Knowledge

Iron oxide nanoparticle

Source đź“ť

1363: 248: 979: 260: 1256:. The surfactant lowers the surface tension between water and oil, making the solution transparent. The water nanodroplets act as nanoreactors for synthesizing nanoparticles. The shape of the water pool is spherical. The size of the nanoparticles will depend on size of the water pool to a great extent. Thus, the size of the spherical nanoparticles can be tailored and tuned by changing the size of the water pool. 2422: 33: 814: 974:{\displaystyle \mathbf {F} _{m}={\begin{cases}{\frac {V\chi }{2\mu _{0}}}\mathbf {\nabla } \left|\mathbf {B} \right|^{2}&\qquad {\text{in a weak magnetic field}}\\{\frac {1}{2}}\mathbf {\nabla } \left(\mathbf {m} _{sat}\cdot \mathbf {B} \right)&\qquad {\text{in a strong magnetic field}}\end{cases}}} 1366:
The magneto-mechano-chemical synthesis (1) is accompanied by splitting of electron energy levels (SEELs) and electron transfer in magnetic field (2) from nanoparticles Fe3O4 to doxorubicin. The concentration of paramagnetic centers (free radicals) is increased in the magneto-sensitive complex (MNC)
602:
greater than one and are attracted to magnetic fields. The magnetic moment drops to zero when the applied field is removed. But in a ferromagnetic material, all the atomic moments are aligned even without an external field. A ferrimagnetic material is similar to a ferromagnet but has two different
1420:
with antitumor magnetic complex and lesser side effects in normal tissues. Magnetic complexes with magnetic memory that consist of iron oxide nanoparticles loaded with antitumor drug have additional advantages over conventional antitumor drugs due to their ability to be remotely controlled while
730:
manipulate the path of iron oxide particles. A spatially uniform magnetic field can result in a torque on the magnetic particle, but cannot cause particle translation; therefore, the magnetic field must be a gradient to cause translational motion. The force on a point-like magnetic dipole moment
1251:
film of surface-active molecules. Microemulsions may be categorized further as oil-in-water (o/w) or water-in-oil (w/o), depending on the dispersed and continuous phases. Water-in-oil is more popular for synthesizing many kinds of nanoparticles. The water and oil are mixed with an amphiphillic
1473:
of malignant tumor. Cancer cells are then particularly vulnerable to an oxidative assault and induction of high levels of oxidative stress locally in tumor tissue, that has the potential to destroy or arrest the growth of cancer cells and can be thought as therapeutic strategy against cancer.
729:
Furthermore, the unique superparamagnetic behavior of iron oxide nanoparticles allows them to be manipulated magnetically from a distance. In the latter sections, external manipulation will be discussed in regards to biomedical applications of iron oxide nanoparticles. Forces are required to
1268:; and the nanoparticles are easily dispersed. For biomedical applications like magnetic resonance imaging, magnetic cell separation or magnetorelaxometry, where particle size plays a crucial role, magnetic nanoparticles produced by this method are very useful. Viable iron precursors include 717:
with time. (Its Curie temperature is hard to determine). Both magnetite and maghemite nanoparticles are superparamagnetic at room temperature. This superparamagnetic behavior of iron oxide nanoparticles can be attributed to their size. When the size gets small enough (<10 nm),
1057:
of the particles. It also determines to a great extent the distribution and type of structural defects or impurities in the particles. All these factors affect magnetic behavior. Recently, many attempts have been made to develop processes and techniques that would yield
2219:
Orel VE, Dasyukevich O, Rykhalskyi O, Orel VB, Burlaka A, Virko S (November 2021). "Magneto-mechanical effects of magnetite nanoparticles on Walker-256 carcinosarcoma heterogeneity, redox state and growth modulated by an inhomogeneous stationary magnetic field".
987:
Another important consideration is the force acting against the magnetic force. As iron oxide nanoparticles translate toward the magnetic field source, they experience Stokes' drag force in the opposite direction. The drag force is expressed below.
603:
types of atoms with opposing magnetic moments. The material has a magnetic moment because the opposing moments have different strengths. If they have the same magnitude, the crystal is antiferromagnetic and possesses no net magnetic moment.
2374:
Karakatsanis A, Daskalakis K, StĂĄlberg P, Olofsson H, Andersson Y, Eriksson S, et al. (November 2017). "Superparamagnetic iron oxide nanoparticles as the sole method for sentinel node biopsy detection in patients with breast cancer".
641:. The ordering of magnetic moments in ferromagnetic, antiferromagnetic, and ferrimagnetic materials decreases with increasing temperature. Ferromagnetic and ferrimagnetic materials become disordered and lose their magnetization beyond the 1092:
ions). The other method consists in ageing stoichiometric mixtures of ferrous and ferric hydroxides in aqueous media, yielding spherical magnetite particles homogeneous in size. In the second type, the following chemical reaction occurs:
803: 1508:
which contains iron oxide is injected to the tumor and then heated up by an alternating high frequency magnetic field. The temperature distribution produced by this heat generation may help to destroy cancerous cells inside the tumor.
1637:
Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (June 2008). "Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications".
1312:
in organic solvents with surfactant molecules. A combination of Xylenes and Sodium Dodecylbenezensulfonate as a surfactant are used to create nanoreactors for which well dispersed iron(II) and iron (III) salts can react.
1469:. The experimental data was received about correlation between the frequency of electromagnetic field radiation with magnetic properties and quantity paramagnetic centres of complex. It is possible to control the 1875:
Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, et al. (July 2006). "In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility".
