Knowledge

Quantum dot

Source 📝

594: 700: 2429: 565:) was compared to the capped core diameter (calculated via effective mass approximation model) to better understand the effect of core-shell strain. Type I heterostructures were found to induce compressive strain and “squeeze” the core, while the type II heterostructures had the effect of stretching the core under tensile strain. Because the fluorescent properties of quantum dots are dictated by nanocrystal size, induced changes in core dimensions can lead to shifting of emission wavelength, further proving why an intermediate semiconductor layer is necessary to rectify lattice mismatch and improve quantum yield. 653: 1601: 2008: 557:. Inverse type I quantum dots have a semiconductor layer with a smaller bandgap which leads to delocalized charge carriers in the shell. For type II and inverse type II dots, either the conduction or valence band of the core is located within the bandgap of the shell, which can lead to spatial separation of charge carriers in the core and shell. For all of these core/shell systems, the deposition of the outer layer can lead to potential lattice mismatch, which can limit the ability to grow a thick shell without reducing photoluminescent performance. 1427: 1832:, three regimes can be defined. In the 'strong confinement regime', the quantum dot's radius is much smaller than the exciton Bohr radius, respectively the confinement energy dominates over the Coulomb interaction. In the 'weak confinement' regime, the quantum dot is larger than the exciton Bohr radius, respectively the confinement energy is smaller than the Coulomb interactions between electron and hole. The regime where the exciton Bohr radius and confinement potential are comparable is called the 'intermediate confinement regime'. 1177: 1157: 2424:{\displaystyle {\begin{aligned}E_{\textrm {confinement}}&={\frac {\hbar ^{2}\pi ^{2}}{2a^{2}}}\left({\frac {1}{m_{\rm {e}}}}+{\frac {1}{m_{\rm {h}}}}\right)={\frac {\hbar ^{2}\pi ^{2}}{2\mu a^{2}}}\\E_{\textrm {exciton}}&=-{\frac {1}{\varepsilon _{\rm {r}}^{2}}}{\frac {\mu }{m_{\rm {e}}}}R_{y}=-R_{y}^{*}\\E&=E_{\textrm {bandgap}}+E_{\textrm {confinement}}+E_{\textrm {exciton}}\\&=E_{\textrm {bandgap}}+{\frac {\hbar ^{2}\pi ^{2}}{2\mu a^{2}}}-R_{y}^{*}\end{aligned}}} 1202:(higher-energy) light. Recent articles suggest that the shape of the quantum dot may be a factor in the coloration as well, but as yet not enough information is available . Furthermore, it was shown that the lifetime of fluorescence is determined by the size of the quantum dot. Larger dots have more closely spaced energy levels in which the electron–hole pair can be trapped. Therefore, electron–hole pairs in larger dots live longer causing larger dots to show a longer lifetime. 265: 791: 10863: 738:. The size, shape, surface and composition of quantum dots can all be controlled in nonthermal plasma. Doping that seems quite challenging for quantum dots has also been realized in plasma synthesis. Quantum dots synthesized by plasma are usually in the form of powder, for which surface modification may be carried out. This can lead to excellent dispersion of quantum dots in either organic solvents or water (i. e., colloidal quantum dots). 277: 10069: 1795: 1379:, where the large extinction coefficient and spectral purity of these fluorophores make them superior to molecular fluorophores It is also worth noting that the broad absorbance of QDs allows selective excitation of the QD donor and a minimum excitation of a dye acceptor in FRET-based studies. The applicability of the FRET model, which assumes that the Quantum Dot can be approximated as a point dipole, has recently been demonstrated 1966:). This results in the increase in the total emission energy (the sum of the energy levels in the smaller band gaps in the strong confinement regime is larger than the energy levels in the band gaps of the original levels in the weak confinement regime) and the emission at various wavelengths. If the size distribution of QDs is not enough peaked, the convolution of multiple emission wavelengths is observed as a continuous spectra. 1112:
size-dependent intracellular pathways that concentrate these particles in cellular organelles that are inaccessible by metal ions, which may result in unique patterns of cytotoxicity compared to their constituent metal ions. The reports of QD localization in the cell nucleus present additional modes of toxicity because they may induce DNA mutation, which in turn will propagate through future generation of cells, causing diseases.
1004:
utilizing technical components for mixing and growth as well as transport and temperature adjustments. For the production of CdSe based semiconductor nanoparticles this method has been investigated and tuned to production amounts of kilograms per month. Since the use of technical components allows for easy interchange in regards of maximum throughput and size, it can be further enhanced to tens or even hundreds of kilograms.
1176: 1254: 50: 882:. A strength of this type of quantum dots is that their energy spectrum can be engineered by controlling the geometrical size, shape, and the strength of the confinement potential with gate electrodes. These quantum dots can be easily connected by tunnel barriers to conducting leads, which allows the application of the techniques of tunneling spectroscopy for their investigation. 645:, yielding an improbable distribution of nearly monodispersed particles. The size focusing is optimal when the monomer concentration is kept such that the average nanocrystal size present is always slightly larger than the critical size. Over time, the monomer concentration diminishes, the critical size becomes larger than the average size present, and the distribution 878:. This pattern can then be transferred to the electron or hole gas by etching, or by depositing metal electrodes (lift-off process) that allow the application of external voltages between the electron gas and the electrodes. Such quantum dots are mainly of interest for experiments and applications involving electron or hole transport and they are also used as 1120:
toxicity. Therefore, factors determining the QD endocytosis that determine the effective intracellular concentration, such as QD size, shape, and surface chemistry determine their toxicity. Excretion of QDs through urine in animal models also have demonstrated via injecting radio-labeled ZnS-capped CdSe QDs where the ligand shell was labeled with
1418:, quantum dots can be efficiently delivered without inducing aggregation, trapping material in endosomes, or significant loss of cell viability. Moreover, it has shown that individual quantum dots delivered by this approach are detectable in the cell cytosol, thus illustrating the potential of this technique for single-molecule tracking studies. 1000:
growth is maintained by the periodic addition of precursors at moderate temperatures until the desired particle size is reached. The molecular seeding process is not limited to the production of cadmium-free quantum dots; for example, the process can be used to synthesise kilogram batches of high-quality II–VI quantum dots in just a few hours.
1836: 1638:
blue LED or using a quantum dot infused diffuser sheet in the backlight optical stack. Blank pixels are also used to allow the blue LED light to still generate blue hues. This type of white light as the backlight of an LCD panel allows for the best color gamut at lower cost than an RGB LED combination using three LEDs.
1172:. In a simplified model, the energy of the emitted photon can be understood as the sum of the band gap energy between the highest occupied level and the lowest unoccupied energy level, the confinement energies of the hole and the excited electron, and the bound energy of the exciton (the electron–hole pair): 1993:
There is Coulomb attraction between the negatively charged electron and the positively charged hole. The negative energy involved in the attraction is proportional to Rydberg's energy and inversely proportional to square of the size-dependent dielectric constant of the semiconductor. When the size of
1143:
are not applicable for QDs. Therefore, researchers are focusing on introducing novel approaches and adapting existing methods to include this unique class of materials. Furthermore, novel strategies to engineer safer QDs are still under exploration by the scientific community. A recent novelty in the
1131:
While significant research efforts have broadened the understanding of toxicity of QDs, there are large discrepancies in the literature, and questions still remain to be answered. Diversity of this class of material as compared to normal chemical substances makes the assessment of their toxicity very
585:
one such study, intensely luminescent all-inorganic nanocrystals (ILANs) were synthesized via a ligand exchange process which substituted metal salts for the oleic acid ligands, and were found to have comparable photoluminescent quantum yields to that of existing red- and green-emitting quantum dots.
1387:
delivery of quantum dot probes. Fast-growing tumor cells typically have more permeable membranes than healthy cells, allowing the leakage of small nanoparticles into the cell body. Moreover, tumor cells lack an effective lymphatic drainage system, which leads to subsequent nanoparticle accumulation.
1310:
The use of quantum dots for highly sensitive cellular imaging has seen major advances. The improved photostability of quantum dots, for example, allows the acquisition of many consecutive focal-plane images that can be reconstructed into a high-resolution three-dimensional image. Another application
1003:
Another approach for the mass production of colloidal quantum dots can be seen in the transfer of the well-known hot-injection methodology for the synthesis to a technical continuous flow system. The batch-to-batch variations arising from the needs during the mentioned methodology can be overcome by
640:
concentrations, the critical size (the size where nanocrystals neither grow nor shrink) is relatively small, resulting in growth of nearly all particles. In this regime, smaller particles grow faster than large ones (since larger crystals need more atoms to grow than small crystals) resulting in the
568:
One such core/double-shell system is the CdSe/ZnSe/ZnS nanocrystal. In a study comparing CdSe/ZnS and CdSe/ZnSe nanocrystals, the former was found to have PL yield 84% of the latter’s, due to a lattice mismatch. To study the double-shell system, after synthesis of the core CdSe nanocrystals, a layer
2466:
Although the above equations were derived using simplifying assumptions, they imply that the electronic transitions of the quantum dots will depend on their size. These quantum confinement effects are apparent only below the critical size. Larger particles do not exhibit this effect. This effect of
1637:
that are color filtered to produce red, green, and blue pixels. Quantum dot displays use blue-emitting LEDs rather than white LEDs as the light sources. The converting part of the emitted light is converted into pure green and red light by the corresponding color quantum dots placed in front of the
1386:
conditions employ two targeting schemes: active targeting and passive targeting. In the case of active targeting, quantum dots are functionalized with tumor-specific binding sites to selectively bind to tumor cells. Passive targeting uses the enhanced permeation and retention of tumor cells for the
5476:
Yoneda, Jun; Takeda, Kenta; Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R.; Allison, Giles; Honda, Takumu; Kodera, Tetsuo; Oda, Shunri; Hoshi, Yusuke; Usami, Noritaka; Itoh, Kohei M.; Tarucha, Seigo (18 December 2017). "A quantum-dot spin qubit with coherence limited by charge noise and
3013:
by adding different dusts and powdered elements such as silver, gold and cadmium and then played with different temperatures to produce shades of glass. In the 19th century, scientists started to understand how glass color depended on elements and heating-cooling techniques. It was also found that
1674:
Quantum dot photodetectors (QDPs) can be fabricated either via solution-processing, or from conventional single-crystalline semiconductors. Conventional single-crystalline semiconductor QDPs are precluded from integration with flexible organic electronics due to the incompatibility of their growth
1649:
displays. Previous LCD displays can waste energy converting red-green poor, blue-yellow rich white light into a more balanced lighting. By using QDs, only the necessary colors for ideal images are contained in the screen. The result is a screen that is brighter, clearer, and more energy-efficient.
584:
stability and control nanocrystal growth, and can even be used to initiate a second round of ligand exchange and surface functionalization. However, because of the detrimental effect organic ligands have on PL efficiency, further studies have been conducted to obtain all-inorganic quantum dots. In
2996:
of classical artificial atoms" has been described for two-dimensional quantum dots. As well, several connections have been reported between the three-dimensional Thomson problem and electron shell-filling patterns found in naturally occurring atoms found throughout the periodic table. This latter
1539:
Nanowires with quantum dot coatings on silicon nanowires (SiNW) and carbon quantum dots. The use of SiNWs instead of planar silicon enhances the antiflection properties of Si. The SiNW exhibits a light-trapping effect due to light trapping in the SiNW. This use of SiNWs in conjunction with carbon
1022:
for the use of their low-temperature molecular seeding method for bulk manufacture of cadmium-free quantum dots for electronic displays, and on 24 September 2014 Dow commenced work on the production facility in South Korea capable of producing sufficient quantum dots for "millions of cadmium-free
1413:
Delivery of undamaged quantum dots to the cell cytoplasm has been a challenge with existing techniques. Vector-based methods have resulted in aggregation and endosomal sequestration of quantum dots while electroporation can damage the semi-conducting particles and aggregate delivered dots in the
1249:
Tuning the size of quantum dots is attractive for many potential applications. For instance, larger quantum dots have a greater spectrum shift toward red compared to smaller dots and exhibit less pronounced quantum properties. Conversely, the smaller particles allow one to take advantage of more
1119:
studies using animal models, no alterations in animal behavior, weight, hematological markers, or organ damage has been found through either histological or biochemical analysis. These findings have led scientists to believe that intracellular dose is the most important determining factor for QD
999:
process, provides a reproducible route to the production of high-quality quantum dots in large volumes. The process utilises identical molecules of a molecular cluster compound as the nucleation sites for nanoparticle growth, thus avoiding the need for a high temperature injection step. Particle
949:
applied to the solutions. Consequently, the specific recognition properties of the virus can be used to organize inorganic nanocrystals, forming ordered arrays over the length scale defined by liquid crystal formation. Using this information, Lee et al. (2000) were able to create self-assembled,
1342:
Quantum dots can have antibacterial properties similar to nanoparticles and can kill bacteria in a dose-dependent manner. One mechanism by which quantum dots can kill bacteria is through impairing the functions of antioxidative system in the cells and down regulating the antioxidative genes. In
1281:
in the photoluminescent excitation spectrum of (CdSe)ZnS nanocrystals. High-quality quantum dots are well suited for optical encoding and multiplexing applications due to their broad excitation profiles and narrow/symmetric emission spectra. The new generations of quantum dots have far-reaching
1641:
Another method by which quantum dot displays can be achieved is the electroluminescent (EL) or electro-emissive method. This involves embedding quantum dots in each individual pixel. These are then activated and controlled via an electric current application. Since this is often light emitting
1298:
are used. However, as technology advances, greater flexibility in these dyes is sought. To this end, quantum dots have quickly filled in the role, being found to be superior to traditional organic dyes on several counts, one of the most immediately obvious being brightness (owing to the high
1095:
characteristics (size, shape, composition, surface functional groups, and surface charges) and their environment. Assessing their potential toxicity is complex as these factors include properties such as QD size, charge, concentration, chemical composition, capping ligands, and also on their
1046:
For commercial viability, a range of restricted, heavy-metal-free quantum dots has been developed showing bright emissions in the visible and near-infrared region of the spectrum and have similar optical properties to those of CdSe quantum dots. Among these materials are InP/ZnS, CuInS/ZnS,
1285:
CdSe nanocrystals are efficient triplet photosensitizers. Laser excitation of small CdSe nanoparticles enables the extraction of the excited state energy from the quantum dots into bulk solution, thus opening the door to a wide range of potential applications such as photodynamic therapy,
1111:
after exposure to light, which in turn can damage cellular components such as proteins, lipids, and DNA. Some studies have also demonstrated that addition of a ZnS shell inhibits the process of reactive oxygen species in CdSe QDs. Another aspect of QD toxicity is that there are, in vivo,
966:
techniques. A template is created by causing an ionic reaction at an electrolyte–metal interface which results in the spontaneous assembly of nanostructures, including quantum dots, onto the metal which is then used as a mask for mesa-etching these nanostructures on a chosen substrate.
569:
of ZnSe was coated prior to the ZnS outer shell, leading to an improvement in fluorescent efficiency by 70%. Furthermore, the two additional layers were found to improve resistance of the nanocrystals against photo-oxidation, which can contribute to degradation of the emission spectra.
900:). The transistor displays Coulomb blockade due to progressive charging of electrons (holes) one by one. The number of electrons (holes) confined in the channel is driven by the gate voltage, starting from an occupation of zero electrons (holes), and it can be set to one or many. 8178:
Xie, Chao; Nie, Biao; Zeng, Longhui; Liang, Feng-Xia; Wang, Ming-Zheng; Luo, Linbao; Feng, Mei; Yu, Yongqiang; Wu, Chun-Yan (22 April 2014). "Core–Shell Heterojunction of Silicon Nanowire Arrays and Carbon Quantum Dots for Photovoltaic Devices and Self-Driven Photodetectors".
1492:(PCE) of 10.7%. The SAM is positioned between ZnO–PbS colloidal quantum dot (CQD) film junction to modify band alignment via the dipole moment of the constituent SAM molecule, and the band tuning may be modified via the density, dipole and the orientation of the SAM molecule. 8131:
Leschkies, Kurtis S.; Divakar, Ramachandran; Basu, Joysurya; Enache-Pommer, Emil; Boercker, Janice E.; Carter, C. Barry; Kortshagen, Uwe R.; Norris, David J.; Aydil, Eray S. (1 June 2007). "Photosensitization of ZnO Nanowires with CdSe Quantum Dots for Photovoltaic Devices".
7748:
Sharei, A.; Zoldan, J.; Adamo, A.; Sim, W. Y.; Cho, N.; Jackson, E.; Mao, S.; Schneider, S.; Han, M.-J.; Lytton-Jean, A.; Basto, P. A.; Jhunjhunwala, S.; Lee, J.; Heller, D. A.; Kang, J. W.; Hartoularos, G. C.; Kim, K.-S.; Anderson, D. G.; Langer, R.; Jensen, K. F. (2013).
1453:(MEG). This compares favorably to today's photovoltaic cells which can only manage one exciton per high-energy photon, with high kinetic energy carriers losing their energy as heat. On the other hand, the quantum-confined ground-states of colloidal quantum dots (such as 3084:
reported on a hot-injection synthesis method for producing reproducible quantum dots with well-defined size and with high optical quality. The method opened the door to the development of large-scale technological applications of quantum dots in a wide range of areas.
7984:
Kim, Gi-Hwan; Arquer, F. Pelayo GarcĂ­a de; Yoon, Yung Jin; Lan, Xinzheng; Liu, Mengxia; Voznyy, Oleksandr; Yang, Zhenyu; Fan, Fengjia; Ip, Alexander H. (2 November 2015). "High-Efficiency Colloidal Quantum Dot Photovoltaics via Robust Self-Assembled Monolayers".
560:
One such reason for the decrease in performance can be attributed to the physical strain being put on the lattice. In a case where ZnSe/ZnS (type I) and ZnSe/CdS (type II) quantum dots were being compared, the diameter of the uncoated ZnSe core (obtained using
22: 1440:
The tunable absorption spectrum and high extinction coefficients of quantum dots make them attractive for light harvesting technologies such as photovoltaics. Quantum dots may be able to increase the efficiency and reduce the cost of today's typical silicon
979:
which has been scaled by multiple companies for commercial applications that require large quantities (hundreds of kilograms to tons) of quantum dots. This reproducible production method can be applied to a wide range of quantum dot sizes and compositions.
8865:"On the Structure of the Atom: an Investigation of the Stability and Periods of Oscillation of a number of Corpuscles arranged at equal intervals around the Circumference of a Circle; with Application of the Results to the Theory of Atomic Structure" 535:
or trapping in defect states), which reduces fluorescent quantum yield, or the conversion efficiency of absorbed photons into emitted fluorescence. To combat this, a semiconductor layer can be grown surrounding the quantum dot core. Depending on the
526:
Quantum dots are usually coated with organic capping ligands (typically with long hydrocarbon chains, such as oleic acid) to control growth, prevent aggregation, and to promote dispersion in solution. However, these organic coatings can lead to
1934: 750:
needed to create a quantum dot can be realized with several methods. These include external electrodes, doping, strain, or impurities. Self-assembled quantum dots are typically between 5 and 50 nm in size. Quantum dots defined by
5205:
Petta, J. R.; Johnson, A. C.; Taylor, J. M.; Laird, E. A.; Yacoby, A.; Lukin, M. D.; Marcus, C. M.; Hanson, M. P.; Gossard, A. C. (30 September 2005). "Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots".
2744: 552:
Type I quantum dots are composed of a semiconductor core encapsulated in a second semiconductor material with a larger bandgap, which can passivate non-radiative recombination sites at the surface of the quantum dots and improve
2931: 1213:
of a larger bandgap semiconductor material around them. The improvement is suggested to be due to the reduced access of electron and hole to non-radiative surface recombination pathways in some cases, but also due to reduced
627:
decompose forming monomers which then nucleate and generate nanocrystals. Temperature is a critical factor in determining optimal conditions for the nanocrystal growth. It must be high enough to allow for rearrangement and
1527:
Another potential use involves capped single-crystal ZnO nanowires with CdSe quantum dots, immersed in mercaptopropionic acid as hole transport medium in order to obtain a QD-sensitized solar cell. The morphology of the
1773:
Quantum dots are theoretically described as a point-like, or zero dimensional (0D) entity. Most of their properties depend on the dimensions, shape, and materials of which QDs are made. Generally, QDs present different
1398:
allows for quantum dots to be introduced into a stable aqueous solution, reducing the possibility of cadmium leakage. Then again, only little is known about the excretion process of quantum dots from living organisms.
2013: 1976:
with the hydrogen nucleus replaced by the hole of positive charge and negative electron mass. Then the energy levels of the exciton can be represented as the solution to the particle in a box at the ground level
1661:
and show a bright emission in the visible and near infrared region of the spectrum. A QD-LED integrated at a scanning microscopy tip was used to demonstrate fluorescence near-field scanning optical microscopy
2649: 5546:
Turchetti, Marco; Homulle, Harald; Sebastiano, Fabio; Ferrari, Giorgio; Charbon, Edoardo; Prati, Enrico (2015). "Tunable single hole regime of a silicon field effect transistor in standard CMOS technology".
5389:
Stranski, Ivan N.; Krastanow, Lubomir (1938). "Zur Theorie der orientierten Ausscheidung von Ionenkristallen aufeinander" [On the theory of oriented precipitation of ionic crystals upon each other].
1168:. The electron and the hole can bind to each other to form an exciton. When this exciton recombines (when the electron resumes its ground state), the exciton's energy can be emitted as light. This is called 540:
of the core and shell materials, the fluorescent properties of the nanocrystals can be tuned. Furthermore, adjusting the thicknesses of each of the layers and overall size of the quantum dots can affect the
457:, with colors such as orange, or red. Smaller QDs (2–3 nm) emit shorter wavelengths, yielding colors like blue and green. However, the specific colors vary depending on the exact composition of the QD. 5817: 2798: 6326:
Fischer, Hans C.; Hauck, Tanya S.; GĂłmez-AristizĂĄbal, Alejandro; Chan, Warren C. W. (18 June 2010). "Exploring Primary Liver Macrophages for Studying Quantum Dot Interactions with Biological Systems".
1282:
potential for the study of intracellular processes at the single-molecule level, high-resolution cellular imaging, long-term in vivo observation of cell trafficking, tumor targeting, and diagnostics.
636:
is another critical factor that has to be stringently controlled during nanocrystal growth. The growth process of nanocrystals can occur in two different regimes: "focusing" and "defocusing". At high
7629:
Algar, W. Russ; Krull, Ulrich J. (7 November 2007). "Quantum dots as donors in fluorescence resonance energy transfer for the bioanalysis of nucleic acids, proteins, and other biological molecules".
2495:
A variety of theoretical frameworks exist to model optical, electronic, and structural properties of quantum dots. These may be broadly divided into quantum mechanical, semiclassical, and classical.
692:
quantum dots. These quantum dots can contain as few as 100 to 100,000 atoms within the quantum dot volume, with a diameter of approximately 10 to 50 atom diameters. This corresponds to about 2 to 10
4049:
Wagner, Christian; Green, Matthew F. B.; Leinen, Philipp; Deilmann, Thorsten; KrĂŒger, Peter; Rohlfing, Michael; Temirov, Ruslan; Tautz, F. Stefan (6 July 2015). "Scanning Quantum Dot Microscopy".
1584:
light, they can be more efficient than light sources which must be color filtered. QD-LEDs can be fabricated on a silicon substrate, which allows them to be integrated onto standard silicon-based
549:
tends to blueshift the emission spectra as the quantum dot decreases in size. There are 4 major categories of quantum dot heterostructures: type I, inverse type I, type II, and inverse type II.
9319:
Rossetti, R.; Nakahara, S.; Brus, L. E. (15 July 1983). "Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution".
7366:
Dwarakanath, S.; Bruno, J. G.; Shastry, A.; Phillips, T.; John, A.; Kumar, A.; Stephenson, L. D. (2004). "Quantum dot-antibody and aptamer conjugates shift fluorescence upon binding bacteria".
1307:
is a minor drawback. However, there have been groups which have developed quantum dots which are essentially nonblinking and demonstrated their utility in single-molecule tracking experiments.
8721:
RamĂ­rez, H. Y.; Santana, A. (2012). "Two interacting electrons confined in a 3D parabolic cylindrically symmetric potential, in presence of axial magnetic field: A finite element approach".
