molecules drop out of excited states fairly rapidly, making it difficult or impossible to produce a chain reaction. The materials chosen for lasers are the ones that have 2628:) could be fabricated on the same chip. Unfortunately, silicon is a difficult lasing material to deal with, since it has certain properties which block lasing. However, recently teams have produced silicon lasers through methods such as fabricating the lasing material from silicon and other semiconductor materials, such as 3343:, although some have made their own class IV types. However, compared to other hobbyists, laser hobbyists are far less common, due to the cost and potential dangers involved. Due to the cost of lasers, some hobbyists use inexpensive means to obtain lasers, such as salvaging laser diodes from broken DVD players (red), 1837:. Gould's intention was that different "-ASER" acronyms should be used for different parts of the spectrum: "XASER" for x-rays, "UVASER" for ultraviolet, etc. "LASER" ended up becoming the generic term for non-microwave devices, although "RASER" was briefly popular for denoting radio-frequency-emitting devices. 1620: 1415:, for example, a small volume of material at the surface of a workpiece can be evaporated if it is heated in a very short time, while supplying the energy gradually would allow for the heat to be absorbed into the bulk of the piece, never attaining a sufficiently high temperature at a particular point. 1543:
which are then switched to discharge through flashlamps, producing an intense flash. Pulsed pumping is also required for three-level lasers in which the lower energy level rapidly becomes highly populated preventing further lasing until those atoms relax to the ground state. These lasers, such as the
1410:
In other cases, the application requires the production of pulses having as large an energy as possible. Since the pulse energy is equal to the average power divided by the repetition rate, this goal can sometimes be satisfied by lowering the rate of pulses so that more energy can be built up between
1387:
For continuous-wave operation, it is required for the population inversion of the gain medium to be continually replenished by a steady pump source. In some lasing media, this is impossible. In some other lasers, it would require pumping the laser at a very high continuous power level, which would be
882:
from one state to that at a higher energy level with energy difference ΔE, it will not stay that way forever. Eventually, a photon will be spontaneously created from the vacuum having energy ΔE. Conserving energy, the electron transitions to a lower energy level that is not occupied, with transitions
664:
light by way of stimulated emission. Light of a specific wavelength that passes through the gain medium is amplified (power increases). Feedback enables stimulated emission to amplify predominantly the optical frequency at the peak of the gain-frequency curve. As stimulated emission grows, eventually
1402:
The pulsed operation of lasers refers to any laser not classified as a continuous wave so that the optical power appears in pulses of some duration at some repetition rate. This encompasses a wide range of technologies addressing many different motivations. Some lasers are pulsed simply because they
668:
The process of stimulated emission is analogous to that of an audio oscillator with positive feedback which can occur, for example, when the speaker in a public-address system is placed in proximity to the microphone. The screech one hears is audio oscillation at the peak of the gain-frequency curve
2174:
gas by various international teams. This was accomplished by using an external maser to induce "optical transparency" in the medium by introducing and destructively interfering the ground electron transitions between two paths so that the likelihood for the ground electrons to absorb any energy has
1347:
A laser can be classified as operating in either continuous or pulsed mode, depending on whether the power output is essentially continuous over time or whether its output takes the form of pulses of light on one or another time scale. Of course, even a laser whose output is normally continuous can
2644:
directly on silicon for optical interconnects, paving the way for chip-level applications. These heterostructure nanowire lasers capable of optical interconnects in silicon are also capable of emitting pairs of phase-locked picosecond pulses with a repetition frequency up to 200 GHz, allowing
2566:
other lasers with high efficiency. The highest-power industrial laser diodes, with power of up to 20 kW, are used in industry for cutting and welding. External-cavity semiconductor lasers have a semiconductor active medium in a larger cavity. These devices can generate high power outputs with
2296:
is maintained in the dopant. These materials are pumped optically using a shorter wavelength than the lasing wavelength, often from a flash tube or another laser. The usage of the term "solid-state" in laser physics is narrower than in typical use. Semiconductor lasers (laser diodes) are typically
1375:
between modes), typically a few nanoseconds or less. In most cases, these lasers are still termed "continuous-wave" as their output power is steady when averaged over longer periods, with the very high-frequency power variations having little or no impact on the intended application. (However, the
2740:
and infrared to the visible spectrum, to soft X-rays. They have the widest frequency range of any laser type. While FEL beams share the same optical traits as other lasers, such as coherent radiation, FEL operation is quite different. Unlike gas, liquid, or solid-state lasers, which rely on bound
902:
A photon with the correct wavelength to be absorbed by a transition can also cause an electron to drop from the higher to the lower level, emitting a new photon. The emitted photon exactly matches the original photon in wavelength, phase, and direction. This process is called stimulated emission.
1801:
coined the acronym LASER, and described the elements required to construct one. Manuscript text: "Some rough calculations on the feasibility / of a LASER: Light Amplification by Stimulated / Emission of Radiation. / Conceive a tube terminated by optically flat / / partially reflecting parallel
1456:
In a Q-switched laser, the population inversion is allowed to build up by introducing loss inside the resonator which exceeds the gain of the medium; this can also be described as a reduction of the quality factor or 'Q' of the cavity. Then, after the pump energy stored in the laser medium has
1033:
of the emitted light is 90 degrees in lead of the stimulating light. This, combined with the filtering effect of the optical resonator gives laser light its characteristic coherence, and may give it uniform polarization and monochromaticity, depending on the resonator's design. The fundamental
2186:
are powered by a chemical reaction permitting a large amount of energy to be released quickly. Such very high-power lasers are especially of interest to the military, however continuous wave chemical lasers at very high power levels, fed by streams of gasses, have been developed and have some
1538:
Another method of achieving pulsed laser operation is to pump the laser material with a source that is itself pulsed, either through electronic charging in the case of flash lamps, or another laser that is already pulsed. Pulsed pumping was historically used with dye lasers where the inverted
3665:
The indicated powers are for visible-light, continuous-wave lasers. For pulsed lasers and invisible wavelengths, other power limits apply. People working with class 3B and class 4 lasers can protect their eyes with safety goggles which are designed to absorb light of a particular wavelength.
2761:
has been the subject of wide-ranging academic research since the early 1970s. Much of this is summarized in three review articles. This research has been international in scope but mainly based in the former Soviet Union and the United States. While many scientists remain optimistic that a
2226:. Once the molecule transfers its excitation energy to a photon, its atoms are no longer bound to each other and the molecule disintegrates. This drastically reduces the population of the lower energy state thus greatly facilitating a population inversion. Excimers currently used are all 337:
as suggested by the acronym. It has been humorously noted that the acronym LOSER, for "light oscillation by stimulated emission of radiation", would have been more correct. With the widespread use of the original acronym as a common noun, optical amplifiers have come to be referred to as
2493:
when they are exposed to radiation of certain wavelengths. In particular, this can lead to degradation of the material and loss in laser functionality over time. The exact causes and effects of this phenomenon vary from material to material, although it often involves the formation of
1872:, featuring scientific prestige and money as the stakes. Gould won his first minor patent in 1977, yet it was not until 1987 that he won the first significant patent lawsuit victory when a Federal judge ordered the USPTO to issue patents to Gould for the optically pumped and the 1028:
In most lasers, lasing begins with spontaneous emission into the lasing mode. This initial light is then amplified by stimulated emission in the gain medium. Stimulated emission produces light that matches the input signal in direction, wavelength, and polarization, whereas the
983:), the light output from such a device lacks the spatial and temporal coherence achievable with lasers. Such a device cannot be described as an oscillator but rather as a high-gain optical amplifier that amplifies its spontaneous emission. The same mechanism describes so-called 3673:
micrometers are often referred to as "eye-safe", because the cornea tends to absorb light at these wavelengths, protecting the retina from damage. The label "eye-safe" can be misleading, however, as it applies only to relatively low-power continuous wave beams; a high-power or
943:
by an external source of energy. In most lasers, this medium consists of a population of atoms that have been excited into such a state using an outside light source, or an electrical field that supplies energy for atoms to absorb and be transformed into their excited states.
814: 1429:
The optical bandwidth of a pulse cannot be narrower than the reciprocal of the pulse width. In the case of extremely short pulses, that implies lasing over a considerable bandwidth, quite contrary to the very narrow bandwidths typical of CW lasers. The lasing medium in some
818: 817: 813: 472:
The underlying physical process creating photons in a laser is the same as in thermal radiation, but the actual emission is not the result of random thermal processes. Instead, the release of a photon is triggered by the nearby passage of another photon. This is called
2085:
Wavelengths of commercially available lasers. Laser types with distinct laser lines are shown above the wavelength bar, while below are shown lasers that can emit in a wavelength range. The color codifies the type of laser material (see the figure description for more
819: 2546:
that are electrically pumped. Recombination of electrons and holes created by the applied current introduces optical gain. Reflection from the ends of the crystal forms an optical resonator, although the resonator can be external to the semiconductor in some designs.
2464:. Guiding of light allows extremely long gain regions providing good cooling conditions; fibers have a high surface area to volume ratio which allows efficient cooling. In addition, the fiber's waveguiding properties tend to reduce the thermal distortion of the beam. 5962:
Mayer, B.; Janker, L.; Loitsch, B.; Treu, J.; Kostenbader, T.; Lichtmannecker, S.; Reichert, T.; Morkötter, S.; Kaniber, M.; Abstreiter, G.; Gies, C.; Koblmüller, G.; Finley, J.J. (January 13, 2016). "Monolithically Integrated High-β Nanowire Lasers on Silicon".
2123:
lasers can operate at several lasing transitions between 351 and 528.7 nm. Depending on the optical design one or more of these transitions can be lasing simultaneously; the most commonly used lines are 458 nm, 488 nm and 514.5 nm. A nitrogen
825: 823: 821: 820: 824: 822: 5721:
C. Stewen, M. Larionov, and A. Giesen, "Yb:YAG thin disk laser with 1 kW output power", in OSA Trends in Optics and Photonics, Advanced Solid-State Lasers, H. Injeyan, U. Keller, and C. Marshall, ed. (Optical Society of America, Washington, D.C., 2000) pp.
2392:
wavelengths strongly absorbed by water-bearing tissues. The Ho-YAG is usually operated in a pulsed mode and passed through optical fiber surgical devices to resurface joints, remove rot from teeth, vaporize cancers, and pulverize kidney and gall stones.
2106:(HeNe) can operate at many different wavelengths, however, the vast majority are engineered to lase at 633 nm; these relatively low-cost but highly coherent lasers are extremely common in optical research and educational laboratories. Commercial 3378:
Different applications need lasers with different output powers. Lasers that produce a continuous beam or a series of short pulses can be compared on the basis of their average power. Lasers that produce pulses can also be characterized based on the
2114:
can emit many hundreds of watts in a single spatial mode which can be concentrated into a tiny spot. This emission is in the thermal infrared at 10.6 μm; such lasers are regularly used in industry for cutting and welding. The efficiency of a
2024:
In 2015, researchers made a white laser, whose light is modulated by a synthetic nanosheet made out of zinc, cadmium, sulfur, and selenium that can emit red, green, and blue light in varying proportions, with each wavelength spanning 191 nm.
6533:
Boyer, K.; Java, H.; Luk, T.S.; McIntyre, I.A.; McPherson, A.; Rosman, R.; Solem, J.C.; Rhodes, C.K.; Szöke, A. (1987). "Discussion of the role of many-electron motions in multiphoton ionization and excitation". In Smith, S.; Knight, P. (eds.).
3892: 1352:
and the period over which energy can be stored in the lasing medium or pumping mechanism, then it is still classified as a "modulated" or "pulsed" continuous wave laser. Most laser diodes used in communication systems fall into that category.
816: 7687: 3206:
or precancerous growths. They are most commonly used to treat superficial cancers that are on the surface of the body or the lining of internal organs. They are used to treat basal cell skin cancer and the very early stages of others like
2817:, which served as the laser's gain medium. The cells were then placed between two 20-micrometer-wide mirrors, which acted as the laser cavity. When the cell was illuminated with blue light, it emitted intensely directed green laser light. 3624:
blade. Today, it is accepted that even low-power lasers with only a few milliwatts of output power can be hazardous to human eyesight when the beam hits the eye directly or after reflection from a shiny surface. At wavelengths which the
2437:
overcome these issues by having a gain medium that is much thinner than the diameter of the pump beam. This allows for a more uniform temperature in the material. Thin disk lasers have been shown to produce beams of up to one kilowatt.
551:. All such devices are classified as "lasers" based on the method of producing light by stimulated emission. Lasers are employed where light of the required spatial or temporal coherence can not be produced using simpler technologies. 2883:
When lasers were invented in 1960, they were called "a solution looking for a problem". Since then, they have become ubiquitous, finding utility in thousands of highly varied applications in every section of modern society, including
3866: 1487:), a pulse of such short temporal length has a spectrum spread over a considerable bandwidth. Thus such a gain medium must have a gain bandwidth sufficiently broad to amplify those frequencies. An example of a suitable material is 5700: 2687:
are mainly known in their liquid form, researchers have also demonstrated narrow-linewidth tunable emission in dispersive oscillator configurations incorporating solid-state dye gain media. In their most prevalent form, these
3654:
Class 3R (formerly IIIa) lasers are usually up to 5 mW and involve a small risk of eye damage within the time of the blink reflex. Staring into such a beam for several seconds is likely to cause damage to a spot on the
7011: 477:. For this process to work, the passing photon must be similar in energy, and thus wavelength, to the one that could be released by the atom or molecule, and the atom or molecule must be in the suitable excited state. 6282:. Proceedings of Advances in Laser Science-I, First International Laser Science Conference, Dallas, TX 1985 (American Institute of Physics, Optical Science and Engineering, Series 6). Vol. 146. pp. 22–25. 5850: 3247:, uses lasers to treat some cancers using hyperthermia, which uses heat to shrink tumors by damaging or killing cancer cells. Lasers are more precise than traditional surgery methods and cause less damage, pain, 947:
The gain medium of a laser is normally a material of controlled purity, size, concentration, and shape, which amplifies the beam by the process of stimulated emission described above. This material can be of any
480:
The photon that is emitted by stimulated emission is identical to the photon that triggered its emission, and both photons can go on to trigger stimulated emission in other atoms, creating the possibility of a
2915:
player, introduced in 1978, was the first successful consumer product to include a laser but the compact disc player was the first laser-equipped device to become common, beginning in 1982 followed shortly by
7219: 1149:, cannot be replicated using standard light sources (except by discarding most of the light) as can be appreciated by comparing the beam from a flashlight (torch) or spotlight to that of almost any laser. 2384:, typically operating around 1020–1050 nm. They are potentially very efficient and high-powered due to a small quantum defect. Extremely high powers in ultrashort pulses can be achieved with Yb:YAG. 2101:
Following the invention of the HeNe gas laser, many other gas discharges have been found to amplify light coherently. Gas lasers using many different gases have been built and used for many purposes. The
687:—a pair of mirrors on either end of the gain medium. Light bounces back and forth between the mirrors, passing through the gain medium and being amplified each time. Typically one of the two mirrors, the 6356:. 1988 Los Angeles Symposium: O-E/LASE '88, 1988, Los Angeles, CA, United States. Short and Ultrashort Wavelength Lasers. Vol. 146. International Society for Optics and Photonics. pp. 92–101. 3888: 968:
is achieved. In this state, the rate of stimulated emission is larger than the rate of absorption of light in the medium, and therefore the light is amplified. A system with this property is called an
7042: 3661:
Class 4 lasers (≥ 500 mW) can burn skin, and in some cases, even scattered light from these lasers can cause eye and/or skin damage. Many industrial and scientific lasers are in this class.
497:. Combined with an energy source that continues to "pump" energy into the material, this makes it possible to have enough atoms or molecules in an excited state for a chain reaction to develop. 6375:
Rinker, G. A.; Solem, J.C.; Biedenharn, L.C. (1987). Lapp, M.; Stwalley, W.C.; Kenney-Wallace G.A. (eds.). "Nuclear interlevel transfer driven by collective outer shell electron excitations".
7623: 3862: 815: 7274: 3944: 6352:
Rinker, G.A.; Solem, J.C.; Biedenharn, L.C. (April 27, 1988). "Calculation of harmonic radiation and nuclear coupling arising from atoms in strong laser fields". In Jones, Randy C (ed.).
5910: 5684: 4373: 2675:
use an organic dye as the gain medium. The wide gain spectrum of available dyes, or mixtures of dyes, allows these lasers to be highly tunable, or to produce very short-duration pulses (
994:
is sometimes referred to as an "optical cavity", but this is a misnomer: lasers use open resonators as opposed to the literal cavity that would be employed at microwave frequencies in a
4498: 5299:
Cassidy, M. C.; Bruno, A.; Rubbert, S.; Irfan, M.; Kammhuber, J.; Schouten, R.N.; Akhmerov, A.R.; Kouwenhoven, L.P. (March 2, 2017). "Demonstration of an ac Josephson junction laser".
2769:
Some of the early studies were directed toward short pulses of neutrons exciting the upper isomer state in a solid so the gamma-ray transition could benefit from the line-narrowing of
7359: 4756: 1530:) are identical and perfectly periodic. For this reason, and the extremely large peak powers attained by such short pulses, such lasers are invaluable in certain areas of research. 2242:
eye surgery. Commonly used excimer molecules include ArF (emission at 193 nm), KrCl (222 nm), KrF (248 nm), XeCl (308 nm), and XeF (351 nm). The molecular
2036:
microwave laser. Since the laser operates in the superconducting regime, it is more stable than other semiconductor-based lasers. The device has the potential for applications in
7003: 3133:
Informational markings: Laser lighting display technology can be used to project informational markings onto surfaces such as playing fields, roads, runways, or warehouse floors.
2128:(TEA) laser is an inexpensive gas laser, often home-built by hobbyists, which produces rather incoherent UV light at 337.1 nm. Metal ion lasers are gas lasers that generate 1986:
Since the early period of laser history, laser research has produced a variety of improved and specialized laser types, optimized for different performance goals, including:
1906:
to produce red laser light at 694 nanometers wavelength. The device was only capable of pulsed operation, due to its three-level pumping design scheme. Later that year, the
1690:. In 1955, Prokhorov and Basov suggested optical pumping of a multi-level system as a method for obtaining the population inversion, later a main method of laser pumping. 5842: 5431: 1781:. In 1958, Bell Labs filed a patent application for their proposed optical maser; and Schawlow and Townes submitted a manuscript of their theoretical calculations to the 1038:
of light emitted from the lasing resonator can be orders of magnitude narrower than the linewidth of light emitted from the passive resonator. Some lasers use a separate
543:, some lasers emit a broad spectrum of light or emit different wavelengths of light simultaneously. Certain lasers are not single spatial mode and have light beams that 5683:
Bass, Michael; DeCusatis, Casimer; Enoch, Jay; Lakshminarayanan, Vasudevan; Li, Guifang; MacDonald, Carolyn; Mahajan, Virendra; Stryland, Eric Van (November 13, 2009).