1379:
deregulation in the mitochondrion (5). Magnetic nanotherapy has more effectively inhibited the synthesis of ATP in mitochondria of tumor cell and induced the death of tumor cells compared to conventional
1084:
are partially oxidized with different oxidizing agents. For example, spherical magnetite particles of narrow size distribution with mean diameters between 30 and 100 nm can be obtained from a
1040: 398:, separation of biomolecules, and targeted drug and gene delivery for medical diagnosis and therapeutics. These applications require coating of the nanoparticles by agents such as long-chain 2153:
Orel V, Shevchenko A, Romanov A, Tselepi M, Mitrelias T, Barnes CH, et al. (January 2015). "Magnetic properties and antitumor effect of nanocomplexes of iron oxide and doxorubicin".
808:
In biological applications, iron oxide nanoparticles will be translate through some kind of fluid, possibly bodily fluid, in which case the aforementioned equation can be modified to:
395: 1546:
Colombo M, Carregal-Romero S, Casula MF, Gutiérrez L, Morales MP, Böhm IB, Heverhagen JT, Prosperi D, Parak WJ (2012). "Biological applications of magnetic nanoparticles".
1264:
The decomposition of iron precursors in the presence of hot organic surfactants results in samples with good size control, narrow size distribution (5-12 nm) and good
748: 699: 669: 2345:
Heydari M, Javidi M, Attar MM, Karimi A, Navidbakhsh M, Haghpanahi M, Amanpour S (2015). "Magnetic Fluid Hyperthermia in a Cylindrical Gel Contains Water Flow".
1329:
and potentially non-toxic to humans. Iron oxide is easily degradable and therefore useful for in vivo applications. Results from exposure of a human
1367:(3). The local combined action of constant magnetic and electromagnetic fields and MNC in tumor (4) initiated SEELs, free radicals, leading to 984:
Based on these equations, there will be the greatest force in the direction of the largest positive slope of the energy density scalar field.
2091:
Orel VE, Tselepi M, Mitrelias T, Rykhalskyi A, Romanov A, Orel VB, et al. (June 2018). "Nanomagnetic Modulation of Tumor Redox State".
1581:
Pai AB (2019). "Chapter 6. Iron Oxide Nanoparticle Formulations for Supplementation". In Sigel A, Freisinger E, Sigel RK, Carver PL (eds.).
2347: 1429:(below 40 Â°C). The combined influence of inhomogeneous constant magnetic and electromagnetic fields during nanotherapy has initiated 69: 2044:"Iron oxide nanoparticle agglomeration influences dose rates and modulates oxidative stress-mediated dose-response profiles in vitro" 594:
state, the individual atomic magnetic moments are randomly oriented, and the substance has a zero net magnetic moment if there is no
59: 2426: 1489:
transmission through magnetic nanoparticles to the tumor due to the action of the inhomogeneous stationary magnetic field reflects
1045:
In this equation, η is the fluid viscosity, R is the hydrodynamic radius of the particle, and 𝑣 is the velocity of the particle.
2451: 290: 64: 2446: 2135: 1598: 1512:
The use of superparamagnetic iron oxide (SPIO) can also be used as a tracer in sentinel node biopsy instead of radioisotope.
1347:
mechanism for uncoated iron oxide. Solubility was found to strongly influence the cytotoxic response. Labelling cells (e.g.
2306:"Evaluation of the effects of injection velocity and different gel concentrations on nanoparticles in hyperthermia therapy" 994: 1786:
Sugimoto T (1980). "Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels".
107: 1840:
Laughlin R (1976). "An expedient technique for determining solubility phase boundaries in surfactant–water systems".
1474:
Multifunctional magnetic complexes with magnetic memory can combine cancer magnetic nanotherapy, tumor targeting and
2456: 722:
can change the direction of magnetization of the entire crystal. A material with many such crystals behaves like a
1821:
Massart R, Cabuil V (1987). "Monodisperse magnetic nanoparticles: preparation and dispersion in water and oils".
599: 181: 1751:
Pankhurst QA, Connolly J, Jones SK, Dobson J (2003). "Applications of magnetic nanoparticles in biomedicine".
1384:
Iron oxide nanoparticles are used in cancer magnetic nanotherapy that is based on the magneto-spin effects in
1919:
Bulte JW, Kraitchman DL (November 2004). "Iron oxide MR contrast agents for molecular and cellular imaging".
1359:. Some forms of Iron oxide nanoparticle have been found to be toxic and cause transcriptional reprogramming. 1356: 383: 201: 49: 141: 74: 1355:) with iron oxide nanoparticles is an interesting new tool to monitor such labelled cells in real time by 283: 1698:
Teja AS, Koh PY (2009). "Synthesis, properties, and applications of magnetic iron oxide nanoparticles".
387: 2257:"Cylindrical agar gel with fluid flow subjected to an alternating magnetic field during hyperthermia" 1493:
converting iron-induced reactive oxygen species generation to the modulation of biochemical signals.
1405: 1397: 391: 156: 54: 838: 1454: 634: 553:
have 5 unpaired electrons in 3d shell. Therefore, when crystals are formed from iron atoms or ions
234: 186: 2255:
Javidi M, Heydari M, Attar MM, Haghpanahi M, Karimi A, Navidbakhsh M, Amanpour S (February 2015).