1277:, amplifiers, and biological sensors. Quantum dots may be excited within a locally enhanced electromagnetic field produced by gold nanoparticles, which then can be observed from the surface 1390:
Quantum dot probes exhibit in vivo toxicity. For example, CdSe nanocrystals are highly toxic to cultured cells under UV illumination, because the particles dissolve, in a process known as
8505:
Zhao, Jing; Holmes, Michael A.; Osterloh, Frank E. (2013). "Quantum Confinement Controls Photocatalysis: A Free Energy Analysis for Photocatalytic Proton Reduction at CdSe Nanocrystals".
1394:, to release toxic cadmium ions into the culture medium. In the absence of UV irradiation, however, quantum dots with a stable polymer coating have been found to be essentially nontoxic. 8214:
Gupta, Vinay; Chaudhary, Neeraj; Srivastava, Ritu; Sharma, Gauri Datt; Bhardwaj, Ramil; Chand, Suresh (6 July 2011). "Luminscent Graphene Quantum Dots for Organic Photovoltaic Devices".
1007:
In 2011 a consortium of U.S. and Dutch companies reported a milestone in high-volume quantum dot manufacturing by applying the traditional high temperature dual injection method to a
892:. Ultra small (20 nm Ă— 20 nm) CMOS transistors behave as single electron quantum dots when operated at cryogenic temperature over a range of −269 Â°C (4  446:
even at room temperature. Precise assembly of quantum dots can form superlattices that act as artificial solid-state materials that exhibit unique optical and electronic properties.
8372:
Hoshino, Kazunori; Gopal, Ashwini; Glaz, Micah S.; Vanden Bout, David A.; Zhang, Xiaojing (2012). "Nanoscale fluorescence imaging with quantum dot near-field electroluminescence".
1519:
into organic photovoltaics have been commercialized using full roll-to-roll processing. A 13.2% power conversion efficiency is claimed in Si nanowire/PEDOT:PSS hybrid solar cells.
5633:
Whaley, S. R.; English, D. S.; Hu, E. L.; Barbara, P. F.; Belcher, A. M. (2000). "Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly".
2593: 1679:. On the other hand, solution-processed QDPs can be readily integrated with an almost infinite variety of substrates, and also postprocessed atop other integrated circuits. Such 1430:
Spin-cast quantum dot solar cell built by the Sargent Group at the University of Toronto. The metal disks on the front surface are the electrical connections to the layers below.
1303:). It has been estimated that quantum dots are 20 times brighter and 100 times more stable than traditional fluorescent reporters. For single-particle tracking, the irregular 4804:
Knipping, J.; Wiggers, H.; Rellinghaus, B.; Roth, P.; Konjhodzic, D.; Meier, C. (2004). "Synthesis of high purity silicon nanoparticles in a low Pressure microwave reactor".
4245:
Gorbachev, I. A.; Goryacheva, I. Yu; Glukhovskoy, E. G. (June 2016). "Investigation of Multilayers Structures Based on the Langmuir-Blodgett Films of CdSe/ZnS Quantum Dots".
9435:
Reed, M. A.; Bate, R. T.; Bradshaw, K.; Duncan, W. M.; Frensley, W. R.; Lee, J. W.; Shih, H. D. (January 1986). "Spatial quantization in GaAs–AlGaAs multiple quantum dots".
6742:
Achermann, M.; Petruska, M. A.; Smith, D. L.; Koleske, D. D.; Klimov, V. I. (2004). "Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well".
6005:
Tsoi, Kim M.; Dai, Qin; Alman, Benjamin A.; Chan, Warren C. W. (19 March 2013). "Are Quantum Dots Toxic? Exploring the Discrepancy Between Cell Culture and Animal Studies".
4169:
Coe-Sullivan, S.; Steckel, J. S.; Woo, W.-K.; Bawendi, M. G.; Bulović, V. (July 2005). "Large-Area Ordered Quantum-Dot Monolayers via Phase Separation During Spin-Casting".
1083:
Some quantum dots pose risks to human health and the environment under certain conditions. Notably, the studies on quantum dot toxicity have focused on particles containing
9362:
Brus, L. E. (May 1984). "Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state".
3563:
Septianto, Ricky Dwi; Miranti, Retno; Kikitsu, Tomoka; Hikima, Takaaki; Hashizume, Daisuke; Matsushita, Nobuhiro; Iwasa, Yoshihiro; Bisri, Satria Zulkarnaen (23 May 2023).
1132:
challenging. As their toxicity may also be dynamic depending on the environmental factors such as pH level, light exposure, and cell type, traditional methods of assessing
4288:
Achermann, Marc; Petruska, Melissa A.; Crooker, Scott A.; Klimov, Victor I. (December 2003). "Picosecond Energy Transfer in Quantum Dot Langmuir−Blodgett Nanoassemblies".
4118:
RamĂ­rez, H. Y.; FlĂłrez, J.; Camacho, A. S. (2015). "Efficient control of coulomb enhanced second harmonic generation from excitonic transitions in quantum dot ensembles".
7537:
Abdolmohammadi, Mohammad Hossein; Fallahian, Faranak; Fakhroueian, Zahra; Kamalian, Mozhgan; Keyhanvar, Peyman; M Harsini, Faraz; Shafiekhani, Azizollah (December 2017).
8756:
ZumbĂŒhl, D. M.; Miller, J. B.; Marcus, C. M.; Campman, K.; Gossard, A. C. (2002). "Spin–orbit coupling, antilocalization, and parallel magnetic fields in quantum dots".
7586:
Resch-Genger, Ute; Grabolle, Markus; Cavaliere-Jaricot, Sara; Nitschke, Roland; Nann, Thomas (28 August 2008). "Quantum dots versus organic dyes as fluorescent labels".
3486:
Cherniukh, Ihor; RainĂČ, Gabriele; Stöferle, Thilo; Burian, Max; Travesset, Alex; Naumenko, Denys; Amenitsch, Heinz; Erni, Rolf; Mahrt, Rainer F.; Bodnarchuk, Maryna I.;
7539:"Application of new ZnO nanoformulation and Ag/Fe/ZnO nanocomposites as water-based nanofluids to consider in vitro cytotoxic effects against MCF-7 breast cancer cells" 4354:
Xiao, Pengwei; Zhang, Zhoufan; Ge, Junjun; Deng, Yalei; Chen, Xufeng; Zhang, Jian-Rong; Deng, Zhengtao; Kambe, Yu; Talapin, Dmitri V.; Wang, Yuanyuan (4 January 2023).
6378: 1546:
quantum dots have also been blended with organic electronic materials to improve efficiency and lower cost in photovoltaic devices and organic light emitting diodes (
1860: 954:
precursor solution. This system allowed them to vary both the length of bacteriophage and the type of inorganic material through genetic modification and selection.
755:
patterned gate electrodes, or by etching on two-dimensional electron gases in semiconductor heterostructures can have lateral dimensions between 20 and 100 nm.
1504:. These solar cells are attractive because of the potential for low-cost fabrication and relatively high efficiency. Incorporation of metal oxides, such as ZnO, TiO 870:
Individual quantum dots can be created from two-dimensional electron or hole gases present in remotely doped quantum wells or semiconductor heterostructures called
1461:) can allow the generation of photocurrent from photons with energy below the host bandgap, via a two-photon absorption process, offering another approach (termed 1839:
Splitting of energy levels for small quantum dots due to the quantum confinement effect. The horizontal axis is the radius, or the size, of the quantum dots and a
1550:) compared to graphene sheets. These graphene quantum dots were functionalized with organic ligands that experience photoluminescence from UV–visible absorption. 1798:
3D confined electron wave functions in a quantum dot. Here, rectangular and triangular-shaped quantum dots are shown. Energy states in rectangular dots are more
703:
Idealized image of colloidal nanoparticle of lead sulfide (selenide) with complete passivation by oleic acid, oleyl amine, and hydroxyl ligands (size ≈5 nm)
5821: 726:
synthesis has evolved to be one of the most popular gas-phase approaches for the production of quantum dots, especially those with covalent bonds. For example,
688:. Dots may also be made from ternary compounds such as cadmium selenide sulfide. Further, recent advances have been made which allow for synthesis of colloidal 1343:
addition, quantum dots can directly damage the cell wall. Quantum dots have been shown to be effective against both gram- positive and gram-negative bacteria.
1311:
that takes advantage of the extraordinary photostability of quantum dot probes is the real-time tracking of molecules and cells over extended periods of time.
2470:
The Coulomb interaction between confined carriers can also be studied by numerical means when results unconstrained by asymptotic approximations are pursued.
2660: 3631:
Murray, C. B.; Kagan, C. R.; Bawendi, M. G. (2000). "Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies".
3411:
Cui, Jiabin; Panfil, Yossef E.; Koley, Somnath; Shamalia, Doaa; Waiskopf, Nir; Remennik, Sergei; Popov, Inna; Oded, Meirav; Banin, Uri (16 December 2019).
1023:
televisions and other devices, such as tablets". Mass production was due to commence in mid-2015. On 24 March 2015, Dow announced a partnership deal with
6489:"Collective optical Kerr effect exhibited by an integrated configuration of silicon quantum dots and gold nanoparticles embedded in ion-implanted silica" 7494:
Lu, Zhisong; Li, Chang Ming; Bao, Haifeng; Qiao, Yan; Toh, Yinghui; Yang, Xu (20 May 2008). "Mechanism of antimicrobial activity of CdTe quantum dots".
3020:
in the 1930s first explored the idea that material properties can depend on the macroscopic dimensions of a small particle due to quantum size effects.
2809: 1148:, a new generation of optically active nanoparticles potentially capable of replacing semiconductor QDs, but with the advantage of much lower toxicity. 10107: 3059: 6277:
Soo Choi, Hak; Liu, Wenhao; Misra, Preeti; Tanaka, Eiichi; Zimmer, John P.; Itty Ipe, Binil; Bawendi, Moungi G.; Frangioni, John V. (1 October 2007).
9582:
Norris, D. J. (1995). "Measurement and Assignment of the Size-Dependent Optical Spectrum in Cadmium Selenide (CdSe) Quantum Dots, PhD thesis, MIT".
7672:
Beane, Gary; Boldt, Klaus; Kirkwood, Nicholas; Mulvaney, Paul (7 August 2014). "Energy Transfer between Quantum Dots and Conjugated Dye Molecules".
1350:
imaging of pre-labeled cells. The ability to image single-cell migration in real time is expected to be important to several research areas such as
6156:
Parak, W. J.; Boudreau, R.; Le Gros, M.; Gerion, D.; Zanchet, D.; Micheel, C. M.; Williams, S. C.; Alivisatos, A. P.; Larabell, C. (18 June 2002).
5348:
Clark, Pip; Radtke, Hanna; Pengpad, Atip; Williamson, Andrew; Spencer, Ben; Hardman, Samantha; Neo, Darren; Fairclough, Simon; et al. (2017).
593: 8031:
Krebs, Frederik C.; Tromholt, Thomas; JĂžrgensen, Mikkel (2010). "Upscaling of polymer solar cell fabrication using full roll-to-roll processing".
10660: 9658: 9616: 9177: 5776: 4419:
Zaini, Muhammad Safwan; Ying Chyi Liew, Josephine; Alang Ahmad, Shahrul Ainliah; Mohmad, Abdul Rahman; Kamarudin, Mazliana Ahmad (January 2020).
2467:
quantum confinement on the quantum dots has been repeatedly verified experimentally and is a key feature of many emerging electronic structures.
8540:
Jungnickel, V.; Henneberger, F. (October 1996). "Luminescence related processes in semiconductor nanocrystals —The strong confinement regime".
4622:. Proceedings of the Fifth International Topical Conference on Optical Probes of Conjugated Polymers and Organic and Inorganic Nanostructures. 4460:
Zhang, Wenda; Zhuang, Weidong; Liu, Ronghui; Xing, Xianran; Qu, Xiangwei; Liu, Haochen; Xu, Bing; Wang, Kai; Sun, Xiao Wei (19 November 2019).
3992:
Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. (2005).
1160:
Fluorescence spectra of CdTe quantum dots of various sizes. Different sized quantum dots emit different color light due to quantum confinement.
1107:
or oxidation by air, CdSe QDs release free cadmium ions causing cell death. Group II–VI QDs also have been reported to induce the formation of
623:. The main difference is the product neither precipitates as a bulk solid nor remains dissolved. Heating the solution at high temperature, the 10308: 9297: 1855:
The band gap can become smaller in the strong confinement regime as the energy levels split up. The exciton Bohr radius can be expressed as:
9611: 8450:
Vaillancourt, J.; Lu, X.-J.; Lu, Xuejun (2011). "A High Operating Temperature (HOT) Middle Wave Infrared (MWIR) Quantum-Dot Photodetector".
5170:
Pi, X.-D.; Yu, T.; Yang, D. (2014). "Water-dispersible silicon-quantum-dot-containing micelles self-assembled from an amphiphilic polymer".
3761:
Lodahl, Peter; Mahmoodian, Sahand; Stobbe, SĂžren (2015). "Interfacing single photons and single quantum dots with photonic nanostructures".
1091:
studies, based on cell cultures, on quantum dots (QD) toxicity suggest that their toxicity may derive from multiple factors including their
696:, and at 10 nm in diameter, nearly 3 million quantum dots could be lined up end to end and fit within the width of a human thumb. 8347: 6460:
Leatherdale, C. A.; Woo, W.-K.; Mikulec, F. V.; Bawendi, M. G. (2002). "On the Absorption Cross Section of CdSe Nanocrystal Quantum Dots".
1164:
In semiconductors, light absorption generally leads to an electron being excited from the valence to the conduction band, leaving behind a
7808:
Schaller, R.; Klimov, V. (2004). "High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion".
8659:
Khare, Ankur; Wills, Andrew W.; Ammerman, Lauren M.; Noris, David J.; Aydil, Eray S. (2011). "Size control and quantum confinement in Cu
8074:
Park, Kwang-Tae; Kim, Han-Jung; Park, Min-Joon; Jeong, Jun-Ho; Lee, Jihye; Choi, Dae-Geun; Lee, Jung-Ho; Choi, Jun-Hyuk (15 July 2015).
7209:
Howarth, M.; Liu, W.; Puthenveetil, S.; Zheng, Y.; Marshall, L. F.; Schmidt, M. M.; Wittrup, K. D.; Bawendi, M. G.; Ting, A. Y. (2008).
1472:
Colloidal quantum dot photovoltaics would theoretically be cheaper to manufacture, as they can be made using simple chemical reactions.
8296: 5041:
Ni, Z. Y.; Pi, X. D.; Ali, M.; Zhou, S.; Nozaki, T.; Yang, D. (2015). "Freestanding doped silicon nanocrystals synthesized by plasma".
3718:
Huffaker, D. L.; Park, G.; Zou, Z.; Shchekin, O. B.; Deppe, D. G. (1998). "1.3 ÎŒm room-temperature GaAs-based quantum-dot laser".
2997:
work originated in classical electrostatic modeling of electrons in a spherical quantum dot represented by an ideal dielectric sphere.
2981:
The classical electrostatic treatment of electrons confined to spherical quantum dots is similar to their treatment in the Thomson, or
2604: 1074: 86: 10831: 6097:
Liu, Wei; Zhang, Shuping; Wang, Lixin; Qu, Chen; Zhang, Changwen; Hong, Lei; Yuan, Lin; Huang, Zehao; Wang, Zhe (29 September 2011).
795: 76: 8934:
Bedanov, V. M.; Peeters (1994). "Ordering and phase transitions of charged particles in a classical finite two-dimensional system".
7401:
Zherebetskyy, D.; Scheele, M.; Zhang, Y.; Bronstein, N.; Thompson, C.; Britt, D.; Salmeron, M.; Alivisatos, P.; Wang, L.-W. (2014).
1299:
extinction coefficient combined with a comparable quantum yield to fluorescent dyes) as well as their stability (allowing much less
10157: 7459:
Ballou, B.; Lagerholm, B. C.; Ernst, L. A.; Bruchez, M. P.; Waggoner, A. S. (2004). "Noninvasive Imaging of Quantum Dots in Mice".
6962: 3124: 779:. Sub-monolayer shells can also be effective ways of passivating the quantum dots, such as PbS cores with sub-monolayer CdS shells. 521: 2755: 1273:
than higher-dimensional structures. As a result, they have superior transport and optical properties. They have potential uses in
10843: 6604: 6234:
Hauck, T. S.; Anderson, R. E.; Fischer, H. C.; Newbigging, S.; Chan, W. C. W. (2010). "In vivo Quantum-Dot Toxicity Assessment".
6181: 4653:
Dong, Angang; Ye, Xingchen; Chen, Jun; Kang, Yijin; Gordon, Thomas; Kikkawa, James M.; Murray, Christopher B. (2 February 2011).
1994:
the semiconductor crystal is smaller than the exciton Bohr radius, the Coulomb interaction must be modified to fit the situation.
307: 9574:</ref> Methods to produce quantum-confined semiconductor structures (quantum wires, wells, and dots via grown by advanced 3669: 1725:
in the surrounding liquid. Generally, the photocatalytic activity of the dots is related to the particle size and its degree of
839:. The islands can be subsequently buried to form the quantum dot. A widely used type of quantum dots grown with this method are 10527: 10100: 9923: 1395: 1183: 81: 8977:
LaFave, T. Jr. (2013). "Correspondences between the classical electrostatic Thomson Problem and atomic electronic structure".
3879:
Senellart, Pascale; Solomon, Glenn; White, Andrew (2017). "High-performance semiconductor quantum-dot single-photon sources".
867:. The main limitations of this method are the cost of fabrication and the lack of control over positioning of individual dots. 699: 10461: 9567: 6974: 3081: 1709:
Quantum dots also function as photocatalysts for the light driven chemical conversion of water into hydrogen as a pathway to
6660:
Bux, Sabah K.; Fleurial, Jean-Pierre; Kaner, Richard B. (2010). "Nanostructured materials for thermoelectric applications".
1828:
between the negatively charged electron and the positively charged hole. By comparing the quantum dot's size to the exciton
10384: 6435: 5582:
Lee, S. W.; Mao, C.; Flynn, C. E.; Belcher, A. M. (2002). "Ordering of quantum dots using genetically engineered viruses".
995:
nucleation and growth via a high temperature dual injection synthesis. An alternative method of quantum dot synthesis, the
8249: 6705:"Toward high-performance nanostructured thermoelectric materials: the progress of bottom-up solution chemistry approaches" 5684:
Jawaid, A. M.; Chattopadhyay, S.; Wink, D. J.; Page, L. E.; Snee, P. T. (2013). "Cluster-Seeded Synthesis of Doped CdSe:Cu
1972:
The exciton entity can be modeled using the particle in the box. The electron and the hole can be seen as hydrogen in the
1376: 10012: 9651: 3633: 1230:
and ultrafast optical nonlinearities with potential applications for developing all-optical systems. They operate like a
9218:
Ekimov, A. I.; Onushchenko, A. A. (1982). "Quantum size effect in the optical-spectra of semiconductor micro-crystals".
8271: 1488:) can be used to improve the band alignment at electrodes for better efficiencies. This technique has provided a record 660:
There are colloidal methods to produce many different semiconductors. Typical dots are made of binary compounds such as
25:
Colloidal quantum dots irradiated with a UV light. Differently sized quantum dots emit different colors of light due to
9771: 5750: 124: 4761:
Mangolini, L.; Thimsen, E.; Kortshagen, U. (2005). "High-yield plasma synthesis of luminescent silicon nanocrystals".
10907: 10130: 10093: 6704: 5350:"The Passivating Effect of Cadmium in PbS / CdS Colloidal Quantum Dot Solar Cells Probed by nm-Scale Depth Profiling" 4940:
Pi, X. D.; Kortshagen, U. (2009). "Nonthermal plasma synthesized freestanding silicon–germanium alloy nanocrystals".
2473:
Besides confinement in all three dimensions (that is, a quantum dot), other quantum confined semiconductors include:
1642:
itself, the achievable colors may be limited in this method. Electro-emissive QD-LED TVs exist in laboratories only.
824: 9504: 8583:
Richter, Marten (26 June 2017). "Nanoplatelets as material system between strong confinement and weak confinement".
10240: 9883: 9621: 3154: 3010: 1806:-type. However, in a triangular dot the wave functions are mixed due to confinement symmetry. (Click for animation) 1532:
allowed the electrons to have a direct pathway to the photoanode. This form of solar cell exhibits 50–60% internal
860: 562: 509: 477: 5790: 5425:
Leonard, D.; Pond, K.; Petroff, P. M. (1994). "Critical layer thickness for self-assembled InAs islands on GaAs".
1449:(PbSe) can produce more than one exciton from one high-energy photon via the process of carrier multiplication or 874:. The sample surface is coated with a thin layer of resist and a lateral pattern is then defined in the resist by 383:) is illustrated in the figure on the right. The color of that light depends on the energy difference between the 10798: 10507: 10502: 10225: 7699:
Choi, H.-S.; Liu, W.; Misra, P.; Tanaka, E.; Zimmer, J. P.; Ipe, B. I.; Bawendi, M. G.; Frangioni, J. V. (2007).
4616:"Low polydispersity core/shell nanocrystals of CdSe/ZnSe and CdSe/ZnSe/ZnS type: preparation and optical studies" 3028: 1462: 1324: 531:
after photogeneration, meaning the generated charge carriers can be dissipated without photon emission (e.g. via
489: 9152: 7113:
Tokumasu, F; Fairhurst, R. M.; Ostera, G. R.; Brittain, N. J.; Hwang, J.; Wellems, T. E.; Dvorak, J. A. (2005).
6487:
Torres Torres, C.; LĂłpez SuĂĄrez, A.; Can Uc, B.; Rangel Rojo, R.; Tamayo Rivera, L.; Oliver, A. (24 July 2015).
4655:"A Generalized Ligand-Exchange Strategy Enabling Sequential Surface Functionalization of Colloidal Nanocrystals" 414:
in the box that are reminiscent of atomic spectra. For these reasons, quantum dots are sometimes referred to as
10810: 10482: 9644: 9298:"Optical Technologies Silver Nanoclusters Influence on Formation of Quantum Dots in Fluorine Phosphate Glasses" 8478: 3043:
in 1982. It was quickly identified that the optical changes that appeared for very small particles were due to
1589: 1243: 379:. The excited electron can drop back into the valence band releasing its energy as light. This light emission ( 198: 8817:
Iafrate, G. J.; Hess, K.; Krieger, J. B.; Macucci, M. (1995). "Capacitive nature of atomic-sized structures".
4714:, X=Cl, Br, and/or I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut Profiling" 10788: 10565: 10487: 10270: 10140: 10073: 10039: 9073: 5084:
Pereira, R. N.; Almeida, A. J. (2015). "Doped semiconductor nanoparticles synthesized in gas-phase plasmas".
4848: 4356:"Surface passivation of intensely luminescent all-inorganic nanocrystals and their direct optical patterning" 836: 632:
of atoms during the synthesis process while being low enough to promote crystal growth. The concentration of
449:
Quantum dots have properties intermediate between bulk semiconductors and discrete atoms or molecules. Their
218: 66: 9631: 2598:
whose energy terms may be obtained as solutions of the Schrödinger equation. The definition of capacitance,
2503:
Quantum mechanical models and simulations of quantum dots often involve the interaction of electrons with a
1559: 1190:
emission can be tuned by changing the size of the quantum dot during its synthesis. The larger the dot, the
10902: 10522: 10456: 10451: 10422: 10135: 8703: 1489: 988: 542: 158: 91: 9559: 10892: 10590: 10497: 9505:"One Small Quantum Dot, One Giant Leap for Nanoscience: Moungi Bawendi '82 Wins Nobel Prize in Chemistry" 6379:"Frequency-Dependent Spontaneous Emission Rate from CdSe and CdTe Nanocrystals: Influence of Dark States" 2533: 1450: 1227: 879: 528: 300: 10897: 10866: 10628: 10436: 10407: 10044: 9980: 8076:"13.2% efficiency Si nanowire/PEDOT:PSS hybrid solar cell using a transfer-imprinted Au mesh electrode" 3129: 2974:
Classical models of electrostatic properties of electrons in quantum dots are similar in nature to the
1985:. Thus by varying the size of the quantum dot, the confinement energy of the exciton can be controlled. 1339:
on cells. Researchers were able to observe quantum dots in lymph nodes of mice for more than 4 months.
1304: 1231: 546: 505: 481: 461: 453:
properties change as a function of both size and shape. Larger QDs of 5–6 nm diameter emit longer
6203:
Green, Mark; Howman, Emily (2005). "Semiconductor quantum dots and free radical induced DNA nicking".
4615: 4521: 4421:"Quantum Confinement Effect and Photoenhancement of Photoluminescence of PbS and PbS/MnS Quantum Dots" 10650: 10517: 10441: 10402: 10359: 10333: 10290: 10183: 10027: 9987: 7158:
Dahan, M. (2003). "Diffusion Dynamics of Glycine Receptors Revealed by Single-Quantum Dot Tracking".
