Knowledge

Iron–platinum nanoparticle

Source 📝

449: 362: 584: 370: 251: 263: 509: 36: 357:
The various properties of iron-platinum nanoparticles allow them to function in multiple ways. In standard conditions, FePt NPs exist in the face-centered cubic phase with a 3 to 10 nanometer diameter. However, once heat is added the structure becomes face-centered
468:) and iron (II) chloride in water-in-oil microemulsions. In this process, the normal face-centered cubic structure is transformed to a face-centered tetragonal configuration, offering a higher density product useful for many storage media applications. 1238:
Gu, Hongwei; Ho, Pak-Leung; Tsang, Kenneth W. T.; Wang, Ling; Xu, Bing (2003). "Using Biofunctional Magnetic Nanoparticles to Capture Vancomycin-Resistant Enterococci and Other Gram-Positive Bacteria at Ultralow Concentration".
921:
Shah, Sachin N.; Steinmetz, Nicole F.; Aljabali, Alaa A. A.; Lomonossoff, George P.; Evans, David. J. (2009). "Environmentally benign synthesis of virus-templated, monodisperse, iron-platinum nanoparticles".
746:
Chou, Shang-Wei; Shau, Yu-Hong; Wu, Ping-Ching; Yang, Yu-Sang; Shieh, Dar-Bin; Chen, Chia-Chun (2010-09-29). "In Vitro and in Vivo Studies of FePt Nanoparticles for Dual Modal CT/MRI Molecular Imaging".
425:
solutions containing iron and platinum to combine the two alloys. A laser beam is emitted onto a 4:1 mixture of iron (III) acetylacetonate and platinum (II) acetylacetonate dissolved in
421:
while maintaining the desirable magnetic properties. Combined, FePt nanoparticles can be synthesized for medical applications. One method of synthesis uses incident laser technology to
540:
molecules that are harmful to the kidney and survive in the body for only a short time. The superparamagnetic properties of the nanoparticles and the systematic method for conjugating
516:
Due to their superparamagnetism and controllable shape, size, and surface, iron-platinum nanoparticles have great potential for advancing medicine in many fields, including imagining,
1146: 711:
Sun, Shouheng; Anders, Simone; Thomson, Thomas; Baglin, J. E. E.; Toney, Mike F.; et al. (2003). "Controlled Synthesis and Assembly of FePt Nanoparticles".
1191:
Zhang, Li; Takahashi, Y. K.; Perumal, A.; Hono, K. (2010-09-01). "L10-ordered high coercivity (FePt)Ag–C granular thin films for perpendicular recording".
829:
Sun, S.; Murray, C.B.; Weller, D.; Folks, L.; Moser, A. (2000-03-17). "Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices".
333:, one-step thermal synthesis with metal precursors, and exchanged-coupled assembly for making FePt NPs. An important property of FePt NPs is their 696:
Hyie, K. M.(2010). “Synthesis of Iron-Platinum Nanoparticles in Water-in-Oil Microemulsions for High-Density Storage Media Application”. 1-9.
72: 62: 1118:
Ma, Lei; Liu, Z. W.; Yu, H. Y.; Zhong, X. C.; Zeng, Y. P.; Zeng, D. C.; Zhong, X. P. (2011). "High Coercivity FePtSiN Films With
293: 67: 1353: 500:
compared to common hard drives that have 5KOe coercivity. Nanoparticles have also been grown with coercivities up to 37 kOe.
528:
for tissue-specific delivery, providing a systematic way to customize for either technology. FePt NPs are compatible for
110: 608:
Sun, S. (2006-02-17). "Recent Advances in Chemical Synthesis, Self-Assembly, and Applications of FePt Nanoparticles".
385:, enlarge the average radius of the FePt NPs through direct mineralization. The virus acts as a natural template to 438: 204: 52: 1022:"Synthesis and characterization of potential iron–platinum drugs and supplements by laser liquid photolysis" 651:
Chen, Min; Liu, J. P.; Sun, Shouheng (2004). "One-Step Synthesis of FePt Nanoparticles with Tunable Size".
417:
activity than platinum alone. These magnetic metal additions to platinum reduce the overall sensitivity to
144: 77: 1282:
Xu, Chenjie; Yuan, Zhenglong; Kohler, Nathan; Kim, Jaemin; Chung, Maureen A.; Sun, Shouheng (2009-10-28).
874:"The use of tobacco mosaic virus and cowpea mosaic virus for the production of novel metal nanomaterials" 872:
Love, Andrew J.; Makarov, Valentine; Yaminsky, Igor; Kalinina, Natalia O.; Taliansky, Michael E. (2014).