5247: 1479:. These pulses repeat at the round-trip time, that is, the time that it takes light to complete one round trip between the mirrors comprising the resonator. Due to the 1133:
typically exits the tiny crystal with a large divergence: up to 50°. However even such a divergent beam can be transformed into a similarly collimated beam employing a
2710:. The spacing of the whispering gallery modes is directly related to the bubble circumference, allowing bubble lasers to be used as highly sensitive pressure sensors. 867:) only if there is a transition between energy levels that match the energy carried by the photon or phonon. For light, this means that any given transition will only 7211: 1526:
and the like). Unlike the giant pulse of a Q-switched laser, consecutive pulses from a mode-locked laser are phase-coherent, that is, the pulses (and not just their
979:, light can be sufficiently amplified in a single pass through the gain medium without requiring a resonator. Although often referred to as a laser (see for example 461:, travel in different directions, and are released at different times. The energy within the object is not random, however: it is stored by atoms and molecules in " 1958:
demonstrated the first semiconductor laser with a visible emission. This first semiconductor laser could only be used in pulsed-beam operation, and when cooled to
1088:". Unstable laser resonators (not used in most lasers) produce fractal-shaped beams. Specialized optical systems can produce more complex beam geometries, such as 2425:
Thermal limitations in solid-state lasers arise from unconverted pump power that heats the medium. This heat, when coupled with a high thermo-optic coefficient (d
1721:, "for fundamental work in the field of quantum electronics, which has led to the construction of oscillators and amplifiers based on the maser–laser principle". 3732: 6473: 710:
Most practical lasers contain additional elements that affect the properties of the emitted light, such as the polarization, wavelength, and shape of the beam.
7835:
Produced by the Massachusetts Institute of Technology (MIT). Real-time effects are demonstrated in a way that would be difficult to see in a classroom setting.
7655: 1633:
submitted a paper on using stimulated emissions to make a microwave amplifier to the June 1952 Institute of Radio Engineers Vacuum Tube Research Conference at
875:
of light. Photons with the correct wavelength can cause an electron to jump from the lower to the higher energy level. The photon is consumed in this process.
4531: 3251:, swelling, and scarring. A disadvantage is that surgeons must acquire specialized training and thus it will likely be more expensive than other treatments. 5932: 7108: 7034: 6769: 1966:, in the USSR, and Izuo Hayashi and Morton Panish of Bell Labs also independently developed room-temperature, continual-operation diode lasers, using the 1121:. The beam of a single transverse mode (gaussian beam) laser eventually diverges at an angle that varies inversely with the beam diameter, as required by 1068:; such beams have the minimum divergence possible for a given beam diameter. Some lasers, particularly high-power ones, produce multimode beams, with the 4812: 1042:
to start the process off with a beam that is already highly coherent. This can produce beams with a narrower spectrum than would otherwise be possible.
2582:
developed and manufactured commercial high-power green laser diodes (515/520 nm), which compete with traditional diode-pumped solid-state lasers.
5538: 2246:
laser, emitting at 157 nm in the vacuum ultraviolet is sometimes referred to as an excimer laser, however, this appears to be a misnomer since F
1539:
population lifetime of a dye molecule was so short that a high-energy, fast pump was needed. The way to overcome this problem was to charge up large
1502:
Such mode-locked lasers are a most versatile tool for researching processes occurring on extremely short time scales (known as femtosecond physics,
7792: 4898: 4791: 1129:
would spread out to a size of perhaps 500 kilometers when shone on the Moon (from the distance of the earth). On the other hand, the light from a
691:, is partially transparent. Some of the light escapes through this mirror. Depending on the design of the cavity (whether the mirrors are flat or 7770: 7266: 5058: 3940: 7838: 7817: 5902: 7188: 4389: 2263: 5187: 2513:(DOS) structure required for the feedback to take place. They are typical micrometer-sized and tunable on the bands of the photonic crystals. 891:. The emitted photon has a random direction, but its wavelength matches the absorption wavelength of the transition. This is the mechanism of 6007: 2276:
use a crystalline or glass rod that is "doped" with ions that provide the required energy states. For example, the first working laser was a
1717:
expected that it would be impractical and not worth the effort. In 1964 Charles H. Townes, Nikolay Basov, and Aleksandr Prokhorov shared the
923:
for the laser. The laser produces a tiny, intense spot on the screen to the right. The center of the spot appears white because the image is
5515: 4764: 3607:
Left: European laser warning symbol required for Class 2 lasers and higher. Right: US laser warning label, in this case for a Class 3B laser
2140:-copper (NeCu) 248 nm are two examples. Like all low-pressure gas lasers, the gain media of these lasers have quite narrow oscillation 5132: 1348:
be intentionally turned on and off at some rate to create pulses of light. When the modulation rate is on time scales much slower than the
1194:, atomic energy levels are not involved; it appears that the operation of this rather exotic device can be explained without reference to 7072: 6498:
Solem, J.C.; Biedenharn, L.C. (1988). "Laser coupling to nuclei via collective electronic oscillations: A simple heuristic model study".
4626: 3840: 3918: 1670:
radiation rather than infrared or visible radiation. Townes's maser was incapable of continuous output. Meanwhile, in the Soviet Union,
1597:
Retherford found apparent stimulated emission in hydrogen spectra and effected the first demonstration of stimulated emission. In 1950,
512:, or they can have a very low divergence to concentrate their power at a great distance. Temporal (or longitudinal) coherence implies a 6299: 2380:
are other common "dopants" in solid-state lasers. Ytterbium is used in crystals such as Yb:YAG, Yb:KGW, Yb:KYW, Yb:SYS, Yb:BOYS, Yb:CaF
7779: 6922: 935:
Spectrum of a helium–neon laser. The actual bandwidth is much narrower than shown; the spectrum is limited by the measuring apparatus.
6830: 1861: 6701: 6620: 5568: 5363:
Mayer, B.; Regler, A.; Sterzl, S.; Stettner, T.; Koblmüller, G.; Kaniber, M.; Lingnau, B.; Lüdge, K.; Finley, J.J. (May 23, 2017).
5217: 4759:[The risk from laser: what it is and what it is like facing it; analysis of a problem which is thus not far away from us]. 8137: 676:. The energy is typically supplied as an electric current or as light at a different wavelength. Pump light may be provided by a 7832: 5820: 1422:
effects. For a given pulse energy, this requires creating pulses of the shortest possible duration utilizing techniques such as
7244: 5435: 3335:
In recent years, some hobbyists have taken an interest in lasers. Lasers used by hobbyists are generally of class IIIa or IIIb
2230:; noble gasses are chemically inert and can only form compounds while in an excited state. Excimer lasers typically operate at 1935: 868: 3681:
Lasers can be a hazard to both civil and military aviation, due to the potential to temporarily distract or blind pilots. See
3678:
laser at these wavelengths can burn the cornea, causing severe eye damage, and even moderate-power lasers can injure the eye.
2736:(FEL) generate coherent, high-power radiation that is widely tunable, currently ranging in wavelength from microwaves through 1438:
produces optical gain over a wide bandwidth, making a laser possible that can thus generate pulses of light as short as a few
7536: 7507: 7413: 6975: 6880: 6404:"Theorem relating spatial and temporal harmonics for nuclear interlevel transfer driven by collective electronic oscillation" 5741: 5694: 5667: 5239: 5163: 4912: 4845: 4461: 4428: 4383: 4344: 4296: 4263: 4230: 4142: 4115: 4094: 4061: 4028: 3987: 3816: 2312: 2052: 7786: 7550: 219: 7607: 5880: 4082: 1823: 6217: 7639: 4555:"Spectral coherence, Part I: Passive resonator linewidth, fundamental laser linewidth, and Schawlow-Townes approximation" 2792: 1682:
and solved the problem of continuous-output systems by using more than two energy levels. These gain media could release
1328: 1178:, where energy is extracted from a transition in an atom or molecule. This is a quantum phenomenon that was predicted by 2048:
laser capable of emitting pairs of phase-locked picosecond laser pulses with a repetition frequency up to 200 GHz.
1183: 3785: 5277: 2810:
pumped by a nuclear explosion have also been proposed as antimissile weapons. Such devices would be one-shot weapons.
7671: 7593: 7578: 7491: 7476: 7458: 7443: 7428: 7398: 6454: 2338:
spectrum at 1064 nm. They are used for cutting, welding, and marking of metals and other materials, and also in
1295: 763: 610: 395: 3742: 1372: 1276: 919:
demonstration. The glow running through the center of the tube is an electric discharge. This glowing plasma is the
7876: 7154: 6325:. Proceedings of AIP Advances in Laser Science-I, Dallas, TX, November 18–22, 1985. Vol. 146. pp. 50–51. 5028:(1959). "The LASER, Light Amplification by Stimulated Emission of Radiation". In Franken, P.A.; Sands R.H. (eds.). 4763:. Programma Corso di Formazione Obbligatorio (in Italian). University of Milano-Bicocca. p. 12. Archived from 4251: 2932: 1876:
laser devices. The question of just how to assign credit for inventing the laser remains unresolved by historians.
1675: 1623: 520:) along the beam. A beam produced by a thermal or other incoherent light source has an instantaneous amplitude and 175: 6793:"Discovery of Natural Gain Amplification in the 10-Micrometer Carbon Dioxide Laser Bands on Mars: A Natural Laser" 5686:
Handbook of Optics, Third Edition Volume V: Atmospheric Optics, Modulators, Fiber Optics, X-Ray and Neutron Optics
1826:, as a general subject; afterward, in November 1957, Gould noted his ideas for a "laser", including using an open 1753: 1248: 1008:. The gain medium will amplify any photons passing through it, regardless of direction; but only the photons in a 5940: 4876: 3629:
and the lens can focus well, the coherence and low divergence of laser light means that it can be focused by the
2850: 7782:—The world's most powerful laser as of 2008 might create supernova-like shock waves and possibly even antimatter 7136: 7104: 1361:
Some applications of lasers depend on a beam whose output power is constant over time. Such a laser is known as
8046: 7805: 6759: 6586: 6431: 6116: 2495: 2060: 2041: 2029: 1233: 745: 592: 377: 6321:
Biedenharn, L.C.; Boyer, K.; Solem, J.C. (1986). "Possibility of grasing by laser-driven nuclear excitation".
4808: 3979: 1666:
produced the first microwave amplifier, a device operating on similar principles to the laser, but amplifying
1012:
supported by the resonator will pass more than once through the medium and receive substantial amplification.
7323: 5449:
Matei, D.G.; Legero, T.; Häfner, S.; et al. (June 30, 2017). "1.5 μm Lasers with Sub-10 mHz Linewidth".
3644:
Class 1 is inherently safe, usually because the light is contained in an enclosure, for example in CD players
3176: 3075: 1523: 1480: 1255: 6377:
Proceedings of the Second International Laser Science Conference, Seattle, WA (Advances in Laser Science-II)
6033:
Baldwin, G.C.; Solem, J.C.; Gol'danskii, V. I. (1981). "Approaches to the development of gamma-ray lasers".
1934:
that was capable of continuous operation in the infrared (U.S. Patent 3,149,290); later, Javan received the
1686:
between an excited state and a lower excited state, not the ground state, facilitating the maintenance of a
1418:
Other applications rely on the peak pulse power (rather than the energy in the pulse), especially to obtain
1187: 887:. Spontaneous emission is a quantum-mechanical effect and a direct physical manifestation of the Heisenberg 504:. Spatial (or transverse) coherence is typically expressed through the output being a narrow beam, which is 8211: 3562: 2936: 2227: 2033: 1880: 1577:) for the absorption, spontaneous emission, and stimulated emission of electromagnetic radiation. In 1928, 1057:. A coherent beam of light is formed by single-frequency quantum photon states distributed according to a 91: 6536:
Proceedings of International Conference on Multiphoton Processes (ICOMP) IV, July 13–17, 1987, Boulder, CA
5546: 1024:
Red (660 & 635 nm), green (532 & 520 nm), and blue-violet (445 & 405 nm) lasers
8226: 8201: 8102: 2872: 2800: 1679: 1499:), which has a very wide gain bandwidth and can thus produce pulses of only a few femtoseconds duration. 1145:. That is possible due to the light being of a single spatial mode. This unique property of laser light, 6559:"A solvable approximate model for the response of atoms subjected to strong oscillatory electric fields" 2195:(3800 nm) the reaction is the combination of hydrogen or deuterium gas with combustion products of 1388:
impractical, or destroying the laser by producing excessive heat. Such lasers cannot be run in CW mode.
8231: 7906: 4788: 3682: 3551: 3489: 3354:
Hobbyists have also used surplus lasers taken from retired military applications and modified them for
3323: 3224: 3158: 2741:
atomic or molecular states, FELs use a relativistic electron beam as the lasing medium, hence the term
2347: 1519: 1515: 1262: 834: 7767: 5365:"Long-term mutual phase locking of picosecond pulse pairs generated by a semiconductor nanowire laser" 5055: 2063:, established a new world record by developing an erbium-doped fiber laser with a linewidth of only 10 7814: 7349: 5030:
The Ann Arbor Conference on Optical Pumping, the University of Michigan, 15 June through 18 June 1959
3702: 3036: 2984: 2928: 2897: 2814: 2813:
Living cells have been used to produce laser light. The cells were genetically engineered to produce
2453: 2351: 1761: 417: 171: 71: 7184: 4483: 3640:
Lasers are usually labeled with a safety class number, which identifies how dangerous the laser is:
7803:
Advancing the Laser anniversary site by SPIE: Video interviews, open-access articles, posters, DVDs
6138:
Baldwin, G.C.; Solem, J.C. (1982). "Is the time ripe? Or must we wait so long for breakthroughs?".
5179: 2554:
emit at wavelengths from 375 nm to 3500 nm. Low to medium power laser diodes are used in
2359: 2327: 2319: 2192: 2163: 1963: 6239:
Baldwin, G.C.; Solem, J.C. (1980). "Two-stage pumping of three-level Mössbauer gamma-ray lasers".
2214:
are a special sort of gas laser powered by an electric discharge in which the lasing medium is an
1581:
confirmed the existence of the phenomena of stimulated emission and negative absorption. In 1939,
1244: 412:
A laser normally produces a very narrow beam of light in a single wavelength, in this case, green.
8221: 6895:
Dalrymple B.E., Duff J.M., Menzel E.R. "Inherent fingerprint luminescence – detection by laser".
5511: 5432:"The Physikalisch-Technische Bundesanstalt has developed a laser with a linewidth of only 10 mHz" 4904: 3975: 3617:
characterized the first laser as having the power of one "Gillette" as it could burn through one
3387:
greater than its average power. The average output power is always less than the power consumed.
3287: 3079: 3044: 2988: 2703: 2354:
or quadrupled in frequency to produce 532 nm (green, visible), 355 nm and 266 nm (
2188: 1316: 1222: 734: 581: 540: 366: 259:
Today, all such devices operating at frequencies higher than microwaves (approximately above 300
120: 99: 7849:
website with animations, applications and research about laser and other quantum based phenomena
7744: 7728: 7712: 7696: 7680: 7664: 7648: 7632: 7616: 6856: 5124: 4757:"Il rischio da laser: cosa è e come affrontarlo; analisi di un problema non così lontano da noi" 2893: 1061:. As a result, the arrival rate of photons in a laser beam is described by Poisson statistics. 849:. Thus, electrons are found in specific energy levels of an atom, two of which are shown below: 8076: 7896: 5074: 4453: 4445: 4137: 3747: 3717: 3707: 3312: 3123: 3059: 3032: 3023: 2992: 2976: 2689: 2267: 1915: 1718: 1229: 1054: 741: 588: 373: 199: 20: 7064: 6872: 6865: 4595: 4288: 4053: 672:
For the gain medium to amplify light, it needs to be supplied with energy in a process called
457:
Thermal radiation is a random process, and thus the photons emitted have a range of different
302:" is frequently used in the field, meaning "to give off coherent light," especially about the 7964: 5128: 4255: 4110: 3914: 3832: 3777: 3722: 3689: 2633: 2629: 2594: 2308: 2103: 1895:, and Gould, at the TRG (Technical Research Group) company. Maiman's functional laser used a 1706: 1582: 1574: 1503: 1484: 1126: 972:. When an optical amplifier is placed inside a resonant optical cavity, one obtains a laser. 916: 888: 837:, the energy of an electron orbiting an atomic nucleus is larger for orbits further from the 786: 700: 63: 6908:
Dalrymple B.E. "Visible and infrared luminescence in documents : excitation by laser".
6275: 4177: 4086: 3968: 3589: 524:
that vary randomly with respect to time and position, thus having a short coherence length.
516:
wave at a single frequency, whose phase is correlated over a relatively great distance (the
8071: 7954: 7942: 7869: 6806: 6732: 6651: 6570: 6507: 6465: 6415: 6326: 6283: 6248: 6201: 6100: 6042: 5972: 5782: 5609: 5468: 5386: 5318: 5086: 4997: 4938: 4725: 4680: 4610: 4566: 4513: 4284: 4173: 4049: 3651:
of the eye will prevent damage. Usually up to 1 mW power, for example, laser pointers.
2885: 2637: 2625: 2522: 2293: 2200: 2107: 1687: 1081: 1058: 965: 884: 513: 469:, which allows materials to be determined through the specific wavelengths that they emit. 421: 214:
as a white light source; this permits a much smaller emitting area due to the much greater
207: 44: 6792: 6693: 4046:
Military Laser Technology for Defense: Technology for Revolutionizing 21st Century Warfare
1471:
A mode-locked laser is capable of emitting extremely short pulses on the order of tens of
454:, that we see as light. This is the process that causes a candle flame to give off light. 333:
A laser that produces light by itself is technically an optical oscillator rather than an
8: 8122: 8041: 7981: 7901: 7464: 6852: 5816: 4216: 3773: 3384: 2900:
using lasers is a key technology in modern communications, allowing services such as the
2826: 2737: 2733: 2617: 2076: 2059:, a joint institute of the National Institute of Standards and Technology (NIST) and the 1943: 1884: 1807: 1773:, began a serious study of infrared "optical masers". As ideas developed, they abandoned 1734: 1683: 1605:, which was experimentally demonstrated two years later by Brossel, Kastler, and Winter. 1578: 1191: 1175: 1153: 1130: 1073: 984: 920: 806: 653: 501: 494: 474: 320: 303: 106: 67: 6810: 6736: 6655: 6612: 6574: 6511: 6469: 6419: 6330: 6287: 6252: 6205: 6104: 6046: 5976: 5786: 5613: 5575: 5472: 5390: 5322: 5209: 5090: 5001: 4942: 4729: 4684: 4614: 4570: 4517: 3889:"Laser Lighting: White-light lasers challenge LEDs in directional lighting applications" 3141: billion. In the same year, approximately 733 million diode lasers, valued at 3137:
In 2004, excluding diode lasers, approximately 131,000 lasers were sold with a value of
2770: 2706:
in the bubble produce an output spectrum composed of hundreds of evenly spaced peaks; a
2258: 956:. The gain medium absorbs pump energy, which raises some electrons into higher energy (" 539:
with slightly different wavelengths. Although temporal coherence implies some degree of
8216: 7542: 6980: 5798: 5772: 5625: 5492: 5458: 5407: 5376: 5364: 5342: 5308: 5102: 4961: 4926: 4698: 4471: 4324: 4220: 4189: 3192: 2157: 1919: 1888: 1857: 1833:
At a conference in 1959, Gordon Gould first published the acronym "LASER" in the paper
1730: 1159: 999: 845:. However, quantum mechanical effects force electrons to take on discrete positions in 665:
one frequency dominates over all others, meaning that a coherent beam has been formed.
