Knowledge

Nanoparticle

Source đź“ť

1130: 2177:: Carbon materials have a wide range of uses, ranging from composites for use in vehicles and sports equipment to integrated circuits for electronic components. The interactions between nanomaterials such as carbon nanotubes and natural organic matter strongly influence both their aggregation and deposition, which strongly affects their transport, transformation, and exposure in aquatic environments. In past research, carbon nanotubes exhibited some toxicological impacts that will be evaluated in various environmental settings in current EPA chemical safety research. EPA research will provide data, models, test methods, and best practices to discover the acute health effects of carbon nanotubes and identify methods to predict them. 995:(CNT). It was believed that the changes in particle size could be described by burst nucleation alone. In 1950, Viktor LaMer used CNT as the nucleation basis for his model of nanoparticle growth. There are three portions to the LaMer model: 1. Rapid increase in the concentration of free monomers in solution, 2. fast nucleation of the monomer characterized by explosive growth of particles, 3. Growth of particles controlled by diffusion of the monomer. This model describes that the growth on the nucleus is spontaneous but limited by diffusion of the precursor to the nuclei surface. The LaMer model has not been able to explain the kinetics of nucleation in any modern system. 1016:(Finke-Watzky) 2-step model provides a firmer mechanistic basis for the design of nanoparticles with a focus on size, shape, and dispersity control. The model was later expanded to a 3-step and two 4-step models between 2004-2008. Here, an additional step was included to account for small particle aggregation, where two smaller particles could aggregate to form a larger particle. Next, a fourth step (another autocatalytic step) was added to account for a small particle agglomerating with a larger particle. Finally in 2014, an alternative fourth step was considered that accounted for a atomistic surface growth on a large particle. 1640: 972:
Homogeneous nucleation occurs when nuclei form uniformly throughout the parent phase and is less common. Heterogeneous nucleation, however, forms on areas such as container surfaces, impurities, and other defects. Crystals may form simultaneously if nucleation is fast, creating a more monodisperse product. However, slow nucleation rates can cause formation of a polydisperse population of crystals with various sizes. Controlling nucleation allows for the control of size, dispersity, and phase of nanoparticles.
1611:
torches with a wide range of gases including inert, reducing, oxidizing, and other corrosive atmospheres. The working frequency is typically between 200 kHz and 40 MHz. Laboratory units run at power levels in the order of 30–50 kW, whereas the large-scale industrial units have been tested at power levels up to 1 MW. As the residence time of the injected feed droplets in the plasma is very short, it is important that the droplet sizes are small enough in order to obtain complete evaporation.
2162:. There are concerns that pharmaceutical companies, seeking regulatory approval for nano-reformulations of existing medicines, are relying on safety data produced during clinical studies of the earlier, pre-reformulation version of the medicine. This could result in regulatory bodies, such as the FDA, missing new side effects that are specific to the nano-reformulation. However considerable research has demonstrated that zinc nanoparticles are not absorbed into the bloodstream in vivo. 2006:. Additionally, sampling and laboratory procedures can perturb their dispersion state or bias the distribution of other properties. In environmental contexts, an additional challenge is that many methods cannot detect low concentrations of nanoparticles that may still have an adverse effect. For some applications, nanoparticles may be characterized in complex matrices such as water, soil, food, polymers, inks, complex mixtures of organic liquids such as in cosmetics, or blood. 22: 10816: 3056: 268: 1056: 10791: 1830:. These targeting agents should ideally be covalently linked to the nanoparticle and should be present in a controlled number per nanoparticle. Multivalent nanoparticles, bearing multiple targeting groups, can cluster receptors, which can activate cellular signaling pathways, and give stronger anchoring. Monovalent nanoparticles, bearing a single binding site, avoid clustering and so are preferable for tracking the behavior of individual proteins. 10828: 3070: 280: 3084: 781: 10803: 1673:
chemical surfactant surrounds the particle during formation and regulates its growth. In sufficient concentrations, the surfactant molecules stay attached to the particle. This prevents it from dissociating or forming clusters with other particles. Formation of nanoparticles using the radiolysis method allows for tailoring of particle size and shape by adjusting precursor concentrations and gamma dose.
329: 447: 9293: 53: 1047:
The final shape of a nanoparticle is also controlled by nucleation. Possible final morphologies created by nucleation can include spherical, cubic, needle-like, worm-like, and more particles. Nucleation can be controlled predominately by time and temperature as well as the supersaturation of the liquid phase and the environment of the synthesis overall.
2183:: Nanoscale cerium oxide is used in electronics, biomedical supplies, energy, and fuel additives. Many applications of engineered cerium oxide nanoparticles naturally disperse themselves into the environment, which increases the risk of exposure. There is ongoing exposure to new diesel emissions using fuel additives containing CeO 5159:"LaMer's 1950 model for particle formation: a review and critical analysis of its classical nucleation and fluctuation theory basis, of competing models and mechanisms for phase-changes and particle formation, and then of its application to silver halide, semiconductor, metal, and metal-oxide nanoparticles" 2334:. Moreover, nanoparticles for nucleic acid delivery offer an unprecedented opportunity to overcome some drawbacks related to the delivery, owing to their tunability with diverse physico-chemical properties, they can readily be functionalized with any type of biomolecules/moieties for selective targeting. 748:
that is well below a red heat (~500 °C), a remarkable change of properties takes place, whereby the continuity of the metallic film is destroyed. The result is that white light is now freely transmitted, reflection is correspondingly diminished, while the electrical resistivity is enormously increased."
2254:
was demonstrated in 2003 and it has been shown to improve conversion efficiencies and to decrease laser beam divergence. Researchers attribute the reduction in beam divergence to improved dn/dT characteristics of the organic-inorganic dye-doped nanocomposite. The optimum composition reported by these
1723:
provides a unique opportunity for growing nanoparticles onto surface without the need for costly spin coating, electrodeposition, or physical vapor deposition. Electroless deposition processes can form colloid suspensions catalytic metal or metal oxide deposition. The suspension of nanoparticles that
1689:
of the desired material. The size of the particles of the latter is adjusted by choosing the concentration of the reagents and the temperature of the solutions, and through the addition of suitable inert agents that affect the viscosity and diffusion rate of the liquid. With different parameters, the
1403:
By introducing a dielectric layer, plasmonic core (metal)-shell (dielectric) nanoparticles enhance light absorption by increasing scattering. Recently, the metal core-dielectric shell nanoparticle has demonstrated a zero backward scattering with enhanced forward scattering on a silicon substrate when
1101:
For nanoparticles dispersed in a medium of different composition, the interfacial layer — formed by ions and molecules from the medium that are within a few atomic diameters of the surface of each particle — can mask or change its chemical and physical properties. Indeed, that layer can be considered
1046:
The initial nucleation stages of the synthesis process heavily influence the properties of a nanoparticle. Nucleation, for example, is vital to the size of the nanoparticle. A critical radius must be met in the initial stages of solid formation, or the particles will redissolve into the liquid phase.
1037:
The properties of a material in nanoparticle form are unusually different from those of the bulk one even when divided into micrometer-size particles. Many of them arise from spatial confinement of sub-atomic particles (i.e. electrons, protons, photons) and electric fields around these particles. The
2229:
As of 2016, the U.S. Environmental Protection Agency had conditionally registered, for a period of four years, only two nanomaterial pesticides as ingredients. The EPA differentiates nanoscale ingredients from non-nanoscale forms of the ingredient, but there is little scientific data about potential
2153:
in organisms, and their interactions with biological systems are relatively unknown. However, it is unlikely the particles would enter the cell nucleus, Golgi complex, endoplasmic reticulum or other internal cellular components due to the particle size and intercellular agglomeration. A recent study
1966:
It would, therefore, appear desirable to process a material in such a way that it is physically uniform with regard to the distribution of components and porosity, rather than using particle size distributions that will maximize the green density. The containment of a uniformly dispersed assembly of
1672:
are required. In this process, reducing radicals will drop metallic ions down to the zero-valence state. A scavenger chemical will preferentially interact with oxidizing radicals to prevent the re-oxidation of the metal. Once in the zero-valence state, metal atoms begin to coalesce into particles. A
747:
provided the first description, in scientific terms, of the optical properties of nanometer-scale metals in his classic 1857 paper. In a subsequent paper, the author (Turner) points out that: "It is well known that when thin leaves of gold or silver are mounted upon glass and heated to a temperature
442:
is between 0.15 and 0.6 nm, a large fraction of the nanoparticle's material lies within a few atomic diameters of its surface. Therefore, the properties of that surface layer may dominate over those of the bulk material. This effect is particularly strong for nanoparticles dispersed in a medium
1015:
In 1997, Finke and Watzky proposed a new kinetic model for the nucleation and growth of nanoparticles. This 2-step model suggested that constant slow nucleation (occurring far from supersaturation) is followed by autocatalytic growth where dispersity of nanoparticles is largely determined. This F-W
1006:
is a process in which large particles grow at the expense of the smaller particles as a result of dissolution of small particles and deposition of the dissolved molecules on the surfaces of the larger particles. It occurs because smaller particles have a higher surface energy than larger particles.
548:
wavelengths by tuning the particle geometry allows using them in the fields of molecular labeling, biomolecular assays, trace metal detection, or nanotechnical applications. Anisotropic nanoparticles display a specific absorption behavior and stochastic particle orientation under unpolarized light,
1962:
size distribution, which is typical with nanoparticles. The reason why modern gas evaporation techniques can produce a relatively narrow size distribution is that aggregation can be avoided. However, even in this case, random residence times in the growth zone, due to the combination of drift and
1399:
Core-shell nanoparticles can support simultaneously both electric and magnetic resonances, demonstrating entirely new properties when compared with bare metallic nanoparticles if the resonances are properly engineered. The formation of the core-shell structure from two different metals enables an
1295:
overcomes these issues by attaching a nanoparticle to the AFM tip, allowing control oversize, shape, and material. While the colloidal probe technique is an effective method for measuring adhesion force, it remains difficult to attach a single nanoparticle smaller than 1 micron onto the AFM force
393:(1-1000 ÎĽm), "fine particles" (sized between 100 and 2500 nm), and "coarse particles" (ranging from 2500 to 10,000 nm), because their smaller size drives very different physical or chemical properties, like colloidal properties and ultrafast optical effects or electric properties. 1630:
to create the metal vapor allows to achieve higher yields. The method can easily be generalized to alloy nanoparticles by choosing appropriate metallic targets. The use of sequential growth schemes, where the particles travel through a second metallic vapor, results in growth of core-shell (CS)
1610:
In RF induction plasma torches, energy coupling to the plasma is accomplished through the electromagnetic field generated by the induction coil. The plasma gas does not come in contact with electrodes, thus eliminating possible sources of contamination and allowing the operation of such plasma
1024:
As of 2014, the classical nucleation theory explained that the nucleation rate will correspond to the driving force. One method for measuring the nucleation rate is through the induction time method. This process uses the stochastic nature of nucleation and determines the rate of nucleation by
1625:
is frequently used to produce metallic nanoparticles. The metal is evaporated in a vacuum chamber containing a reduced atmosphere of an inert gas. Condensation of the supersaturated metal vapor results in creation of nanometer-size particles, which can be entrained in the inert gas stream and
1025:
analysis of the time between constant supersaturation and when crystals are first detected. Another method includes the probability distribution model, analogous to the methods used to study supercooled liquids, where the probability of finding at least one nucleus at a given time is derived.
1751:
Besides being cheap and convenient, the wet chemical approach allows fine control of the particle's chemical composition. Even small quantities of dopants, such as organic dyes and rare earth metals, can be introduced in the reagent solutions end up uniformly dispersed in the final product.
2263:
or other biomolecules can be conjugated to nano particles to aid targeted delivery. This nanoparticle-assisted delivery allows for spatial and temporal controls of the loaded drugs to achieve the most desirable biological outcome. Nanoparticles are also studied for possible applications as
971:
lays the foundation for the nanoparticle synthesis. Initial nuclei play a vital role on the size and shape of the nanoparticles that will ultimately form by acting as templating nuclei for the nanoparticle itself. Long-term stability is also determined by the initial nucleation procedures.
1953:
process, yielding inhomogeneous densification. Some pores and other structural defects associated with density variations have been shown to play a detrimental role in the sintering process by growing and thus limiting end-point densities. Differential stresses arising from inhomogeneous
1145:
of other substances, distinct from both the particle's material and of the surrounding medium. Even when only a single molecule thick, these coatings can radically change the particles' properties, such as and chemical reactivity, catalytic activity, and stability in suspension.
1028:
As of 2019, the early stages of nucleation and the rates associated with nucleation were modelled through multiscale computational modeling. This included exploration into an improved kinetic rate equation model and density function studies using the phase-field crystal model.
644:, with the critical size range (or particle diameter) typically ranging from nanometers (10 m) to micrometers (10 m). Colloids can contain particles too large to be nanoparticles, and nanoparticles can exist in non-colloidal form, for examples as a powder or in a solid matrix. 1290:
is the main contributor to the adhesive force under ambient conditions. The adhesion and friction force can be obtained from the cantilever deflection if the AFM tip is regarded as a nanoparticle. However, this method is limited by tip material and geometric shape. The
1083:) regardless of their size, for nanoparticles, however, this is different: the volume of the surface layer (a few atomic diameters-wide) becomes a significant fraction of the particle's volume; whereas that fraction is insignificant for particles with a diameter of one 2165:
Concern has also been raised over the health effects of respirable nanoparticles from certain combustion processes. Preclinical investigations have demonstrated that some inhaled or injected noble metal nano-architectures avoid persistence in organisms. As of 2013 the
2238:
As the most prevalent morphology of nanomaterials used in consumer products, nanoparticles have an enormous range of potential and actual applications. Table below summarizes the most common nanoparticles used in various product types available on the global markets.
5121:
Whitehead CB, Ă–zkar S, Finke RG (2019). "LaMer's 1950 Model for Particle Formation of Instantaneous Nucleation and Diffusion-Controlled Growth: A Historical Look at the Model's Origins, Assumptions, Equations, and Underlying Sulfur Sol Formation Kinetics Data".
1158:
into or out of the particles at very large rates. The small particle diameter, on the other hand, allows the whole material to reach homogeneous equilibrium with respect to diffusion in a very short time. Thus many processes that depend on diffusion, such as
1985:
Nanoparticles have different analytical requirements than conventional chemicals, for which chemical composition and concentration are sufficient metrics. Nanoparticles have other physical properties that must be measured for a complete description, such as
1667:
in solution. This relatively simple technique uses a minimum number of chemicals. These including water, a soluble metallic salt, a radical scavenger (often a secondary alcohol), and a surfactant (organic capping agent). High gamma doses on the order of 10
1325:
temperature and crystallinity may affect deformation and change the elastic modulus when compared to the bulk material. However, size-dependent behavior of elastic moduli could not be generalized across polymers. As for crystalline metal nanoparticles,
1183:
media, for the stability of their magnetization state, those particles smaller than 10 nm are unstable and can change their state (flip) as the result of thermal energy at ordinary temperatures, thus making them unsuitable for that application.
1813:
that can act as address tags, directing them to specific sites within the body specific organelles within the cell, or causing them to follow specifically the movement of individual protein or RNA molecules in living cells. Common address tags are
1318:. In general, the measurement of the mechanical properties of nanoparticles is influenced by many factors including uniform dispersion of nanoparticles, precise application of load, minimum particle deformation, calibration, and calculation model. 1957:
Inert gas evaporation and inert gas deposition are free many of these defects due to the distillation (cf. purification) nature of the process and having enough time to form single crystal particles, however even their non-aggreated deposits have
2194:: Nano titanium dioxide is currently used in many products. Depending on the type of particle, it may be found in sunscreens, cosmetics, and paints and coatings. It is also being investigated for use in removing contaminants from drinking water. 639:
and nanoparticle are not interchangeable. A colloid is a mixture which has particles of one phase dispersed or suspended within an other phase. The term applies only if the particles are larger than atomic dimensions but small enough to exhibit
544:(Pt) due to their fascinating optical properties are finding diverse applications. Non-spherical geometries of nanoprisms give rise to high effective cross-sections and deeper colors of the colloidal solutions. The possibility of shifting the 2187:
nanoparticles, and the environmental and public health impacts of this new technology are unknown. EPA's chemical safety research is assessing the environmental, ecological, and health implications of nanotechnology-enabled diesel fuel
1797:
For biological applications, the surface coating should be polar to give high aqueous solubility and prevent nanoparticle aggregation. In serum or on the cell surface, highly charged coatings promote non-specific binding, whereas
1920:, Cu + C). In condensed bodies formed from fine powders, the irregular particle sizes and shapes in a typical powder often lead to non-uniform packing morphologies that result in packing density variations in the powder compact. 5367:
Finney EE, Finke RG (2008). "The Four-Step, Double-Autocatalytic Mechanism for Transition-Metal Nanocluster Nucleation, Growth, and Then Agglomeration: Metal, Ligand, Concentration, Temperature, and Solvent Dependency Studies".
2284:
and other mechanical property tests. These nanoparticles are hard, and impart their properties to the polymer (plastic). Nanoparticles have also been attached to textile fibers in order to create smart and functional clothing.
382:. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions. At the lowest range, metal particles smaller than 1 nm are usually called 5583:
Valenti G, Rampazzo R, Bonacchi S, Petrizza L, Marcaccio M, Montalti M, et al. (2016). "Variable Doping Induces Mechanism Swapping in Electrogenerated Chemiluminescence of Ru(bpy)32+ Core Shell Silica Nanoparticles".
2204:
are studying certain products to see whether they transfer nano-size silver particles in real-world scenarios. EPA is researching this topic to better understand how much nano-silver children come in contact with in their
5395:
Kent PD, Mondloch JE, Finke RG (2014). "A Four-Step Mechanism for the Formation of Supported-Nanoparticle Heterogeneous Catalysts in Contact with Solution: The Conversion of Ir(1,5-COD)Cl/Îł-Al2O3 to Ir(0)~170/Îł-Al2O3".