794:; Panagiotopoulos, I.; Niarchos, D. (2000). "CoPt and FePt thin films for high density recording media". 286: 342: 1080: 529: 430: 346: 159: 57: 1226: 488:
FePt NPs are promising materials for ultra-high density magnetic recording media due to their high
390: 237: 189: 568:’s intracellular environments breaks down the phospholipid bilayer. Fe catalyzed decomposition of 573: 471:
For solid state applications FePt nanoparticles can be synthesised on a substrate by directly co-
179: 791: 545: 493: 279: 442: 194: 1121: 448: 382: 325:
phase but can change to a chemically ordered face-centered tetragonal phase as a result of
232: 154: 115: 95: 548:. Antibodies for the bacteria conjugated to the FePt NP bind to the bacteria and magnetic 8: 457: 378: 322: 199: 164: 105: 1081:"L10-ordered high coercivity (FePt)Ag–C granular thin films for perpendicular recording" 1316: 1283: 1173: 1056: 1021: 997: 962: 633: 472: 338: 334: 134: 1284:"FePt Nanoparticles as an Fe Reservoir for Controlled Fe Release and Tumor Inhibition" 1363: 1321: 1303: 1264: 1256: 1208: 1165: 1100: 1061: 1043: 1002: 984: 943: 935: 903: 895: 854: 846: 811: 772: 764: 728: 676: 668: 625: 569: 361: 326: 267: 174: 1177: 637: 1311: 1295: 1248: 1200: 1157: 1092: 1051: 1033: 992: 974: 927: 885: 838: 803: 756: 720: 660: 617: 521: 842: 560:
iron can be delivered to specific locations and taken up with high selectivity. A
544:
to the FePt surface makes them viable vehicles for detection of pathogens such as
43: 890: 873: 492:. Higher coercivity indicates the material cannot be demagnetized easily. After 1204: 1096: 837:(5460). American Association for the Advancement of Science (AAAS): 1989–1992. 583: 255: 169: 1161: 1358: 1347: 1307: 1260: 1212: 1169: 1104: 1047: 988: 939: 899: 850: 815: 768: 732: 672: 629: 564:
coating of the FCC-FePt prevents Fe release. Once in the cell, the low pH of
401:
Platinum nanoparticles become more chemically stable when alloyed with iron,
330: 310: 222: 213: 149: 100: 27: 1325: 1268: 1156:(10). Institute of Electrical and Electronics Engineers (IEEE): 3505–3508. 1065: 1020:
Noksi, S. S.; Mwakikunga, Bonex W.; Sideras-Haddad, E.; Forbes, A. (2012).
1006: 947: 907: 858: 776: 680: 621: 561: 557: 386: 369: 125: 422: 139: 389:
nanoparticles up to 30 nanometers in diameter. The size increase of the
1038: 979: 497: 489: 1299: 1252: 760: 724: 664: 250: 931: 807: 789: 414: 86: 536:. FePt NPs also provide a non-toxic, more persistent alternative to 1019: 565: 525: 517: 426: 318: 227: 508: 452:
Synthesis of Iron-Platinum Nanoparticles using chloroplatinic acid
329:. Currently there are many synthetic methods such as water-in-oil 262: 1079:
Zhang, Li; Takahashi, Y. K.; Perumal, A.; Hono, K. (2010-09-01).
553: 434: 920: 552:
are used to detect the FePt NP-bacteria conjugate. By attaching
963:"Synthesis of Bimetallic Platinum Nanoparticles for Biosensors" 549: 541: 537: 456:
An alternative method of synthesis involves the coreduction of
406: 402: 341:
of FePt NPs has made them attractive candidates to be used as
577: 533: 418: 410: 871: 314: 35: 1190: 1078: 580:
oxidation, damage to DNA and proteins, and tumor death.
349:
scanning agents and a high-density recording material.
710: 1225:
Page for X-Ray Mass Attenuation Coefficients for Pt.