560: 155: 140: 136: 6723:
Malte C. Gather & Seok Hyun Yun (June 12, 2011). "Single-cell biological lasers".
2829:, irradiated planetary or stellar gases may amplify light producing a natural laser. 465:", which release photons with distinct wavelengths. This gives rise to the science of 307: 8142: 8016: 7991: 7740: 7735: 7724: 7708: 7703: 7692: 7676: 7660: 7644: 7628: 7612: 7589: 7574: 7546: 7532: 7503: 7487: 7472: 7454: 7439: 7424: 7409: 7394: 6876: 6822: 6797: 6539: 6519: 6427: 6384: 6170: 5988: 5802: 5690: 5663: 5629: 5496: 5484: 5412: 5334: 5159: 5120: 5033: 4966: 4908: 4841: 4702: 4579: 4554: 4457: 4424: 4379: 4340: 4292: 4259: 4226: 4193: 4090: 4057: 4024: 3983: 3812: 3781: 3554:, a 192-beam, 1.8-megajoule laser system adjoining a 10-meter-diameter target chamber 3244: 3236: 3168: 2613: 2510: 2509:
lasers are lasers based on nano-structures that provide the mode confinement and the
2476: 2404: 2273: 2037: 1955: 1883:, Malibu, California, ahead of several research teams, including those of Townes, at 1663: 1652: 1642: 1507: 1496: 1419: 1195: 1146: 1077: 976: 969: 661: 548: 451: 334: 195: 112: 95: 7793:
Northrop Grumman's Press Release on the Firestrike 15 kW tactical laser product
5621: 4420: 4336: 3637:, resulting in localized burning and permanent damage in seconds or even less time. 2636:, materials that allow coherent light to be produced from silicon. These are called 79: 39: 8152: 8117: 8097: 8066: 7763:
A Practical Guide to Lasers for Experimenters and Hobbyists by Samuel M. Goldwasser
7524: 7255:. Lawrence Livermore National Laboratory, July/August 2005. Retrieved May 27, 2006. 7241: 6814: 6740: 6659: 6578: 6515: 6423: 6357: 6334: 6291: 6256: 6209: 6162: 6157:
Solem, J.C. (1979). "On the feasibility of an impulsively driven gamma-ray laser".
6108: 6050: 5980: 5790: 5733: 5617: 5480: 5476: 5402: 5394: 5346: 5326: 5106: 5094: 5005: 4956: 4946: 4688: 4618: 4574: 4521: 4181: 2952: 2699: 2650: 2621: 2506: 2483: 2419: 2235: 2129: 1947: 1702: 1698: 1527: 1511: 1349: 1269: 1105: 1039: 1004: 953: 896: 677: 517: 431: 245: 179: 144: 124: 48: 4246:
Al-Amri, Mohammad D.; El-Gomati, Mohamed; Zubairy, M. Suhail (December 12, 2016).
3941:"Laser light for headlights: Latest trend in car lighting | OSRAM Automotive" 3804:
Proceedings of Laser Surgery: Advanced Characterization, Therapeutics, and Systems
2388:-doped YAG crystals emit at 2097 nm and form an efficient laser operating at 1084:-Gaussian functions. Some high-power lasers use a flat-topped profile known as a " 299: 244:, for "microwave amplification by stimulated emission of radiation". When similar 8206: 8180: 8061: 8051: 7862: 7821: 7809: 7774: 7518: 7248: 7140: 5984: 5062: 4835: 4795: 4020: 4016: 4012: 3802: 3712: 3618: 3614: 3371: 3366: 3208: 3127: 3097: 2968: 2908: 2889: 2763: 2676: 2641: 2433:) can cause thermal lensing and reduce the quantum efficiency. Diode-pumped thin 2222:
in existing designs. These are molecules that can only exist with one atom in an
2003: 1959: 1815: 1783: 1659: 1602: 1558: 1363: 1190:
which applies to absorption and stimulated emission. However, in the case of the
1179: 1163: 1110: 1069: 1035: 949: 544: 435: 288: 279: 191: 163: 87: 7757: 7107:. National Institutes of Health, National Cancer Institute. September 13, 2011. 6818: 6677:
Robinson, Clarence A. (February 23, 1981). "Advance made on high-energy laser".
5872: 1156:
is used to measure the intensity profile, width, and divergence of laser beams.
8157: 8147: 8107: 8056: 7974: 7927: 7911: 7719: 7324:"Theodore Maiman, 79; harnessed light to build the world's first working laser" 7297: 6189: 6112: 3503: 3240: 3216: 3154: 3067: 3055: 3011: 3000: 2960: 2876: 2796: 2758: 2754: 2707: 2490: 2183: 1967: 1939: 1853: 1845: 1714: 1598: 1586: 1412: 1118: 1100: 1093: 1046: 980: 846: 838: 688: 684: 640: 482: 439: 295: 7528: 6867:
A Century of Nature: Twenty-One Discoveries that Changed Science and the World
6190:"Maximum density and capture rates of neutrons moderated from a pulsed source" 6054: 5763:
Wu, X.; et al. (October 25, 2004). "Ultraviolet photonic crystal laser".
4185: 8195: 8112: 8092: 8033: 7959: 7570: 7354: 7099: 5010: 4985: 4622: 4413: 4329: 3658:
Class 3B lasers (5–499 mW) can cause immediate eye damage upon exposure.
3534: 3502:
Output of the majority of commercially available solid-state lasers used for
3438: 3409: 3220: 3212: 3164: 3119: 3105: 3093: 3087: 2972: 2964: 2956: 2948: 2917: 2684: 2563: 2559: 2555: 2457: 2408: 2223: 2211: 1978: 1951: 1873: 1778: 1671: 1138: 1134: 1109:: the wavefronts are planar, normal to the direction of propagation, with no 1065: 1050: 1030: 961: 957: 940: 931: 879: 777: 692: 673: 521: 505: 490: 486: 462: 187: 183: 167: 159: 128: 116: 7762: 6744: 6663: 6388: 6068:
Baldwin, G.C.; Solem, J.C. (1995). "Recent proposals for gamma-ray lasers".
5330: 5037: 4526: 4164:
Strelnitski, Vladimir (1997). "Masers, Lasers and the Interstellar Medium".
3863:"Semiconductor Sources: Laser plus phosphor emits white light without droop" 2452:
Solid-state lasers or laser amplifiers where the light is guided due to the
1879:
On May 16, 1960, Theodore H. Maiman operated the first functioning laser at
1585:
predicted the use of stimulated emission to amplify "short" waves. In 1947,
1544:
excimer laser and the copper vapor laser, can never be operated in CW mode.
883:
to different levels having different time constants. This process is called
115:
allows a laser to be focused to a tight spot, enabling applications such as
8132: 8001: 7996: 7937: 6860: 6826: 6582: 5992: 5488: 5416: 5338: 5269: 5025: 4970: 4664: 3648: 3579: 3280: 3260: 3232: 3172: 3051: 2784: 2695: 2666: 2640:. Recent developments have also shown the use of monolithically integrated 2602: 2415: 2339: 2153: 2045: 1841: 1811: 1798: 1630: 1476: 1466: 1439: 1397: 1377: 1009: 924: 892: 466: 211: 105:
A laser differs from other sources of light in that it emits light that is
6213: 2799:
reaction, replacing the banks of hundreds of lasers currently employed in
8162: 8023: 8006: 7986: 7827: 3101: 3040: 2996: 2980: 2860: 2807: 2781: 2680: 2661: 2646: 2551: 2461: 2447: 2355: 2231: 2164:
Lasing without maintaining the medium excited into a population inversion
2081: 1710: 1451: 1423: 1142: 1122: 1114: 1089: 1085: 273: 203: 148: 7848: 7267:"Magurele Laser officially becomes the most powerful laser in the world" 7162: 5777: 5398: 4951: 4809:"American Institute of Physics Oral History Interview with Joseph Weber" 4798:
Presentation Speech by Professor Ivar Waller. Retrieved January 1, 2007.
3566: 3290:
for information on how to incorporate it into this article's main text.
1308: 234:
The first device using amplification by stimulated emission operated at
8011: 7500:
LASER: The inventor, the Nobel laureate, and the thirty-year patent war
6543: 5240:"Scientists Finally Created a White Laser—and It Could Light Your Home" 4212: 3770:
Laser: The Inventor, The Nobel Laureate, and The Thirty-Year Patent War
3675: 3434: 3355: 3348: 3113: 3063: 2727: 2597:
are semiconductor lasers that have an active transition between energy
2562:
and CD/DVD players. Laser diodes are also frequently used to optically
2536: 2489:
Fiber lasers, like other optical media, can suffer from the effects of
2434: 2277: 2149: 1769:
That same year, Charles H. Townes and Arthur Leonard Schawlow, then at
1694: 1573:'s law of radiation, conceptually based upon probability coefficients ( 1570: 1540: 1472: 1236: in this section. Unsourced material may be challenged and removed. 872: 748: in this section. Unsourced material may be challenged and removed. 696: 595: in this section. Unsourced material may be challenged and removed. 528: 509: 508:. Laser beams can be focused to very tiny spots, achieving a very high 458: 380: in this section. Unsourced material may be challenged and removed. 326: 31: 6361: 6174: 5794: 5645:
Ode to a quantum physicist: A festschrift in honor of Marlan O. Scully
4868: 2531:
A 5.6 mm 'closed can' commercial laser diode, such as those used in a
1619: 852: 252:, until "microwave" was replaced by "light" in the acronym, to become 8127: 7969: 7949: 7932: 7129: 7004:"Laser Marketplace 2005: Consumer applications boost laser sales 10%" 6949: 6260: 5098: 4008: 3727: 3630: 3184: 3109: 3083: 2912: 2868: 2788: 2753:
The pursuit of a high-quantum-energy laser using transitions between
2672: 2568: 2532: 2469: 2365: 2343: 2304: 2141: 2125: 2120: 2096: 1982:
Graph showing the history of maximum laser pulse intensity since 1960
1923: 1911: 1896: 1892: 1865: 1827: 1790: 1770: 1667: 1340: 991: 790: 695:), the light coming out of the laser may spread out or form a narrow 284: 235: 27: 7802: 6558: 6403: 6338: 6295: 6166: 6088: 3613:
Even the first laser was recognized as being potentially dangerous.
2307:
is a common dopant in various solid-state laser crystals, including
1384:
is to create very short pulses at the rate of the round-trip time.)
1211: 723: 570: 438:. A common way to release photons is to heat an object; some of the 355: 5463: 5381: 5313: 3558: 3547: 3248: 3203: 3007: 2901: 2780:
reported that there was speculation about the possibility of using
2777: 2411: 2400: 2396: 2389: 2335: 2289: 2285: 2243: 2219: 2196: 2171: 1819: 1774: 1492: 1488: 782: 657: 447: 443: 223: 215: 123:. It also allows a laser beam to stay narrow over great distances ( 5682: 4693: 4668: 4437: 1840:
Gould's notes included possible applications for a laser, such as
1835:
The LASER, Light Amplification by Stimulated Emission of Radiation
1335: 1323: 7844:
Virtual Museum of Laser History, from the touring exhibit by SPIE
7758:
Encyclopedia of laser physics and technology by Rüdiger Paschotta
7098:
This article incorporates text from this source, which is in the
6455:"Primer on coupling collective electronic oscillations to nuclei" 6276:"Interlevel transfer mechanisms and their application to grasers" 3561:(10×10 W)—world's most powerful laser as of 2019, located at the 3344: 3228: 3227:. Laser therapy is often combined with other treatments, such as 2838: 2609: 2385: 2373: 2369: 2215: 1903: 1869: 1648: 911: 794: 660:. The gain medium is a material with properties that allow it to 4079:
Basics of Laser Physics: For Students of Science and Engineering
3598: 1569:" ("On the Quantum Theory of Radiation") via a re-derivation of 829:
Animation explaining stimulated emission and the laser principle
318:
are also used for naturally occurring coherent emissions, as in
3737: 3634: 3626: 3421: 3347:
players (violet), or even higher power laser diodes from CD or
3199: 3188: 2590: 2575: 2465: 2377: 2331: 2323: 2167: 2133: 1997: 1927: 1634: 1125:
theory. Thus, the "pencil beam" directly generated by a common
864: 860: 656:, a mechanism to energize it, and something to provide optical 535:. Most "single wavelength" lasers produce radiation in several 532: 426: 6538:. Cambridge, England: Cambridge University Press. p. 58. 5600:
Mompart, J.; Corbalán, R. (2000). "Lasing without inversion".
3383:
power of each pulse. The peak power of a pulsed laser is many
2907:
The first widely noticeable use of lasers was the supermarket
2855: 2527: 2418:. It is also notable for use as a mode-locked laser producing 2126:
transverse electrical discharge in gas at atmospheric pressure
1561:
established the theoretical foundations for the laser and the
408: 7843: 3621: 3465: 3451: 3358:. Pulsed ruby and YAG lasers work well for this application. 3071: 3019: 3015: 2834: 2586: 2579: 2543: 2239: 1849: 1614: 1562: 1312: 995: 450:
within the object to gain energy, which is then lost through
260: 240: 132: 59: 7797: 7688:
Journal of the Optical Society of America B: Optical Physics
7065:"Laser therapy for cancer: MedlinePlus Medical Encyclopedia" 6923:"Laser Technology Enhances Experience for Sports Fans, Refs" 6722: 3692:
may be more sensitive to laser damage than biological eyes.
3318: 2795:
proposed that a single such laser could be used to ignite a
2362:(DPSS) lasers are used to make bright green laser pointers. 2234:
wavelengths with major applications including semiconductor
1049:
showed that coherent states are formed from combinations of
222:
suffered by LEDs; such devices are already used in some car
6764: 6500:
Journal of Quantitative Spectroscopy and Radiative Transfer
6408:
Journal of Quantitative Spectroscopy and Radiative Transfer
6032: 5933:"Picolight ships first 4-Gbit/s 1310-nm VCSEL transceivers" 4353: 4225:. Vol. 83. National Academy of Sciences. p. 202. 3808: 3180: 2830: 2281: 2137: 2056: 1931: 1907: 1900: 1169: 842: 500:
Lasers are distinguished from other light sources by their
147:
of light with a broad spectrum but durations as short as a
143:. Alternatively, temporal coherence can be used to produce 6642:
Hecht, Jeff (May 2008). "The history of the x-ray laser".
2879:
research and other high energy density physics experiments
1693:
Townes reports that several eminent physicists—among them
1174:
The mechanism of producing radiation in a laser relies on
7854: 7569:. Prentice Hall International Series in Optoelectronics, 5362: 4662: 2645:
for on-chip optical signal processing. Another type is a
2145: 1638: 1064:
Many lasers produce a beam that can be approximated as a
1020: 434:
interactions with other fundamental particles that carry
135:(light detection and ranging). Lasers can also have high 5843:"High-power direct-diode lasers for cutting and welding" 5448: 5298: 5210:"Researchers demonstrate the world's first white lasers" 4716:
Einstein, A (1917). "Zur Quantentheorie der Strahlung".
3391:
The continuous or average power required for some uses:
3326:
has been used to shoot down rockets and artillery shells
2718: 1864:(USPTO) denied his application, and awarded a patent to 623: 306:
of a laser; when a laser is operating it is said to be "
7839:
MIT Video Lecture: Understanding Lasers and Fiberoptics
6976:"Football Tech That's More Than a Laser and Light Show" 6354:
Proc. SPIE 0875, Short and Ultrashort Wavelength Lasers
4745:
Steen, W.M. "Laser Materials Processing", 2nd Ed. 1998.
4644: 4596:"Coherent and incoherent states of the radiation field" 4245: 4207: 4205: 4203: 3733:
Sound amplification by stimulated emission of radiation
2888:, information technology, science, medicine, industry, 202:
for entertainment. Semiconductor lasers in the blue to
84:
light amplification by stimulated emission of radiation
7656:
IEEE Journal of Selected Topics in Quantum Electronics
5961: 4219:(2003). "Arthur Schawlow". In Edward P. Lazear (ed.). 3669:
Infrared lasers with wavelengths longer than about 1.4
2867:) with numerous applications, to football field sized 2482:
Pump light can be used more efficiently by creating a
1954:
band of the spectrum at 850 nm. Later that year,
1601:(Nobel Prize for Physics 1966) proposed the method of 139:, which permits them to emit light with a very narrow 7828:
Free software for Simulation of random laser dynamics
7824:
history of the invention, with audio interview clips.
7289: 7002:
Kincade, Kathy; Anderson, Stephen (January 1, 2005).
6556: 6374: 6351: 3970:
The Oxford Companion to the History of Modern Science
1822:. When Gould and Townes met, they spoke of radiation 975:
For lasing media with extremely high gain, so-called
859:
An electron in an atom can absorb energy from light (
26:"Laser beam" redirects here. Not to be confused with 7798:
Website on Lasers 50th anniversary by APS, OSA, SPIE
7155:"Howto: Make a DVD burner into a high-powered laser" 7143:
Sam Barros June 21, 2006. Retrieved January 1, 2007.
6557:
Biedenharn, L.C.; Rinker, G.A.; Solem, J.C. (1989).