2301:
Being smaller than the wavelengths of visible light, nanoparticles can be dispersed in transparent media without affecting its transparency at those wavelengths. This property is exploited in many applications, such as
5246:
Watzky MA, Finke RG (1997). "Transition Metal Nanocluster Formation Kinetic and Mechanistic Studies. A New Mechanism when Hydrogen is the Reductant: Slow, Continuous Nucleation and Fast Autocatalytic Surface Growth".
5093:
Watzky MA, Finke RG (1997). "Transition Metal Nanocluster Formation Kinetic and Mechanistic Studies. A New Mechanism when Hydrogen is the Reductant: Slow, Continuous Nucleation and Fast Autocatalytic Surface Growth".
589:, a nanoparticle is an object with all three external dimensions in the nanoscale, whose longest and shortest axes do not differ significantly, with a significant difference typically being a factor of at least 3. 5276:"Transition-Metal Nanocluster Kinetic and Mechanistic Studies Emphasizing Nanocluster Agglomeration: Demonstration of a Kinetic Method That Allows Monitoring of All Three Phases of Nanocluster Formation and Aging" 6643:
Valenti G, Rampazzo E, Kesarkar S, Genovese D, Fiorani A, Zanut A, et al. (2018). "Electrogenerated chemiluminescence from metal complexes-based nanoparticles for highly sensitive sensors applications".
1227:
than the bulk material. Furthermore, the high surface-to-volume ratio in nanoparticles makes dislocations more likely to interact with the particle surface. In particular, this affects the nature of the
2314:
Asphalt modification through nanoparticles can be considered as an interesting low-cost technique in asphalt pavement engineering providing novel perspectives in making asphalt materials more durable.
772:
was launched in the United States, the term nanoparticle became more common, for example, see the same senior author's paper 20 years later addressing the same issue, lognormal distribution of sizes.
1275:
between nanoparticle and substrate. The particle deformation can be measured by the deflection of the cantilever tip over the sample. The resulting force-displacement curves can be used to calculate
5340:
Besson C, Finney EE, Finke RG (2005). "Nanocluster Nucleation, Growth, and Then Agglomeration Kinetic and Mechanistic Studies: A More General, Four-Step Mechanism Involving Double Autocatalysis".
1338:
A material may have lower melting point in nanoparticle form than in the bulk form. For example, 2.5 nm gold nanoparticles melt at about 300 Â°C, whereas bulk gold melts at 1064 Â°C.
525:. However, nanoparticles exhibit different dislocation mechanics, which, together with their unique surface structures, results in mechanical properties that are different from the bulk material. 597:"Nanoscale" is usually understood to be the range from 1 to 100 nm because the novel properties that differentiate particles from the bulk material typically develop at that range of sizes. 7427:
Llamosa D, Ruano M, MartĂ­nez L, Mayoral A, Roman E, GarcĂ­a-Hernández M, et al. (2014). "The ultimate step towards a tailored engineering of core@shell and core@shell@shell nanoparticles".
2937: 1388:
nanopowders and nanoparticle suspensions. Absorption of solar radiation is much higher in materials composed of nanoparticles than in thin films of continuous sheets of material. In both solar
612:, stable dispersion, etc., substantial changes characteristic of nanoparticles are observed for particles as large as 500 nm. Therefore, the term is sometimes extended to that size range. 2220:, one of its more prominent current uses is to remove contamination from groundwater. This use, supported by EPA research, is being piloted at a number of sites across the United States. 6434:
Wu J, Yu P, Susha AS, Sablon KA, Chen H, Zhou Z, et al. (1 April 2015). "Broadband efficiency enhancement in quantum dot solar cells coupled with multispiked plasmonic nanostars".
845:
in the precursor preparation, or the shape of pores in a surrounding solid matrix. Some applications of nanoparticles require specific shapes, as well as specific sizes or size ranges.
1400:
energy exchange between the core and the shell, typically found in upconverting nanoparticles and downconverting nanoparticles, and causes a shift in the emission wavelength spectrum.
2145:
Nanoparticles present possible dangers, both medically and environmentally. Most of these are due to the high surface to volume ratio, which can make the particles very reactive or
8426:
Hassellöv M, Readman JW, Ranville JF, Tiede K (July 2008). "Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles".
3500:
Chae SY, Park MK, Lee SK, Kim TY, Kim SK, Lee WI (August 2003). "Preparation of Size-Controlled TiO 2 Nanoparticles and Derivation of Optically Transparent Photocatalytic Films".
9224:
Cassano D, Mapanao AK, Summa M, Vlamidis Y, Giannone G, Santi M, et al. (21 October 2019). "Biosafety and Biokinetics of Noble Metals: The Impact of Their Chemical Nature".
1934:
can also give rise to microstructural heterogeneity. Differential stresses that develop as a result of non-uniform drying shrinkage are directly related to the rate at which the
8939:
Greulich C, Diendorf J, Simon T, Eggeler G, Epple M, Köller M (January 2011). "Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells".
6015:
Kulik A, Kis A, Gremaud G, Hengsberger S, Luengo G, Zysset P, et al. (2007), Bhushan B (ed.), "Nanoscale Mechanical Properties – Measuring Techniques and Applications",
1802:
linked to terminal hydroxyl or methoxy groups repel non-specific interactions. By the immobilization of thiol groups on the surface of nanoparticles or by coating them with
8477:
Powers KW, Palazuelos M, Moudgil BM, Roberts SM (January 2007). "Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies".
2293:
The inclusion of nanoparticles in a solid or liquid medium can substantially change its mechanical properties, such as elasticity, plasticity, viscosity, compressibility.
2242:
Scientific research on nanoparticles is intense as they have many potential applications in pre-clinical and clinical medicine, physics, optics, and electronics. The U.S.
1713:. Alternatively, if the particles are meant to be deposited on the surface of some solid substrate, the starting solutions can be by coated on that surface by dipping or 2961: 2945: 1763:
may be used to treat the surfaces of dielectric materials such as sapphire and silica to make composites with near-surface dispersions of metal or oxide nanoparticles.
9521: 7669:
Sadri R (15 October 2017). "Study of environmentally friendly and facile functionalization of graphene nanoplatelet and its application in convective heat transfer".
3648:
Chen CC, Zhu C, White ER, Chiu CY, Scott MC, Regan BC, et al. (April 2013). "Three-dimensional imaging of dislocations in a nanoparticle at atomic resolution".
1844:
The chemical processing and synthesis of high-performance technological components for the private, industrial, and military sectors requires the use of high-purity
1603:. The thermal plasma can reach temperatures of 10.000 K and can thus also synthesize nanopowders with very high boiling points. Metal wires can be vaporized by the 1330:
were found to influence the mechanical properties of nanoparticles, contradicting the conventional view that dislocations are absent in crystalline nanoparticles.
8359:
Lange FF, Metcalf M (June 1983). "Processing-Related Fracture Origins: II, Agglomerate Motion and Cracklike Internal Surfaces Caused by Differential Sintering".
10141:
Wang B, Zhang Y, Mao Z, Yu D, Gao C (1 August 2014). "Toxicity of ZnO Nanoparticles to Macrophages Due to Cell Uptake and Intracellular Release of Zinc Ions".
7955:"Dynamic recruitment of phospholipase C at transiently immobilized GPI-anchored receptor clusters induces IP3 Ca2+ signaling: single-molecule tracking study 2" 6391:
Hewakuruppu YL, Dombrovsky LA, Chen C, Timchenko V, Jiang X, Baek S, et al. (2013). "Plasmonic "pump probe" method to study semi-transparent nanofluids".
570:
defined a nanoparticle as "a particle of any shape with dimensions in the 1 Ă— 10 and 1 Ă— 10 m range". This definition evolved from one given by IUPAC in 1997.
2874: 2478: 8780: 2949: 3978:"Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007)" 8732: 7144:
Fan Y, Saito T, Isogai A (17 March 2010). "Individual chitin nano-whiskers prepared from partially deacetylated α-chitin by fibril surface cationization".
5937:
Oh SH, Legros M, Kiener D, Dehm G (February 2009). "In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal".
7529:
Belloni J, Mostafavi M, Remita H, Marignier JL, Delcourt AM (1998). "Radiation-induced synthesis of mono- and multi-metallic clusters and nanocolloids".
3377:"Collective optical Kerr effect exhibited by an integrated configuration of silicon quantum dots and gold nanoparticles embedded in ion-implanted silica" 2514: 761: 11096: 8904:
Thake, T.H.F, Webb, J.R, Nash, A., Rappoport, J.Z., Notman, R. (2013). "Permeation of polystyrene nanoparticles across model lipid bilayer membranes".
6738:
Ghosh Chaudhuri R, Paria S (11 April 2012). "Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications".
1833:
It has been shown that catalytic activity and sintering rates of a functionalized nanoparticle catalyst is correlated to nanoparticles' number density
6773:
Loo JF, Chien YH, Yin F, Kong SK, Ho HP, Yong KT (December 2019). "Upconversion and downconversion nanoparticles for biophotonics and nanomedicine".
5678:
Kulkarni SA, Kadam SS, Meekes H, Stankiewicz AI, Ter Horst JH (2013). "Crystal Nucleation Kinetics from Induction Times and Metastable Zone Widths".
5219:
Kulkarni SA, Kadam SS, Meekes H, Stankiewicz AI, Ter Horst JH (2013). "Crystal Nucleation Kinetics from Induction Times and Metastable Zone Widths".
5189: 5020:
Kulkarni SA, Kadam SS, Meekes H, Stankiewicz AI, Ter Horst JH (2013). "Crystal Nucleation Kinetics from Induction Times and Metastable Zone Widths".
3527:
Jacques Simonis J, Koetzee Basson A (2011). "Evaluation of a low-cost ceramic micro-porous filter for elimination of common disease microorganisms".
567: 6251: 10090:
Heim J, Felder E, Tahir MN, Kaltbeitzel A, Heinrich UR, Brochhausen C, et al. (21 May 2015). "Genotoxic effects of zinc oxide nanoparticles".
2091:
are used to determine particle size, with each method suitable for different size ranges and particle compositions. Some miscellaneous methods are
1849: 4642:
Kralj S, Makovec D (27 October 2015). "Magnetic Assembly of Superparamagnetic Iron Oxide Nanoparticle Clusters into Nanochains and Nanobundles".
528:
Non-spherical nanoparticles (e.g., prisms, cubes, rods etc.) exhibit shape-dependent and size-dependent (both chemical and physical) properties (
8846: 8002:
Sung KM, Mosley DW, Peelle BR, Zhang S, Jacobson JM (2004). "Synthesis of monofunctionalized gold nanoparticles by fmoc solid-phase reactions".
4564:
Kiss LB, Söderlund J, Niklasson GA, Granqvist CG (1 March 1999). "New approach to the origin of lognormal size distributions of nanoparticles".
1087:
or more. In other words, the surface area/volume ratio impacts certain properties of the nanoparticles more prominently than in bulk particles.
951:
hydrogel core shell can be dyed with affinity baits, internally. These affinity baits allow the nanoparticles to isolate and remove undesirable
10029: 419:. For the same reason, dispersions of nanoparticles in transparent media can be transparent, whereas suspensions of larger particles usually 6865:
Whitesides, G.M., et al. (1991). "Molecular Self-Assembly and Nanochemistry: A Chemical Strategy for the Synthesis of Nanostructures".
3607: 1215:
that is inversely proportional to the size of the particle, also well known to impede dislocation motion, in the same way as it does in the
11284: 11279: 1592: 7380:"Plasma-assisted synthesis and high-resolution characterization of anisotropic elemental and bimetallic core shell magnetic nanoparticles" 2280:
Clay nanoparticles, when incorporated into polymer matrices, increase reinforcement, leading to stronger plastics, verifiable by a higher
7109:
Saito T, Kimura S, Nishiyama Y, Isogai A (August 2007). "Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation of Native Cellulose".
1239:
There are unique challenges associated with the measurement of mechanical properties on the nanoscale, as conventional means such as the
6810:"Effects of Plasmonic Metal Core -Dielectric Shell Nanoparticles on the Broadband Light Absorption Enhancement in Thin Film Solar Cells" 3310: 2346:
what is known as the self-cleaning effect, which lend useful water-repellant and antibacterial properties to paints and other products.
2132: 1697:
The nanoparticles formed by this method are then separated from the solvent and soluble byproducts of the reaction by a combination of
620:
Nanoclusters are agglomerates of nanoparticles with at least one dimension between 1 and 10 nanometers and a narrow size distribution.
89: 10547: 9556:
Omidvar A (2016). "Metal-enhanced fluorescence of graphene oxide by palladium nanoparticles in the blue-green part of the spectrum".
1232:
and allows the dislocations to escape the particle before they can multiply, reducing the dislocation density and thus the extent of
79: 7704:
Prime KL, Whitesides GM (1991). "Self-assembled organic monolayers: model systems for studying adsorption of proteins at surfaces".
4883:"Smart Hydrogel Particles: Biomarker Harvesting: One-Step Affinity Purification, Size Exclusion, and Protection against Degradation" 4677:
Choy J.H., Jang E.S., Won J.H., Chung J.H., Jang D.J., Kim Y.W. (2004). "Hydrothermal route to ZnO nanocoral reefs and nanofibers".
4548:
Ultra-fine particles: exploratory science and technology (1997 Translation of the Japan report of the related ERATO Project 1981 86)
2200:: Nano Silver is being incorporated into textiles, clothing, food packaging, and other materials to eliminate bacteria. EPA and the 1286:
forces are important considerations in nanofabrication, lubrication, device design, colloidal stabilization, and drug delivery. The
10865: 8522: 2041:
from sample preparation, or from probe tip geometry in the case of scanning probe microscopy. Additionally, microscopy is based on
1456: 1373:
are nanoparticles of semiconducting material that are small enough (typically sub 10 nm or less) to have quantized electronic
8891: 1954:
densification have also been shown to result in the propagation of internal cracks, thus becoming the strength-controlling flaws.
1771:
Many properties of nanoparticles, notably stability, solubility, and chemical or biological activity, can be radically altered by
1279:. However, it is unclear whether particle size and indentation depth affect the measured elastic modulus of nanoparticles by AFM. 10480:"EMERGNANO: A review of completed and near completed environment, health and safety research on nanomaterials and nanotechnology" 2201: 2072: 573:
In the same 2012 publication, the IUPAC extends the term to include tubes and fibers with only two dimensions below 100 nm.
310: 1810: 756:
During the 1970s and 80s, when the first thorough fundamental studies with nanoparticles were underway in the United States by
84: 9102:"Statement of Evidence: Particulate Emissions and Health (An Bord Plenala, on Proposed Ringaskiddy Waste-to-Energy Facility)." 9101: 6267: 1949:
In addition, any fluctuations in packing density in the compact as it is prepared for the kiln are often amplified during the
1129: 438:
The properties of nanoparticles often differ markedly from those of larger particles of the same substance. Since the typical
11374: 10448: 9344: 8822: 8715: 8211: 7653: 7619: 7565: 6040: 5753: 4354: 4327: 4273: 4081: 4054: 3960: 3908:
Knauer A, Koehler JM (2016). "Explanation of the size dependent in-plane optical resonance of triangular silver nanoprisms".
3625: 1007:
This process is typically undesirable in nanoparticle synthesis as it negatively impacts the functionality of nanoparticles.
28:(a, b, and c) images of prepared mesoporous silica nanoparticles with mean outer diameter: (a) 20nm, (b) 45nm, and (c) 80nm. 9634:
Omidvar A (2018). "Enhancing the nonlinear optical properties of graphene oxide by repairing with palladium nanoparticles".
8176: 10577: 9723:
Singh BN, Prateeksha GV, Chen J, Atanasov AG (2017). "Organic Nanoparticle-Based Combinatory Approaches for Gene Therapy".
8610:"Structural, functional and magnetic ordering modifications in graphene oxide and graphite by 100 MeV gold ion irradiation" 8571:
Linsinger TP, Roebben G, Solans C, Ramsch R (January 2011). "Reference materials for measuring the size of nanoparticles".
2167: 2064: 1648: 582: 10479: 11190: 3279: 2123:
techniques can be used to separate nanoparticles by size or other physical properties before or during characterization.
1396:
applications, by controlling the size, shape, and material of the particles, it is possible to control solar absorption.
1200:, since dislocation climb requires vacancy migration. In addition, there exists a very high internal pressure due to the 9116:"Blood Pressure and Same-Day Exposure to Air Pollution at School: Associations with Nano-Sized to Coarse PM in Children" 5980:
Feruz Y, Mordehai D (January 2016). "Towards a universal size-dependent strength of face-centered cubic nanoparticles".
1563:
often results in aggregates and agglomerates rather than single primary particles. This inconvenience can be avoided by
10520: 8045:
Fu A, Micheel CM, Cha J, Chang H, Yang H, Alivisatos AP (2004). "Discrete nanostructures of quantum dots/Au with DNA".
2243: 1647:(TEM) image of Hf nanoparticles grown by magnetron-sputtering inert-gas condensation (inset: size distribution) and b) 769: 127: 9324: 443:
of different composition since the interactions between the two materials at their interface also becomes significant.
10667: 10343:"Morphometric and stereological assessment of the effects of zinc oxide nanoparticles on the mouse testicular tissue" 9794:"The Effect of Different Levels of Cu, Zn and Mn Nanoparticles in Hen Turkey Diet on the Activity of Aminopeptidases" 9120: 5854: 1980: 1483:, or other size-reducing mechanism until enough of them are in the nanoscale size range. The resulting powder can be 11391: 9911: 9869: 3773:
Carlton C, Rabenberg L, Ferreira P (September 2008). "On the nucleation of partial dislocations in nanoparticles".