2441: 1425:
with a constant magnetic field and further strengthening of their antitumor activity by moderate
1389: 1145:
ratio of 2:1 and a non-oxidizing environment. Being highly susceptibile to oxidation, magnetite (
714: 1445:, acquires the magnetic properties of paramagnetic substances. Electromagnetic radiation at the 511:
vacancies. The cations are distributed randomly over the 8 tetrahedral and 16 octahedral sites.
419: 2134:
Orel VE, Tselepi M, Mitrelias T, Shevchenko AD, Rykhalskiy OY, Golovko TS, et al. (2018).
1462: 1430: 1422: 1240: 1081: 276: 1441:. In particular, anthracycline antitumor antibiotic doxorubicin, the native state of which is 798:{\displaystyle \mathbf {F} _{m}=\mathbf {\nabla } \left(\mathbf {m} \cdot \mathbf {B} \right)} 459:. Maghemite differs from magnetite in that all or most of the iron is in the trivalent state ( 2461: 1993:
Kodali V, Littke MH, Tilton SC, Teeguarden JG, Shi L, Frevert CW, et al. (August 2013).
1526: 1426: 1401: 1385: 1248: 1247:
liquids consisting of nanosized domains of one or both liquids in the other stabilized by an
619: 191: 2229: 1885: 1849: 1795: 719: 677: 647: 637:
magnetic material (e. g. magnetic nanoparticles) that has no hysteresis loop is said to be
423: 229: 151: 112: 92: 2042:
Sharma G, Kodali V, Gaffrey M, Wang W, Minard KR, Karin NJ, et al. (September 2014).
726:, except that the moments of entire crystals are fluctuating instead of individual atoms. 8: 1458: 1446: 196: 161: 102: 2233: 1962:
Geraldes CF, Delville MH (2021). "Chapter 9. Iron Oxide Nanoparticles for Bio-Imaging".
1889: 1853: 1799: 1585:. Metal Ions in Life Sciences. Vol. 19. Berlin: de Gruyter GmbH. pp. 157–180. 1362: 672: 2400: 2322: 2305: 2304:
Javidi M, Heydari M, Karimi A, Haghpanahi M, Navidbakhsh M, Razmkon A (December 2014).
2286: 2116: 2068: 2043: 2019: 1994: 1975: 1944: 1768: 1612: 1372: 1343:
cell line to seven industrially important nanoparticles showed a nanoparticle specific
1078: 580: 131: 1764: 1583:
Essential Metals in Medicine: Therapeutic Use and Toxicity of Metal Ions in the Clinic
2392: 2327: 2278: 2189: 2170: 2108: 2073: 2024: 1979: 1936: 1901: 1861: 1807: 1772: 1739: 1655: 1616: 1604: 1594: 1563: 1521: 1470: 1434: 1054: 642: 638: 520: 361: 349: 264: 171: 2404: 2188:
Orel V, Mitrelias T, Tselepi M, Golovko T, Dynnyk O, Nikolov N, et al. (2014).
1948: 1711: 2384: 2356: 2317: 2268: 2237: 2201: 2162: 2120: 2100: 2063: 2055: 2014: 2006: 1967: 1928: 1893: 1857: 1803: 1760: 1707: 1647: 1586: 1555: 1490: 1393: 1376: 1368: 1326: 1201: 713:
is ferrimagnetic at room temperature, unstable at high temperatures, and loses its
371: 2290: 626:
because there is more than one stable magnetic state for each field. Therefore, a
360:
are also highly magnetic materials, they are toxic and easily oxidized) including
2273: 2256: 2059: 1485:
to target iron oxide magnetic nanoparticles can result in enhanced tumor growth.
1482: 1475: 1074: 528: 40: 2241: 2166: 2104: 1486: 1466: 1352: 1197: 595: 584: 576: 524: 478: 474: 252: 166: 2360: 1971: 1590: 2435: 1995:"Dysregulation of macrophage activation profiles by engineered nanoparticles" 1450: 1299: 1265: 1233: 723: 607: 219: 210: 146: 97: 24: 606:
When an external magnetic field is applied to a ferromagnetic material, the
2396: 2331: 2282: 2174: 2112: 2077: 2028: 1940: 1905: 1659: 1608: 1567: 1497: 1478:
functionalities in theranostics approach for personalized cancer medicine.
1442: 1417: 1196:
The size and shape of the nanoparticles can be controlled by adjusting pH,
1059: 1053:
The preparation method has a large effect on shape, size distribution, and
591: 122: 2205: 1438: 1330: 1322: 1205: 136: 705:
is ferrimagnetic at room temperature and has a Curie temperature of 850
403: 1559: 1505: 1340: 1259: 1253: 1244: 623: 399: 307: 2388: 2373: 2010: 1897: 1651: 247: 1545: 1348: 1344: 1333: 1271: 1099: 710: 702: 627: 375: 352:
properties and their potential applications in many fields (although
334: 315: 311: 83: 1932: 671:
and antiferromagnetic materials lose their magnetization beyond the
1413: 1409: 1237: 1209: 1077:. This method can be further divided into two types. In the first, 224: 259: 1213: 1089: 1062: 630:
will be present even after removing the external magnetic field.
368: 2421: 1501: 1337: 706: 379: 357: 353: 326: 2133: 2090: 1449:
frequency can increase the time that radical pairs are in the
1400:. The magnetic nanotherapy is remotely controlled by external 2303: 2218: 1725:
Benz M (2012). "Superparamagnetism:Theory and Applications".