6532: 6320: 5180:"For The First Time, A Laser That Shines Pure White" 4669:"Laser Optics: Fractal modes in unstable resonators" 4200: 2726:
at the FOM Institute for Plasma Physics Rijnhuizen,
683:
The most common type of laser uses feedback from an
489:, which stay excited for a relatively long time. In 7780:
Powerful laser is 'brightest light in the universe'
4741: 4739: 2653:to produce a laser from materials such as silicon. 2334:). All these lasers can produce high powers in the 7185:"Laser Diode Power Output Based on DVD-R/RW specs" 6864: 6383:. New York: American Institute of Physics: 75–86. 4412: 4328: 3967: 1137:system, as is always included, for instance, in a 416:Modern physics describes light and other forms of 16:Device which emits light via optical amplification 7789:" an online course by F. Balembois and S. Forget. 6851: 4900:How the Laser Happened: Adventures of a Scientist 3542:Examples of pulsed systems with high peak power: 2601:of an electron in a structure containing several 2070: 1658:In 1953, Charles H. Townes and graduate students 8193: 5077:(1960). "Stimulated optical radiation in ruby". 4736: 4499:"Phase aspect in photon emission and absorption" 3800: 1641:asked Weber to give a seminar on this idea, and 1162:of a laser beam from a matte surface produces a 248:devices were developed they were first known as 7001: 6497: 6452: 6159:Los Alamos Scientific Laboratory Report LA-7898 5599: 5574:. Photon Systems, Covina, Calif. Archived from 4552: 3171:), laser healing (photobiomodulation therapy), 2472:ions are common active species in such lasers. 1856:. He continued developing the idea and filed a 6462:Los Alamos National Laboratory Report LA-10878 4983: 4927:"Extension of frequencies from maser to laser" 2475:Quite often, the fiber laser is designed as a 1404: 7870: 7768:Homebuilt Lasers Page by Professor Mark Csele 7315: 7242:Orchestrating the world's most powerful laser 3163:Lasers have many uses in medicine, including 2567:good beam quality, wavelength-tunable narrow- 2187:industrial applications. As examples, in the 1868:, in 1960. That provoked a twenty-eight-year 6238: 6187: 6137: 6086: 6067: 5509: 4709: 1637:, Ontario, Canada. After this presentation, 1356: 1117:, that can only remain true well within the 851: 527:Lasers are characterized according to their 430:. Photons are released and absorbed through 7212:"How to select a surgical veterinary laser" 7035:"Diode-laser market grows at a slower rate" 6563:Journal of the Optical Society of America B 6008:"Bubble lasers can be sturdy and sensitive" 5429: 5270:"Researchers demonstrate new type of laser" 4840:(2nd ed.). CRC Press. pp. 89–91. 4663:Karman, G.P.; McDonald, G.S.; New, G.H.C.; 4587: 4546: 4490: 4163: 2995:, and non-contact measurement of parts and 2665:Close-up of a table-top dye laser based on 1182:, who derived the relationship between the 442:being applied to the object will cause the 7877: 7863: 4984:Schawlow, Arthur; Townes, Charles (1958). 4833: 4281:Understanding Lasers: An Entry-Level Guide 4002: 2501: 127:), a feature used in applications such as 7833:Video Demonstrations in Lasers and Optics 7087: 6606: 6604: 5776: 5657: 5462: 5406: 5380: 5312: 5018: 5009: 4960: 4950: 4924: 4837:Masers and Lasers: An Historical Approach 4692: 4578: 4525: 4211: 3801:Ross T., Adam; Becker G., Daniel (2001). 3279:This article should include a summary of 2585:Vertical cavity surface-emitting lasers ( 2358:) beams, respectively. Frequency-doubled 2055:(PTB), together with US researchers from 2021:and this research continues to this day. 1862:United States Patent and Trademark Office 1709:and hence could not work. Others such as 1315:measurements of lunar topography made by 1296:Learn how and when to remove this message 906: 764:Learn how and when to remove this message 611:Learn how and when to remove this message 396:Learn how and when to remove this message 7565:Wilson, J. & Hawkes, J.F.B. (1987). 7516: 7486:. 4th ed. Trans. David Hanna. Springer. 7421:Fundamentals of Light Sources and Lasers 6871:. University of Chicago Press. pp.  6676: 4715: 4650: 4371: 4359: 3965: 3365: 3317: 3241:Laser-induced interstitial thermotherapy 2854: 2717: 2660: 2616:. Silicon is the material of choice for 2526: 2257: 2080: 1977: 1789: 1705:—argued the maser violated Heisenberg's 1647: 1618: 1334: 1322: 1307: 1186:describing spontaneous emission and the 1170:Quantum vs. classical emission processes 1019: 930: 910: 810: 622: 407: 38: 8138:Multiple-prism grating laser oscillator 7523:. Graduate Texts in Physics. Springer. 7389:Bertolotti, Mario (1999, trans. 2004). 6973: 6611:Fildes, Jonathan (September 12, 2007). 5643:Javan, A. (2000). "On knowing Marlan". 5358: 5356: 4593: 4496: 4443: 4410: 4323: 4043: 3833:"December 1958: Invention of the Laser" 3647:Class 2 is safe during normal use; the 3179:, and cosmetic skin treatments such as 2713: 2692:use dye-doped polymers as laser media. 2571:radiation, or ultrashort laser pulses. 2516: 2266:, based on a Nd:YAG laser, used at the 86:. The first laser was built in 1960 by 8194: 7553:from the original on February 25, 2021 7497: 7264: 7191:from the original on November 22, 2011 7075:from the original on February 24, 2021 7033:Steele, Robert V. (February 1, 2005). 7032: 6833:from the original on February 17, 2022 6691: 6610: 6601: 6453:Solem, J.C.; Biedenharn, L.C. (1987). 6302:from the original on November 27, 2018 5999: 5250:from the original on December 16, 2019 5220:from the original on December 16, 2019 5190:from the original on December 16, 2019 5073: 4754: 4365: 3921:from the original on November 16, 2011 3843:from the original on December 10, 2021 3767: 3016:electro-optical countermeasures (EOCM) 2859:Lasers range in size from microscopic 1936:Albert Einstein World Award of Science 800: 789:are important in our understanding of 7858: 7362:from the original on February 2, 2019 7347: 7295: 7210:Peavy, George M. (January 23, 2014). 7209: 6947: 6790: 6641: 6401: 6273: 6220:from the original on February 7, 2016 6156: 5823:from the original on December 7, 2015 5731: 5703:from the original on February 8, 2023 5642: 5536: 5518:from the original on October 11, 2014 5153: 5024: 4925:Nishizawa, Jun-ichi (December 2009). 4534:from the original on February 8, 2023 4278: 4083:Springer Science & Business Media 4044:McAulay, Alastair D. (May 31, 2011). 4003:Bertolotti, Mario (October 1, 2004). 3947:from the original on February 7, 2019 3895:from the original on February 7, 2019 2762:breakthrough is near, an operational 2253: 2152:), making them candidates for use in 2053:Physikalisch-Technische Bundesanstalt 1973: 1339:Mercury Laser Altimeter (MLA) of the 1201: 1053:states, for which he was awarded the 178:, semiconducting chip manufacturing ( 7624:IEEE Journal of Lightwave Technology 7608:Applied Physics B: Lasers and Optics 6757: 6694:"Laser is produced by a living cell" 6679:Aviation Week & Space Technology 5955: 5853:from the original on August 11, 2018 5353: 4918: 4419:. University Science Books. p.  4335:. University Science Books. p.  4076: 3966:Heilbron, John L. (March 27, 2003). 3633:into an extremely small spot on the 3361: 3264: 1777:radiation to instead concentrate on 1234:adding citations to reliable sources 1205: 1015: 746:adding citations to reliable sources 717: 703:, this device is sometimes called a 593:adding citations to reliable sources 564: 378:adding citations to reliable sources 349: 7640:IEEE Journal of Quantum Electronics 7567:Lasers: Principles and Applications 7296:Zurer, Rachel (December 27, 2011). 7277:from the original on April 14, 2021 7222:from the original on April 19, 2016 7159:Transmissions from Planet Stephanie 7045:from the original on April 12, 2015 7014:from the original on April 13, 2015 6772:from the original on April 14, 2021 6623:from the original on April 21, 2009 6589:from the original on March 21, 2020 6434:from the original on March 18, 2020 6188:Baldwin, G.C.; Solem, J.C. (1979). 6087:Baldwin, G.C.; Solem, J.C. (1997). 5913:from the original on March 18, 2014 5883:from the original on March 18, 2014 4879:from the original on April 24, 2019 3915:"How Laser-powered Headlights Work" 3006:Military: marking targets, guiding 2793:University of California, Riverside 2612:laser is important in the field of 2301:referred to as solid-state lasers. 2119:laser is unusually high: over 30%. 1962:temperatures (77 K). In 1970, 1818:about the energy levels of excited 1797:First page of the notebook wherein 1645:asked him for a copy of the paper. 1391: 13: 7502:. New York: Simon & Schuster. 7378: 7321: 7111:from the original on April 5, 2020 6791:Mumma, Michael J (April 3, 1981). 6704:from the original on June 13, 2011 6613:"Mirror particles form new matter" 6479:from the original on March 4, 2016 6119:from the original on July 28, 2019 6005: 5939:. December 9, 2005. Archived from 5762: 5744:from the original on June 25, 2023 5280:from the original on March 3, 2017 5135:from the original on April 4, 2004 5119: 4815:from the original on March 8, 2016 4553:Pollnau, M.; Eichhorn, M. (2020). 4077:Renk, Karl F. (February 9, 2012). 3869:from the original on June 13, 2016 3370:Laser application in astronomical 2178: 1678:were independently working on the 82:that originated as an acronym for 14: 8243: 7751: 7672:IEEE Photonics Technology Letters 7322:Jr, John Johnson (May 11, 2007). 7298:"Three Smart Things About Lasers" 6974:Randall, Kevin (April 20, 2022). 6194:Nuclear Science & Engineering 5660:Handbook of the Eurolaser Academy 4931:Proc Jpn Acad Ser B Phys Biol Sci 4375:Photonics Essentials, 2nd edition 4279:Hecht, Jeff (December 27, 2018). 2820: 2346:. These lasers are also commonly 2206: 1729:In April 1957, Japanese engineer 1533: 186:and skin treatments, cutting and 8176: 8175: 7348:Hecht, Jeff (January 24, 2018). 7341: 7265:Dragan, Aurel (March 13, 2019). 7258: 7234: 7203: 7177: 7152: 7146: 7123: 7093: 7057: 6758:Chen, Sophia (January 1, 2020). 5156:Beam: The Race to Make the Laser 4632:from the original on May 8, 2021 4580:10.1016/j.pquantelec.2020.100255 3597: 3588: 3269: 2942: 2933:free-space optical communication 1748: 1567:Zur Quantentheorie der Strahlung 1510:), for maximizing the effect of 1210: 1103:) of a laser beam, it is highly 722: 713: 569: 354: 283:), whereas devices operating at 206:have also been used in place of 194:devices for marking targets and 176:free-space optical communication 7406:The Laser in America, 1950–1970 7026: 6995: 6967: 6948:Woods, Susan (April 13, 2015). 6941: 6915: 6902: 6889: 6845: 6784: 6751: 6716: 6692:Palmer, Jason (June 13, 2011). 6685: 6670: 6635: 6550: 6526: 6491: 6446: 6395: 6368: 6345: 6314: 6267: 6232: 6181: 6150: 6131: 6080: 6061: 6026: 6014:. American Institute of Physics 5925: 5895: 5865: 5835: 5809: 5756: 5725: 5715: 5676: 5651: 5636: 5593: 5561: 5530: 5503: 5442: 5434:(Press release). Archived from 5423: 5292: 5262: 5232: 5202: 5172: 5147: 5113: 5067: 5052:The Laser in America, 1950–1970 5044: 4977: 4891: 4861: 4827: 4801: 4789:The Nobel Prize in Physics 1966 4782: 4748: 4656: 4559:Progress in Quantum Electronics 4404: 4317: 4305: 4272: 4239: 4157: 4130: 4103: 4070: 4037: 3027: 2871:glass lasers (bottom) used for 2851:List of applications for lasers 2748: 2441: 2136:-silver (HeAg) 224 nm and 1787:, which was published in 1958. 1460: 1221:needs additional citations for 1113:at that point. However, due to 939:The gain medium is put into an 733:needs additional citations for 627:Components of a typical laser: 580:needs additional citations for 493:, such a material is called an 365:needs additional citations for 345: 94:, based on theoretical work by 8047:Amplified spontaneous emission 7600: 7520:Quantum Photonics, 2nd edition 7471:. Cambridge University Press. 7350:"Can Lidars Zap Camera Chips?" 5481:10.1103/PhysRevLett.118.263202 4166:Astrophysics and Space Science 3996: 3959: 3933: 3907: 3881: 3855: 3825: 3794: 3761: 3243:(LITT), or interstitial laser 3148: 2422:of extremely high peak power. 2071:Types and operating principles 2061:University of Colorado Boulder 2051:In 2017, researchers from the 2042:Technical University of Munich 2040:. In 2017, researchers at the 2030:Delft University of Technology 1754:"The Man, the Myth, the Laser" 1552: 1524:optical parametric oscillators 1514:in optical materials (e.g. in 1445: 1141:whose light originates from a 238:frequencies, and was called a 229: 1: 7815:Bright Idea: The First Lasers 7436:Solid-State Laser Engineering 7253:Science and Technology Review 7187:. elabz.com. April 10, 2011. 6089:"Recoilless gamma-ray lasers" 5430:Erika Schow (June 29, 2017). 4986:"Infrared and Optical Masers" 3754: 3478:DVD 24× dual-layer recording 3311:is a laser that is used as a 3254: 3076:laser capture microdissection 3039:. Lasers are used for latent 2656: 2486:, or a stack of such lasers. 2090: 2008:minimum output pulse duration 1166:with interesting properties. 547:more than is required by the 47:system producing four orange 7453:. University Science Books. 7449:Siegman, Anthony E. (1986). 7404:Bromberg, Joan Lisa (1991). 7105:"Lasers in Cancer Treatment" 7041:. Vol. 41, no. 2. 7010:. Vol. 41, no. 1. 6910:Journal of Forensic Sciences 6897:Journal of Forensic Sciences 6520:10.1016/0022-4073(88)90066-0 6428:10.1016/0022-4073(88)90067-2 5985:10.1021/acs.nanolett.5b03404 5689:. McGraw Hill Professional. 5539:"The TEA Nitrogen Gas Laser" 4411:Siegman, Anthony E. (1986). 2937:laser communication in space 2791:laser. David Cassidy of the 2593:are external-cavity VCSELs. 2191:(2700–2900 nm) and the 2166:was demonstrated in 1992 in 2028:In 2017, researchers at the 1993:maximum average output power 1881:Hughes Research Laboratories 92:Hughes Research Laboratories 7: 8103:Chirped pulse amplification 7438:. 3rd ed. Springer-Verlag. 6819:10.1126/science.212.4490.45 5158:. Oxford University Press. 4897:Townes, Charles H. (1999). 4444:Walker, Jearl (June 1974). 