1942:. Such stresses have been associated with a plastic-to-brittle transition in consolidated bodies, and can yield to 1644: 1591:
and then condensing the vapor by expansion or quenching in a suitable gas or liquid. The plasma can be produced by
1321:
Like bulk materials, the properties of nanoparticles are materials dependent. For spherical polymer nanoparticles,
1303: 482:
structures, they often exhibit phenomena that are not observed at either scale. They are an important component of
25: 10286:"Retinopathy Induced by Zinc Oxide Nanoparticles in Rats Assessed by Micro-computed Tomography and Histopathology" 10016:
Mendes, B.B., Conniot, J., Avital, A. et al. Nanodelivery of nucleic acids. Nat Rev Methods Primers 2, 24 (2022).
1539:
Another method to create nanoparticles is to turn a suitable precursor substance, such as a gas (e.g. methane) or
10807: 10186:"Comparative hazard identification by a single dose lung exposure of zinc oxide and silver nanomaterials in mice" 7013:"Low temperature synthesis and characterization of single phase multi-component fluorite oxide nanoparticle sols" 2259:(~ 12 nm) in dye-doped PMMA. Nanoparticles are being investigated as potential drug delivery system. Drugs, 1515:
fiber- or needle-like nanoparticles. The biopolymers are disintegrated mechanically in combination with chemical
9792:
Jóźwik A, Marchewka J, StrzaĹ‚kowska N, HorbaĹ„czuk J, Szumacher-Strabel M, CieĹ›lak A, et al. (11 May 2018).
8763: 7482:"Synthesis of hafnium nanoparticles and hafnium nanoparticle films by gas condensation and energetic deposition" 2350:
nanoparticles have been found to have superior UV blocking properties and are widely used in the preparation of
10601: 10507: 9599:
Rashidian V M (2017). "Investigating the extrinsic size effect of palladium and gold spherical nanoparticles".
8281:
Evans, A.G., Davidge, R.W. (1969). "The strength and fracture of fully dense polycrystalline magnesium oxide".
5878:
Ramos M, Ortiz-Jordan L, Hurtado-Macias A, Flores S, Elizalde-Galindo JT, Rocha C, et al. (January 2013).
3254: 3219: 2363:
Various nanoparticle chemical compounds which are commonly used in the consumer products by industrial sectors
1096: 347: 201: 6289:
Casillas G, Palomares-Báez JP, RodrĂ­guez-LĂłpez JL, Luo J, Ponce A, Esparza R, et al. (11 December 2012).
4256:
Zook HA (2001). "Spacecraft Measurements of the Cosmic Dust Flux". In Peucker-Ehrenbrink B, Schmitz B (eds.).
2045:, meaning that large numbers of individual particles must be characterized to estimate their bulk properties. 10748: 10540: 9680:, James, R. O. (2003). "Tunable solid-state lasers incorporating dye-doped polymer-nanoparticle gain media". 8227:
Aksay, I.A., Lange, F.F., Davis, B.I. (1983). "Uniformity of Al2O3-ZrO2 Composites by Colloidal Filtration".
5472:"Atomistic modeling of the nucleation and growth of pure and hybrid nanoparticles by cluster beam deposition" 4713: 3128: 2076: 1306:, which provides real-time, high resolution imaging of nanostructure response to a stimulus. For example, an 601: 221: 69: 8655:
Zoroddu MA, Medici S, Ledda A, Nurchi VM, Peana JI, Peana M (31 October 2014). "Toxicity of Nanoparticles".
7071: 3816: 879:
into their nanoscale building blocks is considered a potential route to produce nanoparticles with enhanced
11323: 10858: 10624: 7757:"Compact Biocompatible Quantum Dots via RAFT-Mediated Synthesis of Imidazole-Based Random Copolymer Ligand" 2281: 860:
Semi-solid and soft nanoparticles have been produced. A prototype nanoparticle of semi-solid nature is the
161: 94: 29: 10485: 8976:"The Influences of Cell Type and ZnO Nanoparticle Size on Immune Cell Cytotoxicity and Cytokine Induction" 8131:"The Energetics of Supported Metal Nanoparticles: Relationships to Sintering Rates and Catalytic Activity" 6166: 10972: 10720: 10473: 8254:
Franks, G.V., Lange, F.F. (1996). "Plastic-to-Brittle Transition of Saturated, Alumina Powder Compacts".
5066:
LaMer VK, Dinegar RH (1950). "Theory, Production and Mechanism of Formation of Monodispersed Hydrosols".
2084: 1780: 1600: 1412:
Nanoparticles of sufficiently uniform size may spontaneously settle into regular arrangements, forming a
992: 833:
of the material, or by the influence of the environment around their creation, such as the inhibition of
303: 5519:
Buzea C, Pacheco II, Robbie K (December 2007). "Nanomaterials and nanoparticles: Sources and toxicity".
2246:
offers government funding focused on nanoparticle research. The use of nanoparticles in laser dye-doped
806:
Nanoparticles occur in a great variety of shapes, which have been given many names such as nanospheres,
7480:
Michelakaki I, Boukos N, Dragatogiannis DA, Stathopoulos S, Charitidis CA, Tsoukalas D (27 June 2018).
4938:
Gommes CJ (2019). "Ostwald ripening of confined nanoparticles: Chemomechanical coupling in nanopores".
4504:
Granqvist C, Buhrman R, Wyns J, Sievers A (1976). "Far-Infrared Absorption in Ultrafine Al Particles".
3289: 3035: 2042: 2022: 1137:) of lead sulfide with complete passivation by oleic acid, oleyl amine and hydroxyl ligands (size ~5nm) 10907: 5818:
Jiang Q, Liang LH, Zhao DS (July 2001). "Lattice Contraction and Surface Stress of fcc Nanocrystals".
10735: 10587: 10582: 10572: 10564: 9870:"Nano-particle drag prediction at low Reynolds number using a direct Boltzmann–BGK solution approach" 5305:
Besson C, Finney EE, Finke RG (2005). "A Mechanism for Transition-Metal Nanoparticle Self-Assembly".
2965: 2247: 2052: 2018: 2013:
methods generate images of individual nanoparticles to characterize their shape, size, and location.
1452: 1358: 1292: 1252: 1240: 176: 74: 10498: 8700:
Chapter 18 - Toxicity of Nanoparticles: Etiology and Mechanisms, in Antimicrobial Nanoarchitectonics
3376: 3375:
Torres-Torres C, López-Suárez A, Can-Uc B, Rangel-Rojo R, Tamayo-Rivera L, Oliver A (24 July 2015).
1626:
deposited on a substrate or studied in situ. Early studies were based on thermal evaporation. Using
1063:
Bulk materials (>100 nm in size) are expected to have constant physical properties (such as
10758: 10702: 10687: 10597: 10533: 9962:"Ultraviolet aging study on bitumen modified by a composite of clay and fumed silica nanoparticles" 6583:"Nanofluid optical property characterization: Towards efficient direct absorption solar collectors" 2551: 2217: 629: 254: 206: 7348:
Wang JP, Bai J (2005). "High-magnetic-moment core-shell-type FeCo Au AgFeCo Au Ag nanoparticles".
1121:
differences, which otherwise usually result in a material either sinking or floating in a liquid.
757: 32:(d) image corresponding to (b). The insets are a high magnification of mesoporous silica particle. 11379: 11256: 10851: 10795: 10743: 10692: 10679: 10457: 8609: 7313:
Hahn H, Averback RS (1990). "The production of nanocrystalline powders by magnetron sputtering".
4017: 3440:"Selected I-III-VI2 Semiconductors: Synthesis, Properties and Applications in Photovoltaic Cells" 3214: 3189: 3173: 1639: 1256: 1068: 811: 673:
at the rate of thousands of tons per year, is in the nanoparticle range; and the same is true of
196: 9761:"Novel biomaterial strategies for controlled growth factor delivery for biomedical applications" 8316:
Evans AG, Davidge RW (1970). "The strength and oxidation of reaction-sintered silicon nitride".
6524:
Taylor RA, Otanicar TP, Herukerrupu Y, Bremond F, Rosengarten G, Hawkes ER, et al. (2013).
4315: 864:. Various types of liposome nanoparticles are currently used clinically as delivery systems for 11418: 10245:"Calcium ions rescue human lung epithelial cells from the toxicity of zinc oxide nanoparticles" 9519:
Hubler A, Lyon D (2013). "Gap size dependence of the dielectric strength in nano vacuum gaps".
9368:"Hydrogel and nanoparticle carriers for kidney disease therapy: trends and recent advancements" 9278: 8785: 3179: 2616: 2003: 1967:
strongly interacting particles in suspension requires total control over interparticle forces.
1720: 1464: 1176: 1110: 296: 9367: 4344: 4044: 2059:, is useful for some classes of nanoparticles to characterize concentration, size, and shape. 1567:
spray pyrolysis, in which the precursor liquid is forced through an orifice at high pressure.
7643: 7072:"Biosynthesis and antibacterial activity of gold nanoparticles coated with reductase enzymes" 5275: 3244: 2821: 2068: 2033:
is not useful. Electron microscopes can be coupled to spectroscopic methods that can perform
1836:
Coatings that mimic those of red blood cells can help nanoparticles evade the immune system.
1815: 1604: 1154:
The high surface area of a material in nanoparticle form allows heat, molecules, and ions to
800: 483: 211: 10438: 9033:
Vines T, Faunce T (2009). "Assessing the safety and cost-effectiveness of early nanodrugs".
1163:
can take place at lower temperatures and over shorter time scales which can be important in
10619: 10297: 10197: 10184:
Gosens I, Kermanizadeh A, Jacobsen NR, Lenz AG, Bokkers B, de Jong WH, et al. (2015).
10099: 9973: 9926: 9884: 9689: 9643: 9608: 9565: 9475: 9379: 9178: 8987: 8913: 8621: 8435: 8325: 8290: 7866: 7806:"Thiolated Nanoparticles for Biomedical Applications: Mimicking the Workhorses of our Body" 7713: 7678: 7436: 7322: 7277: 7219: 7024: 6975: 6917: 6874: 6821: 6707: 6594: 6537: 6493: 6443: 6400: 6360: 6302: 6174: 6079: 6020: 5989: 5946: 5891: 5483: 4894: 4725: 4686: 4573: 4513: 4465: 4424: 4383: 4220: 4161: 4120: 3917: 3782: 3712: 3657: 3536: 3388: 3284: 3168: 3158: 3148: 2882: 1931: 1682: 1393: 1064: 823: 249: 171: 132: 112: 975:
The process of nucleation and growth within nanoparticles can be described by nucleation,
423:
some or all visible light incident on them. Nanoparticles also easily pass through common
8: 11360: 11335: 10766: 10655: 10055:(January 1999). "Microfine zinc oxide (Z-Cote) as a photostable UVA/UVB sunblock agent". 9577: 7804:
Hock N, Racaniello GF, Aspinall S, Denora N, Khutoryanskiy V, Bernkop-SchnĂĽrch A (2022).
3400: 3274: 3259: 3103: 2559: 2014: 1917: 1799: 1656: 1350: 1315: 1248: 1233: 1205: 702: 666: 624:
are agglomerates of ultrafine particles, nanoparticles, or nanoclusters. Nanometer-sized
522: 416: 216: 181: 122: 10301: 10201: 10103: 9977: 9930: 9888: 9693: 9647: 9612: 9569: 9479: 9383: 9182: 9062:"Influence of anatomical site and topical formulation on skin penetration of sunscreens" 8991: 8917: 8698:
Crisponi, G., Nurchi, V.M., Lachowicz, J., Peana, M., Medici, S., Zoroddu, M.A. (2017).
8625: 8523:"Detection and characterization of engineered nanoparticles in food and the environment" 8439: 8329: 8294: 8080:
Howarth M, Liu W, Puthenveetil S, Zheng Y, Marshall LF, Schmidt MM, et al. (2008).
7870: 7717: 7682: 7440: 7326: 7281: 7223: 7028: 6979: 6921: 6878: 6825: 6711: 6598: 6541: 6497: 6447: 6404: 6364: 6306: 6178: 6092: 6083: 6067: 6024: 5993: 5950: 5895: 5487: 4898: 4729: 4690: 4577: 4517: 4469: 4428: 4387: 4224: 4165: 4124: 3921: 3786: 3725: 3716: 3700: 3661: 3540: 3474: 3439: 3392: 1690:
same general process may yield other nanoscale structures of the same material, such as
1681:
Nanoparticles of certain materials can be created by "wet" chemical processes, in which
1440:. They may be internally homogeneous or heterogenous, e.g. with a core–shell structure. 11271: 11172: 10697: 10318: 10285: 10220: 10185: 10166: 10123: 9994: 9961: 9942: 9820: 9793: 9659: 9581: 9538: 9496: 9463: 9444: 9403: 9249: 9201: 9166: 9142: 9115: 9078: 9061: 9010: 8975: 8874: 8755: 8707: 8680: 8637: 8553: 8494: 8459: 8399: 8372: 8341: 8267: 8240: 8106: 8081: 8027: 7979: 7954: 7930: 7913: 7830: 7805: 7781: 7756: 7755:
Liu W, Greytak AB, Lee J, Wong CR, Park J, Marshall LF, et al. (20 January 2010).
7737: 7506: 7481: 7404: 7379: 7295: 7243: 7091: 7047: 7012: 6962:
Tankard RE, Romeggio F, Akazawa SK, Krabbe A, Sloth OF, Secher NM, et al. (2024).
6941: 6842: 6809: 6790: 6671: 6617: 6582: 6459: 6326: 5914: 5879: 5795: 5770: 5655: 5630: 5554: 5528: 5501: 5139: 4963: 4915: 4882: 4792: 4749: 4589: 4483: 4184: 4149: 3999: 3976:
Alemán JV, Chadwick AV, He J, Hess M, Horie K, Jones RG, et al. (1 January 2007).
3882: 3849: 3798: 3681: 3420: 3357: 3098: 2921: 2834: 2434: 2269: 2265: 2088: 2060: 2034: 2030: 1869: 1627: 1362: 1212: 1180: 935: 931: 785: 765: 458:
Nanoparticles occur widely in nature and are objects of study in many sciences such as
428: 412: 151: 10410: 10383: 10068: 9912:"The calculation of drag on nano-cylinders: The calculation of drag on nano-cylinders" 9165:
Mapanao AK, Giannone G, Summa M, Ermini ML, Zamborlin A, Santi M, et al. (2020).
8668: 7889: 7854: 6929: 6186: 11220: 10832: 10444: 10415: 10364: 10323: 10266: 10225: 10158: 10127: 10115: 10072: 9999: 9946: 9825: 9740: 9705: 9663: 9585: 9501: 9423:"Digital quantum batteries: Energy and information storage in nanovacuum tube arrays" 9407: 9395: 9340: 9253: 9241: 9206: 9147: 9083: 9042: 9015: 8956: 8878: 8866: 8818: 8808: 8751: 8711: 8672: 8641: 8545: 8498: 8451: 8345: 8207: 8158: 8150: 8111: 8062: 8019: 7984: 7935: 7894: 7835: 7786: 7729: 7649: 7615: 7561: 7511: 7462: 7409: 7247: 7235: 7188: 7126: 7052: 6993: 6933: 6890: 6847: 6794: 6755: 6695: 6675: 6622: 6563: 6525: 6416: 6330: 6318: 6271: 6229: 6190: 6147: 6139: 6097: 6036: 5962: 5919: 5860: 5850: 5800: 5749: 5726: 5660: 5611: 5546: 5505: 5452: 5413: 5322: 5143: 5002: 4955: 4920: 4860: 4796: 4784: 4741: 4659: 4624: 4593: 4585: 4350: 4323: 4269: 4238: 4189: 4077: 4050: 3956: 3933: 3887: 3869: 3673: 3621: 3588: 3479: 3461: 3412: 3404: 3184: 3153: 3118: 3075: 2805: 2567: 2547: 2510: 2470: 2104: 2100: 1943: 1845: 1564: 1428:
Artificial nanoparticles can be created from any solid or liquid material, including
1413: 1346: 1220: 1113:
of nanoparticles are possible since the interaction of the particle surface with the
343: 284: 191: 10170: 9325:"Nanoparticles for Cardiovascular Medicine: Trends in Myocardial Infarction Therapy" 8684: 8557: 8463: 8031: 7741: 7299: 7231: 7095: 6945: 6463: 5558: 5199: 4967: 4881:
Luchini A, Geho DH, Bishop B, Tran D, Xia C, Dufour RL, et al. (January 2008).
4753: 4003: 3802: 3424: 3361: 2009:
There are several overall categories of methods used to characterize nanoparticles.
1175:
The small size of nanoparticles affects their magnetic and electric properties. The
848:
Amorphous particles typically adopt a spherical shape (due to their microstructural
10935: 10776: 10405: 10395: 10354: 10313: 10305: 10256: 10215: 10205: 10150: 10107: 10064: 9989: 9981: 9934: 9892: 9815: 9805: 9772: 9732: 9697: 9651: 9616: 9573: 9530: 9491: 9483: 9464:"Stability and conductivity of self assembled wires in a transverse electric field" 9448: 9434: 9387: 9332: 9233: 9196: 9186: 9137: 9129: 9073: 9005: 8995: 8948: 8921: 8858: 8747: 8703: 8664: 8629: 8588: 8580: 8537: 8486: 8443: 8395: 8368: 8333: 8298: 8263: 8236: 8142: 8101: 8093: 8054: 8011: 7974: 7966: 7925: 7884: 7874: 7825: 7817: 7776: 7768: 7721: 7690: 7686: 7590: 7538: 7501: 7493: 7452: 7444: 7399: 7391: 7357: 7330: 7285: 7227: 7180: 7153: 7118: 7083: 7042: 7032: 6983: 6925: 6882: 6837: 6829: 6782: 6747: 6715: 6661: 6653: 6612: 6602: 6553: 6545: 6501: 6451: 6408: 6368: 6310: 6263: 6221: 6182: 6131: 6087: 6028: 5997: 5954: 5909: 5899: 5827: 5790: 5782: 5718: 5687: 5650: 5642: 5601: 5593: 5538: 5491: 5444: 5405: 5377: 5349: 5314: 5287: 5256: 5228: 5203: 5194: 5170: 5131: 5103: 5075: 5029: 4994: 4947: 4910: 4902: 4852: 4823: 4776: 4733: 4694: 4651: 4616: 4581: 4521: 4473: 4432: 4391: 4261: 4228: 4179: 4169: 4128: 3989: 3925: 3877: 3861: 3790: 3753: 3720: 3685: 3665: 3613: 3578: 3544: 3509: 3469: 3451: 3396: 3347: 3336:"Terminology for biorelated polymers and applications (IUPAC Recommendations 2012)" 3234: 3229: 3019: 2986: 2953: 2866: 2797: 2768: 2699: 2658: 2584: 2563: 2527: 2494: 2446: 2213: 2191: 2180: 2108: 2038: 1885: 1857: 1760: 1588: 1417: 1416:. These arrangements may exhibit original physical properties, such as observed in 1322: 1311: 1287: 1003: 976: 880: 674: 9736: 9542: 8759: 7912:
Hoshino A, Fujioka K, Oku T, Nakamura S, Suga M, Yamaguchi Y, et al. (2004).