1124: 1294:(42). American Chemical Society (ACS): 15346–15351. 1247:(51). American Chemical Society (ACS): 15702–15703. 828: 755:(38). American Chemical Society (ACS): 13270–13278. 556:
to the surface of the face-centered cubic FePt NPs,
1148:–FePt Nanoparticles Embedded in a Si-Rich Matrix". 926:(40). Royal Society of Chemistry (RSC): 8479–8480. 365:
Iron-Platinum Nanoparticle Lattice in the L10 phase
321:. Under standard conditions, FePt NPs exist in the 313:composed of an approximately equal atomic ratio of 1140: 719:(23). American Chemical Society (ACS): 5419–5425. 659:(27). American Chemical Society (ACS): 8394–8395. 393:enables a wider range of biological applications. 1345: 532:scans because of their strong ability to absorb 1281: 790:Christodoulides, J. A.; Huang, Y.; Zhang, Y.; 745: 496:at 700 °C, the film can have up to 14KOe 1237: 287: 1117: 961:Leteba, Gerard; Lang, Candace (2013-08-12). 1193:Journal of Magnetism and Magnetic Materials 1085:Journal of Magnetism and Magnetic Materials 960: 692: 690: 650: 294: 280: 1315: 1055: 1037: 996: 978: 889: 706: 704: 702: 603: 601: 1288:Journal of the American Chemical Society 1241:Journal of the American Chemical Society 1026:Nanotechnology, Science and Applications 749:Journal of the American Chemical Society 653:Journal of the American Chemical Society 582: 507: 447: 368: 360: 687: 413:also have a better detection range and 1346: 699: 598: 307:Iron–platinum nanoparticles (FePt NPs) 373:Physical properties of some FePt NPs 713:The Journal of Physical Chemistry B 607: 483: 337:character below 10 nanometers. The 13: 437:substrates to be characterized by 14: 1375: 524:. The NPs can be conjugated with 802:(9). AIP Publishing: 6938–6940. 439:transmission electron microscopy 261: 249: 34: 1275: 1231: 1219: 1184: 1111: 1072: 1013: 954: 478: 22:Part of a series of articles on 1150:IEEE Transactions on Magnetics 914: 865: 822: 783: 739: 644: 1: 1032:. Informa UK Limited: 27–36. 843:10.1126/science.287.5460.1989 591: 433:are then washed and dried on 352: 1354:Nanoparticles by composition 587:FePt-NP Antibody Application 396: 7: 973:(8). MDPI AG: 10358–10369. 891:10.1016/j.virol.2013.11.002 503: 10: 1380: 1205:10.1016/j.jmmm.2010.04.003 1097:10.1016/j.jmmm.2010.04.003 796:Journal of Applied Physics 1162:10.1109/tmag.2011.2147772 884:. Elsevier BV: 133–139. 391:bimetallic nanoparticles 238:Nanocrystalline material 214:Nanostructured materials 522:targeted cancer therapy 377:Plant viruses, such as 1142: 1141:{\displaystyle L1_{0}} 622:10.1002/adma.200501464 588: 546:gram-positive bacteria 513: 453: 374: 366: 1143: 616:(4). Wiley: 393–403. 586: 511: 451: 372: 364: 268:Technology portal 63:Mechanical properties 1122: 576:results in membrane 383:Tobacco mosaic virus 233:Nanoporous materials 96:Buckminsterfullerene 924:Dalton Transactions 792:Hadjipanayis, G. C. 458:chloroplatinic acid 379:Cowpea mosaic virus 323:face-centered cubic 135:Carbon quantum dots 1138: 1039:10.2147/nsa.s24419 980:10.3390/s130810358 610:Advanced Materials 589: 514: 454: 375: 367: 339:superparamagnetism 256:Science portal 68:Optical properties 1300:10.1021/ja905938a 1253:10.1021/ja0359310 1199:(18): 2658–2664. 1091:(18): 2658–2664. 