3695: 3523: 3509: 3496: 3482: 3472: 3458: 3444: 3428: 3415: 3403: 3338: 3336: 3324:Tactical High Energy weapon 3202:by shrinking or destroying 2873:inertial confinement fusion 2801:inertial confinement fusion 2649:, which takes advantage of 1916:William R. Bennett Jr. 1737:" in a patent application. 1735:semiconductor optical maser 1733:proposed the concept of a " 1491:-doped, artificially grown 1483:(also known as energy–time 1436:vibronic solid-state lasers 785:and how they interact with 10: 8250: 7907:List of laser applications 7884: 7247:November 21, 2008, at the 6323:AIP Conference Proceedings 6280:AIP Conference Proceedings 6241:Journal of Applied Physics 6113:10.1103/RevModPhys.69.1085 5512:"The Carbon Dioxide Laser" 4834:Bertolotti, Mario (2015). 4452:. W. H. Freeman. pp.  3743:Fabry–Pérot interferometer 3683:Lasers and aviation safety 3577: 3552:National Ignition Facility 3533:lasers used in industrial 3490:Holographic Versatile Disc 3330: 3258: 3225:non-small cell lung cancer 3159:Lasers in cancer treatment 3152: 3145: billion, were sold. 2911:, introduced in 1974. The 2848: 2702:as the optical resonator. 2698:are dye lasers that use a 2520: 2445: 2094: 2074: 2044:demonstrated the smallest 1612: 1547: 1520:parametric down-conversion 1516:second-harmonic generation 1475:down to less than 10  1464: 1449: 1395: 804: 775: 558: 263:) are called lasers (e.g. 218:of a laser and avoids the 168:DNA sequencing instruments 25: 18: 8171: 8085: 8032: 7920: 7892: 7529:10.1007/978-3-030-47325-9 7517:Pearsall, Thomas (2020). 7434:Koechner, Walter (1992). 6644:Optics and Photonics News 6093:Reviews of Modern Physics 6055:10.1103/RevModPhys.53.687 6035:Reviews of Modern Physics 5622:10.1088/1464-4266/2/3/201 5510:Nolen, Jim; Derek Verno. 4718:Physikalische Zeitschrift 4372:Pearsall, Thomas (2010). 3703:Coherent perfect absorber 3573: 3198:Lasers are used to treat 3037:LIDAR traffic enforcement 2985:selective laser sintering 2929:fiber-optic communication 2898:Fiber-optic communication 2892:, entertainment, and the 2841:exhibit this phenomenon. 2815:green fluorescent protein 2787:to drive a very powerful 2542:Semiconductor lasers are 2511:density of optical states 2454:total internal reflection 2414:laser, commonly used for 2170:gas and again in 1995 in 1762:Science History Institute 1747: 1742: 1357:Continuous-wave operation 1072:often approximated using 952:: gas, liquid, solid, or 554: 420:as the group behavior of 418:electromagnetic radiation 72:electromagnetic radiation 7820:October 3, 2012, at the 7393:. Institute of Physics. 7391:The History of the Laser 7383: 7139:August 14, 2005, at the 5937:Laser Focus World Online 5011:10.1103/PhysRev.112.1940 4755:Batani, Dimitri (2004). 4623:10.1103/PhysRev.131.2766 4005:The History of the Laser 3685:for more on this topic. 2927:Communications: besides 2722:The free-electron laser 2704:Whispering gallery modes 2620:, and so electronic and 2360:diode-pumped solid-state 2328:yttrium aluminium garnet 2320:yttrium lithium fluoride 2224:excited electronic state 2193:deuterium fluoride laser 2014:maximum power efficiency 1922:, constructed the first 1724: 1608: 1331:optical wireless network 190:materials, military and 7808:April 23, 2021, at the 7482:Svelto, Orazio (1998). 6745:10.1038/nphoton.2011.99 6664:10.1364/opn.19.5.000026 5765:Applied Physics Letters 5331:10.1126/science.aah6640 4905:Oxford University Press 4527:10.1364/OPTICA.5.000465 4186:10.1023/A:1000892300429 4178:1997Ap&SS.252..279S 3976:Oxford University Press 3288:Knowledge:Summary style 3124:laser lighting displays 3080:fluorescence microscopy 3045:forensic identification 2989:selective laser melting 2844: 2776:In September 2007, the 2766:is yet to be realized. 2502:Photonic crystal lasers 2218:, or more precisely an 2189:hydrogen fluoride laser 1942:demonstrated the first 1920:Donald R. Herriott 1889:Arthur L. Schawlow 1376:term is not applied to 200:laser lighting displays 100:Arthur Leonard Schawlow 58:is a device that emits 7897:List of laser articles 6912:, 28(3), 1983, 692–696 6899:, 22(1), 1977, 106–115 6863:; Tim Lincoln (eds.). 6583:10.1364/JOSAB.6.000221 5658:Schuocker, D. (1998). 4594:Glauber, R.J. (1963). 3748:Ultrashort pulse laser 3718:List of laser articles 3708:Homogeneous broadening 3690:charge-coupled devices 3492:prototype development 3375: 3327: 3313:directed-energy weapon 2993:laser metal deposition 2977:additive manufacturing 2931:, lasers are used for 2880: 2730: 2690:solid-state dye lasers 2669: 2595:Quantum cascade lasers 2539: 2270: 2268:Starfire Optical Range 2250:is a stable compound. 2087: 1983: 1803: 1719:Nobel Prize in Physics 1664:Herbert J. Zeiger 1655: 1643:Charles H. Townes 1626: 1344: 1332: 1320: 1055:Nobel Prize in physics 1025: 936: 928: 907:Gain medium and cavity 856: 830: 787:electromagnetic fields 701:electronic oscillators 652:A laser consists of a 649: 413: 96:Charles H. Townes 51: 21:Laser (disambiguation) 7773:June 1, 2009, at the 7584:Yariv, Amnon (1989). 7498:Taylor, Nick (2000). 6214:10.13182/NSE79-A20384 5847:industrial-lasers.com 5549:on September 11, 2007 5543:Homebuilt Lasers Page 5369:Nature Communications 5129:University of Chicago 5061:May 28, 2014, at the 4794:June 4, 2011, at the 4285:John Wiley & Sons 4050:John Wiley & Sons 3891:. February 22, 2017. 3768:Taylor, Nick (2000). 3723:List of light sources 3369: 3321: 3092:Commercial products: 2923:Some other uses are: 2858: 2721: 2664: 2634:gallium(III) arsenide 2630:indium(III) phosphide 2626:optical interconnects 2608:The development of a 2530: 2309:yttrium orthovanadate 2261: 2084: 2075:Further information: 2034:AC Josephson junction 1981: 1793: 1707:uncertainty principle 1651: 1622: 1583:Valentin A. Fabrikant 1575:Einstein coefficients 1504:femtosecond chemistry 1338: 1326: 1311: 1099:Near the "waist" (or 1023: 934: 914: 889:uncertainty principle 855: 828: 680:or by another laser. 626: 422:fundamental particles 411: 208:light-emitting diodes 64:optical amplification 62:through a process of 42: 8072:Population inversion 7851:Universite Paris Sud 7484:Principles of Lasers 7465:Silfvast, William T. 7419:Csele, Mark (2004). 7165:on February 17, 2022 6929:. September 10, 2014 6402:Solem, J.C. (1988). 6274:Solem, J.C. (1986). 5817:"Laser Diode Market" 5738:www.rp-photonics.com 5732:Paschotta, Rüdiger. 5537:Csele, Mark (2004). 5514:. Davidson Physics. 5154:Hecht, Jeff (2005). 5121:Townes, Charles Hard 5050:Joan Lisa Bromberg, 4497:Pollnau, M. (2018). 4222:Biographical Memoirs 3917:. November 7, 2011. 3865:. November 7, 2013. 3774:Simon & Schuster 2886:consumer electronics 2827:astrophysical masers 2734:Free-electron lasers 2714:Free-electron lasers 2638:hybrid silicon laser 2624:components (such as 2523:Semiconductor lasers 2517:Semiconductor lasers 2407:) produces a highly 2294:population inversion 2201:nitrogen trifluoride 1990:new wavelength bands 1946:, which was made of 1688:population inversion 1684:stimulated emissions 1660:James P. Gordon 1230:improve this article 1059:Poisson distribution 985:astrophysical masers 966:population inversion 885:spontaneous emission 878:When an electron is 742:improve this article 634:Laser pumping energy 589:improve this article 374:improve this article 45:Very Large Telescope 19:For other uses, see 8212:American inventions 8123:Laser beam profiler 8042:Active laser medium 7982:Free-electron laser 7902:List of laser types 7586:Quantum Electronics 6811:1981Sci...212...45M 6737:2011NaPho...5..406G 6656:2008OptPN..19R..26H 6575:1989JOSAB...6..221B 6512:1988JQSRT..40..707S 6470:1987pcce.rept.....S 6420:1988JQSRT..40..713S 6331:1986AIPC..146...50B 6288:1986AIPC..146...22S 6253:1980JAP....51.2372B 6206:1979NSE....72..281B 6105:1997RvMP...69.1085B 6047:1981RvMP...53..687B 5977:2016NanoL..16..152M 5909:. August 19, 2015. 5819:. Hanel Photonics. 5787:2004ApPhL..85.3657W 5614:2000JOptB...2R...7M 5473:2017PhRvL.118z3202M 5399:10.1038/ncomms15521 5391:2017NatCo...815521M 5323:2017Sci...355..939C 5091:1960Natur.187..493M 5002:1958PhRv..112.1940S 4952:10.2183/pjab.85.454 4943:2009PJAB...85..454N 4730:1917PhyZ...18..121E 4685:1999Natur.402..138K 4615:1963PhRv..131.2766G 4571:2020PQE....7200255P 4518:2018Optic...5..465P 4325:Siegman, Anthony E. 4314:, Paul Hewitt, 2002 3392: 3385:orders of magnitude 3022:, blinding troops, 2738:terahertz radiation 2618:integrated circuits 2460:are instead called 2228:noble gas compounds 2077:List of laser types 2002:maximum peak pulse 1996:maximum peak pulse 1950:and emitted in the 1944:semiconductor laser 1940:Robert N. Hall 1885:Columbia University 1860:in April 1959. The 1808:Columbia University 1676:Aleksandr Prokhorov 1624:Aleksandr Prokhorov 1587:Willis E. Lamb 1579:Rudolf W. Ladenburg 1192:free electron laser 1176:stimulated emission 1154:laser beam profiler 1131:semiconductor laser 807:Stimulated emission 801:Stimulated emission 669:for the amplifier. 506:diffraction-limited 495:active laser medium 475:stimulated emission 321:astrophysical maser 291:are called masers. 156:optical disc drives 154:Lasers are used in 68:stimulated emission 43:A telescope in the 8227:Russian inventions 8202:1960 introductions 7787:Laser Fundamentals 7469:Laser Fundamentals 6981:The New York Times 5186:. March 18, 2019. 5054:(1991), pp. 74–77 4450:Light and Its Uses 4392:on August 17, 2021 4362:, p. 276=285. 4312:Conceptual physics 4248:Optics in Our Time 4143:Collins Dictionary 4116:Collins Dictionary 3390: 3376: 3328: 2983:processes such as 2881: 2731: 2683:). Although these 2670: 2540: 2274:Solid-state lasers 2271: 2254:Solid-state lasers 2158:Raman spectroscopy 2108:carbon dioxide (CO 2088: 1984: 1974:Recent innovations 1938:in 1993. In 1962, 1899:-pumped synthetic 1858:patent application 1804: 1731:Jun-ichi Nishizawa 1680:quantum oscillator 1656: 1627: 1380:lasers, where the 1345: 1333: 1321: 1202:Modes of operation 1160:Diffuse reflection 1026: 937: 929: 857: 831: 650: 561:Laser construction 414: 269:ultraviolet lasers 198:and speed, and in 141:frequency spectrum 137:temporal coherence 52: 8232:Soviet inventions 8189: 8188: 8143:Optical amplifier 7992:Solid-state laser 7736:Photonics Spectra 7704:Laser Focus World 7588:. 3rd ed. Wiley. 7538:978-3-030-47324-2 7509:978-0-684-83515-0 7414:978-0-262-02318-4 7328:Los Angeles Times 7153:Maks, Stephanie. 7039:Laser Focus World 7008:Laser Focus World 6954:Shop Floor Lasers 6882:978-0-226-28413-2 6857:"The first laser" 6853:Charles H. Townes 6681:. pp. 25–27. 6362:10.1117/12.943887 6006:Miller, Johanna. 5943:on March 13, 2006 5795:10.1063/1.1808888 5696:978-0-07-163314-7 5669:978-0-412-81910-0 5307:(6328): 939–942. 5246:. July 30, 2015. 5165:978-0-19-514210-5 5125:"The first laser" 5085:(4736): 493–494. 4913:978-0-19-512268-8 4869:"Guide to Lasers" 4847:978-1-4822-1780-3 4667:(November 1999). 4463:978-0-7167-1185-8 4430:978-0-935702-11-8 4385:978-0-07-162935-5 4346:978-0-935702-11-8 4298:978-1-119-31064-8 4265:978-3-319-31903-2 4232:978-0-309-08699-8 4096:978-3-642-23565-8 4063:978-0-470-25560-5 4030:978-1-4200-3340-3 3989:978-0-19-974376-6 3818:978-0-8194-3922-2 3688:Cameras based on 3540: 3539: 3529:Typical sealed CO 3515:Typical sealed CO 3362:Examples by power 3305: 3304: 3237:radiation therapy 3043:detection in the 2614:optical computing 2477:double-clad fiber 2456:in a single mode 2420:ultrashort pulses 2104:helium–neon laser 2038:quantum computing 2011:minimum linewidth 1956:Nick Holonyak Jr. 1814:was working on a 1810:graduate student 1767: 1766: 1653:Charles H. Townes 1508:ultrafast science 1420:nonlinear optical 1403:cannot be run in 1373:frequency spacing 1306: 1305: 1298: 1280: 1196:quantum mechanics 1147:spatial coherence 1127:helium–neon laser 1016:The light emitted 977:superluminescence 970:optical amplifier 917:helium–neon laser 826: 774: 773: 766: 621: 620: 613: 549:diffraction limit 487:metastable states 452:thermal radiation 406: 405: 398: 335:optical amplifier 289:radio frequencies 210:(LEDs) to excite 145:ultrashort pulses 113:Spatial coherence 49:laser guide stars 8239: 8179: 8178: 8153:Optical isolator 8118:Injection seeder 8098:Beam homogenizer 8077:Ultrashort pulse 8067:Lasing threshold 7879: 7872: 7865: 7856: 7855: 7562: 7560: 7558: 7513: 7372: 7371: 7369: 7367: 7345: 7339: 7338: 7336: 7334: 7319: 7313: 7312: 7310: 7308: 7293: 7287: 7286: 7284: 7282: 7262: 7256: 7240:Heller, Arnie, " 7238: 7232: 7231: 7229: 7227: 7207: 7201: 7200: 7198: 7196: 7181: 7175: 7174: 7172: 7170: 7161:. Archived from 7150: 7144: 7127: 7121: 7120: 7118: 7116: 7097: 7096: 7091: 7085: 7084: 7082: 7080: 7061: 7055: 7054: 7052: 7050: 7030: 7024: 7023: 7021: 7019: 6999: 6993: 6992: 6990: 6988: 6971: 6965: 6964: 6962: 6960: 6945: 6939: 6938: 6936: 6934: 6919: 6913: 6906: 6900: 6893: 6887: 6886: 6870: 6849: 6843: 6842: 6840: 6838: 6788: 6782: 6781: 6779: 6777: 6755: 6749: 6748: 6725:Nature Photonics 6720: 6714: 6713: 6711: 6709: 6689: 6683: 6682: 6674: 6668: 6667: 6639: 6633: 6632: 6630: 6628: 6608: 6599: 6598: 6596: 6594: 6554: 6548: 6547: 6530: 6524: 6523: 6495: 6489: 6488: 6486: 6484: 6478: 6459: 6450: 6444: 6443: 6441: 6439: 6399: 6393: 6392: 6372: 6366: 6365: 6349: 6343: 6342: 6318: 6312: 6311: 6309: 6307: 6271: 6265: 6264: 6261:10.1063/1.328007 6247:(5): 2372–2380. 6236: 6230: 6229: 6227: 6225: 6185: 6179: 6178: 6154: 6148: 6147: 6135: 6129: 6128: 6126: 6124: 6099:(4): 1085–1117. 6084: 6078: 6077: 6065: 6059: 6058: 6030: 6024: 6023: 6021: 6019: 6003: 5997: 5996: 5959: 5953: 5952: 5950: 5948: 5929: 5923: 5922: 5920: 5918: 5899: 5893: 5892: 5890: 5888: 5869: 5863: 5862: 5860: 5858: 5839: 5833: 5832: 5830: 5828: 5813: 5807: 5806: 5780: 5760: 5754: 5753: 5751: 5749: 5734:"Photodarkening" 5729: 5723: 5719: 5713: 5712: 5710: 5708: 5680: 5674: 5673: 5655: 5649: 5648: 5640: 5634: 5633: 5597: 5591: 5590: 5588: 5586: 5580: 5573: 5569:"Deep UV Lasers" 5565: 5559: 5558: 5556: 5554: 5545:. Archived from 5534: 5528: 5527: 5525: 5523: 5507: 5501: 5500: 5466: 5446: 5440: 5439: 5438:on July 3, 2017. 5427: 5421: 5420: 5410: 5384: 5360: 5351: 5350: 5316: 5296: 5290: 5289: 5287: 5285: 5266: 5260: 5259: 5257: 5255: 5236: 5230: 5229: 5227: 5225: 5206: 5200: 5199: 5197: 5195: 5176: 5170: 5169: 5151: 5145: 5144: 5142: 5140: 5117: 5111: 5110: 5099:10.1038/187493a0 5071: 5065: 5048: 5042: 5041: 5026:Gould, R. Gordon 5022: 5016: 5015: 5013: 4996:(6): 1940–1949. 