5899:"A Toxicologic Review of Quantum Dots: Toxicity Depends on Physicochemical and Environmental Factors" 3565:"Enabling metallic behaviour in two-dimensional superlattice of semiconductor colloidal quantum dots" 2480:, which confine electrons or holes in two spatial dimensions and allow free propagation in the third. 1407: 875: 173: 71: 8864: 6488: 6158:"Cell Motility and Metastatic Potential Studies Based on Quantum Dot Imaging of Phagokinetic Tracks" 4564:"Interface Strain Effects on ZnSe/ (CdSe) based Type I and ZnSe/CdS Type II Core/Shell Quantum Dots" 10717: 10697: 10687: 10677: 10633: 10208: 9818: 9803: 9781: 5818:"LG Electronics Partners with Dow to Commercialize LGs New Ultra HD TV with Quantum Dot Technology" 3114: 3089: 1779: 1481: 827:(MOVPE), when a material is grown on a substrate to which it is not lattice matched. The resulting 496:. Their small size allows for some QDs to be suspended in solution, which may lead to their use in 406:
model. The quantum dot absorption and emission features correspond to transitions between discrete
251: 203: 5392:
Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse IIb. Akademie der Wissenschaften Wien
10412: 10338: 9992: 9965: 9553: 7004:"High-Precision Tracking with Non-blinking Quantum Dots Resolves Nanoscale Vertical Displacement" 4206:"Oscillatory barrier-assisted Langmuir–Blodgett deposition of large-scale quantum dot monolayers" 3202:"Selected I-III-VI2 Semiconductors: Synthesis, Properties and Applications in Photovoltaic Cells" 2486:, which confine electrons or holes in one dimension and allow free propagation in two dimensions. 1108: 984: 840: 799: 747: 652: 573: 193: 16:
Zero-dimensional, nano-scale semiconductor particles with novel optical and electronic properties
10826: 10374: 601:
There are several ways to fabricate quantum dots. Possible methods include colloidal synthesis,
10737: 10512: 10492: 10417: 10285: 10002: 9997: 9970: 8872: 5127:
Mangolini, L.; Kortshagen, U. (2007). "Plasma-assisted synthesis of silicon nanocrystal inks".
3139: 2989: 1929:{\displaystyle a_{\rm {B}}^{*}=\varepsilon _{\rm {r}}\left({\frac {m}{\mu }}\right)a_{\rm {B}}} 1794: 1646: 1622: 1435: 1266: 918: 820: 689: 629: 465: 438:
in quantum dots resemble the ones in real atoms. By coupling two or more such quantum dots, an
293: 10328: 1600: 10887: 10762: 10275: 10255: 9928: 9791: 9667: 7090:
Spie (2014). "Paul Selvin Hot Topics presentation: New Small Quantum Dots for Neuroscience".
6605:"Nanoscale self-assembly of thermoelectric materials: a review of chemistry-based approaches" 4204:
Xu, Shicheng; Dadlani, Anup L.; Acharya, Shinjita; Schindler, Peter; Prinz, Fritz B. (2016).
3358:"Identification of atomic-like electronic states in indium arsenide nanocrystal quantum dots" 3159: 3134: 3073: 3055: 1963: 1676: 1615: 1466: 1458: 926: 624: 469: 443: 208: 9522: 5748: 5275:"Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor" 10793: 10722: 10667: 10397: 10220: 10178: 9975: 9938: 9918: 9444: 9371: 9328: 9250: 8943: 8908: 8826: 8775: 8730: 8602: 8549: 8381: 8141: 8087: 8040: 7994: 7929: 7827: 7762: 7414: 7271: 7167: 6871: 6806: 6751: 6616: 6569: 6500: 6403: 6335: 6169: 6157: 6110: 6053: 5852: 5642: 5591: 5434: 5296: 5215: 5136: 5093: 5050: 5007: 4949: 4906: 4863: 4849:"Synthesis of blue luminescent Si nanoparticles using atmospheric-pressure microdischarges" 4770: 4575: 4562:
Gheshlaghi, Negar; Pisheh, Hadi Sedaghat; Karim, M. Rezaul; ÜnlĂŒ, Hilmi (1 December 2016).
4367: 4307: 4217: 4127: 4068: 4005: 3953: 3888: 3835: 3780: 3727: 3642: 3576: 3503: 3434: 3369: 3330: 3285: 3200:
Shishodia, Shubham; Chouchene, Bilel; Gries, Thomas; Schneider, Raphaël (31 October 2023).
2988:
The classical treatment of both two-dimensional and three-dimensional quantum dots exhibit
1569: 1015: 938: 889: 856: 246: 168: 129: 109: 8415:
Konstantatos, G.; Sargent, E. H. (2009). "Solution-Processed Quantum Dot Photodetectors".
6793:
Chern, Margaret; Kays, Joshua C.; Bhuckory, Shashi; Dennis, Allison M. (24 January 2019).
5843:
Hauser, Charlotte A. E.; Zhang, Shuguang (2010). "Peptides as biological semiconductors".
1765:
are chemically unstable under oxidizing conditions and undergo photo corrosion reactions.
576:
techniques to be applied to these core/double-shell systems, as well. As mentioned above,
508:. These processing techniques result in less expensive and less time-consuming methods of 8: 10778: 10747: 10692: 10672: 10580: 10537: 10392: 10318: 10245: 10235: 10147: 10032: 10007: 9878: 9835: 9713: 9708: 9688: 9192: 7043:"Compact and Blinking-Suppressed Quantum Dots for Single-Particle Tracking in Live Cells" 6512: 6099:"CdSe Quantum Dot (QD)-Induced Morphological and Functional Impairments to Liver in Mice" 5105: 5062: 4961: 4918: 3064: 1658: 1609: 1563: 1485: 1215: 871: 864: 712: 708: 213: 178: 119: 26: 9448: 9375: 9332: 9254: 8947: 8912: 8830: 8779: 8734: 8606: 8553: 8385: 8145: 8091: 8044: 7998: 7933: 7916:
Alexandre, M.; Águas, H.; Fortunato, E.; Martins, R.; Mendes, M. J. (17 November 2021).
7831: 7766: 7418: 7317:
Farlow, J.; Seo, D.; Broaders, K. E.; Taylor, M. J.; Gartner, Z. J.; Jun, Y. W. (2013).
7275: 7171: 7119:-infected AA and CC erythrocytes assayed by autocorrelation analysis using quantum dots" 6980: 6875: 6810: 6755: 6620: 6573: 6504: 6407: 6339: 6173: 6114: 6057: 5856: 5646: 5595: 5438: 5300: 5219: 5140: 5097: 5054: 5011: 4953: 4910: 4867: 4774: 4579: 4371: 4311: 4221: 4131: 4072: 4009: 3957: 3892: 3839: 3784: 3731: 3646: 3605: 3580: 3564: 3507: 3438: 3373: 3334: 3289: 3236: 3201: 3017: 1261:, through energy transfer from thin layers of quantum wells to crystals above the layers 1087:
and have yet to be demonstrated in animal models after physiologically relevant dosing.
10838: 10707: 10605: 10313: 10260: 10152: 10049: 9751: 9437:
Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena
9395: 9128: 9095: 9049: 9031: 9022:
LaFave, T. Jr. (2013). "The discrete charge dielectric model of electrostatic energy".
9004: 8986: 8799: 8765: 8626: 8618: 8592: 8432: 8397: 8108: 8075: 7958: 7917: 7898: 7870: 7851: 7817: 7785: 7750: 7725: 7700: 7654: 7611: 7438: 7343: 7318: 7235: 7210: 7191: 7067: 7042: 6938: 6911: 6835: 6794: 6775: 6585: 6559: 6532: 6427: 6393: 6359: 6303: 6278: 6259: 6185: 6133: 6098: 6074: 6041: 5975: 5950: 5923: 5898: 5876: 5770: 5666: 5615: 5564: 5528: 5504: 5486: 5407: 5325: 5312: 5286: 5274: 5255: 5231: 5187: 5152: 5109: 5066: 5023: 4973: 4922: 4829: 4738: 4709: 4690: 4494: 4461: 4396: 4355: 4331: 4297: 4270: 4186: 4151: 4100: 4058: 4026: 3993: 3943: 3804: 3770: 3545: 3463: 3424: 3412: 3393: 3301: 3174: 3119: 3023:
The first quantum dots were synthesized in a glass matrix by Alexei A. Onushchenko and
2982: 2739:{\displaystyle \Delta V={\frac {\Delta \mu }{e}}={\frac {\mu (N+\Delta N)-\mu (N)}{e}}} 2520: 1585: 1533: 1442: 1426: 1402:
In another potential application, quantum dots are being investigated as the inorganic
1145: 1056: 828: 620: 148: 9478: 9263: 9238: 8614: 7294: 7259: 4992: 4631: 3014:
for the same element and preparation, the color depended on the dust particles' size.
2749:
may be applied to a quantum dot with the addition or removal of individual electrons,
1645:
The ability of QDs to precisely convert and tune a spectrum makes them attractive for
10848: 10757: 10727: 10655: 10618: 10613: 10595: 10560: 10550: 10265: 10230: 10213: 10116: 9850: 9746: 9728: 9626: 9592: 9563: 9460: 9387: 9344: 9171: 9133: 9115: 9053: 9008: 8959: 8842: 8791: 8684: 8565: 8561: 8522: 8231: 8196: 8157: 8113: 8056: 8010: 7963: 7945: 7902: 7890: 7843: 7790: 7730: 7646: 7603: 7568: 7560: 7519: 7511: 7476: 7442: 7430: 7383: 7348: 7299: 7240: 7183: 7140: 7072: 7023: 6970: 6943: 6889: 6858:
Mongin, C.; Garakyaraghi, S.; Razgoniaeva, N.; Zamkov, M.; Castellano, F. N. (2016).
6840: 6822: 6767: 6724: 6685: 6677: 6642: 6634: 6550:
Loss, D.; DiVincenzo, D. P. (January 1997). "Quantum computation with quantum dots".
6524: 6516: 6419: 6363: 6351: 6308: 6251: 6216: 6138: 6079: 6022: 5980: 5928: 5880: 5868: 5751:"Quantum materials corp achieves milestone in High Volume Production of Quantum Dots" 5724: 5705: 5658: 5607: 5568: 5532: 5520: 5512: 5458: 5450: 5371: 5330: 5247: 5239: 5113: 5070: 5027: 4965: 4926: 4879: 4821: 4786: 4743: 4694: 4682: 4674: 4635: 4593: 4541: 4520:
Vasudevan, D.; Gaddam, Rohit Ranganathan; Trinchi, Adrian; Cole, Ivan (5 July 2015).
4499: 4481: 4442: 4401: 4383: 4323: 4274: 4262: 4143: 4092: 4084: 4031: 3971: 3912: 3904: 3861: 3853: 3808: 3796: 3743: 3693: 3610: 3592: 3549: 3537: 3529: 3491: 3468: 3450: 3385: 3241: 3223: 3149: 3044: 1817: 1758: 1501: 1278: 1270: 1036: 910: 735: 677: 485: 473: 407: 403: 380: 356: 348: 281: 188: 9399: 8630: 7658: 7258:
Akerman, M. E.; Chan, W. C. W.; Laakkonen, P.; Bhatia, S. N.; Ruoslahti, E. (2002).
7195: 6589: 6536: 6189: 5619: 5411: 5191: 5156: 4977: 4335: 4190: 4155: 3654: 1124:. Though multiple other studies have concluded retention of QDs in cellular levels, 759:
Some quantum dots are small regions of one material buried in another with a larger
10575: 10570: 10427: 10323: 10017: 9933: 9893: 9583: 9452: 9379: 9336: 9258: 9195:[The quantum size effect in three-dimensional semiconductor microcrystals] 9123: 9107: 9041: 8996: 8951: 8916: 8899:
Bednarek, S.; Szafran, B.; Adamowski, J. (1999). "Many-electron artificial atoms".
8881: 8834: 8803: 8783: 8738: 8676: 8610: 8557: 8514: 8459: 8436: 8424: 8401: 8389: 8321: 8223: 8188: 8149: 8103: 8095: 8048: 8002: 7953: 7937: 7882: 7855: 7835: 7780: 7770: 7720: 7712: 7681: 7638: 7615: 7595: 7550: 7503: 7468: 7422: 7375: 7338: 7330: 7289: 7279: 7230: 7222: 7175: 7130: 7095: 7062: 7054: 7015: 6933: 6923: 6879: 6830: 6814: 6779: 6759: 6716: 6669: 6624: 6577: 6508: 6469: 6431: 6411: 6343: 6298: 6290: 6263: 6243: 6208: 6177: 6128: 6118: 6069: 6061: 6014: 5970: 5962: 5918: 5910: 5860: 5697: 5670: 5650: 5599: 5556: 5496: 5442: 5399: 5361: 5320: 5304: 5259: 5223: 5179: 5144: 5101: 5058: 5015: 4957: 4914: 4897:
Kortshagen, U (2009). "Nonthermal plasma synthesis of semiconductor nanocrystals".
4871: 4833: 4813: 4778: 4733: 4725: 4666: 4627: 4583: 4533: 4489: 4473: 4432: 4391: 4375: 4315: 4254: 4225: 4178: 4135: 4104: 4080: 4076: 4021: 4013: 3961: 3896: 3843: 3788: 3735: 3650: 3600: 3584: 3519: 3511: 3487: 3458: 3442: 3397: 3377: 3338: 3305: 3293: 3276: 3231: 3213: 1825: 1816:
The energy levels of a single particle in a quantum dot can be predicted using the
1630: 1235: 1226:
Quantum dots are particularly promising for optical applications due to their high
848: 819:
Self-assembled quantum dots nucleate spontaneously under certain conditions during
807: 764: 752: 723: 685: 669: 384: 376: 9302:
Scientific and Technical Journal of Information Technologies, Mechanics and Optics
8787: 7839: 7555: 7538: 6415: 4537: 3413:"Colloidal quantum dot molecules manifesting quantum coupling at room temperature" 2926:{\displaystyle C(N)={\frac {e^{2}}{\mu (N+1)-\mu (N)}}={\frac {e^{2}}{I(N)-A(N)}}} 1465:, IB) to exploit a broader range of the solar spectrum and thereby achieve higher 10805: 10732: 10712: 10682: 10645: 10640: 10545: 10369: 9868: 9813: 9756: 9741: 9606: 9578:
techniques), nanocrystals by gas-phase, liquid-phase, and solid-phase approaches.
9045: 9000: 8006: 6123: 4588: 4563: 4230: 4205: 3144: 3040: 2975: 2504: 1734: 1657:
In June 2006, QD Vision announced technical success in making a proof-of-concept
1092: 963: 681: 673: 497: 493: 450: 57: 9413: 5754: 5273:
Branny, Artur; Kumar, Santosh; Proux, Raphaël; Gerardot, Brian D (22 May 2017).
4991:
Pi, X. D.; Gresback, R.; Liptak, R. W.; Campbell, S. A.; Kortshagen, U. (2008).
371:
quantum dot, this process corresponds to the transition of an electron from the
367:
in the quantum dot can be excited to a state of higher energy. In the case of a
10783: 10752: 10742: 10364: 10354: 10188: 10022: 9888: 9830: 9808: 8428: 8257: 7941: 7402: 7379: 6860:"Direct observation of triplet energy transfer from semiconductor nanocrystals" 6818: 6629: 4379: 3588: 3524: 3515: 3446: 3093: 3077: 2993: 1811: 1783: 1775: 1742: 1726: 1722: 1714: 1704: 1300: 1199: 1191: 1121: 1078: 1024: 1008: 946: 942: 930: 392: 352: 269: 183: 8920: 8885: 8838: 8742: 8463: 7642: 5500: 5446: 4258: 3792: 1820:
model in which the energies of states depend on the length of the box. For an
1614:
Quantum dots are valued for displays because they emit light in very specific
10881: 10702: 10555: 10446: 10280: 10250: 10203: 10054: 9823: 9776: 9698: 9464: 9391: 9348: 9119: 8955: 8860: 8622: 8569: 8483: 7949: 7894: 7585: 7564: 7515: 7403:"Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid" 7211:"Monovalent, reduced-size quantum dots for imaging receptors on living cells" 6826: 6728: 6681: 6638: 6520: 5951:"State of Academic Knowledge on Toxicity and Biological Fate of Quantum Dots" 5516: 5508: 5454: 5316: 5243: 5235: 4678: 4654: 4639: 4597: 4545: 4485: 4477: 4446: 4387: 4327: 4266: 4088: 3975: 3908: 3857: 3800: 3747: 3596: 3533: 3454: 3389: 3321: 3227: 3101: 3097: 3032: 3024: 2508: 1999: 1835: 1754: 1738: 1634: 1581: 1516: 1446: 1351: 1258: 1206: 1165: 1156: 1035:
In many regions of the world there is now a restriction or ban on the use of
922: 832: 665: 616: 602: 554: 435: 399: 368: 332: 236: 227: 163: 114: 41: 9111: 7775: 7426: 7179: 6884: 6859: 6581: 5966: 5603: 5227: 4017: 3966: 3931: 10585: 10198: 10193: 9958: 9873: 9786: 9137: 8963: 8795: 8688: 8526: 8235: 8200: 8161: 8117: 8060: 8014: 7967: 7847: 7794: 7734: 7650: 7607: 7572: 7523: 7480: 7434: 7387: 7352: 7303: 7284: 7244: 7187: 7144: 7076: 7027: 6947: 6893: 6844: 6771: 6689: 6646: 6528: 6423: 6355: 6347: 6312: 6255: 6247: 6220: 6142: 6083: 6040:
Derfus, Austin M.; Chan, Warren C. W.; Bhatia, Sangeeta N. (January 2004).
6026: 5984: 5932: 5872: 5709: 5662: 5611: 5524: 5375: 5334: 5251: 5183: 5148: 4969: 4883: 4825: 4790: 4747: 4686: 4503: 4405: 4182: 4147: 4096: 4035: 3916: 3900: 3865: 3614: 3541: 3472: 3245: 2483: 2477: 1982: 1762: 1692: 1454: 1316: 1187: 1169: 1103:
using model cell cultures. It has been demonstrated that after exposure to
1100: 992: 951: 914: 783: 768: 661: 501: 423: 419: 411: 388: 372: 139: 8846: 7918:"Light management with quantum nanostructured dots-in-host semiconductors" 7536: 7003: 6486: 5560: 5462: 1115:
Although concentration of QDs in certain organelles have been reported in
10623: 9953: 9948: 9718: 9703: 9693: 9612:
Quantum dots that produce white light could be the light bulb's successor
9193:"КĐČĐ°ĐœŃ‚ĐŸĐČыĐč Ń€Đ°Đ·ĐŒĐ”Ń€ĐœŃ‹Đč ŃŃ„Ń„Đ”Đșт ĐČ Ń‚Ń€Đ”Ń…ĐŒĐ”Ń€ĐœŃ‹Ń… ĐŒĐžĐșŃ€ĐŸĐșрОсталлах ĐżĐŸĐ»ŃƒĐżŃ€ĐŸĐČĐŸĐŽĐœĐžĐșĐŸĐČ" 8770: 7822: 7099: 6928: 6564: 6398: 4817: 4302: 3948: 3218: 3164: 1844: 1829: 1782:. Optical properties of spherical metallic QDs are well described by the 1415: 1403: 1274: 1137: 1104: 715:, colloidal synthetic methods are promising for commercial applications. 344: 9636: 9587: 6763: 6182:
10.1002/1521-4095(20020618)14:12<882::AID-ADMA882>3.0.CO;2-Y
5308: 4437: 4420: 3357: 1568:
Several methods are proposed for using quantum dots to improve existing
790: 9913: 9798: 8680: 8052: 7599: 7334: 7226: 6720: 6673: 5403: 5366: 5349: 4139: 1973: 1746: 1710: 1651: 1391: 1375:
One application of quantum dots in biology is as donor fluorophores in
1369: 1366: 1358: 1125: 577: 454: 9632:
Simulation and interactive visualization of Quantum Dots wave function
8518: 8393: 8227: 8192: 8153: 8099: 7685: 7507: 7472: 7135: 7114: 7058: 7019: 6473: 6065: 6018: 5701: 5019: 4993:"Doping efficiency, dopant location, and oxidation of Si nanocrystals" 4875: 4782: 4729: 4670: 4462:"Double-Shelled InP/ZnMnS/ZnS Quantum Dots for Light-Emitting Devices" 4319: 3848: 3823: 941:) are adjustable by controlling the solution concentrations, solution 398:
Nanoscale semiconductor materials tightly confine either electrons or
264: 10477: 10173: 9943: 9761: 9575: 9456: 9383: 9340: 7886: 6212: 5914: 5749:
Quantum Materials Corporation and the Access2Flow Consortium (2011).
5654: 3739: 3492:"Perovskite-type superlattices from lead halide perovskite nanocubes" 3342: 3297: 3179: 3169: 3036: 1753:) interfere with the chemical reactivity of the dots by slowing down 1680: 1626: 1362: 1052: 731: 693: 597:
Quantum dots with gradually stepping emission from violet to deep red
336: 100: 10085: 7716: 6294: 5864: 4418: 1238:
effect. Quantum dots have also been suggested as implementations of
962:
Highly ordered arrays of quantum dots may also be self-assembled by
9860: 9845: 9766: 8597: 7319:"Formation of targeted monovalent quantum dots by steric exclusion" 6857: 5491: 5291: 4847:
Sankaran, R. M.; Holunga, D.; Flagan, R. C.; Giapis, K. P. (2005).
4063: 3429: 1730: 1718: 1684: 1543: 1529: 1347: 1312: 1195: 1133: 1088: 760: 619:
nanocrystals are synthesized from solutions, much like traditional
537: 431: 364: 360: 241: 9036: 8991: 3775: 3381: 3259:
Silbey, Robert J.; Alberty, Robert A.; Bawendi, Moungi G. (2005).
1618:. This can result in a display with visibly more accurate colors. 1457:, PbS) incorporated in wider-bandgap host semiconductors (such as 1182:
As the confinement energy depends on the quantum dot's size, both
1043:-based quantum dots are unusable for consumer-goods applications. 763:. These can be so-called core–shell structures, for example, with 276: 9736: 8130: 7400: 6325: 5545: 3356:
Banin, Uri; Cao, YunWei; Katz, David; Millo, Oded (August 1999).
3058:
in 1986. According to Brus, the term "quantum dot" was coined by
2644:{\displaystyle {\frac {1}{C}}\equiv {\frac {\Delta V}{\Delta Q}}} 1821: 1445:. According to an experimental report from 2004, quantum dots of 1383: 1336: 1328: 1320: 1116: 1084: 1062: 1048: 1040: 786:
structures due to monolayer fluctuations in the well's thickness.
776: 727: 637: 633: 613: 581: 7751:"A vector-free microfluidic platform for intracellular delivery" 3199: 1253: 9278: 7365: 7112: 5725:"Continuous Flow Synthesis Method for Fluorescent Quantum Dots" 4614:
Reiss, P.; Carayon, S.; Bleuse, J.; Pron, A. (9 October 2003).
3994:"Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics" 1750: 1688: 1355: 1332: 1019: 897: 893: 772: 532: 9094:
Montanarella, Federico; Kovalenko, Maksym V. (26 April 2022).
8213: 7915: 6233: 4803: 4287: 4244: 3822:
Eisaman, M. D.; Fan, J.; Migdall, A.; Polyakov, S. V. (2011).
2519:
Semiclassical models of quantum dots frequently incorporate a
1778:
properties from their bulk materials. One of these effects is
1650:
The first commercial application of quantum dots was the Sony
1540:
quantum dots resulted in a solar cell that reached 9.10% PCE.
831:
leads to the formation of islands on top of a two-dimensional
515: 9150: 8242: 6741: 4168: 3824:"Invited Review Article: Single-photon sources and detectors" 3562: 3006: 1239: 1027:
to develop the use of cadmium free quantum dots in displays.
934: 340: 6603:
Yazdani, Sajad; Pettes, Michael Thompson (26 October 2018).
6459: 5347: 3485: 2793:{\displaystyle \Delta N=1\quad {\text{and}}\quad \Delta Q=e} 1286:
photovoltaic devices, molecular electronics, and catalysis.