2254: 2152: 2140:
World Congress on Medical Physics and Biomedical Engineering
1992: 1750: 1700:
Progress in Crystal Growth and Characterization of Materials
410:. They have been used in formulations for supplementation. 2187: 967: 407: 320: 32: 2190:"Imaging of Guerin Carcinoma During Magnetic Nanotherapy" 1065:" consisting of nanoparticles uniform in size and shape. 471: 2344: 2041: 1120: 348:). They have attracted extensive interest due to their 1874: 426:. In magnetite, all tetrahedral sites are occupied by 1437:
from iron oxide nanoparticles to anticancer drug and
1035:{\displaystyle \mathbf {F} _{d}=6\pi \,\eta \,R\,v\,} 997: 817: 751: 680: 650: 614:) increases with the strength of the magnetic field ( 1636: 1260:
High-temperature decomposition of organic precursors
1727:Discussion of Two Papers on Magnetic Nanoparticles 1034: 973: 797: 693: 663: 622:. Over some range of fields the magnetization has 367:Applications of iron oxide nanoparticles include 310:particles with diameters between about 1 and 100 2433: 1961: 2310:Journal of Biomedical Physics & Engineering 1918: 1500:may also be used in magnetic hyperthermia as a 1388:and semiconductor material ability to generate 542:have also 4 unpaired electrons in 3d shell and 477:in the octahedral sites. Maghemite has a cubic 2194:Journal of Nanopharmaceutics and Drug Delivery 481:in which each cell contains 32 oxygen ions, 21 2136:"Magnetic resonance cancer nanotheranostics." 1820: 284: 2348:Journal of Mechanics in Medicine and Biology 2222:Journal of Magnetism and Magnetic Materials 1539: 1316: 437:and octahedral sites are occupied by both 291: 277: 2321: 2272: 2067: 2018: 1671: 1669: 1632: 1630: 1628: 1626: 1481:Yet, the use of inhomogeneous stationary 1321:Magnetite and maghemite are preferred in 1119:Optimum conditions for this reaction are 1031: 1027: 1023: 1019: 2142:. Singapore: Springer. pp. 651–654. 1842:Journal of Colloid and Interface Science 1839: 1788:Journal of Colloid and Interface Science 1785: 1396:in biological media under inhomogeneous 1361: 1697: 1675: 1465:of magnetic particles depends on their 2434: 1878:Environmental Science & Technology 1693: 1691: 1689: 1687: 1666: 1623: 1504:treatment method. In this method, the 514: 2261:International Journal of Hyperthermia 1753:Journal of Physics D: Applied Physics 314:. The two main forms are composed of 1964:Metal Ions in Bio-Imaging Techniques 1724: 422:with oxygen forming a face-centered 1718: 1684: 1580: 1431:splitting of electron energy levels 1073:By far the most employed method is 13: 1404:reactive oxygen species (ROS) and 1068: 916: 869: 768: 598:. These materials have a relative 14: 2473: 2415: 1433:in magnetic complex and unpaired 1227: 1088:salt, a base and a mild oxidant ( 2420: 1156:) is transformed to maghemite (Îł 1000: 947: 927: 879: 820: 786: 778: 754: 386:, high-sensitivity biomolecular 258: 246: 31: 2367: 2338: 2297: 2248: 2212: 2181: 2146: 2127: 2084: 2035: 1986: 1955: 1912: 1868: 1833: 1814: 1712:10.1016/j.pcrysgrow.2008.08.003 1678:Hand Book of Magnetic Materials 1406:reactive nitrogen species (RNS) 958: 895: 19:Part of a series of articles on 2452:Experimental cancer treatments 2377:The British Journal of Surgery 1966:. Springer. pp. 271–297. 1779: 1744: 1733: 1574: 1: 1532: 1453:and hence the probability of 1357:magnetic resonance tomography 1200:, temperature, nature of the 1167:) in the presence of oxygen: 384:superparamagnetic relaxometry 2447:Nanoparticles by composition 2274:10.3109/02656736.2014.988661 2060:10.3109/17435390.2013.822115 1862:10.1016/0021-9797(76)90030-8 1808:10.1016/0021-9797(80)90187-3 1457:and so the concentration of 1048: 527:, an iron atom has a strong 413: 7: 1765:10.1088/0022-3727/36/13/201 1515: 396:magnetic fluid hyperthermia 10: 2478: 2242:10.1016/j.jmmm.2021.168314 2167:10.1016/j.nano.2014.07.007 2105:10.1016/j.nano.2018.03.002 961:in a strong magnetic field 742:is given by the equation: 388:magnetic resonance imaging 2361:10.1142/S0219519415500888 1972:10.1515/9783110685701-015 1591:10.1515/9783110527872-012 1398:electromagnetic radiation 470:) and by the presence of 392:magnetic particle imaging 1676:Buschow KH, ed. (2006). 