4981: 4975: 4974: 4964: 4954: 4922: 4916: 4895: 4889: 4888: 4886: 4884: 4865: 4859: 4858: 4856: 4854: 4831: 4825: 4824: 4822: 4820: 4805: 4799: 4786: 4780: 4779: 4777: 4775: 4770:on June 14, 2007 4769: 4761:wwwold.unimib.it 4752: 4746: 4743: 4734: 4733: 4713: 4707: 4706: 4696: 4660: 4654: 4648: 4642: 4641: 4639: 4637: 4631: 4609:(6): 2766–2788. 4600: 4591: 4585: 4584: 4582: 4550: 4544: 4543: 4541: 4539: 4529: 4503: 4494: 4488: 4487: 4481: 4477: 4475: 4467: 4446:"Nitrogen Laser" 4441: 4435: 4434: 4418: 4408: 4402: 4401: 4399: 4397: 4388:. Archived from 4369: 4363: 4357: 4351: 4350: 4334: 4321: 4315: 4309: 4303: 4302: 4276: 4270: 4269: 4243: 4237: 4236: 4209: 4198: 4197: 4161: 4155: 4154: 4152: 4150: 4134: 4128: 4127: 4125: 4123: 4107: 4101: 4100: 4074: 4068: 4067: 4041: 4035: 4034: 4000: 3994: 3993: 3973: 3963: 3957: 3956: 3954: 3952: 3937: 3931: 3930: 3928: 3926: 3911: 3905: 3904: 3902: 3900: 3885: 3879: 3878: 3876: 3874: 3859: 3853: 3852: 3850: 3848: 3829: 3823: 3822: 3798: 3792: 3791: 3765: 3672: 3601: 3592: 3526: 3519:surgical lasers 3512: 3499: 3485: 3475: 3461: 3447: 3431: 3418: 3406: 3393: 3389: 3342: 3300: 3297: 3291: 3273: 3272: 3265: 3245:photocoagulation 3144: 3140: 3128:laser turntables 3098:barcode scanners 2955:thin materials, 2771:Mössbauer effect 2651:Raman scattering 2622:silicon photonic 2507:Photonic crystal 2484:fiber disk laser 2342:and for pumping 2236:photolithography 2130:deep ultraviolet 2066: 2032:demonstrated an 1948:gallium arsenide 1806:Simultaneously, 1752: 1751: 1740: 1739: 1703:Llewellyn Thomas 1699:John von Neumann 1596: 1592: 1392:Pulsed operation 1301: 1294: 1290: 1287: 1281: 1279: 1238: 1214: 1206: 1094:optical vortexes 1070:transverse modes 1040:injection seeder 1005:lasing threshold 897:thermal emission 827: 769: 762: 758: 755: 749: 726: 718: 705:laser oscillator 699:. In analogy to 616: 609: 605: 602: 596: 573: 565: 541:monochromaticity 518:coherence length 401: 394: 390: 387: 381: 358: 350: 340:laser amplifiers 280:gamma-ray lasers 180:photolithography 164:barcode scanners 8249: 8248: 8242: 8241: 8240: 8238: 8237: 8236: 8192: 8191: 8190: 8185: 8167: 8081: 8062:Laser linewidth 8052:Continuous wave 8028: 7921:Types of lasers 7916: 7888: 7883: 7822:Wayback Machine 7810:Wayback Machine 7775:Wayback Machine 7754: 7603: 7556: 7554: 7539: 7510: 7386: 7381: 7379:Further reading 7376: 7375: 7365: 7363: 7346: 7342: 7332: 7330: 7320: 7316: 7306: 7304: 7294: 7290: 7280: 7278: 7271:Business Review 7263: 7259: 7249:Wayback Machine 7239: 7235: 7225: 7223: 7208: 7204: 7194: 7192: 7183: 7182: 7178: 7168: 7166: 7151: 7147: 7141:Wayback Machine 7133: 7128: 7124: 7114: 7112: 7103: 7094: 7092: 7088: 7078: 7076: 7069:medlineplus.gov 7063: 7062: 7058: 7048: 7046: 7031: 7027: 7017: 7015: 7000: 6996: 6986: 6984: 6972: 6968: 6958: 6956: 6946: 6942: 6932: 6930: 6921: 6920: 6916: 6907: 6903: 6894: 6890: 6883: 6850: 6846: 6836: 6834: 6805:(4490): 45–49. 6789: 6785: 6775: 6773: 6756: 6752: 6721: 6717: 6707: 6705: 6690: 6686: 6675: 6671: 6640: 6636: 6626: 6624: 6609: 6602: 6592: 6590: 6555: 6551: 6531: 6527: 6496: 6492: 6482: 6480: 6476: 6457: 6451: 6447: 6437: 6435: 6400: 6396: 6373: 6369: 6350: 6346: 6339:10.1063/1.35928 6319: 6315: 6305: 6303: 6296:10.1063/1.35861 6272: 6268: 6237: 6233: 6223: 6221: 6186: 6182: 6167:10.2172/6010532 6155: 6151: 6136: 6132: 6122: 6120: 6085: 6081: 6066: 6062: 6031: 6027: 6017: 6015: 6004: 6000: 5960: 5956: 5946: 5944: 5931: 5930: 5926: 5916: 5914: 5901: 5900: 5896: 5886: 5884: 5871: 5870: 5866: 5856: 5854: 5841: 5840: 5836: 5826: 5824: 5815: 5814: 5810: 5778:physics/0406005 5761: 5757: 5747: 5745: 5730: 5726: 5720: 5716: 5706: 5704: 5697: 5681: 5677: 5670: 5656: 5652: 5641: 5637: 5598: 5594: 5584: 5582: 5581:on July 1, 2007 5578: 5571: 5567: 5566: 5562: 5552: 5550: 5535: 5531: 5521: 5519: 5508: 5504: 5451:Phys. Rev. Lett 5447: 5443: 5428: 5424: 5361: 5354: 5297: 5293: 5283: 5281: 5268: 5267: 5263: 5253: 5251: 5238: 5237: 5233: 5223: 5221: 5208: 5207: 5203: 5193: 5191: 5184:Popular Science 5178: 5177: 5173: 5166: 5152: 5148: 5138: 5136: 5118: 5114: 5072: 5068: 5063:Wayback Machine 5049: 5045: 5032:. p. 128. 5023: 5019: 4990:Physical Review 4982: 4978: 4937:(10): 454–465. 4923: 4919: 4896: 4892: 4882: 4880: 4867: 4866: 4862: 4852: 4850: 4848: 4832: 4828: 4818: 4816: 4811:. May 4, 2015. 4807: 4806: 4802: 4796:Wayback Machine 4787: 4783: 4773: 4771: 4767: 4753: 4749: 4744: 4737: 4714: 4710: 4661: 4657: 4649: 4645: 4635: 4633: 4629: 4598: 4592: 4588: 4551: 4547: 4537: 4535: 4501: 4495: 4491: 4479: 4478: 4469: 4468: 4464: 4442: 4438: 4431: 4409: 4405: 4395: 4393: 4386: 4378:. McGraw-Hill. 4370: 4366: 4358: 4354: 4347: 4322: 4318: 4310: 4306: 4299: 4277: 4273: 4266: 4244: 4240: 4233: 4217:Townes, Charles 4210: 4201: 4162: 4158: 4148: 4146: 4136: 4135: 4131: 4121: 4119: 4109: 4108: 4104: 4097: 4075: 4071: 4064: 4042: 4038: 4031: 4001: 3997: 3990: 3964: 3960: 3950: 3948: 3939: 3938: 3934: 3924: 3922: 3913: 3912: 3908: 3898: 3896: 3887: 3886: 3882: 3872: 3870: 3861: 3860: 3856: 3846: 3844: 3831: 3830: 3826: 3819: 3811:. p. 396. 3799: 3795: 3788: 3766: 3762: 3757: 3752: 3713:Laser linewidth 3698: 3670: 3615:Theodore Maiman 3611: 3610: 3609: 3608: 3604: 3603: 3602: 3594: 3593: 3582: 3576: 3532: 3524: 3518: 3510: 3504:micro machining 3497: 3488:Green laser in 3483: 3473: 3459: 3445: 3429: 3416: 3404: 3372:adaptive optics 3364: 3333: 3322:The US–Israeli 3301: 3295: 3292: 3285: 3274: 3270: 3263: 3257: 3191:reduction, and 3161: 3153:Main articles: 3151: 3142: 3138: 3118:Entertainment: 3033:Law enforcement 3012:missile defense 2909:barcode scanner 2890:law enforcement 2877:nuclear weapons 2853: 2847: 2823: 2764:gamma-ray laser 2755:isomeric states 2751: 2716: 2677:on the order of 2659: 2642:nanowire lasers 2525: 2519: 2504: 2450: 2444: 2383: 2316: 2256: 2249: 2209: 2184:Chemical lasers 2181: 2179:Chemical lasers 2175:been canceled. 2118: 2111: 2099: 2093: 2079: 2073: 2064: 1976: 1960:liquid nitrogen 1816:doctoral thesis 1795:LASER notebook: 1784:Physical Review 1749: 1727: 1617: 1611: 1603:optical pumping 1594: 1590: 1559:Albert Einstein 1555: 1550: 1536: 1469: 1463: 1454: 1448: 1400: 1394: 1364:continuous-wave 1359: 1350:cavity lifetime 1302: 1291: 1285: 1282: 1239: 1237: 1227: 1215: 1204: 1180:Albert Einstein 1172: 1164:speckle pattern 1111:beam divergence 1036:laser linewidth 1018: 909: 871:one particular 811: 809: 803: 780: 770: 759: 753: 750: 739: 727: 716: 648: 617: 606: 600: 597: 586: 574: 563: 557: 436:electric charge 432:electromagnetic 402: 391: 385: 382: 371: 359: 348: 265:infrared lasers 232: 196:measuring range 192:law enforcement 88:Theodore Maiman 35: 24: 17: 12: 11: 5: 8247: 8246: 8235: 8234: 8229: 8224: 8222:Quantum optics 8219: 8214: 8209: 8204: 8187: 8186: 8184: 8183: 8172: 8169: 8168: 8166: 8165: 8160: 8158:Output coupler 8155: 8150: 8148:Optical cavity 8145: 8140: 8135: 8130: 8125: 8120: 8115: 8110: 8108:Gain-switching 8105: 8100: 8095: 8089: 8087: 8083: 8082: 8080: 8079: 8074: 8069: 8064: 8059: 8057:Laser ablation 8054: 8049: 8044: 8038: 8036: 8030: 8029: 8027: 8026: 8021: 8020: 8019: 8014: 8009: 8004: 7999: 7989: 7984: 7979: 7978: 7977: 7972: 7967: 7962: 7957: 7955:Carbon dioxide 7947: 7946: 7945: 7943:Liquid-crystal 7940: 7930: 7928:Chemical laser 7924: 7922: 7918: 7917: 7915: 7914: 7912:Laser acronyms 7909: 7904: 7899: 7893: 7890: 7889: 7882: 7881: 7874: 7867: 7859: 7853: 7852: 7846: 7841: 7836: 7830: 7825: 7812: 7800: 7795: 7790: 7783: 7777: 7765: 7760: 7753: 7752:External links 7750: 7749: 7748: 7732: 7720:Optics Letters 7716: 7700: 7684: 7668: 7652: 7636: 7620: 7602: 7599: 7598: 7597: 7582: 7563: 7537: 7514: 7508: 7495: 7480: 7462: 7447: 7432: 7417: 7402: 7385: 7382: 7380: 7377: 7374: 7373: 7340: 7314: 7288: 7257: 7233: 7202: 7176: 7145: 7131: 7122: 7086: 7056: 7025: 6994: 6966: 6940: 6914: 6901: 6888: 6881: 6844: 6783: 6750: 6731:(7): 406–410. 6715: 6684: 6669: 6634: 6600: 6569:(2): 221–227. 6549: 6525: 6506:(6): 707–712. 6490: 6445: 6414:(6): 713–715. 6394: 6367: 6344: 6313: 6266: 6231: 6200:(3): 281–289. 6180: 6149: 6130: 6079: 6060: 6041:(4): 687–744. 6025: 5998: 5971:(1): 152–156. 5954: 5924: 5894: 5864: 5834: 5808: 5755: 5724: 5714: 5695: 5675: 5668: 5650: 5635: 5592: 5560: 5529: 5502: 5457:(26): 263202. 5441: 5422: 5352: 5291: 5261: 5231: 5201: 5171: 5164: 5146: 5112: 5066: 5043: 5017: 4976: 4917: 4890: 4860: 4846: 4826: 4800: 4781: 4747: 4735: 4708: 4665:Woerdman, J.P. 4655: 4653:, p. 276. 4643: 4586: 4545: 4512:(4): 465–474. 4489: 4462: 4436: 4429: 4403: 4384: 4364: 4352: 4345: 4316: 4304: 4297: 4271: 4264: 4238: 4231: 4199: 4156: 4129: 4102: 4095: 4069: 4062: 4036: 4029: 3995: 3988: 3958: 3932: 3906: 3880: 3854: 3824: 3817: 3793: 3787:978-0684835150 3786: 3759: 3758: 3756: 3753: 3751: 3750: 3745: 3740: 3735: 3730: 3725: 3720: 3715: 3710: 3705: 3699: 3697: 3694: 3663: 3662: 3659: 3656: 3652: 3645: 3606: 3605: 3596: 3595: 3587: 3586: 3585: 3584: 3583: 3578:Main article: 3575: 3572: 3571: 3570: 3555: 3538: 3537: 3530: 3527: 3521: 3520: 3516: 3513: 3507: 3506: 3500: 3494: 3493: 3486: 3480: 3479: 3476: 3470: 3469: 3462: 3456: 3455: 3448: 3442: 3441: 3432: 3426: 3425: 3419: 3413: 3412: 3410:Laser pointers 3407: 3401: 3400: 3397: 3363: 3360: 3332: 3329: 3303: 3302: 3277: 3275: 3268: 3259:Main article: 3256: 3253: 3177:ophthalmoscopy 3167:(particularly 3155:Laser medicine 3150: 3147: 3135: 3134: 3131: 3116: 3106:laser pointers 3094:laser printers 3090: 3068:interferometry 3056:laser ablation 3048: 3030: 3024:firearms sight 3004: 3001:laser cleaning 2961:heat treatment 2945: 2941:Medicine: see 2939: 2918:laser printers 2849:Main article: 2846: 2843: 2822: 2821:Natural lasers 2819: 2797:nuclear fusion 2759:atomic nucleus 2750: 2747: 2715: 2712: 2708:frequency comb 2685:tunable lasers 2658: 2655: 2560:laser printers 2556:laser pointers 2521:Main article: 2518: 2515: 2503: 2500: 2491:photodarkening 2446:Main article: 2443: 2440: 2381: 2314: 2255: 2252: 2247: 2212:Excimer lasers 2208: 2207:Excimer lasers 2205: 2180: 2177: 2144:, less than 3 2116: 2109: 2095:Main article: 2092: 2089: 2072: 2069: 2019: 2018: 2015: 2012: 2009: 2006: 2000: 1994: 1991: 1975: 1972: 1968:heterojunction 1964:Zhores Alferov 1854:nuclear fusion 1846:interferometry 1765: 1764: 1745: 1744: 1743:External audio 1726: 1723: 1715:Polykarp Kusch 1613:Main article: 1610: 1607: 1599:Alfred Kastler 1565:in the paper " 1554: 1551: 1549: 1546: 1535: 1534:Pulsed pumping 1532: 1465:Main article: 1462: 1459: 1450:Main article: 1447: 1444: 1413:laser ablation 1396:Main article: 1393: 1390: 1358: 1355: 1329:point to point 1304: 1303: 1218: 1216: 1209: 1203: 1200: 1171: 1168: 1119:Rayleigh range 1047:Roy J. Glauber 1017: 1014: 981:nitrogen laser 962:quantum states 908: 905: 835:classical view 805:Main article: 802: 799: 772: 771: 730: 728: 721: 715: 712: 689:output coupler 685:optical cavity 647: 646: 643: 641:Output coupler 638: 637:High reflector 635: 632: 628: 619: 618: 577: 575: 568: 559:Main article: 556: 553: 483:chain reaction 463:excited states 440:thermal energy 404: 403: 362: 360: 353: 347: 344: 250:optical masers 231: 228: 160:laser printers 129:laser pointers 15: 9: 6: 4: 3: 2: 8245: 8244: 8233: 8230: 8228: 8225: 8223: 8220: 8218: 8215: 8213: 8210: 8208: 8205: 8203: 8200: 8199: 8197: 8182: 8174: 8173: 8170: 8164: 8161: 8159: 8156: 8154: 8151: 8149: 8146: 8144: 8141: 8139: 8136: 8134: 8131: 8129: 8126: 8124: 8121: 8119: 8116: 8114: 8113:Gaussian beam 8111: 8109: 8106: 8104: 8101: 8099: 8096: 8094: 8093:Beam expander 8091: 8090: 8088: 8084: 8078: 8075: 8073: 8070: 8068: 8065: 8063: 8060: 8058: 8055: 8053: 8050: 8048: 8045: 8043: 8040: 8039: 8037: 8035: 8034:Laser physics 8031: 8025: 8022: 8018: 8015: 8013: 8010: 8008: 8005: 8003: 8000: 7998: 7995: 7994: 7993: 7990: 7988: 7985: 7983: 7980: 7976: 7973: 7971: 7968: 7966: 7963: 7961: 7958: 7956: 7953: 7952: 7951: 7948: 7944: 7941: 7939: 7936: 7935: 7934: 7931: 7929: 7926: 7925: 7923: 7919: 7913: 7910: 7908: 7905: 7903: 7900: 7898: 7895: 7894: 7891: 7887: 7880: 7875: 7873: 7868: 7866: 7861: 7860: 7857: 7850: 7847: 7845: 7842: 7840: 7837: 7834: 7831: 7829: 7826: 7823: 7819: 7816: 7813: 7811: 7807: 7804: 7801: 7799: 7796: 7794: 7791: 7788: 7784: 7781: 7778: 7776: 7772: 7769: 7766: 7764: 7761: 7759: 7756: 7755: 7746: 7742: 7738: 7737: 7733: 7730: 7726: 7722: 7721: 7717: 7714: 7710: 7706: 7705: 7701: 7698: 7694: 7690: 7689: 7685: 7682: 7678: 7674: 7673: 7669: 7666: 7662: 7658: 7657: 7653: 7650: 7646: 7642: 7641: 7637: 7634: 7630: 7626: 7625: 7621: 7618: 7614: 7610: 7609: 7605: 7604: 7595: 7594:0-471-60997-8 7591: 7587: 7583: 7580: 7579:0-13-523697-5 7576: 7572: 7571:Prentice Hall 7568: 7564: 7552: 7548: 7544: 7540: 7534: 7530: 7526: 7522: 7521: 7515: 7511: 7505: 7501: 7496: 7493: 7492:0-306-45748-2 7489: 7485: 7481: 7478: 7477:0-521-55617-1 7474: 7470: 7466: 7463: 7460: 7459:0-935702-11-3 7456: 7452: 7448: 7445: 7444:0-387-53756-2 7441: 7437: 7433: 7430: 7429:0-471-47660-9 7426: 7422: 7418: 7415: 7411: 7408:. MIT Press. 7407: 7403: 7400: 7399:0-7503-0911-3 7396: 7392: 7388: 7387: 7361: 7357: 7356: 7355:IEEE Spectrum 7351: 7344: 7329: 7325: 7318: 7303: 7299: 7292: 7276: 7272: 7268: 7261: 7254: 7250: 7246: 7243: 7237: 7221: 7217: 7213: 7206: 7190: 7186: 7180: 7164: 7160: 7156: 7149: 7142: 7138: 7135: 7126: 7110: 7106: 7101: 7100:public domain 7090: 7074: 7070: 7066: 7060: 7044: 7040: 7036: 7029: 7013: 7009: 7005: 6998: 6983: 6982: 6977: 6970: 6955: 6951: 6950:"Front Lines" 6944: 6928: 6927:Photonics.com 6924: 6918: 6911: 6905: 6898: 6892: 6884: 6878: 6874: 6869: 6868: 6862: 6858: 6854: 6848: 6832: 6828: 6824: 6820: 6816: 6812: 6808: 6804: 6800: 6799: 6794: 6787: 6771: 6767: 6766: 6761: 6760:"Alien Light" 6754: 6746: 6742: 6738: 6734: 6730: 6726: 6719: 6703: 6699: 6695: 6688: 6680: 6673: 6665: 6661: 6657: 6653: 6649: 6645: 6638: 6622: 6618: 6614: 6607: 6605: 6588: 6584: 6580: 6576: 6572: 6568: 6564: 6560: 6553: 6545: 6541: 6537: 6529: 6521: 6517: 6513: 6509: 6505: 6501: 6494: 6475: 6471: 6467: 6463: 6456: 6449: 6433: 6429: 6425: 6421: 6417: 6413: 6409: 6405: 6398: 6390: 6386: 6382: 6378: 6371: 6363: 6359: 6355: 6348: 6340: 6336: 6332: 6328: 6324: 6317: 6301: 6297: 6293: 6289: 6285: 6281: 6277: 6270: 6262: 6258: 6254: 6250: 6246: 6242: 6235: 6219: 6215: 6211: 6207: 6203: 6199: 6195: 6191: 6184: 6176: 6172: 6168: 6164: 6160: 6153: 6146:(6): 6&8. 