1018:
entered into an exclusive licensing agreement with UK-based
855:). Such quantum dots have the potential for applications in 391:, or the transition between discrete energy states when the 8371: 7458: 7208: 5683: 4846: 3991: 1998:
Therefore, the sum of these energies can be represented by
1663: 1580:(QD-WLED) displays. Because quantum dots naturally produce 1547: 1522: 885: 580:
is one such organic capping ligand that is used to promote
427: 49: 8755: 8533: 7671: 7257: 7002:
Marchuk, K.; Guo, Y.; Sun, W.; Vela, J.; Fang, N. (2012).
6795:"Sensing with photoluminescent semiconductor quantum dots" 6155: 5475: 4760: 4519: 2523:. For example, the thermodynamic chemical potential of an 1500:
Colloidal quantum dots are also used in inorganic–organic
983:
The bonding in certain cadmium-free quantum dots, such as
347:
properties that differ from those of larger particles via
9296:
Kolobkova, E. V.; Nikonorov, N. V.; Aseev, V. A. (2012).
8816: 4561: 4203: 4048: 3821: 1654:
X900A series of flat panel televisions released in 2013.
1295: 9237:
Ekimov, A. I.; Efros, A. L.; Onushchenko, A. A. (1985).
8898: 6961:
Stockert, Juan Carlos; BlĂĄzquez Castro, Alfonso (2017).
6042:"Probing the Cytotoxicity of Semiconductor Quantum Dots" 5272: 4990: 3274:
Ashoori, R. C. (1996). "Electrons in artificial atoms".
1789: 1294:
In modern biological analysis, various kinds of organic
1065:
are being researched as potential quantum dot material.
950:
highly oriented, self-supporting films from a phage and
9295: 8658: 7316: 6960: 6792: 5204: 3717: 1346:
Semiconductor quantum dots have also been employed for
21: 9434: 9236: 8030: 6703:
Zhao, Yixin; Dyck, Jeffrey S.; Burda, Clemens (2011).
6276: 5632: 5469: 5198: 4710:"Nanocrystals of Cesium Lead Halide Perovskites (CsPbX 4613: 4522:"Core–shell quantum dots: Properties and applications" 3760: 3410: 2978:
of optimally distributing electrons on a unit sphere.
991:
materials, therefore it is more difficult to separate
9093: 8539: 8479:"Move over CMOS, here come snapshots by quantum dots" 8322:"Quantum dot white and colored light emitting diodes" 7041:
Lane, L. A.; Smith, A. M.; Lian, T.; Nie, S. (2014).
3878: 3670:"Chemistry and Physics of Semiconductor Nanocrystals" 2812: 2758: 2663: 2607: 2536: 2011: 1863: 1194:(lower-energy) its absorption onset and fluorescence 975:
Quantum dot manufacturing relies on a process called
707:
Large batches of quantum dots may be synthesized via
9318: 9239:"Quantum size effect in semiconductor microcrystals" 7875:
Progress in Photovoltaics: Research and Applications
7747: 5266: 4117: 3872: 3754: 3258: 1495: 402:. The confinement is similar to a three-dimensional 9607:
Quantum Dots: Technical Status and Market Prospects
8414: 7871:"Intermediate band solar cells: Present and future" 7368:
Biochemical and Biophysical Research Communications
5126: 3267: 3263:(4th ed.). John Wiley & Sons. p. 835. 3104:"for the discovery and synthesis of quantum dots." 987:-based quantum dots, is more covalent than that in 9503:Palma, Jasmine; Wang, Austin H. (6 October 2023). 8504: 8297:"A Guide to the Evolution of Quantum Dot Displays" 7698: 7496:Langmuir: The ACS Journal of Surfaces and Colloids 5581: 5424: 5382: 4459: 3923: 3630: 2925: 2792: 2738: 2643: 2587: 2423: 1928: 1749:on the surface of the dots. These surfactants (or 1382:The use of quantum dots for tumor targeting under 1128:of QDs is still poorly studied in the literature. 9217: 9190: 7543:Artificial Cells, Nanomedicine, and Biotechnology 7394: 7001: 5949:Pelley, J. L.; Daar, A. S.; Saner, M. A. (2009). 5791:"Nanoco and Dow tune in for sharpest picture yet" 5388: 3355: 1683:QDPs have potential applications in visible- and 1099:Many studies have focused on the mechanism of QD 1096:oxidative, mechanical, and photolytic stability. 711:. Due to this scalability and the convenience of 10879: 8704:"New Electronics Promise Wireless at Warp Speed" 8648:(2 ed.). New York: Wiley. pp. 240–246. 8643: 8476: 8449: 8272:"Quantum Dots: Solution for a Wider Color Gamut" 8073: 7983: 7040: 6969:. Bentham Science Publishers. pp. 606–641. 6912:"Quantum Dots for Live Cell and In Vivo Imaging" 6910:Walling, M. A.; Novak, Shepard (February 2009). 6659: 6039: 6004: 5172:Particle & Particle Systems Characterization 3711: 1675:conditions with the process windows required by 1030: 8477:Palomaki, P.; Keuleyan, S. (25 February 2020). 8177: 7755:Proceedings of the National Academy of Sciences 7264:Proceedings of the National Academy of Sciences 5948: 5418: 4353: 1947: = 0.053 nm is the Bohr radius, 1475: 1335:can be used to target quantum dots to specific 1039:in many household goods, which means that most 460:Potential applications of quantum dots include 8933: 8720: 7807: 6905: 6903: 6549: 6096: 5083: 4652: 3929: 3815: 1981: = 1) with the mass replaced by the 1717:, electron hole pairs formed in the dot under 1406:for intra-operative detection of tumors using 1246:, and as active elements for thermoelectrics. 917:structures. It had previously been shown that 886:Complementary metal–oxide–semiconductor (CMOS) 782:Quantum dots sometimes occur spontaneously in 10101: 9652: 9551: 8348:"Quantum Dots Produce More Colorful Sony TVs" 7454: 7452: 6963:"Chapter 18: Luminescent Solid-State Markers" 6702: 6602: 3987: 3985: 3031:and independently in colloidal suspension by 1741:. An obstacle for the use of quantum dots in 301: 8576: 6909: 5626: 5575: 4939: 3626: 3624: 3054:first appeared in a paper first authored by 1761:processes. Also, quantum dots made of metal 1560:Light-emitting diode § Quantum-dot LEDs 925:surfaces through the method of selection by 734:quantum dots have been synthesized by using 9176:: CS1 maint: numeric names: authors list ( 9067: 9065: 9063: 8701: 7869:Ramiro, Iñigo; MartĂ­, Antonio (July 2021). 7868: 7493: 6916:International Journal of Molecular Sciences 6900: 6851: 6202: 5842: 5775:: CS1 maint: numeric names: authors list ( 5040: 3930:Loss, Daniel; DiVincenzo, David P. (1998). 3319:Kastner, M. A. (1993). "Artificial Atoms". 2463:is the size-dependent dielectric constant. 1962:is the size-dependent dielectric constant ( 1604:Samsung QLED TV 8K, 75 inches (190 cm) 1198:. Conversely, smaller dots absorb and emit 957: 516:Core/shell and core/double-shell structures 10108: 10094: 10068: 9659: 9645: 9191:Ekimov, A. I.; Onushchenko, A. A. (1981). 9151:Robinson2023-10-11T17:50:00+01:00, Julia. 7628: 7449: 4896: 4708:Protesescu, Loredana; et al. (2015). 4707: 3982: 1075:Health and safety hazards of nanomaterials 308: 294: 9666: 9502: 9262: 9127: 9035: 8990: 8769: 8596: 8107: 7957: 7821: 7784: 7774: 7724: 7554: 7342: 7293: 7283: 7234: 7134: 7066: 6937: 6927: 6883: 6834: 6628: 6563: 6397: 6376: 6302: 6132: 6122: 6073: 5974: 5922: 5490: 5365: 5324: 5290: 4806:Journal of Nanoscience and Nanotechnology 4737: 4587: 4493: 4436: 4395: 4301: 4229: 4062: 4025: 3965: 3947: 3847: 3774: 3621: 3604: 3523: 3462: 3428: 3235: 3217: 1691:, machine vision, industrial inspection, 913:viruses allow preparation of quantum dot 796:scanning transmission electron microscopy 9627:Quantum Dots Research and Technical Data 9060: 8216:Journal of the American Chemical Society 7008:Journal of the American Chemical Society 6967:Fluorescence Microscopy in Life Sciences 6799:Methods and Applications in Fluorescence 5944: 5942: 5169: 4659:Journal of the American Chemical Society 1834: 1824:inside a quantum dot, there is also the 1793: 1669: 1599: 1553: 1523:Quantum dot with nanowire in solar cells 1425: 1252: 1155: 888:technology can be employed to fabricate 789: 698: 651: 592: 20: 9496: 8859: 8582: 5896: 5815: 5722: 3932:"Quantum computation with quantum dots" 3318: 3273: 1595: 1421: 771:in the shell, or from special forms of 359:. When a quantum dot is illuminated by 10880: 9924:Differential technological development 9617:Single quantum dots optical properties 9581: 9021: 8976: 8345: 8173: 8171: 8026: 8024: 7979: 7977: 7631:Analytical and Bioanalytical Chemistry 3069:while they were working at Bell Labs. 3039:in 1983. They were first theorized by 2969: 2940:of a quantum dot, where we denoted by 1695:, and fluorescent biomedical imaging. 1578:quantum dot white-light-emitting diode 1396:Hydrogel encapsulation of quantum dots 608: 10115: 10089: 9640: 9081:The Royal Swedish Academy of Sciences 9074:"Quantum dots — seeds of nanoscience" 9071: 8644:Brandrup, J.; Immergut, E.H. (1966). 7157: 6000: 5998: 5996: 5994: 5939: 5892: 5890: 5086:Journal of Physics D: Applied Physics 5043:Journal of Physics D: Applied Physics 4899:Journal of Physics D: Applied Physics 4609: 4607: 4557: 4555: 4515: 4513: 4349: 4347: 4345: 3082:Massachusetts Institute of Technology 1790:Quantum confinement in semiconductors 1151: 656:Cadmium sulfide quantum dots on cells 9555:Nanostructures: Theory and Modelling 9361: 7089: 3667: 3125:Core–shell semiconductor nanocrystal 2498: 1068: 522:Core-shell semiconductor nanocrystal 10013:Future-oriented technology analysis 9523:"The Nobel Prize in Chemistry 2023" 8702:Greenemeier, L. (5 February 2008). 8168: 8021: 7974: 7674:The Journal of Physical Chemistry C 7047:The Journal of Physical Chemistry B 6462:The Journal of Physical Chemistry B 4290:The Journal of Physical Chemistry B 4120:Physical Chemistry Chemical Physics 3634:Annual Review of Materials Research 2588:{\displaystyle \mu (N)=E(N)-E(N-1)} 970: 718: 434:. It was shown that the electronic 13: 9772:High-temperature superconductivity 9544: 9283:National Nanotechnology Initiative 9220:Soviet Physics Semiconductors-USSR 5991: 5887: 4604: 4552: 4510: 4342: 2778: 2759: 2706: 2676: 2664: 2632: 2624: 2442:is the radius of the quantum dot, 2235: 2211: 2114: 2092: 1920: 1890: 1870: 395:is no longer well-defined in QDs. 14: 10919: 9600: 9096:"Three Millennia of Nanocrystals" 8615:10.1103/PhysRevMaterials.1.016001 8346:Bullis, Kevin (11 January 2013). 7922:Light: Science & Applications 7701:"Renal clearance of quantum dots" 6279:"Renal clearance of quantum dots" 5903:Environmental Health Perspectives 1737:that is stored in the dot in the 1698: 1496:Quantum dot in hybrid solar cells 1377:Förster resonance energy transfer 929:. Additionally, it is known that 904: 896:) to about −258 Â°C (15  825:metalorganic vapour-phase epitaxy 10862: 10861: 10067: 9884:Self-reconfiguring modular robot 9552:Delerue, C.; Lannoo, M. (2004). 9515: 9471: 9428: 9406: 9355: 9312: 9289: 9271: 9230: 9211: 9184: 9144: 9087: 9072:Linke, Heiner (3 October 2023). 9015: 8970: 8927: 8892: 8853: 8810: 8749: 8714: 8695: 8652: 8637: 8498: 8470: 8443: 8408: 8365: 8339: 8314: 8289: 8264: 8207: 8124: 8067: 3828:Review of Scientific Instruments 3155:Quantum dot single-photon source 2951:the ionization potential and by 2514: 1574:quantum dot light-emitting diode 1209:, quantum dots can be made with 1175: 275: 263: 48: 9364:The Journal of Chemical Physics 9321:The Journal of Chemical Physics 8723:Computer Physics Communications 7909: 7862: 7801: 7741: 7692: 7665: 7622: 7579: 7530: 7487: 7359: 7310: 7260:"Nanocrystal targeting in vivo" 7251: 7202: 7151: 7106: 7083: 7034: 6995: 6954: 6786: 6735: 6696: 6653: 6596: 6543: 6480: 6453: 6370: 6319: 6270: 6227: 6196: 6149: 6090: 6033: 5836: 5809: 5783: 5742: 5716: 5677: 5539: 5341: 5163: 5120: 5077: 5034: 4984: 4933: 4890: 4840: 4797: 4754: 4701: 4646: 4526:Journal of Alloys and Compounds 4453: 4412: 4281: 4238: 4197: 4162: 4111: 4042: 3686: 3661: 3655:10.1146/annurev.matsci.30.1.545 3029:Vavilov State Optical Institute 2777: 2771: 1576:(QD-LED or QLED) displays, and 1221: 977:high temperature dual injection 921:viruses can recognize specific 835:. This growth mode is known as 36:Part of a series of articles on 10811:Relativistic quantum mechanics 9777:High-temperature superfluidity 9595:of a QD vs. particle diameter. 8250:"Nano LEDs printed on silicon" 6709:Journal of Materials Chemistry 6513:10.1088/0957-4484/26/29/295701 5106:10.1088/0022-3727/48/31/314005 5063:10.1088/0022-3727/48/31/314006 4962:10.1088/0957-4484/20/29/295602 4919:10.1088/0022-3727/42/11/113001 4081:10.1103/PhysRevLett.115.026101 3698:Nanosys – Quantum Dot Pioneers 3556: 3479: 3404: 3349: 3312: 3252: 3193: 2917: 2911: 2902: 2896: 2871: 2865: 2856: 2844: 2822: 2816: 2727: 2721: 2712: 2697: 2654:with the potential difference 2582: 2570: 2561: 2555: 2546: 2540: 1590:microelectromechanical systems 1269:, quantum dots have a sharper 1244:quantum information processing 741: 351:. They are a central topic in 1: 10789:Quantum statistical mechanics 10566:Quantum differential calculus 10488:Delayed-choice quantum eraser 10271:Symmetry in quantum mechanics 10040:Technology in science fiction 9264:10.1016/S0038-1098(85)80025-9 8788:10.1103/PhysRevLett.89.276803 8256:. 3 July 2009. Archived from 7840:10.1103/PhysRevLett.92.186601 7556:10.1080/21691401.2017.1290643 6416:10.1103/PhysRevLett.95.236804 6007:Accounts of Chemical Research 5723:Soutter, Will (30 May 2013). 5477:fidelity higher than 99.9%". 4632:10.1016/S0379-6779(03)00335-7 4538:10.1016/j.jallcom.2015.02.102 4171:Advanced Functional Materials 3186: 2962:the electron affinity of the 2527:-particle system is given by 1031:Heavy-metal-free quantum dots 588: 9046:10.1016/j.elstat.2013.10.001 9001:10.1016/j.elstat.2013.10.001 8562:10.1016/0022-2313(96)00058-0 8452:Optics and Photonics Letters 8007:10.1021/acs.nanolett.5b03677 6124:10.1371/journal.pone.0024406 4589:10.1016/j.egypro.2016.11.330 4231:10.1016/j.apsusc.2016.01.243 1476:Quantum dot only solar cells 506:Langmuir–Blodgett thin films 7: 10591:Quantum stochastic calculus 10581:Quantum measurement problem 10503:Mach–Zehnder interferometer 6558:(1) (published 1998): 120. 3107: 2449:is the free electron mass, 1490:power conversion efficiency 1451:multiple exciton generation 927:combinatorial phage display 529:non-radiative recombination 462:single-electron transistors 426:, like naturally occurring 10: 10924: 10045:Technology readiness level 9981:Technological unemployment 9479:"Louis E. Brus life story" 9243:Solid State Communications 8429:10.1109/JPROC.2009.2025612 7942:10.1038/s41377-021-00671-x 7380:10.1016/j.bbrc.2004.10.099 4380:10.1038/s41467-022-35702-7 3589:10.1038/s41467-023-38216-y 3516:10.1038/s41586-021-03492-5 3447:10.1038/s41467-019-13349-1 3072:In 1993, David J. Norris, 3000: 1809: 1702: 1607: 1557: 1433: 1289: 1232:single-electron transistor 1144:field is the discovery of 1072: 547:quantum confinement effect 545:emission wavelength — the 519: 482:second-harmonic generation 349:quantum mechanical effects 329:semiconductor nanocrystals 10857: 10819: 10771: 10651:Quantum complexity theory 10629:Quantum cellular automata 10604: 10536: 10470: 10383: 10347: 10334:Path integral formulation 10301: 10166: 10123: 10063: 10028:Technological singularity 9988:Technological convergence 9906: 9859: 9804:Multi-function structures 9727: 9681: 9674: 9414:"History of Quantum Dots" 9279:"Nanotechnology Timeline" 9024:Journal of Electrostatics 8979:Journal of Electrostatics 8921:10.1103/PhysRevB.59.13036 8886:10.1080/14786440409463107 8839:10.1103/physrevb.52.10737 8743:10.1016/j.cpc.2012.03.002 8585:Physical Review Materials 8464:10.1142/S1793528811000196 7643:10.1007/s00216-007-1703-3 7115:"Band 3 modifications in 6377:Van Driel, A. F. (2005). 5816:MFTTech (24 March 2015). 5501:10.1038/s41565-017-0014-x 5447:10.1103/PhysRevB.50.11687 4259:10.1007/s12668-016-0194-0 3793:10.1103/RevModPhys.87.347 3763:Reviews of Modern Physics 2490: 1955:is the reduced mass, and 1768: 1482:self-assembled monolayers 1408:fluorescence spectroscopy 876:electron beam lithography 837:Stranski–Krastanov growth 605:, and electrical gating. 510:semiconductor fabrication 504:. They have been used in 488:, cell biology research, 10908:Semiconductor structures 10718:Quantum machine learning 10698:Quantum key distribution 10688:Quantum image processing 10678:Quantum error correction 10528:Wheeler's delayed choice 9819:Molecular nanotechnology 9782:Linear acetylenic carbon 9622:Quantum dot on arxiv.org 8956:10.1103/PhysRevB.49.2667 7409:(Submitted manuscript). 6819:10.1088/2050-6120/aaf6f8 6630:10.1088/1361-6528/aad673 6164:(Submitted manuscript). 4478:10.1021/acsomega.9b01471 3115:Cadmium-free quantum dot 3090:Nobel Prize in Chemistry 3005:For thousands of years, 1780:melting-point depression 1572:(LED) design, including 1305:blinking of quantum dots 1250:subtle quantum effects. 1205:To improve fluorescence 958:Electrochemical assembly 933:structures of wild-type 806:) quantum dot buried in 572:It is also standard for 442:can be made, exhibiting 252:Nanocrystalline material 228:Nanostructured materials 10634:Quantum finite automata 9993:Technological evolution 9966:Exploratory engineering 9153:"The quantum dot story" 9112:10.1021/acsnano.1c11159 8758:Physical Review Letters 8542:Journal of Luminescence 8417:Proceedings of the IEEE 8374:Applied Physics Letters 7810:Physical Review Letters 7776:10.1073/pnas.1218705110 7427:10.1126/science.1252727 7180:10.1126/science.1088525 7123:Journal of Cell Science 6885:10.1126/science.aad6378 6662:Chemical Communications 6582:10.1103/PhysRevA.57.120 6386:Physical Review Letters 6205:Chemical Communications 5604:10.1126/science.1068054 5549:Applied Physics Express 5228:10.1126/science.1116955 5000:Applied Physics Letters 4210:Applied Surface Science 4051:Physical Review Letters 4018:10.1126/science.1104274 3967:10.1103/PhysRevA.57.120 3834:(7): 071101–071101–25. 