1216:, and nitrates), or the 898:in a weak magnetic field 736:due to a magnetic field 420:inverse spinel structure 404:alkyl-substituted amines 333:) and its oxidized form 304:Iron oxide nanoparticles 235:Nanocrystalline material 211:Nanostructured materials 2457:Transition metal oxides 2427:Magnetite nanoparticles 1392:, furthermore, control 1317:Biomedical applications 1427:inductive hyperthermia 1386:free-radical reactions 1381: 1036: 975: 799: 695: 665: 628:remanent magnetization 618:) until it approaches 2429:at Wikimedia Commons 2206:10.1166/jnd.2014.1044 1527:Regenerative medicine 1402:electromagnetic field 1365: 1224:concentration ratio. 1037: 976: 800: 696: 694:{\displaystyle T_{N}} 666: 664:{\displaystyle T_{C}} 600:magnetic permeability 265:Technology portal 60:Mechanical properties 995: 815: 749: 720:thermal fluctuations 678: 648: 424:cubic crystal system 230:Nanoporous materials 93:Buckminsterfullerene 2234:2021JMMM..53868314O 1890:2006EnST...40.4374B 1854:1976JCIS...55..239L 1800:1980JCIS...74..227S 1447:hyperfine splitting 515:Magnetic properties 132:Carbon quantum dots 1921:NMR in Biomedicine 1560:10.1039/c2cs15337h 1491:mechanical stimuli 1382: 1123:between 8 and 14, 1032: 971: 966: 795: 691: 661: 521:unpaired electrons 253:Science portal 65:Optical properties 2425:Media related to 2389:10.1002/bjs.10606 2383:(12): 1675–1685. 2011:10.1021/nn402145t 1898:10.1021/es052069i 1884:(14): 4374–4381. 1759:(13): R167–R181. 1740:Magnetic tweezers 1652:10.1021/cr068445e 1600:978-3-11-052691-2 1554:(11): 4306–4334. 1522:Neuroregeneration 1435:electron transfer 1325:because they are 1079:ferrous hydroxide 1055:surface chemistry 962: 913: 899: 866: 643:Curie temperature 639:superparamagnetic 581:antiferromagnetic 418:Magnetite has an 362:molecular imaging 350:superparamagnetic 301: 300: 113:Carbon allotropes 2469: 2424: 2409: 2408: 2371: 2365: 2364: 2342: 2336: 2335: 2325: 2301: 2295: 2294: 2276: 2252: 2246: 2245: 2216: 2210: 2209: 2185: 2179: 2178: 2150: 2144: 2143: 2131: 2125: 2124: 2099:(4): 1249–1256. 2088: 2082: 2081: 2071: 2039: 2033: 2032: 2022: 2005:(8): 6997–7010. 1990: 1984: 1983: 1959: 1953: 1952: 1916: 1910: 1909: 1872: 1866: 1865: 1837: 1831: 1830: 1818: 1812: 1811: 1783: 1777: 1776: 1748: 1742: 1737: 1731: 1730: 1722: 1716: 1715: 1695: 1682: 1681: 1673: 1664: 1663: 1646:(6): 2064–2110. 1640:Chemical Reviews 1634: 1621: 1620: 1578: 1572: 1571: 1543: 1408:-mediated local 1394:oxidative stress 1377:proton-transport 1369:oxidative stress 1311: 1310: 1309: 1295: 1294: 1293: 1283: 1282: 1281: 1223: 1219: 1192: 1166: 1155: 1144: 1143: 1142: 1133: 1132: 1131: 1115: 1087: 1041: 1039: 1038: 1033: 1009: 1008: 1003: 980: 978: 977: 972: 970: 969: 963: 960: 955: 951: 950: 942: 941: 930: 919: 914: 906: 900: 897: 892: 891: 886: 882: 872: 867: 865: 864: 863: 850: 842: 829: 828: 823: 804: 802: 801: 796: 794: 790: 789: 781: 771: 763: 762: 757: 741: 735: 700: 698: 697: 692: 690: 689: 673:NĂ©el temperature 670: 668: 667: 662: 660: 659: 574: 573: 572: 563: 562: 561: 552: 551: 550: 541: 540: 539: 510: 509: 505: 500: 499: 498: 490: 489: 485: 469: 468: 467: 458: 457: 456: 447: 446: 445: 436: 435: 434: 372:magnetic storage 347: 332: 293: 286: 279: 263: 262: 251: 250: 202:Titanium dioxide 41:Carbon nanotubes 35: 16: 15: 2477: 2476: 2472: 2471: 2470: 2468: 2467: 2466: 2432: 2431: 2418: 2413: 