6145: 6141: 6134: 6118: 6114: 6110: 6106: 6102: 6098: 6094: 6090: 6083: 6076:(2): 231–239. 6075: 6071: 6070:Laser Physics 6064: 6056: 6052: 6048: 6044: 6040: 6036: 6029: 6013: 6012:Physics Today 6009: 6002: 5994: 5990: 5986: 5982: 5978: 5974: 5970: 5966: 5958: 5942: 5938: 5934: 5928: 5912: 5908: 5904: 5903:"Green Laser" 5898: 5882: 5878: 5874: 5873:"LASER Diode" 5868: 5852: 5848: 5844: 5838: 5827:September 26, 5822: 5818: 5812: 5804: 5800: 5796: 5792: 5788: 5784: 5779: 5774: 5770: 5766: 5759: 5743: 5739: 5735: 5728: 5718: 5702: 5698: 5692: 5688: 5687: 5679: 5671: 5665: 5661: 5654: 5646: 5639: 5631: 5627: 5623: 5619: 5615: 5611: 5608:(3): R7–R24. 5607: 5603: 5596: 5577: 5570: 5564: 5553:September 15, 5548: 5544: 5540: 5533: 5517: 5513: 5506: 5498: 5494: 5490: 5486: 5482: 5478: 5474: 5470: 5465: 5460: 5456: 5452: 5445: 5437: 5433: 5426: 5418: 5414: 5409: 5404: 5400: 5396: 5392: 5388: 5383: 5378: 5374: 5370: 5366: 5359: 5357: 5348: 5344: 5340: 5336: 5332: 5328: 5324: 5320: 5315: 5310: 5306: 5302: 5295: 5279: 5275: 5271: 5265: 5249: 5245: 5241: 5235: 5219: 5215: 5211: 5205: 5189: 5185: 5181: 5175: 5167: 5161: 5157: 5150: 5134: 5130: 5126: 5122: 5116: 5108: 5104: 5100: 5096: 5092: 5088: 5084: 5080: 5076: 5075:Maiman, T. H. 5070: 5064: 5060: 5057: 5053: 5047: 5039: 5035: 5031: 5027: 5021: 5012: 5007: 5003: 4999: 4995: 4991: 4987: 4980: 4972: 4968: 4963: 4958: 4953: 4948: 4944: 4940: 4936: 4932: 4928: 4921: 4914: 4910: 4906: 4902: 4901: 4894: 4878: 4874: 4870: 4864: 4849: 4843: 4839: 4838: 4830: 4814: 4810: 4804: 4797: 4793: 4790: 4785: 4766: 4762: 4758: 4751: 4742: 4740: 4731: 4727: 4723: 4719: 4712: 4704: 4700: 4695: 4694:10.1038/45960 4690: 4686: 4682: 4679:(6758): 138. 4678: 4674: 4670: 4666: 4659: 4652: 4651:Pearsall 2020 4647: 4628: 4624: 4620: 4616: 4612: 4608: 4604: 4597: 4590: 4581: 4576: 4572: 4568: 4564: 4560: 4556: 4549: 4533: 4528: 4523: 4519: 4515: 4511: 4507: 4500: 4493: 4485: 4473: 4465: 4459: 4455: 4451: 4447: 4440: 4432: 4426: 4422: 4417: 4416: 4407: 4391: 4387: 4381: 4377: 4376: 4368: 4361: 4360:Pearsall 2020 4356: 4348: 4342: 4338: 4333: 4332: 4326: 4320: 4313: 4308: 4300: 4294: 4290: 4286: 4282: 4275: 4267: 4261: 4257: 4253: 4249: 4242: 4234: 4228: 4224: 4223: 4218: 4214: 4208: 4206: 4204: 4195: 4191: 4187: 4183: 4179: 4175: 4171: 4167: 4160: 4145: 4144: 4139: 4133: 4118: 4117: 4112: 4106: 4098: 4092: 4088: 4084: 4080: 4073: 4065: 4059: 4055: 4051: 4047: 4040: 4032: 4026: 4022: 4018: 4014: 4010: 4006: 3999: 3991: 3985: 3981: 3977: 3972: 3971: 3962: 3946: 3942: 3936: 3920: 3916: 3910: 3894: 3890: 3884: 3868: 3864: 3858: 3842: 3838: 3834: 3828: 3820: 3814: 3810: 3806: 3805: 3797: 3789: 3783: 3779: 3775: 3771: 3764: 3760: 3749: 3746: 3744: 3741: 3739: 3736: 3734: 3731: 3729: 3726: 3724: 3721: 3719: 3716: 3714: 3711: 3709: 3706: 3704: 3701: 3700: 3693: 3691: 3686: 3684: 3679: 3677: 3667: 3660: 3657: 3653: 3650: 3646: 3643: 3642: 3641: 3638: 3636: 3632: 3628: 3623: 3620: 3616: 3600: 3591: 3581: 3568: 3564: 3560: 3556: 3553: 3549: 3545: 3544: 3543: 3536: 3535:laser cutting 3528: 3522: 3514: 3508: 3505: 3501: 3495: 3491: 3487: 3481: 3477: 3471: 3467: 3464:Consumer 16× 3463: 3457: 3453: 3449: 3443: 3440: 3439:DVD-ROM drive 3436: 3433: 3427: 3423: 3420: 3414: 3411: 3408: 3402: 3398: 3395: 3394: 3388: 3386: 3382: 3373: 3368: 3359: 3357: 3352: 3350: 3346: 3340: 3339:§ Safety 3325: 3320: 3316: 3314: 3310: 3299: 3296:December 2019 3289: 3284: 3282: 3276: 3267: 3266: 3262: 3252: 3250: 3246: 3242: 3238: 3234: 3230: 3226: 3222: 3218: 3214: 3210: 3205: 3201: 3196: 3194: 3190: 3186: 3182: 3178: 3174: 3170: 3166: 3165:laser surgery 3160: 3156: 3146: 3132: 3129: 3125: 3121: 3120:optical discs 3117: 3115: 3111: 3107: 3103: 3099: 3095: 3091: 3089: 3088:laser cooling 3085: 3081: 3077: 3073: 3069: 3065: 3061: 3057: 3053: 3049: 3046: 3042: 3038: 3034: 3031: 3029: 3025: 3021: 3017: 3013: 3009: 3005: 3002: 2998: 2994: 2990: 2986: 2982: 2978: 2974: 2970: 2966: 2965:marking parts 2962: 2958: 2954: 2950: 2946: 2944: 2940: 2938: 2934: 2930: 2926: 2925: 2924: 2921: 2919: 2914: 2910: 2905: 2903: 2899: 2895: 2891: 2887: 2878: 2874: 2870: 2866: 2862: 2857: 2852: 2842: 2840: 2836: 2832: 2828: 2818: 2816: 2811: 2809: 2804: 2803:experiments. 2802: 2798: 2794: 2790: 2786: 2783: 2779: 2774: 2772: 2767: 2765: 2760: 2756: 2746: 2744: 2743:free-electron 2739: 2735: 2729: 2725: 2720: 2711: 2709: 2705: 2701: 2697: 2696:Bubble lasers 2693: 2691: 2686: 2682: 2678: 2674: 2668: 2663: 2654: 2652: 2648: 2643: 2639: 2635: 2631: 2627: 2623: 2619: 2615: 2611: 2606: 2604: 2603:quantum wells 2600: 2596: 2592: 2588: 2583: 2581: 2577: 2572: 2570: 2565: 2561: 2557: 2553: 2548: 2545: 2538: 2534: 2529: 2524: 2514: 2512: 2508: 2499: 2497: 2496:color centers 2492: 2487: 2485: 2480: 2478: 2473: 2471: 2467: 2463: 2459: 2458:optical fiber 2455: 2449: 2439: 2436: 2432: 2428: 2423: 2421: 2417: 2413: 2410: 2406: 2402: 2398: 2394: 2391: 2387: 2379: 2375: 2371: 2367: 2363: 2361: 2357: 2353: 2349: 2345: 2341: 2337: 2333: 2329: 2325: 2321: 2317: 2310: 2306: 2302: 2300: 2295: 2291: 2287: 2283: 2279: 2275: 2269: 2265: 2260: 2251: 2245: 2241: 2237: 2233: 2229: 2225: 2221: 2217: 2213: 2204: 2202: 2198: 2194: 2190: 2185: 2176: 2173: 2169: 2165: 2161: 2159: 2155: 2151: 2147: 2143: 2139: 2135: 2132:wavelengths. 2131: 2127: 2122: 2113: 2105: 2098: 2083: 2078: 2068: 2062: 2058: 2054: 2049: 2047: 2043: 2039: 2035: 2031: 2026: 2022: 2016: 2013: 2010: 2007: 2005: 2001: 1999: 1995: 1992: 1989: 1988: 1987: 1980: 1971: 1969: 1965: 1961: 1957: 1953: 1952:near-infrared 1949: 1945: 1941: 1937: 1933: 1929: 1925: 1921: 1917: 1913: 1909: 1905: 1902: 1898: 1894: 1890: 1886: 1882: 1877: 1875: 1874:gas discharge 1871: 1867: 1863: 1859: 1855: 1851: 1847: 1843: 1838: 1836: 1831: 1829: 1825: 1821: 1817: 1813: 1809: 1800: 1796: 1792: 1788: 1786: 1785: 1780: 1779:visible light 1776: 1772: 1763: 1759: 1758:Distillations 1755: 1746: 1741: 1738: 1736: 1732: 1722: 1720: 1716: 1712: 1708: 1704: 1700: 1696: 1691: 1689: 1685: 1681: 1677: 1673: 1672:Nikolay Basov 1669: 1665: 1661: 1654: 1650: 1646: 1644: 1640: 1636: 1632: 1625: 1621: 1616: 1606: 1604: 1600: 1588: 1584: 1580: 1576: 1572: 1568: 1564: 1560: 1545: 1542: 1531: 1529: 1525: 1521: 1517: 1513: 1509: 1505: 1500: 1498: 1494: 1490: 1486: 1482: 1481:Fourier limit 1478: 1474: 1468: 1458: 1453: 1443: 1441: 1437: 1433: 1427: 1425: 1421: 1416: 1414: 1408: 1406: 1399: 1389: 1385: 1383: 1379: 1374: 1370: 1366: 1365: 1354: 1351: 1342: 1337: 1330: 1325: 1318: 1314: 1310: 1300: 1297: 1289: 1286:February 2023 1278: 1275: 1271: 1268: 1264: 1261: 1257: 1254: 1250: 1247: –  1246: 1242: 1241:Find sources: 1235: 1231: 1225: 1224: 1219:This section 1217: 1213: 1208: 1207: 1199: 1197: 1193: 1189: 1188:B coefficient 1185: 1184:A coefficient 1181: 1177: 1167: 1165: 1161: 1157: 1155: 1150: 1148: 1144: 1140: 1139:laser pointer 1136: 1132: 1128: 1124: 1120: 1116: 1112: 1108: 1107: 1102: 1097: 1095: 1091: 1087: 1083: 1079: 1075: 1071: 1067: 1066:Gaussian beam 1062: 1060: 1056: 1052: 1051:photon number 1048: 1043: 1041: 1037: 1032: 1022: 1013: 1011: 1007: 1006: 1001: 1000:exponentially 997: 993: 988: 986: 982: 978: 973: 971: 967: 963: 959: 955: 951: 945: 942: 941:excited state 933: 926: 922: 918: 913: 904: 900: 898: 894: 890: 886: 881: 876: 874: 870: 866: 862: 854: 850: 848: 844: 840: 836: 808: 798: 796: 792: 788: 784: 779: 778:Laser science 768: 765: 757: 747: 743: 737: 736: 731:This section 729: 725: 720: 719: 714:Laser physics 711: 708: 706: 702: 698: 694: 690: 686: 681: 679: 675: 670: 666: 663: 659: 655: 644: 642: 639: 636: 633: 630: 629: 625: 615: 612: 604: 594: 590: 584: 583: 578:This section 576: 572: 567: 566: 562: 552: 550: 546: 542: 538: 534: 530: 525: 523: 519: 515: 511: 507: 503: 498: 496: 492: 491:laser physics 488: 484: 478: 476: 470: 468: 464: 460: 455: 453: 449: 445: 441: 437: 433: 429: 428: 423: 419: 410: 400: 397: 389: 379: 375: 369: 368: 363:This section 361: 357: 352: 351: 343: 341: 336: 331: 329: 328: 323: 322: 317: 313: 310:". The terms 309: 305: 301: 297: 292: 290: 286: 282: 281: 276: 275: 270: 266: 262: 257: 255: 251: 247: 243: 242: 237: 227: 225: 221: 217: 213: 209: 205: 201: 197: 193: 189: 185: 184:laser surgery 181: 177: 173: 169: 165: 161: 157: 152: 150: 146: 142: 138: 134: 130: 126: 122: 118: 117:laser cutting 114: 110: 109: 103: 101: 97: 93: 89: 85: 81: 77: 73: 69: 66:based on the 65: 61: 57: 50: 46: 41: 37: 33: 29: 22: 8133:Mode locking 8086:Laser optics 7885: 7734: 7718: 7702: 7686: 7670: 7654: 7638: 7622: 7606: 7585: 7566: 7557:February 23, 7555:. Retrieved 7519: 7499: 7483: 7468: 7450: 7435: 7420: 7405: 7390: 7364:. Retrieved 7353: 7343: 7333:February 16, 7331:. Retrieved 7327: 7317: 7307:February 16, 7305:. Retrieved 7301: 7291: 7279:. Retrieved 7270: 7260: 7252: 7236: 7224:. Retrieved 7215: 7205: 7195:December 10, 7193:. Retrieved 7179: 7167:. Retrieved 7163:the original 7158: 7148: 7130:PowerLabs CO 7125: 7115:December 15, 7113:. Retrieved 7089: 7079:December 15, 7077:. Retrieved 7068: 7059: 7047:. Retrieved 7038: 7028: 7016:. Retrieved 7007: 6997: 6985:. Retrieved 6979: 6969: 6957:. Retrieved 6953: 6943: 6931:. Retrieved 6926: 6917: 6909: 6904: 6896: 6891: 6866: 6861:Laura Garwin 6847: 6835:. Retrieved 6802: 6796: 6786: 6774:. Retrieved 6763: 6753: 6728: 6724: 6718: 6706:. Retrieved 6697: 6687: 6678: 6672: 6650:(5): 26–33. 6647: 6643: 6637: 6625:. Retrieved 6616: 6591:. Retrieved 6566: 6562: 6552: 6535: 6528: 6503: 6499: 6493: 6481:. Retrieved 6461: 6448: 6438:September 8, 6436:. Retrieved 6411: 6407: 6397: 6380: 6376: 6370: 6353: 6347: 6322: 6316: 6306:November 27, 6304:. Retrieved 6279: 6269: 6244: 6240: 6234: 6222:. Retrieved 6197: 6193: 6183: 6158: 6152: 6143: 6139: 6133: 6121:. Retrieved 6096: 6092: 6082: 6073: 6069: 6063: 6038: 6034: 6028: 6016:. Retrieved 6011: 6001: 5968: 5965:Nano Letters 5964: 5957: 5945:. Retrieved 5941:the original 5936: 5927: 5915:. Retrieved 5907:osram-os.com 5906: 5897: 5885:. Retrieved 5877:nichia.co.jp 5876: 5867: 5855:. Retrieved 5846: 5837: 5825:. Retrieved 5811: 5771:(17): 3657. 5768: 5764: 5758: 5746:. Retrieved 5737: 5727: 5717: 5705:. Retrieved 5685: 5678: 5662:. Springer. 5659: 5653: 5644: 5638: 5605: 5601: 5595: 5583:. Retrieved 5576:the original 5563: 5551:. Retrieved 5547:the original 5542: 5532: 5520:. Retrieved 5505: 5454: 5450: 5444: 5436:the original 5425: 5372: 5368: 5304: 5300: 5294: 5282:. Retrieved 5273: 5264: 5254:December 16, 5252:. Retrieved 5243: 5234: 5224:December 16, 5222:. Retrieved 5213: 5204: 5194:December 16, 5192:. Retrieved 5183: 5174: 5155: 5149: 5137:. Retrieved 5115: 5082: 5078: 5069: 5051: 5046: 5029: 5020: 4993: 4989: 4979: 4934: 4930: 4920: 4915:, pp. 69–70. 4899: 4893: 4881:. Retrieved 4872: 4863: 4851:. Retrieved 4836: 4829: 4817:. Retrieved 4803: 4784: 4772:. Retrieved 4768:(Powerpoint) 4765:the original 4760: 4750: 4721: 4717: 4711: 4676: 4672: 4658: 4646: 4636:February 23, 4634:. Retrieved 4606: 4602: 4589: 4562: 4558: 4548: 4536:. Retrieved 4509: 4505: 4492: 4449: 4439: 4414: 4406: 4396:February 23, 4394:. Retrieved 4390:the original 4374: 4367: 4355: 4330: 4319: 4311: 4307: 4280: 4274: 4247: 4241: 4221: 4169: 4165: 4159: 4147:. Retrieved 4141: 4132: 4120:. Retrieved 4114: 4105: 4078: 4072: 4045: 4039: 4004: 3998: 3969: 3961: 3949:. Retrieved 3935: 3923:. Retrieved 3909: 3897:. Retrieved 3883: 3871:. Retrieved 3857: 3845:. Retrieved 3836: 3827: 3803: 3796: 3769: 3763: 3687: 3680: 3668: 3664: 3649:blink reflex 3639: 3612: 3580:Laser safety 3565:facility in 3541: 3380: 3377: 3353: 3334: 3309:laser weapon 3308: 3306: 3293: 3281:Laser weapon 3278: 3261:Laser weapon 3233:chemotherapy 3197: 3193:hair removal 3173:kidney stone 3162: 3136: 3102:thermometers 3052:spectroscopy 2935:, including 2922: 2906: 2882: 2864: 2861:diode lasers 2824: 2812: 2808:X-ray lasers 2806:Space-based 2805: 2785:annihilation 2775: 2768: 2752: 2749:Exotic media 2742: 2732: 2723: 2694: 2681:femtoseconds 2671: 2667:Rhodamine 6G 2607: 2598: 2584: 2573: 2552:laser diodes 2549: 2541: 2505: 2488: 2481: 2474: 2462:fiber lasers 2451: 2442:Fiber lasers 2430: 2426: 2424: 2416:spectroscopy 2395: 2364: 2340:spectroscopy 2303: 2298: 2280:, made from 2272: 2210: 2182: 2162: 2154:fluorescence 2100: 2067:millihertz. 2050: 2046:mode locking 2027: 2023: 2020: 2017:minimum cost 1985: 1878: 1842:spectrometry 1839: 1834: 1832: 1812:Gordon Gould 1805: 1799:Gordon Gould 1794: 1782: 1768: 1757: 1728: 1692: 1657: 1631:Joseph Weber 1628: 1566: 1556: 1537: 1512:nonlinearity 1501: 1477:femtoseconds 1470: 1467:Mode locking 1461:Mode locking 1455: 1440:femtoseconds 1435: 1431: 1428: 1417: 1409: 1401: 1398:Pulsed laser 1386: 1381: 1368: 1362: 1360: 1346: 1292: 1283: 1273: 1266: 1259: 1252: 1240: 1228:Please help 1223:verification 1220: 1173: 1158: 1151: 1104: 1101:focal region 1098: 1090:Bessel beams 1063: 1044: 1027: 1010:spatial mode 1003: 990:The optical 989: 974: 946: 938: 901: 893:fluorescence 877: 858: 832: 781: 760: 751: 740:Please help 735:verification 732: 709: 704: 682: 671: 667: 651: 607: 601:October 2023 598: 587:Please help 582:verification 579: 536: 526: 499: 479: 471: 467:spectroscopy 456: 425: 415: 392: 386:October 2023 383: 372:Please help 367:verification 364: 346:Fundamentals 339: 332: 325: 319: 315: 311: 293: 278: 274:X-ray lasers 272: 268: 264: 258: 253: 249: 239: 233: 212:fluorescence 153: 107: 104: 83: 75: 55: 53: 36: 8163:Q-switching 8024:X-ray laser 8017:Ti-sapphire 7987:Laser diode 7965:Helium–neon 7601:Periodicals 7366:February 1, 6837:February 9, 6776:February 9, 6483:January 13, 6224:January 13, 6140:Laser Focus 5647:. Elsevier. 5244:gizmodo.com 4724:: 121–128. 4480:|work= 4213:Chu, Steven 4172:: 279–287. 