7725: 7157: 6696:"Small particles, big impacts: A review of the diverse applications of nanofluids" 6252:"The Colloidal Probe Technique and its Application to Adhesion Force Measurements" 6001: 5135: 4148:
Simakov SK, Kouchi A, Scribano V, Kimura Y, Hama T, Suzuki N, et al. (2015).
2158:
nanoparticles on human immune cells has found varying levels of susceptibility to
665:, and biological processes. A significant fraction (by number, if not by mass) of 506:
products. The production of nanoparticles with specific properties is a branch of
11240: 11091: 11086: 11071: 11061: 10945: 10915: 10874: 10725: 10712: 10650: 10511: 10469: 10210: 10052: 9620: 8952: 8812: 8633: 8180: 7609: 6694:
Taylor R, Coulombe S, Otanicar T, Phelan P, Gunawan A, Lv W, et al. (2013).
6558: 6455: 6314: 6032: 5706: 5432: 4982: 4828: 4811: 4071: 3758: 3741: 3039: 2925: 2842: 2817: 2801: 2760: 2711: 2666: 2637: 2608: 2600: 2543: 2531: 2502: 2438: 2389: 2327: 2209: 2174: 2092: 1995: 1909: 1889: 1873: 1853: 1276: 1268: 1260: 1244: 1209: 919: 865: 796: 744: 733: 641: 609: 397: 60: 21: 9655: 7171:
Habibi Y (2014). "Key advances in the chemical modification of nanocelluloses".
5496: 5471: 4843:
Le Corre D, Bras J, Dufresne A (10 May 2010). "Starch Nanoparticles: A Review".
4607:
Agam, M. A., Guo Q (2007). "Electron Beam Modification of Polymer Nanospheres".
4265: 1806:
high (muco)adhesive and cellular uptake enhancing properties can be introduced.
1059:
1 kg of particles of 1 mm has the same surface area as 1 mg of particles of 1 nm
11385: 11245: 11230: 11195: 11158: 11081: 11051: 10930: 10920: 10820: 10614: 10556: 9985: 9391: 8974:
Hanley C, Thurber A, Hanna C, Punnoose A, Zhang J, Wingett DG (December 2009).
8584: 7859:
Proceedings of the National Academy of Sciences of the United States of America
7207: 6833: 6290: 4525: 3224: 3199: 3123: 3089: 3061: 3023: 2789: 2303: 2212:
is being investigated for many uses, including "smart fluids" for uses such as
2149:. They are also thought to aggregate on phospholipid bilayers and pass through 2140: 2116: 2112: 1706: 1216: 1201: 1193: 884: 834: 625: 507: 432: 272: 186: 10284:
Kim YH, Kwak KA, Kim TS, Seok JH, Roh HS, Lee JK, et al. (30 June 2015).
9896: 9810: 9534: 9310: 9000: 8697: 8541: 8490: 8447: 8302: 6786: 6657: 4133: 4108: 3794: 3548: 1511:
may be broken down into their individual nanoscale building blocks, obtaining
693:
since prehistory, albeit without knowledge of their nature. They were used by
513:
In general, the small size of nanoparticles leads to a lower concentration of
11412: 11340: 11076: 11056: 10990: 10950: 10940: 10887: 10634: 10309: 10017: 9399: 9336: 9297: 8154: 8082:"Monovalent, reduced-size quantum dots for imaging receptors on living cells" 7239: 6372: 6322: 6275: 6233: 6194: 6143: 6101: 5198:, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) " 3873: 3617: 3465: 3408: 3352: 3335: 3204: 2899: 2858: 2466: 2260: 2150: 2026: 1999: 1987: 1865: 1702: 1664: 1437: 1389: 1354: 980: 927: 888: 830: 439: 408: 390: 338: 239: 230: 166: 117: 44: 9167:"Biokinetics and clearance of inhaled gold ultrasmall-in-nano architectures" 8903: 8386:
Evans, A.G. (1987). "Considerations of Inhomogeneity Effects in Sintering".
6886: 6607: 5864: 5771:"Surface energy of nanoparticles – influence of particle size and structure" 5207: 4780: 4767:
Murphy CJ (13 December 2002). "MATERIALS SCIENCE: Nanocubes and Nanoboxes".
4737: 4655: 3994: 3977: 3583: 3566: 557: 11355: 11349: 11261: 11225: 11210: 11181: 11137: 10878: 10771: 10609: 10462: 10419: 10368: 10327: 10270: 10229: 10162: 10119: 10003: 9829: 9744: 9709: 9677: 9505: 9245: 9237: 9210: 9151: 9087: 9046: 9019: 8960: 8870: 8676: 8549: 8455: 8162: 8115: 8066: 8023: 7988: 7939: 7898: 7879: 7839: 7821: 7790: 7515: 7479: 7466: 7413: 7206:
Jiayin G, Xiaobao F, Dolbec R, Siwen X, Jurewicz J, Boulos M (April 2010).
7192: 7130: 7056: 6997: 6937: 6851: 6759: 6626: 6567: 6420: 6348: 6151: 5966: 5923: 5804: 5730: 5664: 5615: 5550: 5456: 5417: 5326: 5006: 4959: 4924: 4864: 4788: 4745: 4663: 4628: 4478: 4453: 4437: 4412: 4396: 4371: 4242: 4193: 3937: 3891: 3865: 3677: 3592: 3483: 3416: 3334:
Vert M, Doi Y, Hellwich KH, Hess M, Hodge P, Kubisa P, et al. (2012).
3209: 3133: 2458: 2323: 2159: 2136: 2048: 1968: 1924: 1823: 1714: 1622: 1596: 1444: 1374: 1370: 709: 706: 586: 514: 383: 10400: 10154: 10076: 7970: 7733: 7087: 6894: 6120:"Nanoscale Compression of Polymer Microspheres by Atomic Force Microscopy" 5571: 5047:
Volmer M, Weber AZ (1927). "Nucleus Formation in Supersaturated Systems".
3374: 1685:
of suitable compounds are mixed or otherwise treated to form an insoluble
991:
The original theory from 1927 of nucleation in nanoparticle formation was
11331: 11235: 11205: 11142: 11122: 10980: 10359: 10342: 9843: 9701: 8892:
Nanotechnologies: 6. What are potential harmful effects of nanoparticles?
8847:"The aggregation of striped nanoparticles in mixed phospholipid bilayers" 8781:"Toxic Nanoparticles Might be Entering Human Food Supply, MU Study Finds" 7497: 6549: 6412: 5786: 5597: 4620: 3456: 3269: 3249: 2197: 1791: 1698: 1686: 1669: 1552: 1484: 1327: 1229: 1197: 1134: 915: 911: 721: 694: 662: 518: 156: 9777: 9760: 9366:
Gu X, Liu Z, Tai Y, Zhou Ly, Liu K, Kong D, et al. (1 April 2022).
9133: 8593: 8521:
Tiede K, Boxall AB, Tear SP, Lewis J, David H, Hassellöv M (July 2008).
7594: 7457: 7395: 6666: 6506: 6481: 6288: 6225: 5606: 5079: 3669: 2343: 1055: 1038:
large surface to volume ratio is also significant factor at this scale.
404:
that conversely are usually understood to range from 1 to 1000 nm.
11309: 11289: 11215: 11200: 11126: 11066: 11030: 10843: 10261: 10244: 10111: 9439: 9422: 9191: 8925: 8862: 8337: 8097: 7448: 7184: 7037: 6988: 6963: 5175: 5158: 4951: 4233: 4208: 3929: 3850:"Anisotropic nanomaterials: structure, growth, assembly, and functions" 2838: 2756: 2707: 2612: 2596: 2462: 2421: 2417: 2409: 2347: 2251: 2120: 2096: 2056: 2010: 1737: 1710: 1544: 1524: 1512: 1433: 1084: 968: 948: 876: 819: 717: 621: 529: 424: 420: 10815: 9487: 8146: 8058: 8015: 7772: 7361: 7122: 6751: 6720: 6209: 6135: 5904: 5880:"Hardness and Elastic Modulus on Six-Fold Symmetry Gold Nanoparticles" 5831: 5722: 5691: 5646: 5542: 5448: 5409: 5381: 5353: 5318: 5291: 5260: 5232: 5107: 5033: 4998: 4906: 4856: 4698: 4174: 3950: 3513: 3055: 2021:
are the dominant methods. Because nanoparticles have a size below the
517:
compared to their bulk counterparts, but they do support a variety of
267: 11344: 11020: 11000: 10995: 10955: 10642: 9938: 9791: 7542: 7334: 7290: 7265: 6268:
10.1002/1521-4117(200207)19:3<129::AID-PPSC129>3.0.CO;2-G
5958: 5877: 4487: 3194: 3143: 2917: 2735: 2731: 2641: 2486: 2393: 2351: 2331: 2230:
variation in toxicity. Testing protocols still need to be developed.
2146: 2037:. Microscopy methods are destructive and can be prone to undesirable 1959: 1950: 1913: 1897: 1733: 1660: 1619: 1560: 1548: 1516: 1496: 1480: 1476: 1460: 1164: 1160: 1080: 1072: 945: 892: 713: 658: 605: 545: 503: 479: 459: 375: 103: 10504: 8130: 6291:"In situ TEM study of mechanical behaviour of twinned nanoparticles" 6119: 4676: 3848:
Sajanlal PR, Sreeprasad TS, Samal AK, Pradeep T (16 February 2011).
11118: 11025: 11015: 11010: 11005: 10925: 3163: 3138: 3083: 2933: 2913: 2870: 2727: 2678: 2633: 2498: 2490: 2474: 1939: 1938:
can be removed, and thus highly dependent upon the distribution of
1905: 1787: 1745: 1741: 1380:
Quantum effects are responsible for the deep-red to black color of
1366: 1283: 1272: 1264: 1224: 941: 923: 861: 849: 838: 815: 780: 541: 451: 379: 244: 10827: 6390: 5707:"Mechanisms of nucleation and growth of nanoparticles in solution" 5533: 5433:"Mechanisms of Nucleation and Growth of Nanoparticles in Solution" 4983:"Mechanisms of nucleation and growth of nanoparticles in solution" 4018:"ISO/TS 80004-2: Nanotechnologies Vocabulary Part 2: Nano-objects" 3438:
Shishodia S, Chouchene B, Gries T, Schneider R (31 October 2023).
3069: 1196:
concentration in nanocrystals can negatively affect the motion of
279: 11132: 11035: 10985: 10960: 10525: 9296:
This article incorporates text from this source, which is in the
8226: 7914:"Quantum dots targeted to the assigned organelle in living cells" 7853:
Akerman ME, Chan WC, Laakkonen P, Bhatia SN, Ruoslahti E (2002).
6908:
Dabbs D. M, Aksay I.A., Aksay (2000). "Self-Assembled Ceramics".
6068:"Mechanical properties of nanoparticles: basics and applications" 3701:"Mechanical properties of nanoparticles: basics and applications" 3264: 3239: 3113: 3108: 2957: 2846: 2813: 2764: 2715: 2450: 2397: 2330:
in microscopy. Anisotropic nanoparticles are a good candidate in
1935: 1881: 1861: 1827: 1819: 1803: 1772: 1725: 1691: 1584: 1580: 1540: 1475:
Friable macro- or micro-scale solid particles can be ground in a
1385: 1155: 1142: 1118: 1114: 1076: 952: 869: 842: 807: 698: 690: 636: 563: 499: 491: 471: 467: 463: 401: 7558:
Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing
6523: 4289: 3437: 1443:
There are several methods for creating nanoparticles, including
7641: 7528: 7010: 6642: 6581:
Taylor RA, Phelan PE, Otanicar TP, Adrian R, Prasher R (2011).
5582: 4563: 4258:
Accretion of Extraterrestrial Matter Throughout Earth's History
4109:"Nano- and micron-sized diamond genesis in nature: An overview" 4073:
Subtle is the Lord: The Science and the Life of Albert Einstein
3311:
Module 3: Characteristics of Particles Particle Size Categories
3015: 3011: 2998: 2982: 2969: 2941: 2878: 2862: 2809: 2781: 2752: 2739: 2719: 2691: 2662: 2654: 2629: 2592: 2580: 2555: 2535: 2506: 2454: 2385: 1901: 1728:. Typical instances of this method are the production of metal 1520: 1508: 1504: 1500: 904: 900: 896: 829:
The shapes of nanoparticles may be determined by the intrinsic
729: 725: 537: 371: 10183: 9759:
Wang Z, Wang Z, Lu WW, Zhen W, Yang D, Peng S (October 2017).
8476: 6482:"Nanofluid-based optical filter optimization for PV/T systems" 5677: 5572:
ASTM E 2456 06 Standard Terminology Relating to Nanotechnology
5218: 5019: 3847: 1963:
diffusion, result in a size distribution appearing lognormal.
1349:
effects become noticeable for nanoscale objects. They include
486:, and key ingredients in many industrialized products such as 411:(400-700 nm), nanoparticles cannot be seen with ordinary 10505:
Lectures on All Phases of Nanoparticle Science and Technology
8425: 6808:
Yu P, Yao Y, Wu J, Niu X, Rogach AL, Wang Z (December 2017).
6210:"Direct force measurements between titanium dioxide surfaces" 6208:
Larson I, Drummond CJ, Chan DY, Grieser F (1 December 1993).
4714:"Shape-controlled synthesis of gold and silver nanoparticles" 4545: 4150:"Nanodiamond Finding in the Hyblean Shallow Mantle Xenoliths" 3526: 2895: 2854: 2482: 2413: 2170:
was investigating the safety of the following nanoparticles:
2080: 1991: 1928: 1893: 1729: 1576: 1429: 764:
and Japan within an ERATO Project, researchers used the term
678: 670: 576: 495: 487: 446: 8938: 8570: 7803: 7208:"Development of Nanopowder Synthesis Using Induction Plasma" 6964:"Stable mass-selected AuTiOx nanoparticles for CO oxidation" 6961: 6693: 6167:"Investigation of micro-adhesion by atomic force microscopy" 4372:"Experimental relations of gold (and other metals) to light" 2268:
for delivery of biologically active substances, for example
632:
ultrafine particles, are often referred to as nanocrystals.
549:
showing a distinct resonance mode for each excitable axis.
9722: 9223: 8079: 7426: 6907: 4503: 4413:"The effect of heat and of solvents on thin films of metal" 4147: 3031: 3027: 2994: 2990: 2929: 2850: 2793: 2785: 2723: 2703: 2695: 2674: 2670: 2604: 2588: 2539: 2442: 2405: 2401: 2322:
Nanoscale particles are used in biomedical applications as
1783:
can be used for catalysis of many known organic reactions.
1556: 1528: 1448: 1381: 1010: 533: 475: 52: 10089: 9919:
International Journal for Numerical Methods in Engineering
9522:
IEEE Transactions on Dielectrics and Electrical Insulation
9164: 8973: 8607: 8201: 7952: 7852: 7555: 7108: 6580: 6349:"Size effect on the melting temperature of gold particles" 6014: 3565:
Silvera Batista CA, Larson RG, Kotov NA (9 October 2015).
3564: 1179:
in the micrometer range is a good example: widely used in
1170: 562:
In its 2012 proposed terminology for biologically related
10050: 9676: 9059: 7911: 6479: 6207: 3953:
Compendium of Chemical Terminology: IUPAC Recommendations
2155: 1877: 558:
International Union of Pure and Applied Chemistry (IUPAC)
8654: 8280: 7205: 3772: 3742:"Nanoparticles: Properties, applications and toxicities" 1587:, can be created by vaporizing a solid precursor with a 1243:
cannot be employed. As a result, new techniques such as
10516: 10384:"Applications of nanoparticles in biology and medicine" 10340: 9331:(1 ed.), Boca Raton: CRC Press, pp. 303–327, 8253: 7069: 4320:
Handbook of Nanophysics: Nanoparticles and Quantum Dots
3951:
MacNaught, Alan D., Wilkinson, Andrew R., eds. (1997).
1651:(EDX) mapping of Ni and Ni@Cu core@shell nanoparticles. 9311:
Reducing Pesticide Risks: A Half Century of Progress.
8733:"'Mind the gap': science and ethics in nanotechnology" 1790:
particles can be stabilized by functionalization with
10486:
High transmission Tandem DMA for nanoparticle studies
9636:
Physica E: Low-dimensional Systems and Nanostructures
8730: 8001: 5704: 5430: 4980: 4880: 1404:
surface plasmon is located in front of a solar cell.
1050: 474:. Being at the transition between bulk materials and 9910:
Hafezi F, Ransing RS, Lewis RW (14 September 2017).
8520: 7645:
Molecular Chemistry of Sol-Gel Derived Nanomaterials
6737: 6019:, Springer Handbooks, Springer, pp. 1107–1136, 4842: 3975: 3051: 2354:
lotions, being completely photostable though toxic.