2412: 2372: 2368: 2343: 2339: 2302: 2298: 2253: 2249: 2217: 2213: 2186: 2182: 2151: 2147: 2132: 2128: 2089: 2085: 2040: 2036: 1991: 1987: 1960: 1956: 1933:10.1002/nbm.924 1917: 1913: 1873: 1869: 1838: 1834: 1819: 1815: 1784: 1780: 1749: 1745: 1738: 1734: 1723: 1719: 1696: 1685: 1674: 1667: 1635: 1624: 1601: 1579: 1575: 1544: 1540: 1535: 1518: 1483:magnetic fields 1476:medical imaging 1390:oxygen radicals 1353:dendritic cells 1319: 1308: 1305: 1304: 1303: 1297: 1292: 1289: 1288: 1287: 1285: 1280: 1277: 1276: 1275: 1269: 1262: 1230: 1221: 1217: 1191: 1187: 1183: 1179: 1175: 1171: 1165: 1161: 1157: 1154: 1150: 1146: 1141: 1139: 1138: 1137: 1135: 1130: 1128: 1127: 1126: 1124: 1113: 1109: 1105: 1097: 1085: 1075:coprecipitation 1071: 1069:Coprecipitation 1051: 1004: 999: 998: 996: 993: 992: 965: 964: 959: 956: 946: 931: 926: 925: 924: 920: 915: 905: 902: 901: 896: 893: 887: 878: 874: 873: 868: 859: 855: 851: 843: 841: 834: 833: 824: 819: 818: 816: 813: 812: 785: 777: 776: 772: 767: 758: 753: 752: 750: 747: 746: 737: 731: 685: 681: 679: 676: 675: 655: 651: 649: 646: 645: 575:they can be in 571: 569: 568: 567: 565: 560: 558: 557: 556: 554: 549: 547: 546: 545: 543: 538: 536: 535: 534: 532: 529:magnetic moment 517: 507: 503: 502: 497: 495: 494: 493: 491: 487: 483: 482: 466: 464: 463: 462: 460: 455: 453: 452: 451: 449: 444: 442: 441: 440: 438: 433: 431: 430: 429: 427: 416: 346: 342: 338: 331: 325: 319: 297: 257: 245: 142:Aluminium oxide 12: 11: 5: 2475: 2465: 2464: 2459: 2454: 2449: 2444: 2442:Iron compounds 2417: 2416:External links 2414: 2411: 2410: 2366: 2355:(5): 1550088. 2337: 2316:(4): 151–162. 2296: 2247: 2211: 2180: 2145: 2126: 2083: 2054:(6): 663–675. 2048:Nanotoxicology 2034: 1985: 1954: 1927:(7): 484–499. 1911: 1867: 1848:(1): 239–241. 1832: 1813: 1794:(1): 227–243. 1778: 1743: 1732: 1717: 1706:(1–2): 22–45. 1683: 1665: 1622: 1599: 1573: 1537: 1536: 1534: 1531: 1530: 1529: 1524: 1517: 1514: 1487:Magnetic force 1463:The reactivity 1318: 1315: 1306: 1290: 1278: 1261: 1258: 1229: 1228:Microemulsions 1226: 1198:ionic strength 1194: 1193: 1189: 1185: 1181: 1177: 1173: 1163: 1159: 1152: 1148: 1140: 1129: 1117: 1116: 1111: 1107: 1103: 1098:2 Fe + Fe + 8 1070: 1067: 1050: 1047: 1043: 1042: 1030: 1026: 1022: 1018: 1015: 1012: 1007: 1002: 982: 981: 968: 957: 954: 949: 945: 940: 937: 934: 929: 923: 918: 912: 909: 904: 903: 894: 890: 885: 881: 877: 871: 862: 858: 854: 849: 846: 840: 839: 837: 832: 827: 822: 806: 805: 793: 788: 784: 780: 775: 770: 766: 761: 756: 715:susceptibility 688: 684: 658: 654: 596:magnetic field 570: 559: 548: 537: 516: 513: 496: 465: 454: 443: 432: 415: 412: 344: 340: 329: 323: 299: 298: 296: 295: 288: 281: 273: 270: 269: 268: 267: 255: 240: 239: 238: 237: 232: 227: 222: 214: 213: 207: 206: 205: 204: 199: 194: 189: 184: 179: 174: 169: 164: 159: 154: 149: 144: 139: 134: 126: 125: 118: 117: 116: 115: 110: 105: 100: 95: 87: 86: 80: 79: 78: 77: 72: 67: 62: 57: 52: 44: 43: 37: 36: 28: 27: 21: 20: 9: 6: 4: 3: 2: 2474: 2463: 2460: 2458: 2455: 2453: 2450: 2448: 2445: 2443: 2440: 2439: 2437: 2430: 2428: 2423: 2406: 2402: 2398: 2394: 2390: 2386: 2382: 2378: 2370: 2362: 2358: 2354: 2350: 2349: 2341: 2333: 2329: 2324: 2319: 2315: 2311: 2307: 2300: 2292: 2288: 2284: 2280: 2275: 2270: 2266: 2262: 2258: 2251: 2243: 2239: 2235: 2231: 2227: 2223: 2215: 2207: 2203: 2199: 2195: 2191: 2184: 2176: 2172: 2168: 2164: 2160: 2156: 2149: 2141: 2137: 2130: 2122: 2118: 2114: 2110: 2106: 2102: 2098: 2094: 2087: 2079: 2075: 2070: 2065: 2061: 2057: 2053: 2049: 2045: 2038: 2030: 2026: 2021: 2016: 2012: 2008: 2004: 2000: 1996: 1989: 1981: 1977: 1973: 1969: 1965: 1958: 1950: 1946: 1942: 1938: 1934: 1930: 1926: 1922: 1915: 1907: 1903: 1899: 1895: 1891: 1887: 1883: 1879: 1871: 1863: 1859: 1855: 1851: 1847: 1843: 