4011:. pp.  3978:. pp.  3951:February 4, 3925:February 4, 3899:February 4, 3873:February 4, 3847:January 27, 3550:(700×10 W)— 3450:High-speed 3349:DVD burners 3183:treatment, 3175:treatment, 3169:eye surgery 3149:In medicine 3114:bubblegrams 3041:fingerprint 2997:3D scanning 2981:3D printing 2959:, material 2782:positronium 2647:Raman laser 2550:Commercial 2448:Fiber laser 2435:disk lasers 2405:Ti:sapphire 2232:ultraviolet 2156:suppressed 1970:structure. 1802:mirrors..." 1711:Isidor Rabi 1553:Foundations 1497:Ti:sapphire 1485:uncertainty 1473:picoseconds 1452:Q-switching 1446:Q-switching 1424:Q-switching 1411:pulses. In 1378:mode-locked 1143:laser diode 1123:diffraction 1115:diffraction 1086:tophat beam 925:overexposed 921:gain medium 863:) or heat ( 654:gain medium 631:Gain medium 459:wavelengths 304:gain medium 296:back-formed 230:Terminology 172:fiber-optic 149:femtosecond 125:collimation 121:lithography 74:. The word 8196:Categories 7216:Aesculight 6987:August 30, 6959:August 23, 6933:August 23, 5857:August 11, 5522:August 17, 5464:1702.04669 5382:1603.02169 5314:1703.05404 4774:January 1, 4565:: 100255. 4287:. p.  4254:. p.  4149:January 6, 4122:January 6, 4085:. p.  4052:. p.  3776:. p.  3755:References 3676:Q-switched 3569:, Romania. 3525:100–3000 W 3435:DVD player 3356:holography 3255:As weapons 3064:scattering 3050:Research: 2953:converting 2951:including 2947:Industry: 2728:Nieuwegein 2673:Dye lasers 2657:Dye lasers 2537:DVD player 2344:dye lasers 2278:ruby laser 2150:picometers 2142:linewidths 2091:Gas lasers 1910:physicist 1695:Niels Bohr 1571:Max Planck 1541:capacitors 1432:dye lasers 1405:continuous 1343:spacecraft 1327:Laserlink 1317:Clementine 1256:newspapers 1106:collimated 873:wavelength 776:See also: 678:flash lamp 645:Laser beam 529:wavelength 510:irradiance 327:atom laser 32:Lazer Beam 8217:Photonics 8128:M squared 7950:Gas laser 7933:Dye laser 7745:0731-1230 7729:0146-9592 7713:0740-2511 7697:0740-3224 7681:1041-1135 7665:1077-260X 7649:0018-9197 7633:0733-8724 7617:0946-2171 7547:240934073 7423:. Wiley. 7281:March 23, 7226:March 30, 5917:March 18, 5887:March 18, 5803:119460787 5630:121209763 5602:J. Opt. B 5497:206293342 5375:: 15521. 4883:April 24, 4853:March 15, 4819:March 16, 4703:205046813 4603:Phys. Rev 4482:ignored ( 4472:cite book 4194:115181195 4009:CRC Press 3728:Nanolaser 3185:cellulite 3110:holograms 3084:metrology 3060:annealing 3008:munitions 2969:engraving 2913:laserdisc 2869:neodymium 2789:gamma ray 2599:sub-bands 2574:In 2012, 2569:linewidth 2470:ytterbium 2366:Ytterbium 2305:Neodymium 2121:Argon-ion 2097:Gas laser 2086:details). 1924:gas laser 1912:Ali Javan 1897:flashlamp 1893:Bell Labs 1866:Bell Labs 1828:resonator 1771:Bell Labs 1760:Podcast, 1668:microwave 1629:In 1951, 1557:In 1917, 1528:envelopes 1382:intention 1341:MESSENGER 1045:In 1963, 992:resonator 987:/lasers. 791:chemistry 783:Electrons 514:polarized 502:coherence 448:electrons 444:molecules 424:known as 287:or lower 285:microwave 236:microwave 224:headlamps 80:anacronym 28:LazarBeam 8181:Category 7975:Nitrogen 7818:Archived 7806:Archived 7771:Archived 7551:Archived 7467:(1996). 7360:Archived 7275:Archived 7245:Archived 7220:Archived 7189:Archived 7169:April 6, 7137:Archived 7109:Archived 7073:Archived 7049:April 6, 7043:Archived 7018:April 6, 7012:Archived 6855:(2003). 6831:Archived 6827:17747630 6770:Archived 6708:June 13, 6702:Archived 6698:BBC News 6621:Archived 6617:BBC News 6593:June 13, 6587:Archived 6544:10147730 6474:Archived 6432:Archived 6389:16971600 6300:Archived 6218:Archived 6123:June 13, 6117:Archived 6018:April 2, 5993:26618638 5911:Archived 5881:Archived 5851:Archived 5821:Archived 5748:July 22, 5742:Archived 5707:July 16, 5701:Archived 5516:Archived 5489:28707932 5417:28534489 5339:28254938 5284:March 4, 5278:Archived 5274:Phys.org 5248:Archived 5218:Archived 5214:phys.org 5188:Archived 5133:Archived 5059:Archived 5038:02460155 4971:20009378 4877:Archived 4813:Archived 4792:Archived 4627:Archived 4538:June 28, 4532:Archived 4327:(1986). 4252:Springer 4138:"LASING" 3945:Archived 3919:Archived 3893:Archived 3867:Archived 3841:Archived 3696:See also 3619:Gillette 3567:Măgurele 3511:30–100 W 3249:bleeding 3209:cervical 3143:US$ 3.20 3139:US$ 2.19 3066:, laser 3062:, laser 3058:, laser 2902:Internet 2894:military 2778:BBC News 2412:infrared 2401:sapphire 2397:Titanium 2390:infrared 2336:infrared 2290:corundum 2286:chromium 2244:fluorine 2220:exciplex 2197:ethylene 2172:rubidium 2112:) lasers 1926:, using 1824:emission 1820:thallium 1775:infrared 1493:sapphire 1489:titanium 1442:(10 s). 1082:Laguerre 1078:Gaussian 847:orbitals 754:May 2017 658:feedback 216:radiance 108:coherent 7960:Excimer 6807:Bibcode 6798:Science 6733:Bibcode 6652:Bibcode 6627:May 22, 6571:Bibcode 6508:Bibcode 6466:Bibcode 6416:Bibcode 6327:Bibcode 6284:Bibcode 6249:Bibcode 6202:Bibcode 6175:6010532 6101:Bibcode 6043:Bibcode 5973:Bibcode 5947:May 27, 5783:Bibcode 5610:Bibcode 5585:May 27, 5469:Bibcode 5408:5457509 5387:Bibcode 5347:1364541 5319:Bibcode 5301:Science 5139:May 15, 5107:4224209 5087:Bibcode 4998:Bibcode 4962:3621550 4939:Bibcode 4873:Hobarts 4726:Bibcode 4681:Bibcode 4611:Bibcode 4567:Bibcode 4514:Bibcode 4174:Bibcode 3837:aps.org 3655:retina. 3468:burner 3454:burner 3430:5–10 mW 3374:imaging 3345:Blu-ray 3331:Hobbies 3229:surgery 3217:vaginal 2973:bonding 2957:welding 2949:cutting 2839:MWC 349 2610:silicon 2591:VECSELs 2409:tunable 2399:-doped 2386:Holmium 2374:thulium 2370:holmium 2352:tripled 2348:doubled 2292:). The 2288:-doped 2262:A 50 W 2216:excimer 1908:Iranian 1904:crystal 1870:lawsuit 1548:History 1319:mission 1270:scholar 1245:"Laser" 1074:Hermite 958:excited 880:excited 865:phonons 861:photons 839:nucleus 833:In the 795:physics 674:pumping 662:amplify 545:diverge 427:photons 300:to lase 246:optical 204:near-UV 188:welding 8207:Lasers 8002:Nd:YAG 7997:Er:YAG 7938:Bubble 7886:Lasers 7743:  7727:  7711:  7695:  7679:  7663:  7647:  7631:  7615:  7592:  7577:  7545:  7535:  7506:  7490:  7475:  7457:  7451:Lasers 7442:  7427:  7412:  7397:  7134:LASER! 7102:: 6879:  6873:107–12 6825:  6542:  6387:  6173:  5991:  5801:  5722:35–41. 5693:  5666:  5628:  5495:  5487:  5415:  5405:  5345:  5337:  5162:  5105:  5079:Nature 5056:online 5036:  4969:  4959:  4911:  4844:  4701:  4673:Nature 4506:Optica 4460:  4427:  4415:Lasers 4382:  4343:  4331:Lasers 4295:  4262:  4229:  4192:  4111:"LASE" 4093:  4060:  4027:  3986:  3815:  3784:  3738:Spaser 3671:  3635:retina 3627:cornea 3574:Safety 3563:ELI-NP 3498:1–20 W 3474:400 mW 3460:250 mW 3446:100 mW 3424:drive 3422:CD-ROM 3405:1–5 mW 3223:, and 3221:vulvar 3213:penile 3204:tumors 3200:cancer 3189:striae 3026:. See 2999:, and 2757:of an 2700:bubble 2679:a few 2587:VCSELs 2576:Nichia 2544:diodes 2466:Erbium 2378:erbium 2376:, and 2332:Nd:YAG 2326:) and 2324:Nd:YLF 2313:Nd:YVO 2168:sodium 2134:Helium 2065:  1998:energy 1928:helium 1918:, and 1914:, and 1852:, and 1701:, and 1635:Ottawa 1595:  1591:  1589:and R. 1407:mode. 1272:  1265:  1258:  1251:  1243:  954:plasma 927:there. 869:absorb 841:of an 693:curved 555:Design 533:vacuum 308:lasing 298:verb " 174:, and 78:is an 8007:Raman 7543:S2CID 7384:Books 7302:WIRED 6859:. In 6477:(PDF) 6464:: 1. 6458:(PDF) 5799:S2CID 5773:arXiv 5626:S2CID 5579:(PDF) 5572:(PDF) 5493:S2CID 5459:arXiv 5377:arXiv 5343:S2CID 5309:arXiv 5103:S2CID 4699:S2CID 4630:(PDF) 4599:(PDF) 4502:(PDF) 4454:40–43 4190:S2CID 3622:razor 3466:DVD-R 3452:CD-RW 3396:Power 3337:(see 3235:, or 3072:lidar 3047:field 3028:below 3020:lidar 2943:below 2835:Venus 2825:Like 2724:FELIX 2580:OSRAM 2264:FASOR 2240:LASIK 2148:(0.5 2004:power 1891:, at 1850:radar 1725:Laser 1615:Maser 1609:Maser 1563:maser 1313:Lidar 1277:JSTOR 1263:books 1031:phase 996:maser 950:state 537:modes 531:in a 522:phase 316:maser 312:laser 254:laser 241:maser 220:droop 133:lidar 76:laser 60:light 56:laser 8012:Ruby 7741:ISSN 7725:ISSN 7709:ISSN 7693:ISSN 7677:ISSN 7661:ISSN 7645:ISSN 7629:ISSN 7613:ISSN 7590:ISBN 7575:ISBN 7559:2021 7533:ISBN 7504:ISBN 7488:ISBN 7473:ISBN 7455:ISBN 7440:ISBN 7425:ISBN 7410:ISBN 7395:ISBN 7368:2019 7335:2024 7309:2024 7283:2021 7228:2016 7197:2011 7171:2015 7117:2017 7081:2017 7051:2015 7020:2015 6989:2023 6961:2023 6935:2023 6877:ISBN 6839:2021 6823:PMID 6778:2021 6765:SPIE 6710:2011 6629:2008 6595:2019 6540:OSTI 6485:2016 6440:2019 6385:OCLC 6308:2018 6226:2016 6171:OSTI 6125:2019 6020:2024 5989:PMID 5949:2006 5919:2014 5889:2014 5859:2018 5829:2014 5750:2023 5709:2017 5691:ISBN 5664:ISBN 5587:2007 5555:2007 5524:2014 5485:PMID 5413:PMID 5335:PMID 5286:2017 5256:2019 5226:2019 5196:2019 5160:ISBN 5141:2008 5034:OCLC 4967:PMID 4909:ISBN 4885:2017 4855:2016 4842:ISBN 4821:2016 4776:2007 4638:2021 4540:2020 4484:help 4458:ISBN 4425:ISBN 4398:2021 4380:ISBN 4341:ISBN 4293:ISBN 4260:ISBN 4227:ISBN 4151:2024 4124:2024 4091:ISBN 4058:ISBN 4025:ISBN 3984:ISBN 3953:2019 3927:2019 3901:2019 3875:2019 3849:2022 3813:ISBN 3809:SPIE 3782:ISBN 3546:700 3417:5 mW 3399:Use 3381:peak 3286:See 3187:and 3181:acne 3157:and 2987:and 2971:and 2845:Uses 2837:and 2831:Mars 2578:and 2564:pump 2468:and 2282:ruby 2238:and 2138:neon 2057:JILA 1932:neon 1930:and 1901:ruby 1713:and 1674:and 1662:and 1506:and 1434:and 1249:news 1135:lens 1092:and 895:and 843:atom 793:and 697:beam 446:and 324:and 314:and 294:The 131:and 119:and 98:and 7970:Ion 7525:doi 7251:." 6815:doi 6803:212 6741:doi 6660:doi 6579:doi 6516:doi 6424:doi 6381:160 6358:doi 6335:doi 6292:doi 6257:doi 6210:doi 6163:doi 6109:doi 6051:doi 5981:doi 5791:doi 5618:doi 5477:doi 5455:118 5403:PMC 5395:doi 5327:doi 5305:355 5095:doi 5083:187 5006:doi 4994:112 4957:PMC 4947:doi 4689:doi 4677:402 4619:doi 4607:131 4575:doi 4522:doi 4289:201 4182:doi 4170:252 4054:127 4021:219 4017:218 4013:215 3980:447 3631:eye 3557:10 3484:1 W 3437:or 2979:or 2975:), 2865:top 2632:or 2535:or 2318:), 2299:not 2199:in 2146:GHz 1639:RCA 1232:by 1080:or 960:") 744:by 591:by 376:by 261:GHz 182:), 90:at 70:of 30:or 8198:: 7573:. 7549:. 7541:. 7531:. 7358:. 7352:. 7326:. 7300:. 7273:. 7269:. 7218:. 7214:. 7157:. 7071:. 7067:. 7037:. 7006:. 6978:. 6952:. 6925:. 6875:. 6829:. 6821:. 6813:. 6801:. 6795:. 6768:. 6762:. 6739:. 6727:. 6700:. 6696:. 6658:. 6648:19 6646:. 6619:. 6615:. 6603:^ 6585:. 6577:. 6565:. 6561:. 6514:. 6504:40 6502:. 6472:. 6460:. 6430:. 6422:. 6412:40 6410:. 6406:. 6379:. 6333:. 6298:. 6290:. 6278:. 6255:. 6245:51 6243:. 6216:. 6208:. 6198:72 6196:. 6192:. 6169:. 6161:. 6144:18 6142:. 6115:. 6107:. 6097:69 6095:. 6091:. 6072:. 6049:. 6039:53 6037:. 6010:. 5987:. 5979:. 5969:16 5967:. 5935:. 5905:. 5879:. 5875:. 5849:. 5845:. 5797:. 5789:. 5781:. 5769:85 5767:. 5740:. 5736:. 5699:. 5624:. 5616:. 5604:. 5541:. 5491:. 5483:. 5475:. 5467:. 5453:. 5411:. 5401:. 5393:. 5385:. 5371:. 5367:. 5355:^ 5341:. 5333:. 5325:. 5317:. 5303:. 5276:. 5272:. 5242:. 5216:. 5212:. 5182:. 5131:. 5127:. 5123:. 5101:. 5093:. 5081:. 5004:. 4992:. 4988:. 4965:. 4955:. 4945:. 4935:85 4933:. 4929:. 4907:, 4903:, 4875:. 4871:. 4738:^ 4722:18 4720:. 4697:. 4687:. 4675:. 4671:. 4625:. 4617:. 4605:. 4601:. 4573:. 4563:72 4561:. 4557:. 4530:. 4520:. 4508:. 4504:. 4476:: 4474:}} 4470:{{ 4456:. 4448:. 4423:. 4339:. 4291:. 4283:. 4258:. 4256:76 4250:. 4215:; 4202:^ 4188:. 4180:. 4168:. 4140:. 4113:. 4089:. 4081:. 4056:. 4048:. 4023:. 4015:, 4007:. 3982:. 3974:. 3943:. 3839:. 3835:. 3807:. 3780:. 3778:66 3772:. 3559:PW 3548:TW 3351:. 3315:. 3307:A 3239:. 3231:, 3219:, 3215:, 3211:, 3195:. 3126:, 3122:, 3112:, 3108:, 3104:, 3100:, 3096:, 3086:, 3082:, 3078:, 3074:, 3070:, 3054:, 3035:: 3018:, 3014:, 3010:, 2991:, 2963:, 2920:. 2904:. 2896:. 2875:, 2833:, 2745:. 2605:. 2558:, 2533:CD 2498:. 2429:/d 2372:, 2368:, 2356:UV 2350:, 2203:. 2160:. 2115:CO 1887:, 1848:, 1844:, 1756:, 1697:, 1593:C. 1522:, 1518:, 1426:. 1369:CW 1198:. 1152:A 1096:. 915:A 899:. 797:. 707:. 342:. 330:. 277:, 271:, 267:, 256:. 226:. 170:, 166:, 162:, 158:, 151:. 111:. 102:. 54:A 7878:e 7871:t 7864:v 7785:" 7747:) 7739:( 7731:) 7723:( 7715:) 7707:( 7699:) 7691:( 7683:) 7675:( 7667:) 7659:( 7651:) 7643:( 7635:) 7627:( 7619:) 7611:( 7596:. 7581:. 7561:. 7527:: 7512:. 7494:. 7479:. 7461:. 7446:. 7431:. 7416:. 7401:. 7370:. 7337:. 7311:. 7285:. 7230:. 7199:. 7173:. 7132:2 7119:. 7083:. 7053:. 7022:. 6991:. 6963:. 6937:. 6885:. 6841:. 6817:: 6809:: 6780:. 6747:. 6743:: 6735:: 6729:5 6712:. 6666:. 6662:: 6654:: 6631:. 6597:. 6581:: 6573:: 6567:6 6546:. 6522:. 6518:: 6510:: 6487:. 6468:: 6442:. 6426:: 6418:: 6391:. 6364:. 6360:: 6341:. 6337:: 6329:: 6310:. 6294:: 6286:: 6263:. 6259:: 6251:: 6228:. 6212:: 6204:: 6177:. 6165:: 6127:. 6111:: 6103:: 6074:5 6057:. 6053:: 6045:: 6022:. 5995:. 5983:: 5975:: 5951:. 5921:. 5891:. 5861:. 5831:. 5805:. 5793:: 5785:: 5775:: 5752:. 5711:. 5672:. 5632:. 5620:: 5612:: 5606:2 5589:. 5557:. 5526:. 5499:. 5479:: 5471:: 5461:: 5419:. 5397:: 5389:: 5379:: 5373:8 5349:. 5329:: 5321:: 5311:: 5288:. 5258:. 5228:. 5198:. 5168:. 5143:. 5109:. 5097:: 5089:: 5040:. 5014:. 5008:: 5000:: 4973:. 4949:: 4941:: 4887:. 4857:. 4823:. 4778:. 4732:. 4728:: 4705:. 4691:: 4683:: 4640:. 4621:: 4613:: 4583:. 4577:: 4569:: 4542:. 4524:: 4516:: 4510:5 4486:) 4466:. 4433:. 4421:4 4400:. 4349:. 4337:2 4301:. 4268:. 4235:. 4196:. 4184:: 4176:: 4153:. 4126:. 4099:. 4087:4 4066:. 4033:. 4019:– 3992:. 3955:. 3929:. 3903:. 3877:. 3851:. 3821:. 3790:. 3531:2 3517:2 3341:) 3298:) 3294:( 3283:. 3130:. 3003:. 2967:( 2863:( 2431:T 2427:n 2403:( 2382:2 2330:( 2322:( 2315:4 2311:( 2284:( 2248:2 2117:2 2110:2 1495:( 1367:( 1299:) 1293:( 1288:) 1284:( 1274:· 1267:· 1260:· 1253:· 1226:. 1076:– 767:) 761:( 756:) 752:( 738:. 614:) 608:( 603:) 599:( 585:. 399:) 393:( 388:) 384:( 370:. 34:. 23:.

Index

Laser (disambiguation)
LazarBeam
Lazer Beam
A telescope emitting four orange laser beams.
Very Large Telescope
laser guide stars
light
optical amplification
stimulated emission
electromagnetic radiation
anacronym
Theodore Maiman
Hughes Research Laboratories
Charles H. Townes
Arthur Leonard Schawlow
coherent
Spatial coherence
laser cutting
lithography
collimation
laser pointers
lidar
temporal coherence
frequency spectrum
ultrashort pulses
femtosecond
optical disc drives
laser printers
barcode scanners
DNA sequencing instruments

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.