837:
on certain faces by coating additives, the shape of
10517:
ENPRA – Risk Assessment of Engineered NanoParticles
7953:Suzuki KG, Fujiwara TK, Edidin M, Kusumi A (2007). 7011:Anandkumar M, Bhattacharya S, Deshpande AS (2019). 5844: 5768: 5156: 5120: 3333: 1971:nanoparticles and colloids provide this potential. 1019: 454:, about 2 nm in diameter, showing individual atoms. 431:, so that separation from liquids requires special 9909: 9060:Benson HA, Sarveiya V, Risk S, Roberts MS (2005). 8731:Mnyusiwalla A, Daar AS, Singer PA (1 March 2003). 8608:Rawat PS, Srivastava R, Dixit G, Asokan K (2020). 6957: 6955: 5936: 5518: 3314: 9959: 8044: 7754: 7581:Hench LL, West JK (1990). "The sol-gel process". 6164: 5769:Vollath D, Fischer FD, Holec D (23 August 2018). 5394: 5339: 5304: 2051:, which measures the particles' interaction with 724:(9th century CE). The latter is characterized by 450:Idealized model of a crystalline nanoparticle of 11410: 9461: 7377: 7263: 6864: 6526:"Feasibility of nanofluid-based optical filters" 6256:Particle & Particle Systems Characterization 5743: 5469: 4369: 3843: 3841: 3839: 3837: 3647: 1775:them with various substances — a process called 1717:, and the reaction can be carried out in place. 10470:"Nanoparticles: An occupational hygiene review" 7703: 6952: 6772: 6433: 6165:Ouyang Q, Ishida K, Okada K (15 January 2001). 3529:Physics and Chemistry of the Earth, Parts A/B/C 2357: 1310:force probe holder in TEM was used to compress 1149: 922:and are particularly effective for stabilizing 887:. The most common example is the production of 10436: 10283: 10242: 10140: 10057:Journal of the American Academy of Dermatology 9758: 7143: 6117: 5817: 5273: 4812:"Nanocellulose: a new ageless bionanomaterial" 4606: 4042: 4022:International Organization for Standardization 3903: 3901: 3499: 417:electron microscopes or microscopes with laser 10859: 10541: 10458:Nanoparticles Used in Solar Energy Conversion 9420: 8844: 8177:"Nanoparticles play at being red blood cells" 6480:Taylor RA, Otanicar T, Rosengarten G (2012). 6245: 6243: 5979: 4454:"Transparent Silver and Other Metallic Films" 3907: 3834: 3739: 1551:. This is a generalization of the burning of 1247:have been developed that complement existing 657:Nanoparticles are naturally produced by many 521:that can be visualized using high-resolution 304: 9365: 9329:Nanopharmaceuticals in Regenerative Medicine 9273: 9271: 9269: 9267: 9265: 9263: 8807: 8516: 8514: 8512: 8510: 8508: 8421: 8419: 8417: 8415: 8413: 8411: 8409: 8358: 8315: 7373: 7371: 7312: 7259: 7257: 6689: 6687: 6685: 6638: 6636: 6519: 6517: 6475: 6473: 6118:Tan S, Sherman RL, Ford WT (1 August 2004). 5065: 4711: 4641: 4499: 4497: 3567:"Nonadditivity of nanoparticle interactions" 1341: 684: 10341:Moridian M, Khorsandi L, Talebi AR (2015). 10022: 9598: 9512: 9414: 9032: 8385: 8202:Onoda, G.Y. Jr., Hench, L.L., eds. (1979). 8169: 7611:Sol-Gel Optics: Processing and Applications 6733: 6731: 6386: 6384: 6382: 6346: 6342: 6340: 6113: 6111: 6061: 6059: 6057: 6055: 6053: 6051: 5366: 5245: 5092: 5046: 4876: 4874: 4559: 4557: 4541: 4539: 4537: 4535: 4313: 4102: 4100: 3898: 3329: 3327: 3325: 3323: 1570: 1490: 1333: 775: 407:Being much smaller than the wavelengths of 10866: 10852: 10548: 10534: 10177: 10134: 10044: 10018:https://doi.org/10.1038/s43586-022-00104-y 9960:Cheraghian G, Wistuba MP (December 2020). 9716: 9518: 9455: 9322: 9303: 9026: 8967: 8379: 8352: 8309: 8274: 8220: 8195: 7642:Corriu, Robert, Anh, NguyĂŞn Trong (2009). 7601: 7574: 7522: 7070:Hosseini M, Mashreghi M, Eshghi H (2016). 6807: 6240: 4546:Hayashi, C., Uyeda, R, Tasaki, A. (1997). 4451: 4417:Proceedings of the Royal Society of London 4010: 3560: 3558: 3495: 3493: 3309:U.S. Environmental Protection Agency (): " 2288: 2133:Health and safety hazards of nanomaterials 1839: 1724:result from this process is an example of 681:have diameters in the nanoparticle range. 577:International Standards Organization (ISO) 311: 297: 10409: 10399: 10375: 10358: 10334: 10317: 10260: 10236: 10219: 10209: 10143:Journal of Nanoscience and Nanotechnology 10083: 9993: 9903: 9861: 9836: 9819: 9809: 9785: 9776: 9752: 9670: 9627: 9592: 9549: 9495: 9438: 9309:Susan Wayland and Penelope Fenner-Crisp. 9260: 9200: 9190: 9141: 9107: 9094: 9077: 9066:Therapeutics and Clinical Risk Management 9053: 9009: 8999: 8932: 8897: 8885: 8801: 8724: 8691: 8648: 8592: 8564: 8530:Food Additives & Contaminants: Part A 8505: 8470: 8406: 8247: 8105: 8073: 7995: 7978: 7946: 7929: 7905: 7888: 7878: 7846: 7829: 7780: 7697: 7662: 7635: 7580: 7549: 7505: 7473: 7456: 7420: 7403: 7368: 7341: 7306: 7289: 7254: 7046: 7036: 6987: 6901: 6858: 6841: 6766: 6719: 6682: 6665: 6633: 6616: 6606: 6557: 6514: 6505: 6470: 6249: 6091: 6065: 5913: 5903: 5794: 5705:Thanh NT, MacLean N, Mahiddine S (2014). 5654: 5605: 5576: 5565: 5532: 5495: 5431:Thanh NT, MacLean N, Mahiddine S (2014). 5174: 4981:Thanh NT, MacLean N, Mahiddine S (2014). 4914: 4827: 4609:Journal of Nanoscience and Nanotechnology 4494: 4477: 4436: 4395: 4307: 4232: 4183: 4173: 4132: 4036: 3993: 3944: 3881: 3757: 3740:Khan I, Saeed K, Khan I (November 2019). 3724: 3698: 3582: 3473: 3455: 3351: 1614: 1204:present in small nanoparticles with high 1041: 10873: 10277: 9844:"The Textiles Nanotechnology Laboratory" 8128: 8047:Journal of the American Chemical Society 8004:Journal of the American Chemical Society 7761:Journal of the American Chemical Society 7748: 7004: 6728: 6574: 6379: 6337: 6214:Journal of the American Chemical Society 6108: 6048: 5737: 5512: 5157:Whitehead CB, Ă–zkar S, Finke RG (2021). 5068:Journal of the American Chemical Society 4871: 4809: 4760: 4670: 4635: 4600: 4554: 4532: 4445: 4404: 4363: 4336: 4282: 4260:. Boston, MA: Springer. pp. 75–92. 4249: 4200: 4141: 4097: 4069: 4063: 3969: 3320: 2275: 1638: 1187: 1128: 1054: 1011:Two-step mechanism – autocatalysis model 958: 779: 445: 20: 9633: 9555: 9113: 8773: 8361:Journal of the American Ceramic Society 8038: 7347: 5628: 5476:Current Opinion in Chemical Engineering 4705: 4209:"Cosmic dust in the earth's atmosphere" 4106: 3555: 3520: 3490: 3303: 2202:U.S. Consumer Product Safety Commission 2073:nuclear magnetic resonance spectroscopy 1655:Nanoparticles can also be formed using 1171:Ferromagnetic and ferroelectric effects 1141:Nanoparticles often develop or receive 1102:an integral part of each nanoparticle. 963: 11411: 10381: 7170: 6801: 6427: 6066:Guo D, Xie G, Luo J (8 January 2014). 4937: 4766: 4410: 3699:Guo D, Xie G, Luo J (8 January 2014). 3605: 768:. However, during the 1990s, when the 732:nanoparticles dispersed in the glassy 10847: 10529: 10249:The Journal of Toxicological Sciences 9867: 7668: 7607: 7556:Brinker, C.J., Scherer, G.W. (1990). 6072:Journal of Physics D: Applied Physics 5849:(2nd ed.). Boston: McGraw Hill. 4206: 3705:Journal of Physics D: Applied Physics 2938:zirconium(IV) oxide-yttria stabilized 1946:in the unfired body if not relieved. 955:while enhancing the target analytes. 652: 400:, they usually do not sediment, like 389:Nanoparticles are distinguished from 10802: 7378:Hennes M, Lotnyk A, Mayr SG (2014). 5049:Zeitschrift fĂĽr Physikalische Chemie 4342: 4255: 2168:U.S. Environmental Protection Agency 2126: 1766: 1634: 1555:or other organic vapors to generate 1090: 583:International Standards Organization 322: 10032:. U.S. Food and Drug Administration 9323:Tai Y, Midgley AC (29 March 2022), 9313:EPA Alumni Association. March 2016. 8573:TrAC Trends in Analytical Chemistry 7486:Beilstein Journal of Nanotechnology 6968:Physical Chemistry Chemical Physics 6017:Springer Handbook of Nanotechnology 5820:The Journal of Physical Chemistry B 5775:Beilstein Journal of Nanotechnology 3955:(2nd ed.). Blackwell Science. 3910:Physical Chemistry Chemical Physics 3609:Imperfections in Crystalline Solids 3280:Synthesis of nanoparticles by fungi 3139:Fiveling or decahedral nanoparticle 1974: 1755: 1105: 998: 615: 16:Particle with size less than 100 nm 13: 10555: 10521:Institute of Occupational Medicine 10430: 9372:Progress in Biomedical Engineering 8708:10.1016/B978-0-323-52733-0.00018-5 8400:10.1111/j.1151-2916.1982.tb10340.x 8373:10.1111/j.1151-2916.1983.tb10069.x 8268:10.1111/j.1151-2916.1996.tb08091.x 8241:10.1111/j.1151-2916.1983.tb10550.x 7931:10.1111/j.1348-0421.2004.tb03621.x 5195:Compendium of Chemical Terminology 4458:Proceedings of the Royal Society A 2244:National Nanotechnology Initiative 2103:for crystal structure, as well as 1407: 1051:Large surface-area-to-volume ratio 770:National Nanotechnology Initiative 532:). Non-spherical nanoparticles of 14: 11430: 10492: 9281:. Environmental Protection Agency 9121:Environmental Health Perspectives 8845:Noh SY, Nash A, Notman R (2020). 8669:10.2174/0929867321666140601162314 7264:Granqvist CG, Buhrman RA (1976). 6930:10.1146/annurev.physchem.51.1.601 6486:Light: Science & Applications 2296: 1981:Characterization of nanoparticles 1523:treatment to promote breakup, or 10826: 10814: 10801: 10790: 10789: 10010: 9953: 9877:Journal of Computational Physics 9359: 9316: 9291: 9279:"Nanomaterials EPA is Assessing" 9217: 9158: 8838: 8601: 8204:Ceramic Processing Before Firing 8122: 7797: 7671:Energy Conversion and Management 5847:Mechanical behavior of materials 4290:"Nanotechnology Timeline | Nano" 3606:Cai W, Nix WD (September 2016). 3082: 3068: 3054: 2075:can be used with nanoparticles. 1676: 1645:Transmission electron microscopy 1020:Measuring the rate of nucleation 327: 278: 266: 51: 10443:. Academic Press. pp. 5–. 9462:Stephenson C, Hubler A (2015). 7855:"Nanocrystal targeting in vivo" 7199: 7164: 7137: 7102: 7063: 6282: 6201: 6158: 6008: 5973: 5930: 5871: 5838: 5811: 5762: 5698: 5671: 5622: 5463: 5424: 5388: 5360: 5333: 5298: 5274:Hornstein BJ, Finke RG (2004). 5267: 5239: 5212: 5183: 5150: 5114: 5086: 5059: 5040: 5013: 4974: 4931: 4836: 4803: 3809: 3766: 3733: 3692: 2342:Titanium dioxide nanoparticles 2233: 1314:nanoparticles and characterize 751: 739: 716:glass (4th century CE) and the 669:, that is still falling on the 592: 39:Part of a series of articles on 9848:nanotextiles.human.cornell.edu 9578:10.1088/1674-1056/25/11/118102 8702:. ELSEVIER. pp. 511 546. 8206:. New York: Wiley & Sons. 8129:Campbell CT (20 August 2013). 7691:10.1016/j.enconman.2017.07.036 6775:Coordination Chemistry Reviews 6646:Coordination Chemistry Reviews 4049:. Springer. pp. 282 283. 3775:Philosophical Magazine Letters 3641: 3599: 3431: 3401:10.1088/0957-4484/26/29/295701 3368: 3255:Self-assembly of nanoparticles 3220:Nanoparticle tracking analysis 2902:onto paper or other substrate 2309: 1811:linked to biological molecules 1601:radio frequency (RF) induction 1575:Nanoparticles of pure metals, 1487:to extract the nanoparticles. 1097:Nanoparticle interfacial layer 585:(ISO) technical specification 552: 1: 10749:Scanning tunneling microscope 10243:Hanagata N, Morita H (2015). 10069:10.1016/s0190-9622(99)70532-3 9737:10.1016/j.tibtech.2017.07.010 8135:Accounts of Chemical Research 7726:10.1126/science.252.5009.1164 7212:Plasma Science and Technology 7158:10.1016/j.carbpol.2009.10.044 6187:10.1016/S0169-4332(00)00804-7 6093:10.1088/0022-3727/47/1/013001 6002:10.1016/j.actamat.2015.10.027 5136:10.1021/acs.chemmater.9b01273 4411:Beilby GT (31 January 1904). 3726:10.1088/0022-3727/47/1/013001 3296: 3129:Colloid-facilitated transport 2337: 2317: 2255:researchers is 30% w/w of SiO 2224: 2097:Brunauer–Emmett–Teller method 1470: 1423: 1361:in some metal particles, and 1259:(AFM) can be used to perform 1117:is strong enough to overcome 1032: 986: 855: 826:, nanofibers, and nanoboxes. 799:structure resembling that of 10388:Journal of Nanobiotechnology 10211:10.1371/journal.pone.0126934 9621:10.1016/j.optmat.2017.01.014 9421:Hubler A, Osuagwu O (2010). 8953:10.1016/j.actbio.2010.08.003 8817:. New York: Academic Press. 8634:10.1016/j.vacuum.2020.109700 6456:10.1016/j.nanoen.2015.02.012 6315:10.1080/14786435.2012.709951 6033:10.1007/978-3-540-29857-1_36 5845:Courtney, Thomas H. (2000). 4829:10.1016/j.mattod.2013.06.004 3817:"Anisotropic Nanostructures" 3759:10.1016/j.arabjc.2017.05.011 3746:Arabian Journal of Chemistry 2358:Compounds by industrial area 2282:glass transition temperature 2043:single-particle measurements 1786:For example, suspensions of 1781:nanomaterial-based catalysts 1694:and other porous networks. 1534: 1150:Diffusion across the surface 1133:Semiconductor nanoparticle ( 910:Nanoparticles with one half 7: 10721:Molecular scale electronics 10474:Health and Safety Executive 10051:Mitchnick MA, Fairhurst D, 9656:10.1016/j.physe.2018.06.013 9035:Journal of Law and Medicine 8657:Current Medicinal Chemistry 7959:The Journal of Cell Biology 7918:Microbiology and Immunology 7266:"Ultrafine metal particles" 6347:Buffat P, Borel JP (1976). 5680:Crystal Growth & Design 5635:Crystal Growth & Design 5497:10.1016/j.coche.2019.04.004 5470:Grammatikopoulos P (2019). 