761:10.1021/ja1035013 725:10.1021/jp027314o 665:10.1021/ja047648m 570:hydrogen peroxide 443:X-ray diffraction 335:superparamagnetic 327:thermal annealing 304: 303: 116:Carbon allotropes 1371: 1330: 1329: 1319: 1279: 1273: 1272: 1235: 1229: 1223: 1217: 1216: 1188: 1182: 1181: 1147: 1145: 1144: 1139: 1137: 1136: 1115: 1109: 1108: 1076: 1070: 1069: 1059: 1041: 1017: 1011: 1010: 1000: 982: 958: 952: 951: 932:10.1039/b906847c 918: 912: 911: 893: 869: 863: 862: 826: 820: 819: 808:10.1063/1.372892 787: 781: 780: 743: 737: 736: 708: 697: 694: 685: 684: 648: 642: 641: 605: 484:Magnetic storage 296: 289: 282: 266: 265: 254: 253: 205:Titanium dioxide 44:Carbon nanotubes 38: 19: 18: 1379: 1378: 1374: 1373: 1372: 1370: 1369: 1368: 1344: 1343: 1334: 1333: 1280: 1276: 1236: 1232: 1224: 1220: 1189: 1185: 1132: 1128: 1123: 1120: 1119: 1116: 1112: 1077: 1073: 1018: 1014: 959: 955: 919: 915: 870: 866: 827: 823: 788: 784: 744: 740: 709: 700: 695: 688: 649: 645: 606: 599: 594: 520:detection, and 512:FePt Coercivity 506: 486: 481: 467: 463: 409:. The platinum 399: 355: 300: 260: 248: 145:Aluminium oxide 17: 12: 11: 5: 1377: 1367: 1366: 1361: 1356: 1342: 1341: 1339: 1337: 1332: 1331: 1274: 1230: 1218: 1183: 1135: 1131: 1127: 1110: 1071: 1012: 953: 913: 864: 821: 782: 738: 698: 686: 643: 596: 595: 593: 590: 505: 502: 485: 482: 480: 477: 465: 461: 398: 395: 354: 351: 302: 301: 299: 298: 291: 284: 276: 273: 272: 271: 270: 258: 243: 242: 241: 240: 235: 230: 225: 217: 216: 210: 209: 208: 207: 202: 197: 192: 187: 182: 177: 172: 167: 162: 157: 152: 147: 142: 137: 129: 128: 121: 120: 119: 118: 113: 108: 103: 98: 90: 89: 83: 82: 81: 80: 75: 70: 65: 60: 55: 47: 46: 40: 39: 31: 30: 24: 23: 15: 9: 6: 4: 3: 2: 1376: 1365: 1362: 1360: 1357: 1355: 1352: 1351: 1349: 1340: 1338: 1336: 1335: 1327: 1323: 1318: 1313: 1309: 1305: 1301: 1297: 1293: 1289: 1285: 1278: 1270: 1266: 1262: 1258: 1254: 1250: 1246: 1242: 1234: 1227: 1222: 1214: 1210: 1206: 1202: 1198: 1194: 1187: 1179: 1175: 1171: 1167: 1163: 1159: 1155: 1151: 1133: 1129: 1125: 1114: 1106: 1102: 1098: 1094: 1090: 1086: 1082: 1075: 1067: 1063: 1058: 1053: 1049: 1045: 1040: 1035: 1031: 1027: 1023: 1016: 1008: 1004: 999: 994: 990: 986: 981: 976: 972: 968: 964: 957: 949: 945: 941: 937: 933: 929: 925: 917: 909: 905: 901: 897: 892: 887: 883: 879: 875: 868: 860: 856: 852: 848: 844: 840: 836: 832: 825: 817: 813: 809: 805: 801: 797: 793: 786: 778: 774: 770: 766: 762: 758: 754: 750: 742: 734: 730: 726: 722: 718: 714: 707: 705: 703: 693: 691: 682: 678: 674: 670: 666: 662: 658: 654: 647: 639: 635: 631: 627: 623: 619: 615: 611: 604: 602: 597: 585: 581: 579: 575: 571: 567: 563: 559: 555: 551: 547: 543: 539: 535: 531: 527: 523: 519: 510: 501: 499: 495: 491: 476: 474: 469: 459: 450: 446: 444: 440: 436: 432: 428: 424: 420: 416: 412: 408: 404: 394: 392: 388: 384: 380: 371: 363: 359: 350: 348: 344: 340: 336: 332: 331:microemulsion 328: 324: 320: 316: 312: 311:superlattices 308: 297: 292: 290: 285: 283: 278: 277: 275: 274: 269: 264: 259: 257: 252: 247: 246: 245: 244: 239: 236: 234: 231: 229: 226: 224: 223:Nanocomposite 221: 220: 219: 218: 215: 212: 211: 206: 203: 201: 198: 196: 193: 191: 188: 186: 185:Iron–platinum 183: 181: 178: 176: 173: 171: 168: 166: 163: 161: 158: 156: 153: 151: 148: 146: 143: 141: 138: 136: 133: 132: 131: 130: 127: 126:nanoparticles 123: 122: 117: 114: 112: 111:Health impact 109: 107: 104: 102: 101:C70 fullerene 99: 97: 94: 93: 92: 91: 88: 85: 84: 79: 76: 74: 71: 69: 66: 64: 61: 59: 56: 54: 51: 50: 49: 48: 45: 42: 41: 37: 33: 32: 29: 28:Nanomaterials 26: 25: 21: 20: 1291: 1287: 1277: 1244: 1240: 1233: 1221: 1196: 1192: 1186: 1153: 1149: 1113: 1088: 1084: 1074: 1029: 1025: 1015: 970: 966: 956: 923: 916: 881: 877: 867: 834: 830: 824: 799: 795: 785: 752: 748: 741: 716: 712: 656: 652: 646: 613: 609: 562:phospholipid 515: 487: 479:Applications 470: 455: 431:precipitates 429:. The black 400: 387:monodisperse 376: 356: 306: 305: 184: 160:Cobalt oxide 140:Quantum dots 73:Applications 16:Nanomaterial 475:Fe and Pt. 358:tetragonal. 