3720:Applied Physics Letters 1635:conventional white LEDs 1467:photovoltaic efficiency 1257:A device that produces 1109:reactive oxygen species 909:Genetically engineered 841:indium gallium arsenide 800:indium gallium arsenide 748:electrostatic potential 10738:Quantum neural network 10003:Technology forecasting 9998:Technological paradigm 9971:Proactionary principle 8873:Philosophical Magazine 8301:pid.samsungdisplay.com 8276:pid.samsungdisplay.com 7461:Bioconjugate Chemistry 7285:10.1073/pnas.152463399 6348:10.1002/adma.200904231 6248:10.1002/smll.200900626 5955:Toxicological Sciences 5184:10.1002/ppsc.201300346 5149:10.1002/adma.200700595 4183:10.1002/adfm.200400468 3901:10.1038/nnano.2017.218 3140:Nanocrystal solar cell 3130:Langmuir–Blodgett film 2990:electron shell-filling 2927: 2794: 2740: 2645: 2589: 2456:is the hole mass, and 2425: 1930: 1848: 1807: 1729:. This is because the 1677:organic semiconductors 1623:liquid crystal display 1616:Gaussian distributions 1605: 1436:Quantum dot solar cell 1431: 1262: 1228:extinction coefficient 1161: 919:genetically engineered 821:molecular beam epitaxy 815: 704: 657: 598: 30: 10763:Quantum teleportation 10291:Wave–particle duality 9929:Disruptive innovation 9792:Metamaterial cloaking 9668:Emerging technologies 8352:MIT Technology Review 8260:on 26 September 2017. 7117:Plasmodium falciparum 5967:10.1093/toxsci/kfp188 5561:10.7567/APEX.9.014001 5479:Nature Nanotechnology 5279:Nature Communications 4360:Nature Communications 3881:Nature Nanotechnology 3569:Nature Communications 3417:Nature Communications 3160:Quantum point contact 3135:Mark Reed (physicist) 3074:Christopher B. Murray 2928: 2795: 2741: 2646: 2590: 2438:is the reduced mass, 2426: 1964:relative permittivity 1931: 1838: 1797: 1670:Photodetector devices 1621:A conventional color 1603: 1554:Light-emitting diodes 1429: 1256: 1159: 1136:of chemicals such as 1105:ultraviolet radiation 861:single-photon sources 793: 702: 655: 596: 478:single-photon sources 282:Technology portal 77:Mechanical properties 24: 10794:Quantum field theory 10723:Quantum metamaterial 10668:Quantum cryptography 10398:Consistent histories 9976:Technological change 9919:Collingridge dilemma 9558:. Springer. p.  7705:Nature Biotechnology 7100:10.1117/2.3201403.17 6929:10.3390/ijms10020441 6283:Nature Biotechnology 5897:Hardman, R. (2006). 4818:10.1166/jnn.2004.149 3668:Brus, L. E. (2007). 3488:Kovalenko, Maksym V. 3219:10.3390/nano13212889 3092:2023 was awarded to 2810: 2756: 2661: 2605: 2534: 2009: 1990:Bound exciton energy 1861: 1596:Quantum dot displays 1570:light-emitting diode 1534:quantum efficiencies 1422:Photovoltaic devices 1331:, or small-molecule 890:silicon quantum dots 872:lateral quantum dots 857:quantum cryptography 418:, emphasizing their 408:quantum mechanically 247:Nanoporous materials 110:Buckminsterfullerene 10903:Quantum electronics 10779:Quantum fluctuation 10748:Quantum programming 10708:Quantum logic gates 10693:Quantum information 10673:Quantum electronics 10148:Classical mechanics 10033:Technology scouting 10008:Accelerating change 9879:Powered exoskeleton 9836:Programmable matter 9714:Smart manufacturing 9709:Molecular assembler 9689:3D microfabrication 9509:The Harvard Crimson 9449:1986JVSTB...4..358R 9376:1984JChPh..80.4403B 9333:1983JChPh..79.1086R 9255:1985SSCom..56..921E 8948:1994PhRvB..49.2667B 8913:1999PhRvB..5913036B 8907:(20): 13036–13042. 8831:1995PhRvB..5210737I 8825:(15): 10737–10739. 8780:2002PhRvL..89A6803Z 8735:2012CoPhC.183.1654R 8708:Scientific American 8675:(42): 11721–11723. 8607:2017PhRvM...1a6001R 8554:1996JLum...70..238J 8386:2012ApPhL.101d3118H 8146:2007NanoL...7.1793L 8092:2015NatSR...512093P 8045:2010Nanos...2..873K 7999:2015NanoL..15.7691K 7934:2021LSA....10..231A 7832:2004PhRvL..92r6601S 7767:2013PNAS..110.2082S 7680:(31): 18079–18086. 7419:2014Sci...344.1380Z 7413:(6190): 1380–1384. 7276:2002PNAS...9912617A 7270:(20): 12617–12621. 7172:2003Sci...302..442D 7053:(49): 14140–14147. 6876:2016Sci...351..369M 6811:2019MApFl...7a2005C 6764:10.1038/nature02571 6756:2004Natur.429..642A 6621:2018Nanot..29Q2001Y 6574:1998PhRvA..57..120L 6505:2015Nanot..26C5701T 6408:2005PhRvL..95w6804V 6340:2010AdM....22.2520F 6174:2002AdM....14..882P 6115:2011PLoSO...624406L 6058:2004NanoL...4...11D 5857:2010Natur.468..516H 5797:. 25 September 2014 5757:on 10 February 2015 5647:2000Natur.405..665W 5596:2002Sci...296..892L 5439:1994PhRvB..5011687L 5433:(16): 11687–11692. 5309:10.1038/ncomms15053 5301:2017NatCo...815053B 5220:2005Sci...309.2180P 5214:(5744): 2180–2184. 5141:2007AdM....19.2513M 5098:2015JPhD...48E4005P 5055:2015JPhD...48E4006N 5012:2008ApPhL..92b3102S 4954:2009Nanot..20C5602P 4911:2009JPhD...42k3001K 4868:2005NanoL...5..537S 4775:2005NanoL...5..655M 4580:2016EnPro.102..152G 4472:(21): 18961–18968. 4438:10.3390/app10186282 4372:2023NatCo..14...49X 4312:2003cond.mat.10127A 4296:(50): 13782–13787. 4222:2016ApSS..367..500X 4132:2015PCCP...1723938R 4126:(37): 23938–23946. 4073:2015PhRvL.115b6101W 4010:2005Sci...307..538M 3958:1998PhRvA..57..120L 3893:2017NatNa..12.1026S 3840:2011RScI...82g1101E 3785:2015RvMP...87..347L 3732:1998ApPhL..73.2564H 3647:2000AnRMS..30..545M 3581:2023NatCo..14.2670S 3525:20.500.11850/488424 3508:2021Natur.593..535C 3439:2019NatCo..10.5401C 3374:1999Natur.400..542B 3335:1993PhT....46a..24K 3290:1996Natur.379..413A 2970:Classical mechanics 2938:quantum capacitance 2416: 2273: 2221: 1880: 1843:* is the exciton's 1826:Coulomb interaction 1745:is the presence of 1727:quantum confinement 1659:quantum dot display 1610:Quantum dot display 1586:integrated circuits 1564:Quantum dot display 1486:4-nitrobenzoic acid 1216:Auger recombination 1146:carbon quantum dots 1014:On 23 January 2013 945:, and the external 865:quantum computation 713:benchtop conditions 709:colloidal synthesis 609:Colloidal synthesis 574:surface passivation 440:artificial molecule 149:Carbon quantum dots 27:quantum confinement 10893:Mesoscopic physics 10832:in popular culture 10614:Quantum algorithms 10462:Von Neumann–Wigner 10442:Objective collapse 10153:Old quantum theory 10050:Technology roadmap 9752:Conductive polymer 9483:www.kavliprize.org 8868:(extract of paper) 8681:10.1039/C1CC14687D 8326:patents.google.com 8080:Scientific Reports 8053:10.1039/b9nr00430k 7600:10.1038/nmeth.1248 7335:10.1038/nmeth.2682 7227:10.1038/nmeth.1206 6721:10.1039/c1jm11727k 6674:10.1039/c0cc02627a 6328:Advanced Materials 6162:Advanced Materials 5404:10.1007/BF01798103 5367:10.1039/c7nr00672a 5129:Advanced Materials 4140:10.1039/C5CP03349G 3261:Physical Chemistry 3175:Trojan wave packet 3120:Carbon quantum dot 3045:quantum mechanical 3009:were able to make 2983:plum pudding model 2966:-particle system. 2923: 2790: 2736: 2641: 2585: 2521:chemical potential 2421: 2419: 2402: 2259: 2205: 1969:Confinement energy 1926: 1864: 1849: 1808: 1606: 1502:hybrid solar cells 1443:photovoltaic cells 1432: 1365:therapeutics, and 1263: 1162: 1152:Optical properties 1037:toxic heavy metals 931:liquid crystalline 847:) quantum dots in 816: 794:Atomic resolution 705: 658: 641:size distribution 621:chemical processes 599: 270:Science portal 82:Optical properties 31: 10898:Quantum chemistry 10875: 10874: 10849:Quantum mysticism 10827:Schrödinger's cat 10758:Quantum simulator 10728:Quantum metrology 10656:Quantum computing 10619:Quantum amplifier 10596:Quantum spacetime 10561:Quantum cosmology 10551:Quantum chemistry 10266:Scattering theory 10214:Zero-point energy 10209:Degenerate levels 10117:Quantum mechanics 10083: 10082: 9902: 9901: 9851:Synthetic diamond 9747:Artificial muscle 9729:Materials science 9593:Photoluminescence 9569:978-3-540-20694-1 8936:Physical Review B 8901:Physical Review B 8819:Physical Review B 8519:10.1021/nn400826h 8423:(10): 1666–1683. 8394:10.1063/1.4739235 8228:10.1021/ja2036749 8222:(26): 9960–9963. 8193:10.1021/nn501001j 8154:10.1021/nl070430o 8100:10.1038/srep12093 7993:(11): 7691–7696. 7711:(10): 1165–1170. 7686:10.1021/jp502033d 7508:10.1021/la704075r 7502:(10): 5445–5452. 7473:10.1021/bc034153y 7329:(12): 1203–1205. 7166:(5644): 442–445. 7136:10.1242/jcs.01662 7059:10.1021/jp5064325 7020:10.1021/ja301332t 7014:(14): 6108–6111. 6976:978-1-68108-519-7 6870:(6271): 369–372. 6750:(6992): 642–646. 6668:(44): 8311–8324. 6552:Physical Review A 6474:10.1021/jp025698c 6468:(31): 7619–7622. 6334:(23): 2520–2524. 6289:(10): 1165–1170. 6066:10.1021/nl0347334 6019:10.1021/ar300040z 5851:(7323): 516–517. 5702:10.1021/nn305697q 5641:(6787): 665–668. 5590:(5569): 892–895. 5427:Physical Review B 5360:(18): 6056–6067. 5135:(18): 2513–2519. 5020:10.1063/1.2830828 4876:10.1021/nl0480060 4783:10.1021/nl050066y 4730:10.1021/nl5048779 4671:10.1021/ja108948z 4320:10.1021/jp036497r 4004:(5709): 538–544. 3936:Physical Review A 3887:(11): 1026–1039. 3849:10.1063/1.3610677 3726:(18): 2564–2566. 3502:(7860): 535–542. 3368:(6744): 542–544. 3284:(6564): 413–419. 3150:Quantum dot laser 2921: 2875: 2775: 2734: 2686: 2639: 2616: 2499:Quantum mechanics 2397: 2348: 2326: 2311: 2296: 2241: 2222: 2186: 2172: 2120: 2098: 2074: 2024: 1908: 1818:particle in a box 1759:electron transfer 1721:excitation drive 1631:fluorescent lamps 1625:(LCD) is usually 1463:intermediate band 1279:plasmon resonance 1271:density of states 1069:Health and safety 997:molecular seeding 911:M13 bacteriophage 736:nonthermal plasma 678:cadmium telluride 486:quantum computing 424:electronic states 404:particle in a box 381:photoluminescence 357:materials science 318: 317: 130:Carbon allotropes 10915: 10865: 10864: 10576:Quantum geometry 10571:Quantum dynamics 10428:Superdeterminism 10324:Matrix mechanics 10179:Bra–ket notation 10110: 10103: 10096: 10087: 10086: 10071: 10070: 10018:Horizon scanning 9934:Ephemeralization 9894:Uncrewed vehicle 9814:Carbon nanotubes 9679: 9678: 9661: 9654: 9647: 9638: 9637: 9591: 9573: 9538: 9537: 9535: 9533: 9519: 9513: 9512: 9500: 9494: 9493: 9491: 9489: 9475: 9469: 9468: 9457:10.1116/1.583331 9432: 9426: 9425: 9423: 9421: 9410: 9404: 9403: 9384:10.1063/1.447218 9370:(9): 4403–4409. 9359: 9353: 9352: 9341:10.1063/1.445834 9327:(2): 1086–1088. 9316: 9310: 9309: 9293: 9287: 9286: 9275: 9269: 9268: 9266: 9234: 9228: 9227: 9215: 9209: 9208: 9198: 9188: 9182: 9181: 9175: 9167: 9165: 9163: 9148: 9142: 9141: 9131: 9106:(4): 5085–5102. 9091: 9085: 9084: 9078: 9069: 9058: 9057: 9039: 9019: 9013: 9012: 8994: 8985:(6): 1029–1035. 8974: 8968: 8967: 8942:(4): 2667–2676. 8931: 8925: 8924: 8896: 8890: 8889: 8869: 8857: 8851: 8850: 8814: 8808: 8807: 8773: 8771:cond-mat/0208436 8753: 8747: 8746: 8718: 8712: 8711: 8699: 8693: 8692: 8656: 8650: 8649: 8646:Polymer Handbook 8641: 8635: 8634: 8600: 8580: 8574: 8573: 8548:(1–6): 238–252. 8537: 8531: 8530: 8513:(5): 4316–4325. 8502: 8496: 8495: 8493: 8491: 8474: 8468: 8467: 8447: 8441: 8440: 8412: 8406: 8405: 8369: 8363: 8362: 8360: 8358: 8343: 8337: 8336: 8334: 8332: 8318: 8312: 8311: 8309: 8307: 8293: 8287: 8286: 8284: 8282: 8268: 8262: 8261: 8246: 8240: 8239: 8211: 8205: 8204: 8187:(4): 4015–4022. 8175: 8166: 8165: 8140:(6): 1793–1798. 8128: 8122: 8121: 8111: 8071: 8065: 8064: 8028: 8019: 8018: 7981: 7972: 7971: 7961: 7913: 7907: 7906: 7887:10.1002/pip.3351 7866: 7860: 7859: 7825: 7823:cond-mat/0404368 7805: 7799: 7798: 7788: 7778: 7761:(6): 2082–2087. 7745: 7739: 7738: 7728: 7696: 7690: 7689: 7669: 7663: 7662: 7637:(5): 1609–1618. 7626: 7620: 7619: 7583: 7577: 7576: 7558: 7549:(8): 1769–1777. 7534: 7528: 7527: 7491: 7485: 7484: 7456: 7447: 7446: 7398: 7392: 7391: 7363: 7357: 7356: 7346: 7314: 7308: 7307: 7297: 7287: 7255: 7249: 7248: 7238: 7206: 7200: 7199: 7155: 7149: 7148: 7138: 7129:(5): 1091–1098. 7110: 7104: 7103: 7087: 7081: 7080: 7070: 7038: 7032: 7031: 6999: 6993: 6992: 6990: 6988: 6979:. Archived from 6958: 6952: 6951: 6941: 6931: 6907: 6898: 6897: 6887: 6855: 6849: 6848: 6838: 6790: 6784: 6783: 6739: 6733: 6732: 6700: 6694: 6693: 6657: 6651: 6650: 6632: 6600: 6594: 6593: 6567: 6565:cond-mat/9701055 6547: 6541: 6540: 6484: 6478: 6477: 6457: 6451: 6450: 6448: 6446: 6440: 6434:. Archived from 6401: 6399:cond-mat/0509565 6383: 6374: 6368: 6367: 6323: 6317: 6316: 6306: 6274: 6268: 6267: 6231: 6225: 6224: 6213:10.1039/b413175d 6200: 6194: 6193: 6153: 6147: 6146: 6136: 6126: 6094: 6088: 6087: 6077: 6037: 6031: 6030: 6002: 5989: 5988: 5978: 5946: 5937: 5936: 5926: 5915:10.1289/ehp.8284 5894: 5885: 5884: 5840: 5834: 5833: 5831: 5829: 5820:. Archived from 5813: 5807: 5806: 5804: 5802: 5787: 5781: 5780: 5774: 5766: 5764: 5762: 5753:. Archived from 5746: 5740: 5739: 5737: 5735: 5720: 5714: 5713: 5696:(4): 3190–3197. 5681: 5675: 5674: 5655:10.1038/35015043 5630: 5624: 5623: 5579: 5573: 5572: 5543: 5537: 5536: 5494: 5473: 5467: 5466: 5422: 5416: 5415: 5386: 5380: 5379: 5369: 5345: 5339: 5338: 5328: 5294: 5270: 5264: 5263: 5202: 5196: 5195: 5167: 5161: 5160: 5124: 5118: 5117: 5081: 5075: 5074: 5038: 5032: 5031: 4997: 4988: 4982: 4981: 4937: 4931: 4930: 4894: 4888: 4887: 4853: 4844: 4838: 4837: 4812:(8): 1039–1044. 4801: 4795: 4794: 4758: 4752: 4751: 4741: 4724:(6): 3692–3696. 4705: 4699: 4698: 4650: 4644: 4643: 4620:Synthetic Metals 4611: 4602: 4601: 4591: 4559: 4550: 4549: 4517: 4508: 4507: 4497: 4457: 4451: 4450: 4440: 4425:Applied Sciences 4416: 4410: 4409: 4399: 4351: 4340: 4339: 4305: 4303:cond-mat/0310127 4285: 4279: 4278: 4242: 4236: 4235: 4233: 4201: 4195: 4194: 4177:(7): 1117–1124. 4166: 4160: 4159: 4115: 4109: 4108: 4066: 4046: 4040: 4039: 4029: 3989: 3980: 3979: 3969: 3951: 3949:cond-mat/9701055 3927: 3921: 3920: 3876: 3870: 3869: 3851: 3819: 3813: 3812: 3778: 3758: 3752: 3751: 3740:10.1063/1.122534 3715: 3709: 3708: 3706: 3704: 3690: 3684: 3683: 3681: 3679: 3674: 3665: 3659: 3658: 3628: 3619: 3618: 3608: 3560: 3554: 3553: 3527: 3483: 3477: 3476: 3466: 3432: 3408: 3402: 3401: 3353: 3347: 3346: 3343:10.1063/1.881393 3316: 3310: 3309: 3298:10.1038/379413a0 3271: 3265: 3264: 3256: 3250: 3249: 3239: 3221: 3197: 3068: 3060:Daniel S. Chemla 3018:Herbert Fröhlich 2961: 2950: 2932: 2930: 2929: 2924: 2922: 2920: 2891: 2890: 2881: 2876: 2874: 2839: 2838: 2829: 2799: 2797: 2796: 2791: 2776: 2773: 2745: 2743: 2742: 2737: 2735: 2730: 2692: 2687: 2682: 2674: 2650: 2648: 2647: 2642: 2640: 2638: 2630: 2622: 2617: 2609: 2594: 2592: 2591: 2586: 2430: 2428: 2427: 2422: 2420: 2415: 2410: 2398: 2396: 2395: 2394: 2378: 2377: 2376: 2367: 2366: 2356: 2351: 2350: 2349: 2346: 2333: 2329: 2328: 2327: 2324: 2314: 2313: 2312: 2309: 2299: 2298: 2297: 2294: 2272: 2267: 2252: 2251: 2242: 2240: 2239: 2238: 2225: 2223: 2220: 2215: 2214: 2201: 2189: 2188: 2187: 2184: 2173: 2171: 2170: 2169: 2153: 2152: 2151: 2142: 2141: 2131: 2126: 2122: 2121: 2119: 2118: 2117: 2104: 2099: 2097: 2096: 2095: 2082: 2075: 2073: 2072: 2071: 2058: 2057: 2056: 2047: 2046: 2036: 2027: 2026: 2025: 2022: 1935: 1933: 1932: 1927: 1925: 1924: 1923: 1913: 1909: 1901: 1895: 1894: 1893: 1879: 1874: 1873: 1484:(SAMs) (such as 1267:zero-dimensional 1236:Coulomb blockade 1179: 971:Bulk manufacture 854: 849:gallium arsenide 846: 813: 808:gallium arsenide 805: 767:in the core and 753:lithographically 719:Plasma synthesis 686:indium phosphide 670:cadmium selenide 543:photoluminescent 416:artificial atoms 385:conductance band 377:conductance band 335:particles a few 310: 303: 296: 280: 279: 268: 267: 219:Titanium dioxide 58:Carbon nanotubes 52: 33: 32: 10923: 10922: 10918: 10917: 10916: 10914: 10913: 10912: 10878: 10877: 10876: 10871: 10853: 10839:Wigner's friend 10815: 10806:Quantum gravity 10767: 10753:Quantum sensing 10733:Quantum network 10713:Quantum machine 10683:Quantum imaging 10646:Quantum circuit 10641:Quantum channel 10600: 10546:Quantum biology 10532: 10508:Elitzur–Vaidman 10483:Davisson–Germer 10466: 10418:Hidden-variable 10408:de Broglie–Bohm 10385:Interpretations 10379: 10343: 10297: 10184:Complementarity 10162: 10119: 10114: 10084: 10079: 10059: 9898: 9855: 9757:Femtotechnology 9742:Amorphous metal 9723: 9670: 9665: 9603: 9598: 9570: 9547: 9545:Further reading 9542: 9541: 9531: 9529: 9521: 9520: 9516: 9501: 9497: 9487: 9485: 9477: 9476: 9472: 9433: 9429: 9419: 9417: 9412: 9411: 9407: 9360: 9356: 9317: 9313: 9294: 9290: 9277: 9276: 9272: 9249:(11): 921–924. 9235: 9231: 9216: 9212: 9196: 9189: 9185: 9169: 9168: 9161: 9159: 9157:Chemistry World 9149: 9145: 9092: 9088: 9076: 9070: 9061: 9020: 9016: 8975: 8971: 8932: 8928: 8897: 8893: 8880:(39): 237–265. 8867: 8858: 8854: 8815: 8811: 8754: 8750: 8719: 8715: 8700: 8696: 8667:nanocrystals". 8666: 8662: 8657: 8653: 8642: 8638: 8581: 8577: 8538: 8534: 8503: 8499: 8489: 8487: 8475: 8471: 8448: 8444: 8413: 8409: 8370: 8366: 8356: 8354: 8344: 8340: 8330: 8328: 8320: 8319: 8315: 8305: 8303: 8295: 8294: 8290: 8280: 8278: 8270: 8269: 8265: 8254:nanotechweb.org 8248: 8247: 8243: 8212: 8208: 8176: 8169: 8129: 8125: 8072: 8068: 8029: 8022: 7982: 7975: 7914: 7910: 7867: 7863: 7806: 7802: 7746: 7742: 7717:10.1038/nbt1340 7697: 7693: 7670: 7666: 7627: 7623: 7584: 7580: 7535: 7531: 7492: 7488: 7457: 7450: 7399: 7395: 7364: 7360: 7315: 7311: 7256: 7252: 7207: 7203: 7156: 7152: 7111: 7107: 7088: 7084: 7039: 7035: 7000: 6996: 6986: 6984: 6977: 6959: 6955: 6908: 6901: 6856: 6852: 6791: 6787: 6740: 6736: 6701: 6697: 6658: 6654: 6601: 6597: 6548: 6544: 6485: 6481: 6458: 6454: 6444: 6442: 6438: 6381: 6375: 6371: 6324: 6320: 6295:10.1038/nbt1340 6275: 6271: 6232: 6228: 6201: 6197: 6168:(12): 882–885. 