5221:Crystal Growth & Design 5022:Crystal Growth & Design 4322:. CRC Press. pp. 2 1. 4266:10.1007/978-1-4419-8694-8_5 4076:. Oxford University Press. 3047: 1663:can create strongly active 1219:of materials. For example, 1124: 993:Classical Nucleation Theory 689:Nanoparticles were used by 353:Proposed since August 2024. 336:It has been suggested that 10: 11435: 10519:EC FP7 Project led by the 10347:Bratislava Medical Journal 9986:10.1038/s41598-020-68007-0 8980:Nanoscale Research Letters 8752:10.1088/0957-4484/14/3/201 8585:10.1016/j.trac.2010.09.005 7315:Journal of Applied Physics 7270:Journal of Applied Physics 6834:10.1038/s41598-017-08077-9 6700:Journal of Applied Physics 6587:Nanoscale Research Letters 6173:. 169–170 (1–2): 644–648. 4586:10.1088/0957-4484/10/1/006 4526:10.1103/PhysRevLett.37.625 4349:. CRC Press. p. 328. 4346:Biotechnology Fundamentals 4314:Reiss G, Hutten A (2010). 3982:Pure and Applied Chemistry 3340:Pure and Applied Chemistry 3290:Upconverting nanoparticles 3036:polyethylene terephthalate 2154:looking at the effects of 2130: 1978: 1543:, into solid particles by 1359:localized surface plasmons 1094: 979:or the two-step mechanism- 647: 600:For some properties, like 396:Being more subject to the 11369: 11322: 11302: 11270: 11180: 11171: 11151: 11109: 11044: 10969: 10904: 10895: 10886: 10785: 10757: 10736:Scanning probe microscopy 10734: 10711: 10678: 10633: 10596: 10563: 10472:by RJ Aitken and others. 9897:10.1016/j.jcp.2017.09.038 9811:10.3390/molecules23051150 9535:10.1109/TDEI.2013.6571470 9226:ACS Applied Bio Materials 9001:10.1007/s11671-009-9413-8 8542:10.1080/02652030802007553 8491:10.1080/17435390701314902 8448:10.1007/s10646-008-0225-x 8303:10.1080/14786436908228708 7232:10.1088/1009-0630/12/2/12 6787:10.1016/j.ccr.2019.213042 6658:10.1016/j.ccr.2018.04.011 6250:Kappl M, Butt HJ (2002). 5744:Gubin, Sergey P. (2009). 4376:Phil. Trans. R. Soc. Lond 4370:Faraday, Michael (1857). 4134:10.1016/j.gsf.2017.10.006 3795:10.1080/09500830802307641 3549:10.1016/j.pce.2011.07.064 3176:a.k.a. magnetic nanochain 2966:barium strontium titanate 2962:sm-doped-cerium(IV) oxide 2946:gd-doped-cerium(IV) oxide 2248:poly(methyl methacrylate) 2216:and as a better-absorbed 2053:electromagnetic radiation 2019:scanning probe microscopy 1342:Quantum mechanics effects 1293:colloidal probe technique 1241:universal testing machine 685:Pre-industrial technology 10759:Molecular nanotechnology 10703:Solid lipid nanoparticle 10688:Self-assembled monolayer 10482:by RJ Aitken and others. 10476:Research Report 274/2004 10440:Nanostructured Materials 10310:10.5487/TR.2015.31.2.157 9868:Evans B (January 2018). 9392:10.1088/2516-1091/ac6e18 9337:10.1201/9781003153504-17 9114:Pieters N (March 2015). 9104:Retrieved 26 April 2011. 8814:Nanostructured Materials 7531:New Journal of Chemistry 7384:Beilstein J. Nanotechnol 7076:Micro & Nano Letters 6373:10.1103/PhysRevA.13.2287 4810:Dufresne A (June 2013). 4316:"Magnetic Nanoparticles" 4213:Chemical Society Reviews 3618:10.1017/cbo9781316389508 3353:10.1351/PAC-REC-10-12-04 2552:calcium silicate hydrate 2218:iron nutrient supplement 2095:for surface charge, the 1571:Condensation from plasma 1491:Breakdown of biopolymers 1334:Melting point depression 944:nanoparticles made of N- 816:decahedral nanoparticles 776:Morphology and structure 705:, as exemplified by the 255:Nanocrystalline material 231:Nanostructured materials 11257:Ferric ammonium citrate 10744:Atomic force microscope 10693:Supramolecular assembly 10680:Molecular self-assembly 10501:images of nanoparticles 10437:Jackie Y. Ying (2001). 7648:. John Wiley and Sons. 6887:10.1126/science.1962191 6706:(1): 011301–011301–19. 6608:10.1186/1556-276X-6-225 6171:Applied Surface Science 5208:10.1351/goldbook.O04348 4781:10.1126/science.1080007 4738:10.1126/science.1077229 4712:Sun, Y, Xia, Y (2002). 4656:10.1021/acsnano.5b02328 4506:Physical Review Letters 4318:. In Sattler KD (ed.). 4043:Fahlman, B. D. (2007). 3995:10.1351/pac200779101801 3584:10.1126/science.1242477 3215:Nanoparticle deposition 3190:Nanocrystalline silicon 3174:Magnetoelastic filament 2328:imaging contrast agents 2289:Liquid properties tuner 2107:for particle mass, and 1840:Uniformity requirements 1649:energy dispersive X-ray 1257:Atomic force microscopy 1177:ferromagnetic materials 1069:electrical conductivity 415:, requiring the use of 10510:29 August 2010 at the 10290:Toxicological Research 9238:10.1021/acsabm.9b00630 8786:University of Missouri 7880:10.1073/pnas.152463399 7822:10.1002/advs.202102451 6295:Philosophical Magazine 5746:Magnetic nanoparticles 4479:10.1098/rspa.1908.0084 4438:10.1098/rspl.1903.0046 4397:10.1098/rstl.1857.0011 3866:10.3402/nano.v2i0.5883 3502:Chemistry of Materials 3180:Magnetic nanoparticles 2617:hydroxycarboxylic acid 2332:biomolecular detection 2099:for surface area, and 1721:Electroless deposition 1652: 1615:Inert gas condensation 1465:hydrothermal synthesis 1453:chemical precipitation 1138: 1060: 1042:Controlling properties 803: 455: 33: 10833:Technology portal 10401:10.1186/1477-3155-2-3 10155:10.1166/jnn.2014.8876 8769:on 26 September 2020. 7971:10.1083/jcb.200609175 7146:Carbohydrate Polymers 7088:10.1049/mnl.2016.0065 6910:Annu. Rev. Phys. Chem 6559:1959.4/unsworks_57107 4550:. Noyes Publications. 3245:Platinum nanoparticle 2822:ytterbium trifluoride 2276:Polymer reinforcement 2111:for particle number. 1816:monoclonal antibodies 1809:Nanoparticles can be 1642: 1605:exploding wire method 1299:Another technique is 1188:Mechanical properties 1132: 1058: 959:Nucleation and growth 895:. Other examples are 783: 484:atmospheric pollution 449: 285:Technology portal 80:Mechanical properties 24: 10620:Green nanotechnology 10360:10.4149/bll_2015_060 9702:10.1364/OL.28.002088 7498:10.3762/bjnano.9.179 6550:10.1364/AO.52.001413 6413:10.1364/AO.52.006041 5787:10.3762/bjnano.9.211 5598:10.1021/jacs.6b08239 4621:10.1166/jnn.2007.814 4423:(477–486): 226–235. 4113:Geoscience Frontiers 3535:(14–15): 1129–1134. 3457:10.3390/nano13212889 3285:Transparent material 3169:Magnetic immunoassay 3159:Indium(III) selenide 3149:Gallium(II) selenide 2883:molybdenum disulfide 1932:van der Waals forces 1628:magnetron sputtering 1467:, and biosynthesis. 964:Impact of nucleation 523:electron microscopes 346:into this article. ( 250:Nanoporous materials 113:Buckminsterfullerene 11361:Sulfur hexafluoride 10767:Molecular assembler 10302:2015ToxRe..31..157K 10202:2015PLoSO..1026934G 10104:2015Nanos...7.8931H 9978:2020NatSR..1011216C 9931:2017IJNME.111.1025H 9889:2018JCoPh.352..123E 9778:10.1038/am.2017.171 9694:2003OptL...28.2088D 9648:2018PhyE..103..239O 9613:2017OptMa..64..413R 9570:2016ChPhB..25k8102O 9480:2015NatSR...515044S 9384:2022PBioE...4b2006G 9183:2020NanoA...2.3815M 9134:10.1289/ehp.1408121 9100:Howard, V. (2009). 8992:2009NRL.....4.1409H 8918:2013SMat....910265T 8912:(43): 10265 10274. 8626:2020Vacuu.182j9700R 8440:2008Ecotx..17..344H 8330:1970JMatS...5..314E 8295:1969PMag...20..373E 7871:2002PNAS...9912617A 7865:(20): 12617–12621. 7718:1991Sci...252.1164P 7683:2017ECM...150...26S 7614:. Springer Verlag. 7595:10.1021/cr00099a003 7441:2014Nanos...613483L 7435:(22): 13483–13486. 7396:10.3762/bjnano.5.54 7327:1990JAP....67.1113H 7282:1976JAP....47.2200G 7224:2010PlST...12..188G 7029:2019RSCAd...926825A 7023:(46): 26825–26830. 6980:2024PCCP...26.9253T 6922:2000ARPC...51..601D 6879:1991Sci...254.1312W 6873:(5036): 1312–1319. 6826:2017NatSR...7.7696Y 6712:2013JAP...113a1301T 6599:2011NRL.....6..225T 6542:2013ApOpt..52.1413T 6507:10.1038/lsa.2012.34 6498:2012LSA.....1E..34T 6448:2015NEne...13..827W 6405:2013ApOpt..52.6041H 6365:1976PhRvA..13.2287B 6307:2012PMag...92.4437C 6226:10.1021/ja00078a029 6220:(25): 11885–11890. 6179:2001ApSS..169..644O 6084:2014JPhD...47a3001G 6025:2007shnt.book.1107K 5994:2016AcMat.103..433F 5951:2009NatMa...8...95O 5896:2013Mate....6..198R 5629:Vekilov PG (2010). 5592:(49): 15935–15942. 5488:2019COCE...23..164G 5255:(43): 10382-10400. 5102:(43): 10382-10400. 5080:10.1021/ja01167a001 4899:2008NanoL...8..350L 4775:(5601): 2139–2141. 4730:2002Sci...298.2176S 4691:2004ApPhL..84..287C 4578:1999Nanot..10...25K 4518:1976PhRvL..37..625G 4470:1908RSPSA..81..301T 4452:Turner, T. (1908). 4429:1903RSPS...72..226B 4388:1857RSPT..147..145F 4225:2012ChSRv..41.6507P 4166:2015NatSR...510765S 4125:2018GeoFr...9.1849S 4107:Simakov SK (2018). 4046:Materials Chemistry 3922:2016PCCP...1815943K 3916:(23): 15943–15949. 3787:2008PMagL..88..715C 3717:2014JPhD...47a3001G 3670:10.1038/nature12009 3662:2013Natur.496...74C 3541:2011PCE....36.1129S 3393:2015Nanot..26C5701T 3260:Silicon quantum dot 3104:Ceramic engineering 2979:sports and fitness 2950:nickel cobalt oxide 2910:renewable energies 2560:aluminium phosphate 2371:Industrial sectors 2364: 2266:dietary supplements 2065:ultraviolet–visible 2015:Electron microscopy 1918:aluminium carbonate 1870:composite materials 1800:polyethylene glycol 1657:radiation chemistry 1351:quantum confinement 1249:electron microscope 1234:plastic deformation 914:and the other half 766:ultrafine particles 703:Classical Antiquity 667:interplanetary dust 440:diameter of an atom 413:optical microscopes 402:colloidal particles 152:Carbon quantum dots 11396:Never to phase III 10821:Science portal 10698:DNA nanotechnology 10382:Salata OV (2004). 10262:10.2131/jts.40.625 10112:10.1039/c5nr01167a 9966:Scientific Reports 9765:NPG Asia Materials 9440:10.1002/cplx.20306 9192:10.1039/D0NA00521E 9171:Nanoscale Advances 8941:Acta Biomaterialia 8926:10.1039/c3sm51225h 8863:10.1039/c9nr07106g 8338:10.1007/BF02397783 8098:10.1038/nmeth.1206 7560:. Academic Press. 7449:10.1039/c4nr02913e 7185:10.1039/c3cs60204d 7038:10.1039/C9RA04636D 6989:10.1039/D4CP00211C 6814:Scientific Reports 5176:10.1039/d0ma00439a 4952:10.1039/C9NR01349K 4234:10.1039/C2CS35132C 4154:Scientific Reports 3930:10.1039/c6cp00953k 3612:. Cambridge Core. 3099:Carbon quantum dot 2922:tungsten disulfide 2835:tungsten disulfide 2435:tungsten disulfide 2362: 2089:neutron scattering 2035:elemental analysis 2031:optical microscopy 1996:surface properties 1927:of powders due to 1659:. Radiolysis from 1653: 1363:superparamagnetism 1230:dislocation source 1223:are significantly 1221:gold nanoparticles 1206:radii of curvature 1181:magnetic recording 1139: 1061: 804: 786:vanadium(IV) oxide 653:Natural occurrence 456: 368:ultrafine particle 273:Science portal 85:Optical properties 34: 11406: 11405: 11318: 11317: 11272:Superparamagnetic 11221:Gadopentetic acid 11167: 11166: 11105: 11104: 10841: 10840: 10450:978-0-12-744451-2 9925:(11): 1025–1046. 9731:(12): 1121–1124. 9725:Trends Biotechnol 9601:Optical Materials 9558:Chinese Physics B 9488:10.1038/srep15044 9346:978-1-003-15350-4 9232:(10): 4464–4470. 8986:(12): 1409–1420. 8824:978-0-12-744451-2 8717:978-0-323-52733-0 8663:(33): 3837–3853. 8388:J. Am. Ceram. Soc 8262:(12): 3161 3168. 8256:J. Am. Ceram. Soc 8229:J. Am. Ceram. Soc 8213:978-0-471-65410-0 8147:10.1021/ar3003514 8059:10.1021/ja046747x 8016:10.1021/ja049578p 7773:10.1021/ja908137d 7655:978-0-470-72117-9 7621:978-0-7923-9424-2 7567:978-0-12-134970-7 7537:(11): 1239 1255. 7362:10.1063/1.2089171 7123:10.1021/bm0703970 7111:Biomacromolecules 6974:(12): 9253–9263. 6752:10.1021/cr100449n 6721:10.1063/1.4754271 6353:Physical Review A 6301:(35): 4437–4453. 6136:10.1021/la049597c 6130:(17): 7015–7020. 6042:978-3-540-29857-1 5905:10.3390/ma6010198 5832:10.1021/jp010995n 5826:(27): 6275–6277. 5755:978-3-527-40790-3 5723:10.1021/cr400544s 5717:(15): 7610–7630. 5692:10.1021/cg400139t 5647:10.1021/cg1011633 5641:(12): 5007–5019. 5543:10.1116/1.2815690 5449:10.1021/cr400544s 5443:(15): 7610–7630. 5410:10.1021/ja410194r 5382:10.1021/cm071088j 5354:10.1021/cm050207x 5348:(20): 4925-4938. 5319:10.1021/ja0504439 5313:(22): 8179–8184. 5292:10.1021/cm034585i 5261:10.1021/ja9705102 5233:10.1021/cg400139t 5130:(18): 7116-7132. 5108:10.1021/ja9705102 5074:(11): 4847-4854. 5034:10.1021/cg400139t 4999:10.1021/cr400544s 4993:(15): 7610–7630. 4946:(15): 7386–7393. 4907:10.1021/nl072174l 4857:10.1021/bm901428y 4845:Biomacromolecules 4699:10.1063/1.1639514 4356:978-1-4398-2009-4 4329:978-1-4200-7545-8 4275:978-1-4613-4668-5 4219:(19): 6507–6518. 4207:Plane JM (2012). 4175:10.1038/srep10765 4083:978-0-19-280672-7 4070:Pais, A. (2005). 4056:978-1-4020-6119-6 3988:(10): 1801–1829. 3962:978-0-86542-684-9 3781:(9–10): 715–724. 3627:978-1-107-12313-7 3577:(6257): 1242477. 3514:10.1021/cm030171d 3508:(17): 3326–3331. 