1348:Categories 592:References 526:antibodies 498:coercivity 490:coercivity 473:sputtering 441:(TEM) and 353:Properties 180:Iron oxide 87:Fullerenes 1308:0002-7863 1261:0002-7863 1213:0304-8853 1170:0018-9464 1105:0304-8853 1048:1177-8903 989:1424-8220 940:1477-9226 900:0042-6822 851:0036-8075 816:0021-8979 769:0002-7863 733:1520-6106 673:0002-7863 630:0935-9648 558:cytotoxic 538:iodinated 494:annealing 423:irradiate 419:oxidation 415:catalytic 397:Synthesis 150:Cellulose 106:Chemistry 58:Chemistry 53:Synthesis 1364:Platinum 1326:19795861 1269:14677934 1178:25645077 1066:24198494 1007:23941910 948:19809720 908:24418546 878:Virology 859:10720318 777:20572667 681:15237993 638:55861637 566:lysosome 554:peptides 518:pathogen 504:Medicine 427:methanol 228:Nanofoam 195:Platinum 78:Timeline 1317:2791709 1057:3781719 998:3812608 967:Sensors 831:Science 550:dipoles 542:ligands 435:silicon 309:are 3D 155:Ceramic 1324:  1314:  1306:  1267:  1259:  1211:  1176:  1168:  1103:  1064:  1054:  1046:  1005:  995:  987:  946:  938:  906:  898:  857:  849:  814:  775:  767:  731:  679:  671:  636:  628:  534:x-rays 411:alloys 407:nickel 403:cobalt 200:Silver 165:Copper 124:Other 1174:S2CID 634:S2CID 578:lipid 572:into 405:, or 190:Lipid 1359:Iron 1322:PMID 1304:ISSN 1265:PMID 1257:ISSN 1209:ISSN 1166:ISSN 1101:ISSN 1062:PMID 1044:ISSN 1003:PMID 985:ISSN 944:PMID 936:ISSN 904:PMID 896:ISSN 855:PMID 847:ISSN 812:ISSN 773:PMID 765:ISSN 729:ISSN 677:PMID 669:ISSN 626:ISSN 574:ROSs 464:PtCl 381:and 317:and 175:Iron 170:Gold 1312:PMC 1296:doi 1292:131 1249:doi 1245:125 1201:doi 1197:322 1158:doi 1093:doi 1089:322 1052:PMC 1034:doi 993:PMC 975:doi 928:doi 886:doi 882:449 839:doi 835:287 804:doi 757:doi 753:132 721:doi 717:107 661:doi 657:126 618:doi 343:MRI 1350:: 1320:. 1310:. 1302:. 1290:. 1286:. 1263:. 1255:. 1243:. 1207:. 1195:. 1172:. 1164:. 1154:47 1152:. 1099:. 1087:. 1083:. 1060:. 1050:. 1042:. 1028:. 1024:. 1001:. 991:. 983:. 971:13 969:. 965:. 942:. 934:. 902:. 894:. 880:. 876:. 853:. 845:. 833:. 810:. 800:87 798:. 771:. 763:. 751:. 727:. 715:. 701:^ 689:^ 675:. 667:. 655:. 632:. 624:. 614:18 612:. 600:^ 530:CT 460:(H 445:. 347:CT 319:Pt 315:Fe 1328:. 1298:: 1271:. 1251:: 1228:. 1215:. 1203:: 1180:. 1160:: 1134:0 1130:1 1126:L 1107:. 1095:: 1068:. 1036:: 1030:5 1009:. 977:: 950:. 930:: 910:. 888:: 861:. 841:: 818:. 806:: 779:. 759:: 735:. 723:: 683:. 663:: 640:. 620:: 466:6 462:2 345:/ 295:e 288:t 281:v

Index

Nanomaterials

Carbon nanotubes
Synthesis
Chemistry
Mechanical properties
Optical properties
Applications
Timeline
Fullerenes
Buckminsterfullerene
C70 fullerene
Chemistry
Health impact
Carbon allotropes
nanoparticles
Carbon quantum dots
Quantum dots
Aluminium oxide
Cellulose
Ceramic
Cobalt oxide
Copper
Gold
Iron
Iron oxide
Iron–platinum
Lipid
Platinum
Silver

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.