6154: 6150: 6095: 6091: 6038: 6034: 6003: 5992: 5947: 5940: 5895: 5888: 5865:10.1038/468516a 5841: 5837: 5827: 5825: 5814: 5810: 5800: 5798: 5789: 5788: 5784: 5768: 5767: 5760: 5758: 5747: 5743: 5733: 5731: 5721: 5717: 5688:Quantum Dots". 5687: 5682: 5678: 5631: 5627: 5580: 5576: 5544: 5540: 5474: 5470: 5423: 5419: 5387: 5383: 5346: 5342: 5271: 5267: 5203: 5199: 5168: 5164: 5125: 5121: 5082: 5078: 5039: 5035: 4995: 4989: 4985: 4938: 4934: 4895: 4891: 4851: 4845: 4841: 4802: 4798: 4759: 4755: 4713: 4706: 4702: 4665:(4): 998–1006. 4651: 4647: 4612: 4605: 4568:Energy Procedia 4560: 4553: 4518: 4511: 4458: 4454: 4417: 4413: 4352: 4343: 4286: 4282: 4243: 4239: 4202: 4198: 4167: 4163: 4116: 4112: 4047: 4043: 3990: 3983: 3928: 3924: 3877: 3873: 3820: 3816: 3759: 3755: 3716: 3712: 3702: 3700: 3692: 3691: 3687: 3677: 3675: 3672: 3666: 3662: 3629: 3622: 3561: 3557: 3484: 3480: 3409: 3405: 3354: 3350: 3317: 3313: 3272: 3268: 3257: 3253: 3198: 3194: 3189: 3184: 3145:Paul Alivisatos 3110: 3062: 3041:Alexander Efros 3027:in 1981 at the 3003: 2985:, of the atom. 2976:Thomson problem 2972: 2952: 2941: 2892: 2886: 2882: 2880: 2840: 2834: 2830: 2828: 2811: 2808: 2807: 2772: 2757: 2754: 2753: 2693: 2691: 2675: 2673: 2662: 2659: 2658: 2631: 2623: 2621: 2608: 2606: 2603: 2602: 2535: 2532: 2531: 2517: 2505:pseudopotential 2501: 2493: 2462: 2455: 2448: 2418: 2417: 2411: 2406: 2390: 2386: 2379: 2372: 2368: 2362: 2358: 2357: 2355: 2345: 2344: 2340: 2331: 2330: 2323: 2322: 2318: 2308: 2307: 2303: 2293: 2292: 2288: 2281: 2275: 2274: 2268: 2263: 2247: 2243: 2234: 2233: 2229: 2224: 2216: 2210: 2209: 2200: 2190: 2183: 2182: 2178: 2175: 2174: 2165: 2161: 2154: 2147: 2143: 2137: 2133: 2132: 2130: 2113: 2112: 2108: 2103: 2091: 2090: 2086: 2081: 2080: 2076: 2067: 2063: 2059: 2052: 2048: 2042: 2038: 2037: 2035: 2028: 2021: 2020: 2016: 2012: 2010: 2007: 2006: 1961: 1946: 1919: 1918: 1914: 1900: 1896: 1889: 1888: 1884: 1875: 1869: 1868: 1862: 1859: 1858: 1852:Band gap energy 1842: 1814: 1792: 1771: 1735:chemical energy 1733:determines the 1723:redox reactions 1707: 1701: 1672: 1612: 1598: 1566: 1556: 1525: 1515: 1511: 1507: 1498: 1478: 1438: 1424: 1327:, nucleic acid 1292: 1224: 1154: 1141: 1093:physicochemical 1081: 1073:Main articles: 1071: 1033: 973: 964:electrochemical 960: 907: 852: 844: 811: 803: 744: 721: 682:indium arsenide 674:cadmium sulfide 611: 591: 524: 518: 498:inkjet printing 494:medical imaging 314: 274: 262: 159:Aluminium oxide 17: 12: 11: 5: 10921: 10911: 10910: 10905: 10900: 10895: 10890: 10873: 10872: 10870: 10869: 10858: 10855: 10854: 10852: 10851: 10846: 10841: 10836: 10835: 10834: 10823: 10821: 10817: 10816: 10814: 10813: 10808: 10803: 10802: 10801: 10791: 10786: 10784:Casimir effect 10781: 10775: 10773: 10769: 10768: 10766: 10765: 10760: 10755: 10750: 10745: 10743:Quantum optics 10740: 10735: 10730: 10725: 10720: 10715: 10710: 10705: 10700: 10695: 10690: 10685: 10680: 10675: 10670: 10665: 10664: 10663: 10653: 10648: 10643: 10638: 10637: 10636: 10626: 10621: 10616: 10610: 10608: 10602: 10601: 10599: 10598: 10593: 10588: 10583: 10578: 10573: 10568: 10563: 10558: 10553: 10548: 10542: 10540: 10534: 10533: 10531: 10530: 10525: 10520: 10518:Quantum eraser 10515: 10510: 10505: 10500: 10495: 10490: 10485: 10480: 10474: 10472: 10468: 10467: 10465: 10464: 10459: 10454: 10449: 10444: 10439: 10434: 10433: 10432: 10431: 10430: 10415: 10410: 10405: 10400: 10395: 10389: 10387: 10381: 10380: 10378: 10377: 10372: 10367: 10362: 10357: 10351: 10349: 10345: 10344: 10342: 10341: 10336: 10331: 10326: 10321: 10316: 10311: 10305: 10303: 10299: 10298: 10296: 10295: 10294: 10293: 10288: 10278: 10273: 10268: 10263: 10258: 10253: 10248: 10243: 10238: 10233: 10228: 10223: 10218: 10217: 10216: 10211: 10206: 10201: 10191: 10189:Density matrix 10186: 10181: 10176: 10170: 10168: 10164: 10163: 10161: 10160: 10155: 10150: 10145: 10144: 10143: 10133: 10127: 10125: 10121: 10120: 10113: 10112: 10105: 10098: 10090: 10081: 10080: 10078: 10077: 10064: 10061: 10060: 10058: 10057: 10052: 10047: 10042: 10037: 10036: 10035: 10030: 10025: 10020: 10015: 10010: 10000: 9995: 9990: 9985: 9984: 9983: 9973: 9968: 9963: 9962: 9961: 9956: 9951: 9946: 9936: 9931: 9926: 9921: 9916: 9910: 9908: 9904: 9903: 9900: 9899: 9897: 9896: 9891: 9889:Swarm robotics 9886: 9881: 9876: 9871: 9865: 9863: 9857: 9856: 9854: 9853: 9848: 9843: 9838: 9833: 9831:Picotechnology 9828: 9827: 9826: 9821: 9816: 9809:Nanotechnology 9806: 9801: 9796: 9795: 9794: 9784: 9779: 9774: 9769: 9764: 9759: 9754: 9749: 9744: 9739: 9733: 9731: 9725: 9724: 9722: 9721: 9716: 9711: 9706: 9701: 9696: 9691: 9685: 9683: 9676: 9672: 9671: 9664: 9663: 9656: 9649: 9641: 9635: 9634: 9629: 9624: 9619: 9614: 9609: 9602: 9601:External links 9599: 9597: 9596: 9579: 9568: 9548: 9546: 9543: 9540: 9539: 9527:NobelPrize.org 9514: 9495: 9470: 9443:(1): 358–360. 9427: 9405: 9354: 9311: 9288: 9270: 9229: 9210: 9203:(in Russian). 9183: 9143: 9086: 9059: 9030:(5): 414–418. 9014: 8969: 8926: 8891: 8861:Thomson, J. J. 8852: 8809: 8764:(27): 276803. 8748: 8713: 8694: 8664: 8660: 8651: 8636: 8575: 8532: 8497: 8469: 8442: 8407: 8364: 8338: 8313: 8288: 8263: 8241: 8206: 8167: 8123: 8066: 8039:(6): 873–886. 8020: 7973: 7908: 7881:(7): 705–713. 7861: 7816:(18): 186601. 7800: 7740: 7691: 7664: 7621: 7594:(9): 763–775. 7588:Nature Methods 7578: 7529: 7486: 7448: 7393: 7374:(3): 739–743. 7358: 7323:Nature Methods 7309: 7250: 7221:(5): 397–399. 7215:Nature Methods 7201: 7150: 7105: 7082: 7033: 6994: 6983:on 14 May 2019 6975: 6953: 6922:(2): 441–491. 6899: 6850: 6785: 6734: 6695: 6652: 6615:(43): 432001. 6609:Nanotechnology 6595: 6542: 6499:(29): 295701. 6493:Nanotechnology 6479: 6452: 6392:(23): 236804. 6369: 6318: 6269: 6242:(1): 138–144. 6226: 6207:(1): 121–123. 6195: 6148: 6089: 6032: 6013:(3): 662–671. 5990: 5961:(2): 276–296. 5938: 5909:(2): 165–172. 5886: 5835: 5824:on 18 May 2015 5808: 5782: 5741: 5715: 5685: 5676: 5625: 5574: 5555:(11): 014001. 5538: 5485:(2): 102–106. 5468: 5417: 5381: 5340: 5265: 5197: 5178:(7): 751–756. 5162: 5119: 5092:(31): 314005. 5076: 5049:(31): 314006. 5033: 4983: 4948:(29): 295602. 4942:Nanotechnology 4932: 4905:(11): 113001. 4889: 4862:(3): 537–541. 4839: 4796: 4769:(4): 655–659. 4753: 4711: 4700: 4645: 4626:(3): 649–652. 4603: 4551: 4509: 4452: 4411: 4341: 4280: 4253:(2): 153–156. 4247:BioNanoScience 4237: 4196: 4161: 4110: 4041: 3981: 3942:(1): 120–126. 3922: 3871: 3814: 3769:(2): 347–400. 3753: 3710: 3694:"Quantum Dots" 3685: 3660: 3641:(1): 545–610. 3620: 3555: 3478: 3403: 3348: 3311: 3266: 3251: 3191: 3190: 3188: 3185: 3183: 3182: 3177: 3172: 3167: 3162: 3157: 3152: 3147: 3142: 3137: 3132: 3127: 3122: 3117: 3111: 3109: 3106: 3094:Moungi Bawendi 3078:Moungi Bawendi 3002: 2999: 2994:periodic table 2971: 2968: 2934: 2933: 2919: 2916: 2913: 2910: 2907: 2904: 2901: 2898: 2895: 2889: 2885: 2879: 2873: 2870: 2867: 2864: 2861: 2858: 2855: 2852: 2849: 2846: 2843: 2837: 2833: 2827: 2824: 2821: 2818: 2815: 2801: 2800: 2789: 2786: 2783: 2780: 2770: 2767: 2764: 2761: 2747: 2746: 2733: 2729: 2726: 2723: 2720: 2717: 2714: 2711: 2708: 2705: 2702: 2699: 2696: 2690: 2685: 2681: 2678: 2672: 2669: 2666: 2652: 2651: 2637: 2634: 2629: 2626: 2620: 2615: 2612: 2596: 2595: 2584: 2581: 2578: 2575: 2572: 2569: 2566: 2563: 2560: 2557: 2554: 2551: 2548: 2545: 2542: 2539: 2516: 2513: 2500: 2497: 2492: 2489: 2488: 2487: 2481: 2460: 2453: 2446: 2432: 2431: 2414: 2409: 2405: 2401: 2393: 2389: 2385: 2382: 2375: 2371: 2365: 2361: 2354: 2343: 2339: 2336: 2334: 2332: 2321: 2317: 2306: 2302: 2291: 2287: 2284: 2282: 2280: 2277: 2276: 2271: 2266: 2262: 2258: 2255: 2250: 2246: 2237: 2232: 2228: 2219: 2213: 2208: 2204: 2199: 2196: 2193: 2191: 2181: 2177: 2176: 2168: 2164: 2160: 2157: 2150: 2146: 2140: 2136: 2129: 2125: 2116: 2111: 2107: 2102: 2094: 2089: 2085: 2079: 2070: 2066: 2062: 2055: 2051: 2045: 2041: 2034: 2031: 2029: 2019: 2015: 2014: 1996: 1995: 1991: 1987: 1986: 1970: 1967: 1959: 1944: 1938: 1937: 1936: 1922: 1917: 1912: 1907: 1904: 1899: 1892: 1887: 1883: 1878: 1872: 1867: 1853: 1840: 1812:Potential well 1810:Main article: 1791: 1788: 1784:Mie scattering 1770: 1767: 1743:photocatalysis 1715:photocatalysis 1705:Photocatalysis 1703:Main article: 1700: 1699:Photocatalysts 1697: 1671: 1668: 1608:Main article: 1597: 1594: 1555: 1552: 1524: 1521: 1513: 1509: 1505: 1497: 1494: 1477: 1474: 1434:Main article: 1423: 1420: 1416:cell squeezing 1301:photobleaching 1291: 1288: 1223: 1220: 1153: 1150: 1139: 1079:Nanotoxicology 1070: 1067: 1032: 1029: 1025:LG Electronics 972: 969: 959: 956: 947:magnetic field 943:ionic strength 937:(Fd, M13, and 906: 905:Viral assembly 903: 902: 901: 883: 868: 788: 787: 780: 743: 740: 720: 717: 610: 607: 590: 587: 517: 514: 451:optoelectronic 436:wave functions 400:electron holes 393:band structure 369:semiconducting 353:nanotechnology 316: 315: 313: 312: 305: 298: 290: 287: 286: 285: 284: 272: 257: 256: 255: 254: 249: 244: 239: 231: 230: 224: 223: 222: 221: 216: 211: 206: 201: 196: 191: 186: 181: 176: 171: 166: 161: 156: 151: 143: 142: 135: 134: 133: 132: 127: 122: 117: 112: 104: 103: 97: 96: 95: 94: 89: 84: 79: 74: 69: 61: 60: 54: 53: 45: 44: 38: 37: 15: 9: 6: 4: 3: 2: 10920: 10909: 10906: 10904: 10901: 10899: 10896: 10894: 10891: 10889: 10886: 10885: 10883: 10868: 10860: 10859: 10856: 10850: 10847: 10845: 10842: 10840: 10837: 10833: 10830: 10829: 10828: 10825: 10824: 10822: 10818: 10812: 10809: 10807: 10804: 10800: 10797: 10796: 10795: 10792: 10790: 10787: 10785: 10782: 10780: 10777: 10776: 10774: 10770: 10764: 10761: 10759: 10756: 10754: 10751: 10749: 10746: 10744: 10741: 10739: 10736: 10734: 10731: 10729: 10726: 10724: 10721: 10719: 10716: 10714: 10711: 10709: 10706: 10704: 10703:Quantum logic 10701: 10699: 10696: 10694: 10691: 10689: 10686: 10684: 10681: 10679: 10676: 10674: 10671: 10669: 10666: 10662: 10659: 10658: 10657: 10654: 10652: 10649: 10647: 10644: 10642: 10639: 10635: 10632: 10631: 10630: 10627: 10625: 10622: 10620: 10617: 10615: 10612: 10611: 10609: 10607: 10603: 10597: 10594: 10592: 10589: 10587: 10584: 10582: 10579: 10577: 10574: 10572: 10569: 10567: 10564: 10562: 10559: 10557: 10556:Quantum chaos 10554: 10552: 10549: 10547: 10544: 10543: 10541: 10539: 10535: 10529: 10526: 10524: 10523:Stern–Gerlach 10521: 10519: 10516: 10514: 10511: 10509: 10506: 10504: 10501: 10499: 10496: 10494: 10491: 10489: 10486: 10484: 10481: 10479: 10476: 10475: 10473: 10469: 10463: 10460: 10458: 10457:Transactional 10455: 10453: 10450: 10448: 10447:Quantum logic 10445: 10443: 10440: 10438: 10435: 10429: 10426: 10425: 10424: 10421: 10420: 10419: 10416: 10414: 10411: 10409: 10406: 10404: 10401: 10399: 10396: 10394: 10391: 10390: 10388: 10386: 10382: 10376: 10373: 10371: 10368: 10366: 10363: 10361: 10358: 10356: 10353: 10352: 10350: 10346: 10340: 10337: 10335: 10332: 10330: 10327: 10325: 10322: 10320: 10317: 10315: 10312: 10310: 10307: 10306: 10304: 10300: 10292: 10289: 10287: 10284: 10283: 10282: 10281:Wave function 10279: 10277: 10274: 10272: 10269: 10267: 10264: 10262: 10259: 10257: 10256:Superposition 10254: 10252: 10251:Quantum state 10249: 10247: 10244: 10242: 10239: 10237: 10234: 10232: 10229: 10227: 10224: 10222: 10219: 10215: 10212: 10210: 10207: 10205: 10204:Excited state 10202: 10200: 10197: 10196: 10195: 10192: 10190: 10187: 10185: 10182: 10180: 10177: 10175: 10172: 10171: 10169: 10165: 10159: 10156: 10154: 10151: 10149: 10146: 10142: 10139: 10138: 10137: 10134: 10132: 10129: 10128: 10126: 10122: 10118: 10111: 10106: 10104: 10099: 10097: 10092: 10091: 10088: 10076: 10075: 10066: 10065: 10062: 10056: 10055:Transhumanism 10053: 10051: 10048: 10046: 10043: 10041: 10038: 10034: 10031: 10029: 10026: 10024: 10021: 10019: 10016: 10014: 10011: 10009: 10006: 10005: 10004: 10001: 9999: 9996: 9994: 9991: 9989: 9986: 9982: 9979: 9978: 9977: 9974: 9972: 9969: 9967: 9964: 9960: 9957: 9955: 9952: 9950: 9947: 9945: 9942: 9941: 9940: 9937: 9935: 9932: 9930: 9927: 9925: 9922: 9920: 9917: 9915: 9912: 9911: 9909: 9905: 9895: 9892: 9890: 9887: 9885: 9882: 9880: 9877: 9875: 9872: 9870: 9867: 9866: 9864: 9862: 9858: 9852: 9849: 9847: 9844: 9842: 9839: 9837: 9834: 9832: 9829: 9825: 9824:Nanomaterials 9822: 9820: 9817: 9815: 9812: 9811: 9810: 9807: 9805: 9802: 9800: 9797: 9793: 9790: 9789: 9788: 9787:Metamaterials 9785: 9783: 9780: 9778: 9775: 9773: 9770: 9768: 9765: 9763: 9760: 9758: 9755: 9753: 9750: 9748: 9745: 9743: 9740: 9738: 9735: 9734: 9732: 9730: 9726: 9720: 9717: 9715: 9712: 9710: 9707: 9705: 9702: 9700: 9699:3D publishing 9697: 9695: 9692: 9690: 9687: 9686: 9684: 9682:Manufacturing 9680: 9677: 9673: 9669: 9662: 9657: 9655: 9650: 9648: 9643: 9642: 9639: 9633: 9630: 9628: 9625: 9623: 9620: 9618: 9615: 9613: 9610: 9608: 9605: 9604: 9594: 9589: 9585: 9580: 9577: 9571: 9565: 9561: 9557: 9556: 9550: 9549: 9528: 9524: 9518: 9510: 9506: 9499: 9484: 9480: 9474: 9466: 9462: 9458: 9454: 9450: 9446: 9442: 9438: 9431: 9415: 9409: 9401: 9397: 9393: 9389: 9385: 9381: 9377: 9373: 9369: 9365: 9358: 9350: 9346: 9342: 9338: 9334: 9330: 9326: 9322: 9315: 9307: 9303: 9299: 9292: 9284: 9280: 9274: 9265: 9260: 9256: 9252: 9248: 9244: 9240: 9233: 9226:(7): 775–778. 9225: 9221: 9214: 9206: 9202: 9194: 9187: 9179: 9173: 9158: 9154: 9147: 9139: 9135: 9130: 9125: 9121: 9117: 9113: 9109: 9105: 9101: 9097: 9090: 9082: 9075: 9068: 9066: 9064: 9055: 9051: 9047: 9043: 9038: 9033: 9029: 9025: 9018: 9010: 9006: 9002: 8998: 8993: 8988: 8984: 8980: 8973: 8965: 8961: 8957: 8953: 8949: 8945: 8941: 8937: 8930: 8922: 8918: 8914: 8910: 8906: 8902: 8895: 8887: 8883: 8879: 8875: 8874: 8866: 8862: 8856: 8848: 8844: 8840: 8836: 8832: 8828: 8824: 8820: 8813: 8805: 8801: 8797: 8793: 8789: 8785: 8781: 8777: 8772: 8767: 8763: 8759: 8752: 8744: 8740: 8736: 8732: 8728: 8724: 8717: 8709: 8705: 8698: 8690: 8686: 8682: 8678: 8674: 8670: 8655: 8647: 8640: 8632: 8628: 8624: 8620: 8616: 8612: 8608: 8604: 8599: 8594: 8591:(1): 016001. 8590: 8586: 8579: 8571: 8567: 8563: 8559: 8555: 8551: 8547: 8543: 8536: 8528: 8524: 8520: 8516: 8512: 8508: 8501: 8486: 8485: 8484:IEEE Spectrum 8480: 8473: 8465: 8461: 8457: 8453: 8446: 8438: 8434: 8430: 8426: 8422: 8418: 8411: 8403: 8399: 8395: 8391: 8387: 8383: 8380:(4): 043118. 8379: 8375: 8368: 8353: 8349: 8342: 8327: 8323: 8317: 8302: 8298: 8292: 8277: 8273: 8267: 8259: 8255: 8251: 8245: 8237: 8233: 8229: 8225: 8221: 8217: 8210: 8202: 8198: 8194: 8190: 8186: 8182: 8174: 8172: 8163: 8159: 8155: 8151: 8147: 8143: 8139: 8135: 8127: 8119: 8115: 8110: 8105: 8101: 8097: 8093: 8089: 8085: 8081: 8077: 8070: 8062: 8058: 8054: 8050: 8046: 8042: 8038: 8034: 8027: 8025: 8016: 8012: 8008: 8004: 8000: 7996: 7992: 7988: 7980: 7978: 7969: 7965: 7960: 7955: 7951: 7947: 7943: 7939: 7935: 7931: 7927: 7923: 7919: 7912: 7904: 7900: 7896: 7892: 7888: 7884: 7880: 7876: 7872: 7865: 7857: 7853: 7849: 7845: 7841: 7837: 7833: 7829: 7824: 7819: 7815: 7811: 7804: 7796: 7792: 7787: 7782: 7777: 7772: 7768: 7764: 7760: 7756: 7752: 7744: 7736: 7732: 7727: 7722: 7718: 7714: 7710: 7706: 7702: 7695: 7687: 7683: 7679: 7675: 7668: 7660: 7656: 7652: 7648: 7644: 7640: 7636: 7632: 7625: 7617: 7613: 7609: 7605: 7601: 7597: 7593: 7589: 7582: 7574: 7570: 7566: 7562: 7557: 7552: 7548: 7544: 7540: 7533: 7525: 7521: 7517: 7513: 7509: 7505: 7501: 7497: 7490: 7482: 7478: 7474: 7470: 7466: 7462: 7455: 7453: 7444: 7440: 7436: 7432: 7428: 7424: 7420: 7416: 7412: 7408: 7404: 7397: 7389: 7385: 7381: 7377: 7373: 7369: 7362: 7354: 7350: 7345: 7340: 7336: 7332: 7328: 7324: 7320: 7313: 7305: 7301: 7296: 7291: 7286: 7281: 7277: 7273: 7269: 7265: 7261: 7254: 7246: 7242: 7237: 7232: 7228: 7224: 7220: 7216: 7212: 7205: 7197: 7193: 7189: 7185: 7181: 7177: 7173: 7169: 7165: 7161: 7154: 7146: 7142: 7137: 7132: 7128: 7124: 7120: 7118: 7109: 7101: 7097: 7093: 7092:SPIE Newsroom 7086: 7078: 7074: 7069: 7064: 7060: 7056: 7052: 7048: 7044: 7037: 7029: 7025: 7021: 7017: 7013: 7009: 7005: 6998: 6982: 6978: 6972: 6968: 6964: 6957: 6949: 6945: 6940: 6935: 6930: 6925: 6921: 6917: 6913: 6906: 6904: 6895: 6891: 6886: 6881: 6877: 6873: 6869: 6865: 6861: 6854: 6846: 6842: 6837: 6832: 6828: 6824: 6820: 6816: 6812: 6808: 6805:(1): 012005. 6804: 6800: 6796: 6789: 6781: 6777: 6773: 6769: 6765: 6761: 6757: 6753: 6749: 6745: 6738: 6730: 6726: 6722: 6718: 6715:(43): 17049. 6714: 6710: 6706: 6699: 6691: 6687: 6683: 6679: 6675: 6671: 6667: 6663: 6656: 6648: 6644: 6640: 6636: 6631: 6626: 6622: 6618: 6614: 6610: 6606: 6599: 6591: 6587: 6583: 6579: 6575: 6571: 6566: 6561: 6557: 6553: 6546: 6538: 6534: 6530: 6526: 6522: 6518: 6514: 6510: 6506: 6502: 6498: 6494: 6490: 6483: 6475: 6471: 6467: 6463: 6456: 6441:on 2 May 2019 6437: 6433: 6429: 6425: 6421: 6417: 6413: 6409: 6405: 6400: 6395: 6391: 6387: 6380: 6373: 6365: 6361: 6357: 6353: 6349: 6345: 6341: 6337: 6333: 6329: 6322: 6314: 6310: 6305: 6300: 6296: 6292: 6288: 6284: 6280: 6273: 6265: 6261: 6257: 6253: 6249: 6245: 6241: 6237: 6230: 6222: 6218: 6214: 6210: 6206: 6199: 6191: 6187: 6183: 6179: 6175: 6171: 6167: 6163: 6159: 6152: 6144: 6140: 6135: 6130: 6125: 6120: 6116: 6112: 6109:(9): e24406. 