1836: 1828: 1824: 1823:J. Chem. Phys 1817: 1809: 1805: 1801: 1797: 1793: 1789: 1782: 1774: 1770: 1766: 1762: 1758: 1754: 1747: 1741: 1736: 1728: 1721: 1713: 1709: 1705: 1701: 1694: 1692: 1690: 1688: 1679: 1672: 1670: 1661: 1657: 1653: 1649: 1645: 1641: 1633: 1631: 1629: 1627: 1618: 1614: 1610: 1606: 1602: 1596: 1592: 1588: 1584: 1577: 1569: 1565: 1561: 1557: 1553: 1549: 1542: 1538: 1528: 1525: 1523: 1520: 1519: 1513: 1510: 1507: 1503: 1499: 1498:nanoparticles 1494: 1492: 1488: 1484: 1479: 1477: 1472: 1468: 1464: 1460: 1459:free radicals 1456: 1452: 1451:triplet state 1448: 1444: 1440: 1436: 1432: 1428: 1424: 1419: 1415: 1411: 1407: 1403: 1399: 1395: 1391: 1387: 1378: 1374: 1370: 1364: 1360: 1358: 1354: 1350: 1346: 1342: 1339: 1335: 1332: 1328: 1327:biocompatible 1324: 1314: 1301: 1273: 1267: 1266:crystallinity 1257: 1255: 1250: 1246: 1242: 1239: 1235: 1234:microemulsion 1225: 1215: 1211: 1207: 1203: 1199: 1170: 1169: 1168: 1122: 1101: 1096: 1095: 1094: 1091: 1083: 1080: 1076: 1066: 1064: 1061: 1056: 1046: 1028: 1024: 1020: 1016: 1013: 1010: 1005: 991: 990: 989: 985: 952: 943: 938: 935: 932: 921: 910: 907: 888: 883: 875: 860: 856: 852: 847: 844: 835: 830: 825: 811: 810: 809: 791: 782: 773: 764: 759: 745: 744: 743: 740: 734: 727: 725: 721: 716: 712: 708: 704: 686: 682: 674: 656: 652: 644: 640: 636: 635:single domain 631: 629: 625: 621: 617: 613: 609: 608:magnetization 604: 601: 597: 593: 588: 586: 585:ferrimagnetic 582: 578: 577:ferromagnetic 530: 526: 522: 519:Due to its 4 512: 480: 476: 473: 425: 421: 411: 409: 405: 401: 397: 393: 389: 385: 381: 377: 373: 370: 365: 363: 359: 355: 351: 336: 328: 322: 317: 313: 309: 305: 294: 289: 287: 282: 280: 275: 274: 272: 271: 266: 261: 256: 254: 249: 244: 243: 242: 241: 236: 233: 231: 228: 226: 223: 221: 220:Nanocomposite 218: 217: 216: 215: 212: 209: 208: 203: 200: 198: 195: 193: 190: 188: 185: 183: 182:Iron–platinum 180: 178: 175: 173: 170: 168: 165: 163: 160: 158: 155: 153: 150: 148: 145: 143: 140: 138: 135: 133: 130: 129: 128: 127: 124: 123:nanoparticles 120: 119: 114: 111: 109: 108:Health impact 106: 104: 101: 99: 98:C70 fullerene 96: 94: 91: 90: 89: 88: 85: 82: 81: 76: 73: 71: 68: 66: 63: 61: 58: 56: 53: 51: 48: 47: 46: 45: 42: 39: 38: 34: 30: 29: 26: 25:Nanomaterials 23: 22: 18: 17: 2462:Biomagnetics 2419: 2380: 2376: 2369: 2352: 2346: 2340: 2313: 2309: 2299: 2267:(1): 33–39. 2264: 2260: 2250: 2225: 2221: 2214: 2197: 2193: 2183: 2161:(1): 47–55. 2158: 2155:Nanomedicine 2154: 2148: 2139: 2129: 2096: 2093:Nanomedicine 2092: 2086: 2051: 2047: 2037: 2002: 1998: 1988: 1963: 1957: 1924: 1920: 1914: 1881: 1877: 1870: 1845: 1841: 1835: 1826: 1822: 1816: 1791: 1787: 1781: 1756: 1752: 1746: 1735: 1726: 1720: 1703: 1699: 1677: 1643: 1639: 1582: 1576: 1551: 1548:Chem Soc Rev 1547: 1541: 1511: 1495: 1480: 1455:dissociation 1418:chemotherapy 1383: 1380:doxorubicin. 1320: 1263: 1236:is a stable 1231: 1206:perchlorates 1195: 1118: 1072: 1060:monodisperse 1052: 1044: 986: 983: 807: 738: 732: 728: 632: 615: 611: 605: 592:paramagnetic 589: 518: 417: 366: 303: 302: 176: 157:Cobalt oxide 137:Quantum dots 70:Applications 1680:. Elsevier. 1496:Iron oxide 1443:diamagnetic 1439:tumor cells 1331:mesothelium 1323:biomedicine 1249:interfacial 1082:suspensions 400:fatty acids 2436:Categories 2228:: 168314. 1829:: 967–973. 1533:References 1506:ferrofluid 1467:spin state 1349:stem cells 1341:fibroblast 1254:surfactant 1245:immiscible 1241:dispersion 724:paramagnet 624:hysteresis 620:saturation 501:ions and 2 312:nanometers 308:iron oxide 177:Iron oxide 84:Fullerenes 2200:: 58–68. 