3185:Nanobiotechnology 3154:Icosahedral twins 3119:Colloidal crystal 3076:Technology portal 3045: 3044: 2898:, deposited by a 2875:Îł-aluminium oxide 2806:zirconium dioxide 2568:calcium hydroxide 2548:calcium carbonate 2515:calcium sulfonate 2511:calcium carbonate 2479:Îł-aluminium oxide 2471:zirconium dioxide 2127:Health and safety 2109:particle counters 2105:mass spectrometry 2101:X-ray diffraction 2055:as a function of 2023:diffraction limit 1944:crack propagation 1886:Aluminum nitrides 1779:. Functionalized 1777:functionalization 1767:Functionalization 1736:nanoparticles by 1635:Radiolysis method 1565:ultrasonic nozzle 1495:Biopolymers like 1418:photonic crystals 1414:colloidal crystal 1347:Quantum mechanics 1091:Interfacial layer 875:The breakdown of 581:According to the 427:, such as common 370:is a particle of 360: 359: 355: 321: 320: 133:Carbon allotropes 11426: 11354:Microspheres of 11191:Gadolinium-based 11178: 11177: 11097:Calcium iopodate 10936:Ioxitalamic acid 10902: 10901: 10893: 10892: 10868: 10861: 10854: 10845: 10844: 10831: 10830: 10819: 10818: 10805: 10804: 10793: 10792: 10777:Mechanosynthesis 10668:characterization 10550: 10543: 10536: 10527: 10526: 10454: 10424: 10423: 10413: 10403: 10379: 10373: 10372: 10362: 10338: 10332: 10331: 10321: 10281: 10275: 10274: 10264: 10240: 10234: 10233: 10223: 10213: 10181: 10175: 10174: 10149:(8): 5688–5696. 10138: 10132: 10131: 10087: 10081: 10080: 10048: 10042: 10041: 10039: 10037: 10026: 10020: 10014: 10008: 10007: 9997: 9957: 9951: 9950: 9939:10.1002/nme.5489 9916: 9907: 9901: 9900: 9874: 9865: 9859: 9858: 9856: 9854: 9840: 9834: 9833: 9823: 9813: 9789: 9783: 9782: 9780: 9756: 9750: 9748: 9720: 9714: 9713: 9674: 9668: 9667: 9631: 9625: 9624: 9596: 9590: 9589: 9553: 9547: 9546: 9529:(4): 1467 1471. 9516: 9510: 9509: 9499: 9459: 9453: 9452: 9442: 9418: 9412: 9411: 9363: 9357: 9356: 9355: 9353: 9320: 9314: 9307: 9301: 9295: 9294: 9290: 9288: 9286: 9275: 9258: 9257: 9221: 9215: 9214: 9204: 9194: 9177:(9): 3815–3820. 9162: 9156: 9155: 9145: 9111: 9105: 9098: 9092: 9091: 9081: 9057: 9051: 9050: 9030: 9024: 9023: 9013: 9003: 8971: 8965: 8964: 8936: 8930: 8929: 8901: 8895: 8889: 8883: 8882: 8842: 8836: 8835: 8833: 8831: 8805: 8799: 8798: 8796: 8794: 8789:. 22 August 2013 8777: 8771: 8770: 8768: 8762:. Archived from 8737: 8728: 8722: 8721: 8695: 8689: 8688: 8652: 8646: 8645: 8605: 8599: 8598: 8596: 8568: 8562: 8561: 8527: 8518: 8503: 8502: 8474: 8468: 8467: 8423: 8404: 8403: 8383: 8377: 8376: 8356: 8350: 8349: 8313: 8307: 8306: 8289:(164): 373 388. 8278: 8272: 8271: 8251: 8245: 8244: 8224: 8218: 8217: 8199: 8193: 8192: 8190: 8188: 8179:. Archived from 8173: 8167: 8166: 8141:(8): 1712–1719. 8126: 8120: 8119: 8109: 8077: 8071: 8070: 8042: 8036: 8035: 7999: 7993: 7992: 7982: 7950: 7944: 7943: 7933: 7909: 7903: 7902: 7892: 7882: 7850: 7844: 7843: 7833: 7810:Advanced Science 7801: 7795: 7794: 7784: 7752: 7746: 7745: 7712:(5009): 1164–7. 7701: 7695: 7694: 7666: 7660: 7659: 7639: 7633: 7632: 7630: 7628: 7608:Klein L (1994). 7605: 7599: 7598: 7583:Chemical Reviews 7578: 7572: 7571: 7553: 7547: 7546: 7543:10.1039/A801445K 7526: 7520: 7519: 7509: 7477: 7471: 7470: 7460: 7424: 7418: 7417: 7407: 7375: 7366: 7365: 7350:Appl. Phys. Lett 7345: 7339: 7338: 7335:10.1063/1.345798 7321:(2): 1113 1115. 7310: 7304: 7303: 7293: 7291:10.1063/1.322870 7276:(5): 2200 2219. 7261: 7252: 7251: 7203: 7197: 7196: 7179:(5): 1519–1542. 7168: 7162: 7161: 7152:(4): 1046–1051. 7141: 7135: 7134: 7117:(8): 2485–2491. 7106: 7100: 7099: 7067: 7061: 7060: 7050: 7040: 7008: 7002: 7001: 6991: 6959: 6950: 6949: 6905: 6899: 6898: 6862: 6856: 6855: 6845: 6805: 6799: 6798: 6770: 6764: 6763: 6746:(4): 2373–2433. 6740:Chemical Reviews 6735: 6726: 6725: 6723: 6691: 6680: 6679: 6669: 6640: 6631: 6630: 6620: 6610: 6578: 6572: 6571: 6561: 6521: 6512: 6511: 6509: 6477: 6468: 6467: 6431: 6425: 6424: 6388: 6377: 6376: 6359:(6): 2287–2298. 6344: 6335: 6334: 6286: 6280: 6279: 6247: 6238: 6237: 6205: 6199: 6198: 6162: 6156: 6155: 6115: 6106: 6105: 6095: 6063: 6046: 6045: 6012: 6006: 6005: 5977: 5971: 5970: 5959:10.1038/nmat2370 5939:Nature Materials 5934: 5928: 5927: 5917: 5907: 5875: 5869: 5868: 5842: 5836: 5835: 5815: 5809: 5808: 5798: 5766: 5760: 5759: 5741: 5735: 5734: 5702: 5696: 5695: 5686:(6): 2435-2440. 5675: 5669: 5668: 5658: 5626: 5620: 5619: 5609: 5586:J. Am. Chem. Soc 5580: 5574: 5569: 5563: 5562: 5536: 5527:(4): MR17–MR71. 5516: 5510: 5509: 5499: 5467: 5461: 5460: 5428: 5422: 5421: 5404:(5): 1930–1941. 5398:J. Am. Chem. Soc 5392: 5386: 5385: 5376:(5): 1956-1970. 5364: 5358: 5357: 5337: 5331: 5330: 5307:J. Am. Chem. Soc 5302: 5296: 5295: 5271: 5265: 5264: 5249:J. Am. Chem. Soc 5243: 5237: 5236: 5227:(6): 2435-2440. 5216: 5210: 5200:Ostwald ripening 5187: 5181: 5180: 5178: 5154: 5148: 5147: 5118: 5112: 5111: 5096:J. Am. Chem. Soc 5090: 5084: 5083: 5063: 5057: 5056: 5044: 5038: 5037: 5028:(6): 2435-2440. 5017: 5011: 5010: 4978: 4972: 4971: 4935: 4929: 4928: 4918: 4878: 4869: 4868: 4851:(5): 1139–1153. 4840: 4834: 4833: 4831: 4807: 4801: 4800: 4764: 4758: 4757: 4724:(5601): 2176–9. 4709: 4703: 4702: 4679:Appl. Phys. Lett 4674: 4668: 4667: 4639: 4633: 4632: 4604: 4598: 4597: 4561: 4552: 4551: 4543: 4530: 4529: 4501: 4492: 4491: 4481: 4464:(548): 301–310. 4449: 4443: 4442: 4440: 4408: 4402: 4401: 4399: 4367: 4361: 4360: 4343:Khan FA (2012). 4340: 4334: 4333: 4311: 4305: 4304: 4302: 4300: 4286: 4280: 4279: 4253: 4247: 4246: 4236: 4204: 4198: 4197: 4187: 4177: 4145: 4139: 4138: 4136: 4119:(6): 1849–1858. 4104: 4095: 4094: 4092: 4090: 4067: 4061: 4060: 4040: 4034: 4033: 4031: 4029: 4014: 4008: 4007: 3997: 3973: 3967: 3966: 3948: 3942: 3941: 3905: 3896: 3895: 3885: 3845: 3832: 3831: 3829: 3827: 3813: 3807: 3806: 3770: 3764: 3763: 3761: 3737: 3731: 3730: 3728: 3696: 3690: 3689: 3645: 3639: 3638: 3636: 3634: 3603: 3597: 3596: 3586: 3562: 3553: 3552: 3524: 3518: 3517: 3497: 3488: 3487: 3477: 3459: 3435: 3429: 3428: 3372: 3366: 3365: 3355: 3331: 3318: 3307: 3235:Photonic crystal 3230:Patchy particles 3092: 3087: 3086: 3078: 3073: 3072: 3064: 3059: 3058: 3020:titanium dioxide 2987:titanium dioxide 2954:nickel(II) oxide 2867:titanium dioxide 2798:titanium dioxide 2769:titanium dioxide 2700:titanium dioxide 2659:titanium dioxide 2585:titanium dioxide 2564:cerium(IV) oxide 2528:titanium dioxide 2495:cerium(IV) oxide 2447:titanium dioxide 2365: 2361: 2270:mineral elements 2214:optics polishing 2192:Titanium dioxide 2175:Carbon nanotubes 2077:Light-scattering 2004:dispersion state 1975:Characterization 1912:), and layered ( 1910:carbon nanotubes 1858:copper(II) oxide 1761:Ion implantation 1756:Ion implantation 1457:ion implantation 1445:gas condensation 1323:glass transition 1208:. This causes a 1106:Solvent affinity 1004:Ostwald ripening 999:Ostwald ripening 977:Ostwald ripening 885:biodegradability 881:biocompatibility 866:anticancer drugs 797:crystal clusters 794: 677:particles. Many 675:atmospheric dust 616:Related concepts 351: 331: 330: 323: 313: 306: 299: 283: 282: 271: 270: 222:Titanium dioxide 61:Carbon nanotubes 55: 36: 35: 11434: 11433: 11429: 11428: 11427: 11425: 11424: 11423: 11409: 11408: 11407: 11402: 11401: 11386:Clinical trials 11365: 11314: 11298: 11266: 11241:Gadoversetamide 11163: 11147: 11112:Water insoluble 11111: 11101: 11092:Tyropanoic acid 11087:Sodium iopodate 11072:Iobenzamic acid 11062:Ioglycamic acid 11040: 10971: 10965: 10946:Acetrizoic acid 10916:Diatrizoic acid 10906: 10897: 10882: 10872: 10842: 10837: 10825: 10813: 10781: 10753: 10730: 10726:Nanolithography 10713:Nanoelectronics 10707: 10674: 10629: 10592: 10583:Popular culture 10559: 10554: 10512:Wayback Machine 10495: 10488:by SEADM, 2014. 10451: 10433: 10431:Further reading 10428: 10427: 10380: 10376: 10339: 10335: 10282: 10278: 10241: 10237: 10196:(5): e0126934. 10182: 10178: 10139: 10135: 10088: 10084: 10049: 10045: 10035: 10033: 10028: 10027: 10023: 10015: 10011: 9958: 9954: 9914: 9908: 9904: 9872: 9866: 9862: 9852: 9850: 9842: 9841: 9837: 9790: 9786: 9757: 9753: 9721: 9717: 9688:(21): 2088–90. 9675: 9671: 9632: 9628: 9597: 9593: 9554: 9550: 9517: 9513: 9460: 9456: 9419: 9415: 9364: 9360: 9351: 9349: 9347: 9321: 9317: 9308: 9304: 9292: 9284: 9282: 9277: 9276: 9261: 9222: 9218: 9163: 9159: 9112: 9108: 9099: 9095: 9058: 9054: 9031: 9027: 8972: 8968: 8937: 8933: 8902: 8898: 8890: 8886: 8843: 8839: 8829: 8827: 8825: 8806: 8802: 8792: 8790: 8779: 8778: 8774: 8766: 8735: 8729: 8725: 8718: 8696: 8692: 8653: 8649: 8606: 8602: 8569: 8565: 8525: 8519: 8506: 8475: 8471: 8424: 8407: 8394:(10): 497–501. 8384: 8380: 8357: 8353: 8314: 8310: 8279: 8275: 8252: 8248: 8225: 8221: 8214: 8200: 8196: 8186: 8184: 8175: 8174: 8170: 8127: 8123: 8078: 8074: 8053:(35): 10832–3. 8043: 8039: 8000: 7996: 7951: 7947: 7910: 7906: 7851: 7847: 7802: 7798: 7753: 7749: 7702: 7698: 7667: 7663: 7656: 7640: 7636: 7626: 7624: 7622: 7606: 7602: 7579: 7575: 7568: 7554: 7550: 7527: 7523: 7478: 7474: 7425: 7421: 7376: 7369: 7346: 7342: 7311: 7307: 7262: 7255: 7204: 7200: 7169: 7165: 7142: 7138: 7107: 7103: 7068: 7064: 7009: 7005: 6960: 6953: 6906: 6902: 6863: 6859: 6806: 6802: 6771: 6767: 6736: 6729: 6692: 6683: 6641: 6634: 6579: 6575: 6522: 6515: 6478: 6471: 6432: 6428: 6399:(24): 6041–50. 6389: 6380: 6345: 6338: 6287: 6283: 6248: 6241: 6206: 6202: 6163: 6159: 6116: 6109: 6064: 6049: 6043: 6013: 6009: 5982:Acta Materialia 5978: 5974: 5935: 5931: 5876: 5872: 5857: 5843: 5839: 5816: 5812: 5767: 5763: 5756: 5742: 5738: 5703: 5699: 5676: 5672: 5627: 5623: 5581: 5577: 5570: 5566: 5517: 5513: 5468: 5464: 5429: 5425: 5393: 5389: 5365: 5361: 5338: 5334: 5303: 5299: 5272: 5268: 5244: 5240: 5217: 5213: 5188: 5184: 5155: 5151: 5119: 5115: 5091: 5087: 5064: 5060: 5045: 5041: 5018: 5014: 4979: 4975: 4936: 4932: 4879: 4872: 4841: 4837: 4816:Materials Today 4808: 4804: 4765: 4761: 4710: 4706: 4675: 4671: 4640: 4636: 4605: 4601: 4562: 4555: 4544: 4533: 4512:(10): 625 629. 4502: 4495: 4450: 4446: 4409: 4405: 4368: 4364: 4357: 4341: 4337: 4330: 4312: 4308: 4298: 4296: 4288: 4287: 4283: 4276: 4254: 4250: 4205: 4201: 4146: 4142: 4105: 4098: 4088: 4086: 4084: 4068: 4064: 4057: 4041: 4037: 4027: 4025: 4016: 4015: 4011: 3974: 3970: 3963: 3949: 3945: 3906: 3899: 3846: 3835: 3825: 3823: 3815: 3814: 3810: 3771: 3767: 3738: 3734: 3697: 3693: 3656:(7443): 74–77. 3646: 3642: 3632: 3630: 3628: 3604: 3600: 3563: 3556: 3525: 3521: 3498: 3491: 3436: 3432: 3373: 3369: 3332: 3321: 3308: 3304: 3299: 3294: 3275:Sol–gel process 3088: 3081: 3074: 3067: 3060: 3053: 3050: 3040:silicon dioxide 2926:silicon dioxide 2843:silicon dioxide 2818:aluminium oxide 2802:silicon dioxide 2761:silicon dioxide 2749:home appliance 2712:silicon dioxide 2667:manganese oxide 2638:silicon dioxide 2609:sodium silicate 2601:silicon dioxide 2544:aluminium oxide 2532:silicon dioxide 2503:aluminium oxide 2439:silicon dioxide 2390:silicon dioxide 2360: 2340: 2320: 2312: 2299: 2291: 2278: 2258: 2236: 2227: 2210:nano-scale iron 2186: 2143: 2129: 2093:electrophoresis 2029:, conventional 1983: 1977: 1904:), non-metals ( 1890:Silicon nitride 1854:aluminium oxide 1842: 1769: 1758: 1709:, washing, and 1679: 1637: 1617: 1573: 1537: 1493: 1473: 1426: 1410: 1408:Regular packing 1344: 1336: 1288:capillary force 1277:elastic modulus 1269:elastic modulus 1261:nanoindentation 1245:nanoindentation 1190: 1173: 1152: 1127: 1108: 1099: 1093: 1053: 1044: 1035: 1022: 1013: 1001: 989: 966: 961: 920:Janus particles 858: 795:) exhibiting a 793: 789: 778: 754: 745:Michael Faraday 742: 687: 655: 650: 642:Brownian motion 626:single crystals 618: 610:ultrafiltration 595: 579: 560: 555: 429:ceramic candles 398:Brownian motion 356: 332: 328: 317: 277: 265: 162:Aluminium oxide 17: 12: 11: 5: 11432: 11422: 11421: 11404: 11403: 11400: 11399: 11398: 11397: 11394: 11383: 11377: 11371: 11370: 11367: 11366: 11364: 11363: 11358: 11352: 11347: 11341:Microparticles 11338: 11328: 11326: 11320: 11319: 11316: 11315: 11313: 11312: 11306: 11304: 11300: 11299: 11297: 11296: 11287: 11282: 11276: 11274: 11268: 11267: 11265: 11264: 11259: 11249: 11248: 11246:Gadoxetic acid 11243: 11238: 11233: 11231:Gadoteric acid 11228: 11223: 11218: 11213: 11208: 11203: 11198: 11196:Gadobenic acid 11186: 11184: 11175: 11169: 11168: 11165: 11164: 11162: 11161: 11159:Barium sulfate 11155: 11153: 11149: 11148: 11146: 11145: 11140: 11135: 11130: 11119:Ethiodized oil 11115: 11113: 11107: 11106: 11103: 11102: 11100: 11099: 11094: 11089: 11084: 11082:Iocetamic acid 11079: 11074: 11069: 11064: 11059: 11054: 11052:Iodoxamic acid 11048: 11046: 11042: 11041: 11039: 11038: 11033: 11028: 11023: 11018: 11013: 11008: 11003: 10998: 10993: 10988: 10983: 10977: 10975: 10967: 10966: 10964: 10963: 10958: 10953: 10948: 10943: 10938: 10933: 10931:Iotalamic acid 10928: 10923: 10921:Metrizoic acid 10918: 10912: 10910: 10899: 10890: 10884: 10883: 10875:Contrast media 10871: 10870: 10863: 10856: 10848: 10839: 10838: 10836: 10835: 10823: 10811: 10799: 10786: 10783: 10782: 10780: 10779: 10774: 10769: 10763: 10761: 10755: 10754: 10752: 10751: 10746: 10740: 10738: 10732: 10731: 10729: 10728: 10723: 10717: 10715: 10709: 10708: 10706: 10705: 10700: 10695: 10690: 10684: 10682: 10676: 10675: 10673: 10672: 10671: 10670: 10660: 10659: 10658: 10653: 10645: 10639: 10637: 10631: 10630: 10628: 10627: 10622: 10617: 10615:Nanotoxicology 10612: 10606: 10604: 10594: 10593: 10591: 10590: 10585: 10580: 10575: 10569: 10567: 10561: 10560: 10557:Nanotechnology 10553: 10552: 10545: 10538: 10530: 10524: 10523: 10514: 10502: 10499:Nanohedron.com 10494: 10493:External links 10491: 10490: 10489: 10483: 10477: 10467: 10455: 10449: 10432: 10429: 10426: 10425: 10374: 10353:(5): 321–325. 