6108: 6104: 6100: 6093: 6085: 6081: 6076: 6071: 6067: 6063: 6059: 6055: 6051: 6047: 6043: 6036: 6028: 6024: 6020: 6016: 6012: 6008: 6001: 5999: 5997: 5995: 5986: 5982: 5977: 5972: 5968: 5964: 5960: 5956: 5952: 5945: 5943: 5934: 5930: 5925: 5920: 5916: 5912: 5908: 5904: 5900: 5893: 5891: 5882: 5878: 5874: 5870: 5866: 5862: 5858: 5854: 5850: 5846: 5839: 5823: 5819: 5812: 5796: 5792: 5786: 5778: 5772: 5756: 5752: 5745: 5730: 5726: 5719: 5711: 5707: 5703: 5699: 5695: 5691: 5680: 5672: 5668: 5664: 5660: 5656: 5652: 5648: 5644: 5640: 5636: 5629: 5621: 5617: 5613: 5609: 5605: 5601: 5597: 5593: 5589: 5585: 5578: 5570: 5566: 5562: 5558: 5554: 5550: 5542: 5534: 5530: 5526: 5522: 5518: 5514: 5510: 5506: 5502: 5498: 5493: 5488: 5484: 5480: 5472: 5464: 5460: 5456: 5452: 5448: 5444: 5440: 5436: 5432: 5428: 5421: 5413: 5409: 5405: 5401: 5397: 5394:(in German). 5393: 5385: 5377: 5373: 5368: 5363: 5359: 5355: 5351: 5344: 5336: 5332: 5327: 5322: 5318: 5314: 5310: 5306: 5302: 5298: 5293: 5288: 5284: 5280: 5276: 5269: 5261: 5257: 5253: 5249: 5245: 5241: 5237: 5233: 5229: 5225: 5221: 5217: 5213: 5209: 5201: 5193: 5189: 5185: 5181: 5177: 5173: 5166: 5158: 5154: 5150: 5146: 5142: 5138: 5134: 5130: 5123: 5115: 5111: 5107: 5103: 5099: 5095: 5091: 5087: 5080: 5072: 5068: 5064: 5060: 5056: 5052: 5048: 5044: 5037: 5029: 5025: 5021: 5017: 5013: 5009: 5006:(2): 123102. 5005: 5001: 4994: 4987: 4979: 4975: 4971: 4967: 4963: 4959: 4955: 4951: 4947: 4943: 4936: 4928: 4924: 4920: 4916: 4912: 4908: 4904: 4900: 4893: 4885: 4881: 4877: 4873: 4869: 4865: 4861: 4857: 4850: 4843: 4835: 4831: 4827: 4823: 4819: 4815: 4811: 4807: 4800: 4792: 4788: 4784: 4780: 4776: 4772: 4768: 4764: 4757: 4749: 4745: 4740: 4735: 4731: 4727: 4723: 4719: 4715: 4704: 4696: 4692: 4688: 4684: 4680: 4676: 4672: 4668: 4664: 4660: 4656: 4649: 4641: 4637: 4633: 4629: 4625: 4621: 4617: 4610: 4608: 4599: 4595: 4590: 4585: 4581: 4577: 4573: 4569: 4565: 4558: 4556: 4547: 4543: 4539: 4535: 4531: 4527: 4523: 4516: 4514: 4505: 4501: 4496: 4491: 4487: 4483: 4479: 4475: 4471: 4467: 4463: 4456: 4448: 4444: 4439: 4434: 4430: 4426: 4422: 4415: 4407: 4403: 4398: 4393: 4389: 4385: 4381: 4377: 4373: 4369: 4365: 4361: 4357: 4350: 4348: 4346: 4337: 4333: 4329: 4325: 4321: 4317: 4313: 4309: 4304: 4299: 4295: 4291: 4284: 4276: 4272: 4268: 4264: 4260: 4256: 4252: 4248: 4241: 4232: 4227: 4223: 4219: 4215: 4211: 4207: 4200: 4192: 4188: 4184: 4180: 4176: 4172: 4165: 4157: 4153: 4149: 4145: 4141: 4137: 4133: 4129: 4125: 4121: 4114: 4106: 4102: 4098: 4094: 4090: 4086: 4082: 4078: 4074: 4070: 4065: 4060: 4057:(2): 026101. 4056: 4052: 4045: 4037: 4033: 4028: 4023: 4019: 4015: 4011: 4007: 4003: 3999: 3995: 3988: 3986: 3977: 3973: 3968: 3963: 3959: 3955: 3950: 3945: 3941: 3937: 3933: 3926: 3918: 3914: 3910: 3906: 3902: 3898: 3894: 3890: 3886: 3882: 3875: 3867: 3863: 3859: 3855: 3850: 3845: 3841: 3837: 3833: 3829: 3825: 3818: 3810: 3806: 3802: 3798: 3794: 3790: 3786: 3782: 3777: 3772: 3768: 3764: 3757: 3749: 3745: 3741: 3737: 3733: 3729: 3725: 3721: 3714: 3699: 3695: 3689: 3671: 3664: 3656: 3652: 3648: 3644: 3640: 3636: 3635: 3627: 3625: 3616: 3612: 3607: 3602: 3598: 3594: 3590: 3586: 3582: 3578: 3574: 3570: 3566: 3559: 3551: 3547: 3543: 3539: 3535: 3531: 3526: 3521: 3517: 3513: 3509: 3505: 3501: 3497: 3493: 3489: 3482: 3474: 3470: 3465: 3460: 3456: 3452: 3448: 3444: 3440: 3436: 3431: 3426: 3422: 3418: 3414: 3407: 3399: 3395: 3391: 3387: 3383: 3382:10.1038/22979 3379: 3375: 3371: 3367: 3363: 3359: 3352: 3344: 3340: 3336: 3332: 3328: 3324: 3323: 3322:Physics Today 3315: 3307: 3303: 3299: 3295: 3291: 3287: 3283: 3279: 3278: 3270: 3262: 3255: 3247: 3243: 3238: 3233: 3229: 3225: 3220: 3215: 3211: 3207: 3206:Nanomaterials 3203: 3196: 3192: 3181: 3178: 3176: 3173: 3171: 3168: 3166: 3163: 3161: 3158: 3156: 3153: 3151: 3148: 3146: 3143: 3141: 3138: 3136: 3133: 3131: 3128: 3126: 3123: 3121: 3118: 3116: 3113: 3112: 3105: 3103: 3102:Alexey Ekimov 3099: 3098:Louis E. Brus 3095: 3091: 3086: 3083: 3079: 3075: 3070: 3066: 3061: 3057: 3053: 3048: 3046: 3042: 3038: 3034: 3033:Louis E. Brus 3030: 3026: 3025:Alexey Ekimov 3021: 3019: 3015: 3012: 3011:colored glass 3008: 2998: 2995: 2992:behavior. A " 2991: 2986: 2984: 2979: 2977: 2967: 2965: 2959: 2955: 2948: 2944: 2939: 2914: 2908: 2905: 2899: 2893: 2887: 2883: 2877: 2868: 2862: 2859: 2853: 2850: 2847: 2841: 2835: 2831: 2825: 2819: 2813: 2806: 2805: 2804: 2787: 2784: 2781: 2768: 2765: 2762: 2752: 2751: 2750: 2731: 2724: 2718: 2715: 2709: 2703: 2700: 2694: 2688: 2683: 2679: 2670: 2667: 2657: 2656: 2655: 2635: 2627: 2618: 2613: 2610: 2601: 2600: 2599: 2579: 2576: 2573: 2567: 2564: 2558: 2552: 2549: 2543: 2537: 2530: 2529: 2528: 2526: 2522: 2515:Semiclassical 2512: 2510: 2509:random matrix 2506: 2496: 2485: 2484:Quantum wells 2482: 2479: 2478:Quantum wires 2476: 2475: 2474: 2471: 2468: 2464: 2459: 2452: 2445: 2441: 2437: 2412: 2407: 2403: 2399: 2391: 2387: 2383: 2380: 2373: 2369: 2363: 2359: 2352: 2341: 2337: 2335: 2319: 2315: 2304: 2300: 2289: 2285: 2283: 2278: 2269: 2264: 2260: 2256: 2253: 2248: 2244: 2230: 2226: 2217: 2206: 2202: 2197: 2194: 2192: 2179: 2166: 2162: 2158: 2155: 2148: 2144: 2138: 2134: 2127: 2123: 2109: 2105: 2100: 2087: 2083: 2077: 2068: 2064: 2060: 2053: 2049: 2043: 2039: 2032: 2030: 2017: 2005: 2004: 2003: 2001: 2000:Brus equation 1992: 1989: 1988: 1984: 1980: 1975: 1971: 1968: 1965: 1958: 1954: 1951:is the mass, 1950: 1943: 1939: 1915: 1910: 1905: 1902: 1897: 1885: 1881: 1876: 1865: 1857: 1856: 1854: 1851: 1850: 1846: 1837: 1833: 1831: 1827: 1823: 1819: 1813: 1805: 1801: 1796: 1787: 1785: 1781: 1777: 1776:thermodynamic 1766: 1764: 1763:chalcogenides 1760: 1756: 1755:mass transfer 1752: 1748: 1744: 1740: 1739:excited state 1736: 1732: 1728: 1724: 1720: 1716: 1712: 1706: 1696: 1694: 1690: 1686: 1682: 1678: 1667: 1665: 1660: 1655: 1653: 1648: 1643: 1639: 1636: 1632: 1628: 1624: 1619: 1617: 1611: 1602: 1593: 1591: 1587: 1583: 1582:monochromatic 1579: 1575: 1571: 1565: 1561: 1551: 1549: 1545: 1541: 1537: 1535: 1531: 1520: 1518: 1517:nanomaterials 1503: 1493: 1491: 1487: 1483: 1473: 1470: 1468: 1464: 1460: 1456: 1452: 1448: 1447:lead selenide 1444: 1437: 1428: 1419: 1417: 1414:cytosol. Via 1411: 1409: 1405: 1400: 1397: 1393: 1388: 1385: 1380: 1378: 1373: 1371: 1368: 1364: 1360: 1357: 1353: 1352:embryogenesis 1349: 1344: 1340: 1338: 1334: 1330: 1326: 1322: 1318: 1314: 1308: 1306: 1302: 1297: 1287: 1283: 1280: 1276: 1272: 1268: 1260: 1259:visible light 1255: 1251: 1247: 1245: 1241: 1237: 1234:and show the 1233: 1229: 1219: 1217: 1212: 1208: 1207:quantum yield 1203: 1201: 1197: 1193: 1189: 1185: 1180: 1178: 1173: 1171: 1167: 1158: 1149: 1147: 1142: 1135: 1129: 1127: 1123: 1118: 1113: 1110: 1106: 1102: 1097: 1094: 1090: 1086: 1080: 1076: 1066: 1064: 1060: 1058: 1054: 1050: 1044: 1042: 1038: 1028: 1026: 1021: 1017: 1012: 1010: 1005: 1001: 998: 994: 990: 986: 981: 978: 968: 965: 955: 953: 948: 944: 940: 936: 932: 928: 924: 923:semiconductor 920: 916: 912: 899: 895: 891: 887: 884: 881: 877: 873: 869: 866: 862: 858: 850: 842: 838: 834: 833:wetting layer 830: 826: 822: 818: 817: 809: 801: 797: 792: 785: 781: 778: 774: 770: 766: 762: 758: 757: 756: 754: 749: 739: 737: 733: 729: 725: 716: 714: 710: 701: 697: 695: 691: 687: 683: 679: 675: 671: 667: 666:lead selenide 663: 654: 650: 648: 644: 639: 635: 631: 626: 622: 618: 617:semiconductor 615: 606: 604: 603:self-assembly 595: 586: 583: 579: 575: 570: 566: 564: 558: 556: 555:quantum yield 550: 548: 544: 539: 534: 530: 523: 513: 511: 507: 503: 499: 495: 491: 487: 483: 479: 475: 471: 467: 463: 458: 456: 452: 447: 445: 444:hybridization 441: 437: 433: 429: 425: 422:and discrete 421: 417: 413: 412:energy levels 409: 405: 401: 396: 394: 390: 386: 382: 378: 374: 370: 366: 362: 358: 354: 350: 346: 342: 339:in size with 338: 334: 333:semiconductor 330: 326: 322: 311: 306: 304: 299: 297: 292: 291: 289: 288: 283: 278: 273: 271: 266: 261: 260: 259: 258: 253: 250: 248: 245: 243: 240: 238: 237:Nanocomposite 235: 234: 233: 232: 229: 226: 225: 220: 217: 215: 212: 210: 207: 205: 202: 200: 199:Iron–platinum 197: 195: 192: 190: 187: 185: 182: 180: 177: 175: 172: 170: 167: 165: 162: 160: 157: 155: 152: 150: 147: 146: 145: 144: 141: 140:nanoparticles 137: 136: 131: 128: 126: 125:Health impact 123: 121: 118: 116: 115:C70 fullerene 113: 111: 108: 107: 106: 105: 102: 99: 98: 93: 90: 88: 85: 83: 80: 78: 75: 73: 70: 68: 65: 64: 63: 62: 59: 56: 55: 51: 47: 46: 43: 42:Nanomaterials 40: 39: 35: 34: 28: 23: 19: 10888:Quantum dots 10586:Quantum mind 10498:Franck–Hertz 10360:Klein–Gordon 10309:Formulations 10302:Formulations 10231:Interference 10221:Entanglement 10199:Ground state 10194:Energy level 10167:Fundamentals 10131:Introduction 10072: 9959:Robot ethics 9874:Nanorobotics 9841:Quantum dots 9840: 9588:1721.1/11129 9554: 9530:. Retrieved 9526: 9517: 9508: 9498: 9486:. Retrieved 9482: 9473: 9440: 9436: 9430: 9418:. Retrieved 9408: 9367: 9363: 9357: 9324: 9320: 9314: 9305: 9301: 9291: 9282: 9273: 9246: 9242: 9232: 9223: 9219: 9213: 9204: 9201:JETP Letters 9200: 9186: 9160:. Retrieved 9156: 9146: 9103: 9099: 9089: 9080: 9027: 9023: 9017: 8982: 8978: 8972: 8939: 8935: 8929: 8904: 8900: 8894: 8877: 8876:. Series 6. 8871: 8855: 8822: 8818: 8812: 8761: 8757: 8751: 8726: 8722: 8716: 8707: 8697: 8672: 8669:Chem. Commun 8668: 8654: 8645: 8639: 8588: 8584: 8578: 8545: 8541: 8535: 8510: 8506: 8500: 8488:. Retrieved 8482: 8472: 8455: 8451: 8445: 8420: 8416: 8410: 8377: 8373: 8367: 8355:. Retrieved 8351: 8341: 8329:. Retrieved 8325: 8316: 8304:. Retrieved 8300: 8291: 8279:. Retrieved 8275: 8266: 8258:the original 8253: 8244: 8219: 8215: 8209: 8184: 8180: 8137: 8134:Nano Letters 8133: 8126: 8083: 8079: 8069: 8036: 8032: 7990: 7987:Nano Letters 7986: 7925: 7921: 7911: 7878: 7874: 7864: 7813: 7809: 7803: 7758: 7754: 7743: 7708: 7704: 7694: 7677: 7673: 7667: 7634: 7630: 7624: 7591: 7587: 7581: 7546: 7542: 7532: 7499: 7495: 7489: 7467:(1): 79–86. 7464: 7460: 7410: 7406: 7396: 7371: 7367: 7361: 7326: 7322: 7312: 7267: 7263: 7253: 7218: 7214: 7204: 7163: 7159: 7153: 7126: 7122: 7116: 7108: 7091: 7085: 7050: 7046: 7036: 7011: 7007: 6997: 6985:. Retrieved 6981:the original 6966: 6956: 6919: 6915: 6867: 6863: 6853: 6802: 6798: 6788: 6747: 6743: 6737: 6712: 6708: 6698: 6665: 6661: 6655: 6612: 6608: 6598: 6555: 6551: 6545: 6496: 6492: 6482: 6465: 6461: 6455: 6445:16 September 6443:. Retrieved 6436:the original 6389: 6385: 6372: 6331: 6327: 6321: 6286: 6282: 6272: 6239: 6235: 6229: 6204: 6198: 6165: 6161: 6151: 6106: 6102: 6092: 6052:(1): 11–18. 6049: 6046:Nano Letters 6045: 6035: 6010: 6006: 5958: 5954: 5906: 5902: 5848: 5844: 5838: 5826:. Retrieved 5822:the original 5811: 5799:. Retrieved 5794: 5785: 5759:. Retrieved 5755:the original 5744: 5732:. Retrieved 5728: 5718: 5693: 5689: 5679: 5638: 5634: 5628: 5587: 5583: 5577: 5552: 5548: 5541: 5482: 5478: 5471: 5430: 5426: 5420: 5395: 5391: 5384: 5357: 5353: 5343: 5285:(1): 15053. 5282: 5278: 5268: 5211: 5207: 5200: 5175: 5171: 5165: 5132: 5128: 5122: 5089: 5085: 5079: 5046: 5042: 5036: 5003: 4999: 4986: 4945: 4941: 4935: 4902: 4898: 4892: 4859: 4856:Nano Letters 4855: 4842: 4809: 4805: 4799: 4766: 4763:Nano Letters 4762: 4756: 4721: 4718:Nano Letters 4717: 4703: 4662: 4658: 4648: 4623: 4619: 4571: 4567: 4529: 4525: 4469: 4465: 4455: 4431:(18): 6282. 4428: 4424: 4414: 4363: 4359: 4293: 4289: 4283: 4250: 4246: 4240: 4213: 4209: 4199: 4174: 4170: 4164: 4123: 4119: 4113: 4054: 4050: 4044: 4001: 3997: 3939: 3935: 3925: 3884: 3880: 3874: 3831: 3827: 3817: 3766: 3762: 3756: 3723: 3719: 3713: 3701:. Retrieved 3697: 3688: 3676:. Retrieved 3663: 3638: 3632: 3572: 3568: 3558: 3499: 3495: 3490:(May 2021). 3481: 3420: 3416: 3406: 3365: 3361: 3351: 3329:(1): 24–31. 3326: 3320: 3314: 3281: 3275: 3269: 3260: 3254: 3212:(21): 2889. 3209: 3205: 3195: 3087: 3071: 3051: 3049: 3022: 3016: 3004: 2987: 2980: 2973: 2963: 2957: 2953: 2946: 2942: 2937: 2935: 2802: 2748: 2653: 2597: 2524: 2518: 2502: 2494: 2472: 2469: 2465: 2457: 2450: 2443: 2439: 2435: 2433: 1997: 1983:reduced mass 1978: 1956: 1952: 1948: 1941: 1815: 1803: 1799: 1772: 1708: 1693:spectroscopy 1673: 1656: 1644: 1640: 1620: 1613: 1577: 1573: 1567: 1542: 1538: 1526: 1499: 1479: 1471: 1455:lead sulfide 1439: 1412: 1401: 1389: 1381: 1374: 1345: 1341: 1317:streptavidin 1309: 1293: 1284: 1275:diode lasers 1264: 1248: 1225: 1222:Applications 1210: 1204: 1188:fluorescence 1181: 1174: 1170:fluorescence 1163: 1130: 1114: 1101:cytotoxicity 1098: 1082: 1061: 1045: 1034: 1013: 1006: 1002: 996: 993:nanoparticle 982: 976: 974: 961: 915:biocomposite 908: 798:image of an 784:quantum well 745: 722: 706: 662:lead sulfide 659: 646: 642: 612: 600: 571: 567: 559: 551: 525: 502:spin coating 459: 448: 439: 415: 397: 389:valence band 373:valence band 328: 324: 321:Quantum dots 320: 319: 174:Cobalt oxide 154:Quantum dots 153: 87:Applications 18: 10844:EPR paradox 10624:Quantum bus 10493:Double-slit 10471:Experiments 10437:Many-worlds 10375:Schrödinger 10339:Phase space 10329:Schrödinger 10319:Interaction 10276:Uncertainty 10246:Nonlocality 10241:Measurement 10236:Decoherence 10226:Hamiltonian 10023:Moore's law 9954:Neuroethics 9949:Cyberethics 9719:Utility fog 9704:Claytronics 9694:3D printing 8729:(8): 1654. 6987:24 December 5398:: 797–810. 4574:: 152–163. 4532:: 395–404. 4216:: 500–506. 3575:(1): 2670. 3423:(1): 5401. 3165:Shuming Nie 3063: [ 3052:quantum dot 3007:glassmakers 2310:confinement 2023:confinement 1845:Bohr radius 1830:Bohr radius 1747:surfactants 1666:) imaging. 1633:(CCFLs) or 1404:fluorophore 1218:in others. 1009:flow system 880:spin qubits 742:Fabrication 466:solar cells 455:wavelengths 10882:Categories 10772:Extensions 10606:Technology 10452:Relational 10403:Copenhagen 10314:Heisenberg 10261:Tunnelling 10124:Background 9914:Automation 9799:Metal foam 9207:: 363–366. 9162:20 October 8598:1705.05333 8458:(2): 1–5. 8331:1 November 8306:1 November 8281:1 November 7928:(1): 231. 5492:1708.01454 5292:1610.01406 4064:1503.07738 3703:4 December 3430:1905.06065 3187:References 1974:Bohr model 1802:-type and 1711:solar fuel 1558:See also: 1459:perovskite 1392:photolysis 1370:immunology 1367:lymphocyte 1359:metastasis 1313:Antibodies 1186:onset and 1184:absorption 1126:exocytosis 859:(that is, 823:(MBE) and 694:nanometers 690:perovskite 625:precursors 589:Production 578:oleic acid 520:See also: 490:microscopy 345:electronic 337:nanometres 194:Iron oxide 101:Fullerenes 10478:Bell test 10348:Equations 10174:Born rule 9944:Bioethics 9762:Fullerene 9576:epitaxial 9532:6 October 9488:4 October 9465:0734-211X 9420:8 October 9392:0021-9606 9349:0021-9606 9120:1936-0851 9054:118480104 9037:1403.2591 9009:118480104 8992:1403.2591 8623:2475-9953 8570:0022-2313 8086:: 12093. 8033:Nanoscale 7950:2047-7538 7903:226335202 7895:1062-7995 7565:2169-141X 7516:0743-7463 7443:206556385 6827:2050-6120 6729:0959-9428 6682:1359-7345 6639:0957-4484 6521:0957-4484 6364:205236024 5881:205060500 5795:The Times 5771:cite news 5569:124809958 5533:119036164 5517:1748-3387 5509:1748-3395 5455:0163-1829 5354:Nanoscale 5317:2041-1723 5244:0036-8075 5236:1095-9203 5114:123881981 5071:118926523 5028:121329624 4927:121602427 4695:207060827 4679:0002-7863 4640:0379-6779 4598:1876-6102 4546:0925-8388 4486:2470-1343 4466:ACS Omega 4447:2076-3417 4388:2041-1723 4366:(1): 49. 4328:1520-6106 4275:139004694 4267:2191-1630 4089:0031-9007 3976:1050-2947 3909:1748-3387 3858:0034-6748 3809:118664135 3801:0034-6861 3776:1312.1079 3748:0003-6951 3597:2041-1723 3550:235215237 3534:1476-4687 3455:2041-1723 3390:1476-4687 3228:2079-4991 3180:Uri Banin 3170:Superatom 3056:Mark Reed 3050:The term 3047:effects. 3037:Bell Labs 2906:− 2863:μ 2860:− 2842:μ 2779:Δ 2760:Δ 2719:μ 2716:− 2707:Δ 2695:μ 2680:μ 2677:Δ 2665:Δ 2633:Δ 2625:Δ 2619:≡ 2577:− 2565:− 2538:μ 2413:∗ 2400:− 2384:μ 2370:π 2360:ℏ 2270:∗ 2257:− 2227:μ 2207:ε 2198:− 2159:μ 2145:π 2135:ℏ 2050:π 2040:ℏ 1906:μ 1886:ε 1877:∗ 1681:colloidal 1530:nanowires 1480:Aromatic 1363:stem cell 732:germanium 647:defocuses 630:annealing 614:Colloidal 582:colloidal 432:molecules 164:Cellulose 120:Chemistry 72:Chemistry 67:Synthesis 10867:Category 10661:Timeline 10413:Ensemble 10393:Bayesian 10286:Collapse 10158:Glossary 10141:Timeline 9869:Domotics 9861:Robotics 9846:Silicene 9767:Graphene 9416:. Nexdot 9400:54779723 9172:cite web 9138:35325541 9100:ACS Nano 8964:10011100 8863:(1904). 