1980:233704325 1773:250870659 1617:216683956 1423:targeting 1373:electron- 1345:cytotoxic 1334:cell line 1238:isotropic 1210:chlorides 1049:Synthesis 1021:η 1017:π 944:⋅ 917:∇ 870:∇ 857:μ 848:χ 783:⋅ 769:∇ 711:Maghemite 703:Magnetite 479:unit cell 475:vacancies 414:Structure 376:catalysis 374:devices, 335:maghemite 316:magnetite 147:Cellulose 103:Chemistry 55:Chemistry 50:Synthesis 2405:28479096 2397:28877348 2332:25599061 2283:25523967 2175:25101880 2113:29597047 2078:23837572 2029:23808590 1999:ACS Nano 1949:19434047 1941:15526347 1906:16903273 1660:18543879 1609:30855107 1568:22481569 1516:See also 1471:kinetics 1410:toxicity 1214:sulfates 1063:colloids 587:states. 525:3d shell 225:Nanofoam 192:Platinum 75:Timeline 2323:4289522 2230:Bibcode 2121:4931512 2069:5587777 2020:3756554 1886:Bibcode 1850:Bibcode 1796:Bibcode 1416:during 1412:in the 1222:Fe(III) 1184:→ 2 ÎłFe 1110:↓ + 4 H 1090:nitrate 590:In the 531:. Ions 506:⁄ 486:⁄ 380:sensors 369:terabit 152:Ceramic 2403:  2395:  2330:  2320:  2291:881157 2289:  2281:  2173:  2119:  2111:  2076:  2066:  2027:  2017:  1978:  1947:  1939:  1904:  1771:  1658:  1615:  1607:  1597:  1566:  1502:cancer 1338:murine 1336:and a 1286:Fe(CO) 1218:Fe(II) 1086:Fe(II) 472:cation 406:, and 358:nickel 354:cobalt 197:Silver 162:Copper 121:Other 2401:S2CID 2287:S2CID 2117:S2CID 1976:S2CID 1945:S2CID 1769:S2CID 1729:: 27. 1613:S2CID 1414:tumor 1296:, or 1243:of 2 1202:salts 1102:→ Fe 583:, or 408:diols 187:Lipid 2393:PMID 2328:PMID 2279:PMID 2171:PMID 2109:PMID 2074:PMID 2025:PMID 1937:PMID 1902:PMID 1656:PMID 1605:PMID 1595:ISBN 1564:PMID 1375:and 1371:and 1300:acac 1172:2 Fe 564:and 448:and 356:and 306:are 172:Iron 167:Gold 2385:doi 2381:104 2357:doi 2318:PMC 2269:doi 2238:doi 2226:538 2202:doi 2163:doi 2101:doi 2064:PMC 2056:doi 2015:PMC 2007:doi 1968:doi 1929:doi 1894:doi 1858:doi 1804:doi 1761:doi 1708:doi 1648:doi 1644:108 1587:doi 1556:doi 1298:Fe( 1272:Cup 1270:Fe( 1180:+ O 523:in 337:(Îł- 2438:: 2399:. 2391:. 2379:. 2353:15 2351:. 2326:. 2312:. 2308:. 2285:. 2277:. 2265:31 2263:. 2259:. 2236:. 2224:. 2196:. 2192:. 2169:. 2159:11 2157:. 2138:. 2115:. 2107:. 2097:14 2095:. 2072:. 2062:. 2050:. 2046:. 2023:. 2013:. 2001:. 1997:. 1974:. 1943:. 1935:. 1925:17 1923:. 1900:. 1892:. 1882:40 1880:. 1856:. 1846:55 1844:. 1827:84 1825:. 1802:. 1792:74 1790:. 1767:. 1757:36 1755:. 1704:55 1702:. 1686:^ 1668:^ 1654:. 1642:. 1625:^ 1611:. 1603:. 1593:. 1562:. 1552:41 1550:. 1461:. 1351:, 1284:, 1232:A 1212:, 1208:, 1158:Fe 1147:Fe 1136:Fe 1125:Fe 1121:pH 1100:OH 709:. 701:. 633:A 579:, 566:Fe 555:Fe 544:Fe 533:Fe 492:Fe 461:Fe 450:Fe 439:Fe 428:Fe 402:, 394:, 390:, 382:, 378:, 364:. 339:Fe 321:Fe 2407:. 2387:: 2363:. 2359:: 2334:. 2314:4 2293:. 2271:: 2244:. 2240:: 2232:: 2208:. 2204:: 2198:2 2177:. 2165:: 2123:. 2103:: 2080:. 2058:: 2052:8 2031:. 2009:: 2003:7 1982:. 1970:: 1951:. 1931:: 1908:. 1896:: 1888:: 1864:. 1860:: 1852:: 1810:. 1806:: 1798:: 1775:. 1763:: 1714:. 1710:: 1662:. 1650:: 1619:. 1589:: 1570:. 1558:: 1307:3 1302:) 1291:5 1279:3 1274:) 1220:/ 1204:( 1190:3 1188:O 1186:2 1182:2 1178:4 1176:O 1174:3 1164:3 1162:O 1160:2 1153:4 1151:O 1149:3 1134:/ 1114:O 1112:2 1108:4 1106:O 1104:3 1058:" 1029:v 1025:R 1014:6 1011:= 1006:d 1001:F 953:) 948:B 939:t 936:a 933:s 928:m 922:( 911:2 908:1 889:2 884:| 880:B 876:| 861:0 853:2 845:V 836:{ 831:= 826:m 821:F 792:) 787:B 779:m 774:( 765:= 760:m 755:F 739:B 733:m 707:K 687:N 683:T 657:C 653:T 616:H 612:M 610:( 508:3 504:2 488:3 484:1 345:3 343:O 341:2 330:4 327:O 324:3 318:( 292:e 285:t 278:v

Index

Nanomaterials

Carbon nanotubes
Synthesis
Chemistry
Mechanical properties
Optical properties
Applications
Timeline
Fullerenes
Buckminsterfullerene
C70 fullerene
Chemistry
Health impact
Carbon allotropes
nanoparticles
Carbon quantum dots
Quantum dots
Aluminium oxide
Cellulose
Ceramic
Cobalt oxide
Copper
Gold
Iron
Iron oxide
Iron–platinum
Lipid
Platinum
Silver

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