8796:12513231 8689:21952415 8631:22966827 8527:23590186 8507:ACS Nano 8490:20 March 8236:21650464 8201:24665986 8181:ACS Nano 8162:17503867 8118:26174964 8061:20648282 8015:26509283 7968:34785654 7848:15169518 7795:23341631 7735:17891134 7659:20341752 7651:17987281 7608:18756197 7573:28278581 7524:18419147 7481:14733586 7435:24876347 7388:15541352 7353:24122039 7304:12235356 7245:18425138 7196:30071440 7188:14564008 7145:15731014 7077:25157589 7028:22458433 6948:19333416 6894:26798011 6845:30530939 6772:15190347 6690:20922257 6647:30052199 6590:13152124 6537:45625439 6529:26135968 6424:16384329 6356:20491094 6313:17891134 6256:19743433 6221:15614393 6190:54915101 6143:21980346 6103:PLOS ONE 6084:28890669 6027:22853558 5985:19684286 5933:16451849 5873:21107418 5729:AZo Nano 5710:23441602 5690:ACS Nano 5663:10864319 5620:28558725 5612:11988570 5525:29255292 5412:93219029 5376:28443889 5335:28530219 5252:16141370 5192:95841139 5157:95855020 4978:12178919 4970:19567968 4884:15755110 4826:15656199 4791:15826104 4748:25633588 4687:21175183 4504:31763517 4406:36599825 4336:97571829 4191:94993172 4156:41348562 4148:26313884 4097:26207484 4036:15681376 3917:29109549 3866:21806165 3615:37236922 3606:10220219 3542:34040208 3473:31844043 3246:37947733 3237:10648425 3108:See also 3035:team at 1786:theory. 1731:band gap 1719:band gap 1685:infrared 1544:Graphene 1508:, and Nb 1348:in vitro 1337:proteins 1329:aptamers 1321:peptides 1196:spectrum 1134:toxicity 1089:In vitro 1063:Peptides 761:band gap 643:focusing 634:monomers 538:bandgaps 410:allowed 387:and the 365:electron 361:UV light 242:Nanofoam 209:Platinum 92:Timeline 10820:Related 10799:History 10538:Science 10370:Rydberg 10136:History 9737:Aerogel 9445:Bibcode 9372:Bibcode 9329:Bibcode 9251:Bibcode 9129:9046976 8944:Bibcode 8909:Bibcode 8847:9980157 8827:Bibcode 8804:9344722 8776:Bibcode 8731:Bibcode 8603:Bibcode 8550:Bibcode 8437:7684370 8402:4016378 8382:Bibcode 8357:19 July 8142:Bibcode 8109:4502511 8088:Bibcode 8041:Bibcode 7995:Bibcode 7959:8595380 7930:Bibcode 7856:4186651 7828:Bibcode 7786:3568376 7763:Bibcode 7726:2702539 7616:9007994 7415:Bibcode 7407:Science 7344:3968776 7272:Bibcode 7236:2637151 7168:Bibcode 7160:Science 7068:4266335 6939:2660663 6872:Bibcode 6864:Science 6836:7233465 6807:Bibcode 6780:4400136 6752:Bibcode 6617:Bibcode 6570:Bibcode 6501:Bibcode 6432:4812108 6404:Bibcode 6336:Bibcode 6304:2702539 6264:7125377 6170:Bibcode 6134:3182941 6111:Bibcode 6075:5588688 6054:Bibcode 5976:2777075 5924:1367826 5853:Bibcode 5734:19 July 5671:4429190 5643:Bibcode 5592:Bibcode 5584:Science 5463:9975303 5435:Bibcode 5326:5458118 5297:Bibcode 5260:9107033 5216:Bibcode 5208:Science 5137:Bibcode 5094:Bibcode 5051:Bibcode 5008:Bibcode 4950:Bibcode 4907:Bibcode 4864:Bibcode 4834:2461258 4771:Bibcode 4739:4462997 4576:Bibcode 4495:6868586 4397:9813348 4368:Bibcode 4308:Bibcode 4218:Bibcode 4128:Bibcode 4105:1720328 4069:Bibcode 4027:1201471 4006:Bibcode 3998:Science 3954:Bibcode 3889:Bibcode 3836:Bibcode 3781:Bibcode 3728:Bibcode 3643:Bibcode 3577:Bibcode 3504:Bibcode 3464:6915722 3435:Bibcode 3398:4424927 3370:Bibcode 3331:Bibcode 3306:4367436 3286:Bibcode 3080:at the 3001:History 2936:is the 2347:bandgap 2325:exciton 2295:bandgap 2185:exciton 1822:exciton 1751:ligands 1689:cameras 1687:-light 1627:backlit 1384:in vivo 1333:ligands 1290:Biology 1117:in vivo 1085:cadmium 1041:cadmium 935:viruses 777:ormosil 775:called 728:silicon 638:monomer 533:phonons 375:to the 341:optical 169:Ceramic 10513:Popper 9939:Ethics 9907:Topics 9675:Fields 9566:  9463:  9398:  9390:  9347:  9136:  9126:  9118:  9052:  9007:  8962:  8845:  8802:  8794:  8687:  8629:  8621:  8568:  8525:  8435:  8400:  8234:  8199:  8160:  8116:  8106:  8059:  8013:  7966:  7956:  7948:  7901:  7893:  7854:  7846:  7793:  7783:  7733:  7723:  7657:  7649:  7614:  7606:  7571:  7563:  7522:  7514:  7479:  7441:  7433:  7386:  7351:  7341:  7302:  7295:130509 7292:  7243:  7233:  7194:  7186:  7143:  7075:  7065:  7026:  6973:  6946:  6936:  6892:  6843:  6833:  6825:  6778:  6770:  6744:Nature 6727:  6688:  6680:  6645:  6637:  6588:  6535:  6527:  6519:  6430:  6422:  6362:  6354:  6311:  6301:  6262:  6254:  6219:  6188:  6141:  6131:  6082:  6072:  6025:  5983:  5973:  5931:  5921:  5879:  5871:  5845:Nature 5761:7 July 5708:  5669:  5661:  5635:Nature 5618:  5610:  5567:  5531:  5523:  5515:  5507:  5461:  5453:  5410:  5374:  5333:  5323:  5315:  5258:  5250:  5242:  5234:  5190:  5155:  5112:  5069:  5026:  4976:  4968:  4925:  4882:  4832:  4824:  4789:  4746:  4736:  4693:  4685:  4677:  4638:  4596:  4544:  4502:  4492:  4484:  4445:  4404:  4394:  4386:  4334:  4326:  4273:  4265:  4189:  4154:  4146:  4103:  4095:  4087:  4034:  4024:  3974:  3915:  3907:  3864:  3856:  3807:  3799:  3746:  3678:7 July 3613:  3603:  3595:  3548:  3540:  3532:  3496:Nature 3471:  3461:  3453:  3396:  3388:  3362:Nature 3304:  3277:Nature 3244:  3234:  3226:  2491:Models 2434:where 1940:where 1769:Theory 1562:, and 1356:cancer 1265:Being 1240:qubits 1211:shells 1192:redder 1055:, and 1020:Nanoco 863:) and 845:InGaAs 829:strain 804:InGaAs 773:silica 724:Plasma 684:, and 500:, and 492:, and 474:lasers 214:Silver 179:Copper 138:Other 10423:Local 10365:Pauli 10355:Dirac 9396:S2CID 9308:(12). 9197:(PDF) 9077:(PDF) 9050:S2CID 9032:arXiv 9005:S2CID 8987:arXiv 8800:S2CID 8766:arXiv 8663:ZnSnX 8627:S2CID 8619:eISSN 8593:arXiv 8433:S2CID 8398:S2CID 7899:S2CID 7852:S2CID 7818:arXiv 7655:S2CID 7612:S2CID 7439:S2CID 7192:S2CID 6776:S2CID 6586:S2CID 6560:arXiv 6533:S2CID 6439:(PDF) 6428:S2CID 6394:arXiv 6382:(PDF) 6360:S2CID 6260:S2CID 6236:Small 6186:S2CID 5877:S2CID 5828:9 May 5801:9 May 5667:S2CID 5616:S2CID 5565:S2CID 5529:S2CID 5505:eISSN 5487:arXiv 5408:S2CID 5313:eISSN 5287:arXiv 5256:S2CID 5232:eISSN 5188:S2CID 5153:S2CID 5110:S2CID 5067:S2CID 5024:S2CID 4996:(PDF) 4974:S2CID 4923:S2CID 4852:(PDF) 4830:S2CID 4691:S2CID 4332:S2CID 4298:arXiv 4271:S2CID 4187:S2CID 4152:S2CID 4101:S2CID 4059:arXiv 3944:arXiv 3805:S2CID 3771:arXiv 3673:(PDF) 3546:S2CID 3425:arXiv 3394:S2CID 3302:S2CID 3067:] 2803:Then 1713:. In 1548:OLEDs 1200:bluer 989:II–VI 985:III–V 428:atoms 420:bound 363:, an 327:) or 204:Lipid 10074:List 9564:ISBN 9534:2023 9490:2023 9461:ISSN 9422:2020 9388:ISSN 9345:ISSN 9178:link 9164:2023 9134:PMID 9116:ISSN 8960:PMID 8843:PMID 8792:PMID 8685:PMID 8566:ISSN 8523:PMID 8492:2020 8359:2015 8333:2018 8308:2018 8283:2018 8232:PMID 8197:PMID 8158:PMID 8114:PMID 8057:PMID 8011:PMID 7964:PMID 7946:ISSN 7891:ISSN 7844:PMID 7791:PMID 7731:PMID 7647:PMID 7604:PMID 7569:PMID 7561:ISSN 7520:PMID 7512:ISSN 7477:PMID 7431:PMID 7384:PMID 7349:PMID 7300:PMID 7241:PMID 7184:PMID 7141:PMID 7073:PMID 7024:PMID 6989:2017 6971:ISBN 6944:PMID 6890:PMID 6841:PMID 6823:ISSN 6768:PMID 6725:ISSN 6686:PMID 6678:ISSN 6643:PMID 6635:ISSN 6525:PMID 6517:ISSN 6447:2007 6420:PMID 6352:PMID 6309:PMID 6252:PMID 6217:PMID 6139:PMID 6080:PMID 6023:PMID 5981:PMID 5929:PMID 5869:PMID 5830:2015 5803:2015 5777:link 5763:2011 5736:2015 5706:PMID 5659:PMID 5608:PMID 5521:PMID 5513:ISSN 5459:PMID 5451:ISSN 5372:PMID 5331:PMID 5248:PMID 5240:ISSN 4966:PMID 4880:PMID 4822:PMID 4787:PMID 4744:PMID 4683:PMID 4675:ISSN 4636:ISSN 4594:ISSN 4542:ISSN 4500:PMID 4482:ISSN 4443:ISSN 4402:PMID 4384:ISSN 4324:ISSN 4263:ISSN 4144:PMID 4093:PMID 4085:ISSN 4032:PMID 3972:ISSN 3913:PMID 3905:ISSN 3862:PMID 3854:ISSN 3797:ISSN 3744:ISSN 3705:2015 3680:2009 3611:PMID 3593:ISSN 3538:PMID 3530:ISSN 3469:PMID 3451:ISSN 3386:ISSN 3242:PMID 3224:ISSN 3100:and 3088:The 3076:and 1757:and 1664:NSOM 1296:dyes 1242:for 1166:hole 1077:and 853:GaAs 812:GaAs 765:CdSe 746:The 730:and 470:LEDs 355:and 343:and 331:are 189:Iron 184:Gold 9584:hdl 9453:doi 9380:doi 9337:doi 9259:doi 9124:PMC 9108:doi 9042:doi 8997:doi 8952:doi 8917:doi 8882:doi 8835:doi 8784:doi 8739:doi 8727:183 8677:doi 8611:doi 8558:doi 8515:doi 8460:doi 8425:doi 8390:doi 8378:101 8224:doi 8220:133 8189:doi 8150:doi 8104:PMC 8096:doi 8049:doi 8003:doi 7954:PMC 7938:doi 7883:doi 7836:doi 7781:PMC 7771:doi 7759:110 7721:PMC 7713:doi 7682:doi 7678:118 7639:doi 7635:391 7596:doi 7551:doi 7504:doi 7469:doi 7423:doi 7411:344 7376:doi 7372:325 7339:PMC 7331:doi 7290:PMC 7280:doi 7231:PMC 7223:doi 7176:doi 7164:302 7131:doi 7127:118 7096:doi 7063:PMC 7055:doi 7051:118 7016:doi 7012:134 6934:PMC 6924:doi 6880:doi 6868:351 6831:PMC 6815:doi 6760:doi 6748:429 6717:doi 6670:doi 6625:doi 6578:doi 6509:doi 6470:doi 6466:106 6412:doi 6344:doi 6299:PMC 6291:doi 6244:doi 6209:doi 6178:doi 6129:PMC 6119:doi 6070:PMC 6062:doi 6015:doi 5971:PMC 5963:doi 5959:112 5919:PMC 5911:doi 5907:114 5861:doi 5849:468 5698:doi 5651:doi 5639:405 5600:doi 5588:296 5557:doi 5497:doi 5443:doi 5400:doi 5396:146 5362:doi 5321:PMC 5305:doi 5224:doi 5212:309 5180:doi 5145:doi 5102:doi 5059:doi 5016:doi 4958:doi 4915:doi 4872:doi 4814:doi 4779:doi 4734:PMC 4726:doi 4667:doi 4663:133 4628:doi 4624:139 4584:doi 4572:102 4534:doi 4530:636 4490:PMC 4474:doi 4433:doi 4392:PMC 4376:doi 4316:doi 4294:107 4255:doi 4226:doi 4214:367 4179:doi 4136:doi 4077:doi 4055:115 4022:PMC 4014:doi 4002:307 3962:doi 3897:doi 3844:doi 3789:doi 3736:doi 3651:doi 3601:PMC 3585:doi 3520:hdl 3512:doi 3500:593 3459:PMC 3443:doi 3378:doi 3366:400 3339:doi 3294:doi 3282:379 3232:PMC 3214:doi 2774:and 2507:or 1652:XBR 1647:LCD 1629:by 1588:or 1325:DNA 1016:Dow 952:ZnS 939:TMV 769:ZnS 563:TEM 430:or 325:QDs 10884:: 9562:. 9560:47 9525:. 9507:. 9481:. 9459:. 9451:. 9439:. 9394:. 9386:. 9378:. 9368:80 9366:. 9343:. 9335:. 9325:79 9323:. 9304:. 9300:. 9281:. 9257:. 9247:56 9245:. 9241:. 9224:16 9222:. 9205:34 9199:. 9174:}} 9170:{{ 9155:. 9132:. 9122:. 9114:. 9104:16 9102:. 9098:. 9079:. 9062:^ 9048:. 9040:. 9028:69 9026:. 9003:. 8995:. 8983:71 8981:. 8958:. 8950:. 8940:49 8938:. 8915:. 8905:59 8903:. 8870:. 8841:. 8833:. 8823:52 8821:. 8798:. 8790:. 8782:. 8774:. 8762:89 8760:. 8737:. 8725:. 8706:. 8683:. 8673:47 8671:. 8625:. 8617:. 8609:. 8601:. 8587:. 8564:. 8556:. 8546:70 8544:. 8521:. 8509:. 8481:. 8454:. 8431:. 8421:97 8419:. 8396:. 8388:. 8376:. 8350:. 8324:. 8299:. 8274:. 8252:. 8230:. 8218:. 8195:. 8183:. 8170:^ 8156:. 8148:. 8136:. 8112:. 8102:. 8094:. 8082:. 8078:. 8055:. 8047:. 8035:. 8023:^ 8009:. 8001:. 7991:15 7989:. 7976:^ 7962:. 7952:. 7944:. 7936:. 7926:10 7924:. 7920:. 7897:. 7889:. 7879:29 7877:. 7873:. 7850:. 7842:. 7834:. 7826:. 7814:92 7812:. 7789:. 7779:. 7769:. 7757:. 7753:. 7729:. 7719:. 7709:25 7707:. 7703:. 7676:. 7653:. 7645:. 7633:. 7610:. 7602:. 7590:. 7567:. 7559:. 7547:45 7545:. 7541:. 7518:. 7510:. 7500:24 7498:. 7475:. 7465:15 7463:. 7451:^ 7437:. 7429:. 7421:. 7405:. 7382:. 7370:. 7347:. 7337:. 7327:10 7325:. 7321:. 7298:. 7288:. 7278:. 7268:99 7266:. 7262:. 7239:. 7229:. 7217:. 7213:. 7190:. 7182:. 7174:. 7162:. 7139:. 7125:. 7121:. 7094:. 7071:. 7061:. 7049:. 7045:. 7022:. 7010:. 7006:. 6965:. 6942:. 6932:. 6920:10 6918:. 6914:. 6902:^ 6888:. 6878:. 6866:. 6862:. 6839:. 6829:. 6821:. 6813:. 6801:. 6797:. 6774:. 6766:. 6758:. 6746:. 6723:. 6713:21 6711:. 6707:. 6684:. 6676:. 6666:46 6664:. 6641:. 6633:. 6623:. 6613:29 6611:. 6607:. 6584:. 6576:. 6568:. 6556:57 6554:. 6531:. 6523:. 6515:. 6507:. 6497:26 6495:. 6491:. 6464:. 6426:. 6418:. 6410:. 6402:. 6390:95 6388:. 6384:. 6358:. 6350:. 6342:. 6332:22 6330:. 6307:. 6297:. 6287:25 6285:. 6281:. 6258:. 6250:. 6238:. 6215:. 6184:. 6176:. 6166:14 6160:. 6137:. 6127:. 6117:. 6105:. 6101:. 6078:. 6068:. 6060:. 6048:. 6044:. 6021:. 6011:46 6009:. 5993:^ 5979:. 5969:. 5957:. 5953:. 5941:^ 5927:. 5917:. 5905:. 5901:. 5889:^ 5875:. 5867:. 5859:. 5847:. 5793:. 5773:}} 5769:{{ 5727:. 5704:. 5692:. 5665:. 5657:. 5649:. 5637:. 5614:. 5606:. 5598:. 5586:. 5563:. 5551:. 5527:. 5519:. 5511:. 5503:. 5495:. 5483:13 5481:. 5457:. 5449:. 5441:. 5431:50 5429:. 5406:. 5370:. 5356:. 5352:. 5329:. 5319:. 5311:. 5303:. 5295:. 5281:. 5277:. 5254:. 5246:. 5238:. 5230:. 5222:. 5210:. 5186:. 5176:31 5174:. 5151:. 5143:. 5133:19 5131:. 5108:. 5100:. 5090:48 5088:. 5065:. 5057:. 5047:48 5045:. 5022:. 5014:. 5004:92 5002:. 4998:. 4972:. 4964:. 4956:. 4946:20 4944:. 4921:. 4913:. 4903:42 4901:. 4878:. 4870:. 4858:. 4854:. 4828:. 4820:. 4808:. 4785:. 4777:. 4765:. 4742:. 4732:. 4722:15 4720:. 4716:. 4689:. 4681:. 4673:. 4661:. 4657:. 4634:. 4618:. 4606:^ 4592:. 4582:. 4570:. 4566:. 4554:^ 4540:. 4528:. 4524:. 4512:^ 4498:. 4488:. 4480:. 4468:. 4464:. 4441:. 4429:10 4427:. 4423:. 4400:. 4390:. 4382:. 4374:. 4364:14 4362:. 4358:. 4344:^ 4330:. 4322:. 4314:. 4306:. 4292:. 4269:. 4261:. 4249:. 4224:. 4212:. 4208:. 4185:. 4175:15 4173:. 4150:. 4142:. 4134:. 4124:17 4122:. 4099:. 4091:. 4083:. 4075:. 4067:. 4053:. 4030:. 4020:. 4012:. 4000:. 3996:. 3984:^ 3970:. 3960:. 3952:. 3940:57 3938:. 3934:. 3911:. 3903:. 3895:. 3885:12 3883:. 3860:. 3852:. 3842:. 3832:82 3830:. 3826:. 3803:. 3795:. 3787:. 3779:. 3767:87 3765:. 3742:. 3734:. 3724:73 3722:. 3696:. 3649:. 3639:30 3637:. 3623:^ 3609:. 3599:. 3591:. 3583:. 3573:14 3571:. 3567:. 3544:. 3536:. 3528:. 3518:. 3510:. 3498:. 3494:. 3467:. 3457:. 3449:. 3441:. 3433:. 3421:10 3419:. 3415:. 3392:. 3384:. 3376:. 3364:. 3360:. 3337:. 3327:46 3325:. 3300:. 3292:. 3280:. 3240:. 3230:. 3222:. 3210:13 3208:. 3204:. 3096:, 3065:de 2511:. 2002:: 1592:. 1536:. 1469:. 1410:. 1372:. 1361:, 1354:, 1323:, 1319:, 1315:, 1140:50 1138:LD 1122:Tc 1059:. 1053:Ge 1051:, 1049:Si 1011:. 680:, 676:, 672:, 668:, 664:, 649:. 512:. 484:, 480:, 476:, 472:, 468:, 464:, 10109:e 10102:t 10095:v 9660:e 9653:t 9646:v 9590:. 9586:: 9572:. 9536:. 9511:. 9492:. 9467:. 9455:: 9447:: 9441:4 9424:. 9402:. 9382:: 9374:: 9351:. 9339:: 9331:: 9306:5 9285:. 9267:. 9261:: 9253:: 9180:) 9166:. 9140:. 9110:: 9083:. 9056:. 9044:: 9034:: 9011:. 8999:: 8989:: 8966:. 8954:: 8946:: 8923:. 8919:: 8911:: 8888:. 8884:: 8878:7 8849:. 8837:: 8829:: 8806:. 8786:: 8778:: 8768:: 8745:. 8741:: 8733:: 8710:. 8691:. 8679:: 8665:4 8661:2 8633:. 8613:: 8605:: 8595:: 8589:1 8572:. 8560:: 8552:: 8529:. 8517:: 8511:7 8494:. 8466:. 8462:: 8456:4 8439:. 8427:: 8404:. 8392:: 8384:: 8361:. 8335:. 8310:. 8285:. 8238:. 8226:: 8203:. 8191:: 8185:8 8164:. 8152:: 8144:: 8138:7 8120:. 8098:: 8090:: 8084:5 8063:. 8051:: 8043:: 8037:2 8017:. 8005:: 7997:: 7970:. 7940:: 7932:: 7905:. 7885:: 7858:. 7838:: 7830:: 7820:: 7797:. 7773:: 7765:: 7737:. 7715:: 7688:. 7684:: 7661:. 7641:: 7618:. 7598:: 7592:5 7575:. 7553:: 7526:. 7506:: 7483:. 7471:: 7445:. 7425:: 7417:: 7390:. 7378:: 7355:. 7333:: 7306:. 7282:: 7274:: 7247:. 7225:: 7219:5 7198:. 7178:: 7170:: 7147:. 7133:: 7102:. 7098:: 7079:. 7057:: 7030:. 7018:: 6991:. 6950:. 6926:: 6896:. 6882:: 6874:: 6847:. 6817:: 6809:: 6803:7 6782:. 6762:: 6754:: 6731:. 6719:: 6692:. 6672:: 6649:. 6627:: 6619:: 6592:. 6580:: 6572:: 6562:: 6539:. 6511:: 6503:: 6476:. 6472:: 6449:. 6414:: 6406:: 6396:: 6366:. 6346:: 6338:: 6315:. 6293:: 6266:. 6246:: 6240:6 6223:. 6211:: 6192:. 6180:: 6172:: 6145:. 6121:: 6113:: 6107:6 6086:. 6064:: 6056:: 6050:4 6029:. 6017:: 5987:. 5965:: 5935:. 5913:: 5883:. 5863:: 5855:: 5832:. 5805:. 5779:) 5765:. 5738:. 5712:. 5700:: 5694:7 5686:4 5673:. 5653:: 5645:: 5622:. 5602:: 5594:: 5571:. 5559:: 5553:9 5535:. 5499:: 5489:: 5465:. 5445:: 5437:: 5414:. 5402:: 5378:. 5364:: 5358:9 5337:. 5307:: 5299:: 5289:: 5283:8 5262:. 5226:: 5218:: 5194:. 5182:: 5159:. 5147:: 5139:: 5116:. 5104:: 5096:: 5073:. 5061:: 5053:: 5030:. 5018:: 5010:: 4980:. 4960:: 4952:: 4929:. 4917:: 4909:: 4886:. 4874:: 4866:: 4860:5 4836:. 4816:: 4810:4 4793:. 4781:: 4773:: 4767:5 4750:. 4728:: 4712:3 4697:. 4669:: 4642:. 4630:: 4600:. 4586:: 4578:: 4548:. 4536:: 4506:. 4476:: 4470:4 4449:. 4435:: 4408:. 4378:: 4370:: 4338:. 4318:: 4310:: 4300:: 4277:. 4257:: 4251:6 4234:. 4228:: 4220:: 4193:. 4181:: 4158:. 4138:: 4130:: 4107:. 4079:: 4071:: 4061:: 4038:. 4016:: 4008:: 3978:. 3964:: 3956:: 3946:: 3919:. 3899:: 3891:: 3868:. 3846:: 3838:: 3811:. 3791:: 3783:: 3773:: 3750:. 3738:: 3730:: 3707:. 3682:. 3657:. 3653:: 3645:: 3617:. 3587:: 3579:: 3552:. 3522:: 3514:: 3506:: 3475:. 3445:: 3437:: 3427:: 3400:. 3380:: 3372:: 3345:. 3341:: 3333:: 3308:. 3296:: 3288:: 3248:. 3216:: 2964:N 2960:) 2958:N 2956:( 2954:A 2949:) 2947:N 2945:( 2943:I 2918:) 2915:N 2912:( 2909:A 2903:) 2900:N 2897:( 2894:I 2888:2 2884:e 2878:= 2872:) 2869:N 2866:( 2857:) 2854:1 2851:+ 2848:N 2845:( 2836:2 2832:e 2826:= 2823:) 2820:N 2817:( 2814:C 2788:e 2785:= 2782:Q 2769:1 2766:= 2763:N 2732:e 2728:) 2725:N 2722:( 2713:) 2710:N 2704:+ 2701:N 2698:( 2689:= 2684:e 2671:= 2668:V 2636:Q 2628:V 2614:C 2611:1 2583:) 2580:1 2574:N 2571:( 2568:E 2562:) 2559:N 2556:( 2553:E 2550:= 2547:) 2544:N 2541:( 2525:N 2461:r 2458:Δ 2454:h 2451:m 2447:e 2444:m 2440:a 2436:ÎŒ 2408:y 2404:R 2392:2 2388:a 2381:2 2374:2 2364:2 2353:+ 2342:E 2338:= 2320:E 2316:+ 2305:E 2301:+ 2290:E 2286:= 2279:E 2265:y 2261:R 2254:= 2249:y 2245:R 2236:e 2231:m 2218:2 2212:r 2203:1 2195:= 2180:E 2167:2 2163:a 2156:2 2149:2 2139:2 2128:= 2124:) 2115:h 2110:m 2106:1 2101:+ 2093:e 2088:m 2084:1 2078:( 2069:2 2065:a 2061:2 2054:2 2044:2 2033:= 2018:E 1979:n 1977:( 1960:r 1957:Δ 1953:ÎŒ 1949:m 1945:B 1942:a 1921:B 1916:a 1911:) 1903:m 1898:( 1891:r 1882:= 1871:B 1866:a 1847:. 1841:b 1804:p 1800:s 1662:( 1514:5 1512:O 1510:2 1506:2 1057:C 898:K 894:K 851:( 843:( 814:) 810:( 802:( 323:( 309:e 302:t 295:v 29:.

Index


quantum confinement
Nanomaterials

Carbon nanotubes
Synthesis
Chemistry
Mechanical properties
Optical properties
Applications
Timeline
Fullerenes
Buckminsterfullerene
C70 fullerene
Chemistry
Health impact
Carbon allotropes
nanoparticles
Carbon quantum dots
Quantum dots
Aluminium oxide
Cellulose
Ceramic
Cobalt oxide
Copper
Gold
Iron
Iron oxide
Iron–platinum
Lipid

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