10333: 10296:(2): 157–163. 10276: 10235: 10176: 10133: 10098:(19): 8931–8. 10082: 10043: 10021: 10009: 9952: 9902: 9860: 9835: 9784: 9751: 9715: 9669: 9626: 9591: 9564:(11): 118102. 9548: 9511: 9454: 9413: 9358: 9345: 9315: 9302: 9259: 9216: 9157: 9128:(7): 737–742. 9106: 9093: 9072:(3): 209–218. 9052: 9025: 8966: 8947:(1): 347–354. 8931: 8896: 8884: 8857:(8): 4868–81. 8837: 8823: 8800: 8772: 8740:Nanotechnology 8723: 8716: 8690: 8647: 8600: 8563: 8536:(7): 795–821. 8504: 8479:Nanotoxicology 8469: 8434:(5): 344–361. 8405: 8378: 8367:(6): 398–406. 8351: 8324:(4): 314 325. 8308: 8273: 8246: 8219: 8212: 8194: 8183:on 1 July 2011 8168: 8121: 8086:Nature Methods 8072: 8037: 8010:(16): 5064–5. 7994: 7945: 7924:(12): 985–94. 7904: 7845: 7816:(1): 2102451. 7796: 7767:(2): 472–483. 7747: 7696: 7661: 7654: 7634: 7620: 7600: 7573: 7566: 7548: 7521: 7472: 7419: 7367: 7340: 7305: 7253: 7218:(2): 188–199. 7198: 7173:Chem. Soc. Rev 7163: 7136: 7101: 7082:(9): 484–489. 7062: 7003: 6951: 6900: 6857: 6800: 6765: 6727: 6681: 6632: 6573: 6536:(7): 1413–22. 6530:Applied Optics 6513: 6469: 6426: 6393:Applied Optics 6378: 6336: 6281: 6262:(3): 129–143. 6239: 6200: 6157: 6107: 6047: 6041: 6007: 5972: 5929: 5890:(1): 198–205. 5870: 5855: 5837: 5810: 5761: 5754: 5736: 5697: 5670: 5621: 5575: 5564: 5521:Biointerphases 5511: 5462: 5423: 5387: 5359: 5332: 5297: 5286:(1): 139-150. 5266: 5238: 5211: 5182: 5149: 5113: 5085: 5058: 5039: 5012: 4973: 4930: 4893:(1): 350–361. 4870: 4835: 4822:(6): 220–227. 4802: 4759: 4704: 4669: 4650:(10): 9700–7. 4634: 4615:(10): 3615–9. 4599: 4566:Nanotechnology 4553: 4531: 4493: 4444: 4403: 4362: 4355: 4335: 4328: 4306: 4281: 4274: 4248: 4199: 4140: 4096: 4082: 4062: 4055: 4035: 4009: 3968: 3961: 3943: 3897: 3833: 3808: 3765: 3752:(7): 908–931. 3732: 3691: 3640: 3626: 3598: 3554: 3519: 3489: 3430: 3387:(29): 295701. 3381:Nanotechnology 3367: 3346:(2): 377–410. 3319: 3301: 3300: 3298: 3295: 3293: 3292: 3287: 3282: 3277: 3272: 3267: 3262: 3257: 3252: 3247: 3242: 3237: 3232: 3227: 3225:Nanotechnology 3222: 3217: 3212: 3207: 3202: 3200:Nanogeoscience 3197: 3192: 3187: 3182: 3177: 3171: 3166: 3161: 3156: 3151: 3146: 3141: 3136: 3131: 3126: 3124:Colloidal gold 3121: 3116: 3111: 3106: 3101: 3095: 3094: 3093: 3090:Biology portal 3079: 3065: 3062:Science portal 3049: 3046: 3043: 3042: 3024:copper sulfide 3009: 3006: 3002: 3001: 2980: 2977: 2973: 2972: 2911: 2908: 2904: 2903: 2893: 2890: 2886: 2885: 2832: 2829: 2825: 2824: 2790:hydroxyapatite 2779: 2776: 2772: 2771: 2750: 2747: 2743: 2742: 2689: 2686: 2682: 2681: 2652: 2649: 2645: 2644: 2627: 2624: 2620: 2619: 2578: 2575: 2571: 2570: 2525: 2522: 2518: 2517: 2432: 2429: 2425: 2424: 2383: 2380: 2376: 2375: 2374:Nanoparticles 2372: 2369: 2359: 2356: 2339: 2336: 2319: 2316: 2311: 2308: 2304:photocatalysis 2298: 2297:Photocatalysis 2295: 2290: 2287: 2277: 2274: 2261:growth factors 2256: 2235: 2232: 2226: 2223: 2222: 2221: 2206: 2195: 2189: 2184: 2178: 2151:cell membranes 2141:Nanotoxicology 2128: 2125: 2117:centrifugation 2113:Chromatography 2079:methods using 1979:Main article: 1976: 1973: 1874:metal carbides 1866:glass-ceramics 1850:oxide ceramics 1841: 1838: 1768: 1765: 1757: 1754: 1707:centrifugation 1678: 1675: 1636: 1633: 1616: 1613: 1589:thermal plasma 1572: 1569: 1559:. Traditional 1536: 1533: 1492: 1489: 1485:air classified 1479:, a planetary 1472: 1469: 1438:semiconductors 1425: 1422: 1409: 1406: 1343: 1340: 1335: 1332: 1316:yield strength 1253:scanning probe 1217:work hardening 1202:surface stress 1189: 1186: 1172: 1169: 1151: 1148: 1126: 1123: 1107: 1104: 1092: 1089: 1052: 1049: 1043: 1040: 1034: 1031: 1021: 1018: 1012: 1009: 1000: 997: 988: 985: 965: 962: 960: 957: 857: 854: 835:crystal growth 791: 777: 774: 753: 750: 741: 738: 686: 683: 663:meteorological 661:, geological, 654: 651: 649: 646: 617: 614: 594: 591: 578: 575: 559: 556: 554: 551: 508:nanotechnology 433:nanofiltration 391:microparticles 358: 357: 335: 333: 326: 319: 318: 316: 315: 308: 301: 293: 290: 289: 288: 287: 275: 260: 259: 258: 257: 252: 247: 242: 234: 233: 227: 226: 225: 224: 219: 214: 209: 204: 199: 194: 189: 184: 179: 174: 169: 164: 159: 154: 146: 145: 138: 137: 136: 135: 130: 125: 120: 115: 107: 106: 100: 99: 98: 97: 92: 87: 82: 77: 72: 64: 63: 57: 56: 48: 47: 41: 40: 15: 9: 6: 4: 3: 2: 11431: 11420: 11419:Nanoparticles 11417: 11416: 11414: 11395: 11393: 11390: 11389: 11387: 11384: 11381: 11378: 11376: 11373: 11372: 11368: 11362: 11359: 11357: 11356:phospholipids 11353: 11351: 11348: 11346: 11342: 11339: 11337: 11336:human albumin 11333: 11330: 11329: 11327: 11325: 11321: 11311: 11308: 11307: 11305: 11301: 11295: 11294:nanoparticles 11291: 11288: 11286: 11283: 11281: 11278: 11277: 11275: 11273: 11269: 11263: 11260: 11258: 11254: 11251: 11250: 11247: 11244: 11242: 11239: 11237: 11234: 11232: 11229: 11227: 11224: 11222: 11219: 11217: 11214: 11212: 11209: 11207: 11204: 11202: 11199: 11197: 11193: 11192: 11188: 11187: 11185: 11183: 11179: 11176: 11174: 11170: 11160: 11157: 11156: 11154: 11152:Non-iodinated 11150: 11144: 11141: 11139: 11136: 11134: 11131: 11128: 11124: 11120: 11117: 11116: 11114: 11108: 11098: 11095: 11093: 11090: 11088: 11085: 11083: 11080: 11078: 11077:Iopanoic acid 11075: 11073: 11070: 11068: 11065: 11063: 11060: 11058: 11057:Iotroxic acid 11055: 11053: 11050: 11049: 11047: 11043: 11037: 11034: 11032: 11029: 11027: 11024: 11022: 11019: 11017: 11014: 11012: 11009: 11007: 11004: 11002: 10999: 10997: 10994: 10992: 10991:Ioxaglic acid 10989: 10987: 10984: 10982: 10979: 10978: 10976: 10974: 10970:Nephrotropic, 10968: 10962: 10959: 10957: 10954: 10952: 10951:Iocarmic acid 10949: 10947: 10944: 10942: 10941:Ioglicic acid 10939: 10937: 10934: 10932: 10929: 10927: 10924: 10922: 10919: 10917: 10914: 10913: 10911: 10909: 10905:Nephrotropic, 10903: 10900: 10898:Water soluble 10894: 10891: 10889: 10885: 10880: 10876: 10869: 10864: 10862: 10857: 10855: 10850: 10849: 10846: 10834: 10829: 10824: 10822: 10817: 10812: 10810: 10809: 10800: 10798: 10797: 10788: 10787: 10784: 10778: 10775: 10773: 10770: 10768: 10765: 10764: 10762: 10760: 10756: 10750: 10747: 10745: 10742: 10741: 10739: 10737: 10733: 10727: 10724: 10722: 10719: 10718: 10716: 10714: 10710: 10704: 10701: 10699: 10696: 10694: 10691: 10689: 10686: 10685: 10683: 10681: 10677: 10669: 10666: 10665: 10664: 10663:Nanoparticles 10661: 10657: 10654: 10652: 10649: 10648: 10646: 10644: 10641: 10640: 10638: 10636: 10635:Nanomaterials 10632: 10626: 10623: 10621: 10618: 10616: 10613: 10611: 10608: 10607: 10605: 10603: 10599: 10595: 10589: 10586: 10584: 10581: 10579: 10578:Organizations 10576: 10574: 10571: 10570: 10568: 10566: 10562: 10558: 10551: 10546: 10544: 10539: 10537: 10532: 10531: 10528: 10522: 10518: 10515: 10513: 10509: 10506: 10503: 10500: 10497: 10496: 10487: 10484: 10481: 10478: 10475: 10471: 10468: 10465: 10464: 10459: 10456: 10452: 10446: 10442: 10441: 10435: 10434: 10421: 10417: 10412: 10407: 10402: 10397: 10393: 10389: 10385: 10378: 10370: 10366: 10361: 10356: 10352: 10348: 10344: 10337: 10329: 10325: 10320: 10315: 10311: 10307: 10303: 10299: 10295: 10291: 10287: 10280: 10272: 10268: 10263: 10258: 10255:(5): 625–35. 10254: 10250: 10246: 10239: 10231: 10227: 10222: 10217: 10212: 10207: 10203: 10199: 10195: 10191: 10187: 10180: 10172: 10168: 10164: 10160: 10156: 10152: 10148: 10144: 10137: 10129: 10125: 10121: 10117: 10113: 10109: 10105: 10101: 10097: 10093: 10086: 10078: 10074: 10070: 10066: 10062: 10058: 10054: 10047: 10031: 10025: 10019: 10013: 10005: 10001: 9996: 9991: 9987: 9983: 9979: 9975: 9971: 9967: 9963: 9956: 9948: 9944: 9940: 9936: 9932: 9928: 9924: 9920: 9913: 9906: 9898: 9894: 9890: 9886: 9882: 9878: 9871: 9864: 9849: 9845: 9839: 9831: 9827: 9822: 9817: 9812: 9807: 9803: 9799: 9795: 9788: 9779: 9774: 9770: 9766: 9762: 9755: 9746: 9742: 9738: 9734: 9730: 9726: 9719: 9711: 9707: 9703: 9699: 9695: 9691: 9687: 9683: 9679: 9678:Duarte, F. J. 9673: 9665: 9661: 9657: 9653: 9649: 9645: 9641: 9637: 9630: 9622: 9618: 9614: 9610: 9606: 9602: 9595: 9587: 9583: 9579: 9575: 9571: 9567: 9563: 9559: 9552: 9544: 9540: 9536: 9532: 9528: 9524: 9523: 9515: 9507: 9503: 9498: 9493: 9489: 9485: 9481: 9477: 9473: 9469: 9465: 9458: 9450: 9446: 9441: 9436: 9432: 9428: 9424: 9417: 9409: 9405: 9401: 9397: 9393: 9389: 9385: 9381: 9378:(2): 022006. 9377: 9373: 9369: 9362: 9348: 9342: 9338: 9334: 9330: 9326: 9319: 9312: 9306: 9299: 9298:public domain 9280: 9274: 9272: 9270: 9268: 9266: 9264: 9255: 9251: 9247: 9243: 9239: 9235: 9231: 9227: 9220: 9212: 9208: 9203: 9198: 9193: 9188: 9184: 9180: 9176: 9172: 9168: 9161: 9153: 9149: 9144: 9139: 9135: 9131: 9127: 9123: 9122: 9117: 9110: 9103: 9097: 9089: 9085: 9080: 9075: 9071: 9067: 9063: 9056: 9048: 9044: 9041:(5): 822–45. 9040: 9036: 9029: 9021: 9017: 9012: 9007: 9002: 8997: 8993: 8989: 8985: 8981: 8977: 8970: 8962: 8958: 8954: 8950: 8946: 8942: 8935: 8927: 8923: 8919: 8915: 8911: 8907: 8900: 8893: 8888: 8880: 8876: 8872: 8868: 8864: 8860: 8856: 8852: 8848: 8841: 8826: 8820: 8816: 8815: 8810: 8804: 8788: 8787: 8782: 8776: 8765: 8761: 8757: 8753: 8749: 8746:(3): R9–R13. 8745: 8741: 8734: 8727: 8719: 8713: 8709: 8705: 8701: 8694: 8686: 8682: 8678: 8674: 8670: 8666: 8662: 8658: 8651: 8643: 8639: 8635: 8631: 8627: 8623: 8619: 8615: 8611: 8604: 8595: 8590: 8586: 8582: 8578: 8574: 8567: 8559: 8555: 8551: 8547: 8543: 8539: 8535: 8531: 8524: 8517: 8515: 8513: 8511: 8509: 8500: 8496: 8492: 8488: 8484: 8480: 8473: 8465: 8461: 8457: 8453: 8449: 8445: 8441: 8437: 8433: 8429: 8428:Ecotoxicology 8422: 8420: 8418: 8416: 8414: 8412: 8410: 8401: 8397: 8393: 8389: 8382: 8374: 8370: 8366: 8362: 8355: 8347: 8343: 8339: 8335: 8331: 8327: 8323: 8319: 8318:J. Mater. Sci 8312: 8304: 8300: 8296: 8292: 8288: 8284: 8277: 8269: 8265: 8261: 8257: 8250: 8242: 8238: 8235:(10): C 190. 8234: 8230: 8223: 8215: 8209: 8205: 8198: 8182: 8178: 8172: 8164: 8160: 8156: 8152: 8148: 8144: 8140: 8136: 8132: 8125: 8117: 8113: 8108: 8103: 8099: 8095: 8091: 8087: 8083: 8076: 8068: 8064: 8060: 8056: 8052: 8048: 8041: 8033: 8029: 8025: 8021: 8017: 8013: 8009: 8005: 7998: 7990: 7986: 7981: 7976: 7972: 7968: 7965:(4): 731–42. 7964: 7960: 7956: 7949: 7941: 7937: 7932: 7927: 7923: 7919: 7915: 7908: 7900: 7896: 7891: 7886: 7881: 7876: 7872: 7868: 7864: 7860: 7856: 7849: 7841: 7837: 7832: 7827: 7823: 7819: 7815: 7811: 7807: 7800: 7792: 7788: 7783: 7778: 7774: 7770: 7766: 7762: 7758: 7751: 7743: 7739: 7735: 7731: 7727: 7723: 7719: 7715: 7711: 7707: 7700: 7692: 7688: 7684: 7680: 7676: 7672: 7665: 7657: 7651: 7647: 7646: 7638: 7623: 7617: 7613: 7612: 7604: 7596: 7592: 7588: 7584: 7577: 7569: 7563: 7559: 7552: 7544: 7540: 7536: 7532: 7525: 7517: 7513: 7508: 7503: 7499: 7495: 7492:: 1868–1880. 7491: 7487: 7483: 7476: 7468: 7464: 7459: 7454: 7450: 7446: 7442: 7438: 7434: 7430: 7423: 7415: 7411: 7406: 7401: 7397: 7393: 7389: 7385: 7381: 7374: 7372: 7363: 7359: 7355: 7351: 7344: 7336: 7332: 7328: 7324: 7320: 7316: 7309: 7301: 7297: 7292: 7287: 7283: 7279: 7275: 7271: 7267: 7260: 7258: 7249: 7245: 7241: 7237: 7233: 7229: 7225: 7221: 7217: 7213: 7209: 7202: 7194: 7190: 7186: 7182: 7178: 7174: 7167: 7159: 7155: 7151: 7147: 7140: 7132: 7128: 7124: 7120: 7116: 7112: 7105: 7097: 7093: 7089: 7085: 7081: 7077: 7073: 7066: 7058: 7054: 7049: 7044: 7039: 7034: 7030: 7026: 7022: 7018: 7014: 7007: 6999: 6995: 6990: 6985: 6981: 6977: 6973: 6969: 6965: 6958: 6956: 6947: 6943: 6939: 6935: 6931: 6927: 6923: 6919: 6915: 6911: 6904: 6896: 6892: 6888: 6884: 6880: 6876: 6872: 6868: 6861: 6853: 6849: 6844: 6839: 6835: 6831: 6827: 6823: 6819: 6815: 6811: 6804: 6796: 6792: 6788: 6784: 6780: 6776: 6769: 6761: 6757: 6753: 6749: 6745: 6741: 6734: 6732: 6722: 6717: 6713: 6709: 6705: 6701: 6697: 6690: 6688: 6686: 6677: 6673: 6668: 6663: 6659: 6655: 6651: 6647: 6639: 6637: 6628: 6624: 6619: 6614: 6609: 6604: 6600: 6596: 6592: 6588: 6584: 6577: 6569: 6565: 6560: 6555: 6551: 6547: 6543: 6539: 6535: 6531: 6527: 6520: 6518: 6508: 6503: 6499: 6495: 6491: 6487: 6483: 6476: 6474: 6465: 6461: 6457: 6453: 6449: 6445: 6441: 6437: 6430: 6422: 6418: 6414: 6410: 6406: 6402: 6398: 6394: 6387: 6385: 6383: 6374: 6370: 6366: 6362: 6358: 6354: 6350: 6343: 6341: 6332: 6328: 6324: 6320: 6316: 6312: 6308: 6304: 6300: 6296: 6292: 6285: 6277: 6273: 6269: 6265: 6261: 6257: 6253: 6246: 6244: 6235: 6231: 6227: 6223: 6219: 6215: 6211: 6204: 6196: 6192: 6188: 6184: 6180: 6176: 6172: 6168: 6161: 6153: 6149: 6145: 6141: 6137: 6133: 6129: 6125: 6121: 6114: 6112: 6103: 6099: 6094: 6089: 6085: 6081: 6078:(1): 013001. 6077: 6073: 6069: 6062: 6060: 6058: 6056: 6054: 6052: 6044: 6038: 6034: 6030: 6026: 6022: 6018: 6011: 6003: 5999: 5995: 5991: 5987: 5983: 5976: 5968: 5964: 5960: 5956: 5952: 5948: 5945:(2): 95–100. 5944: 5940: 5933: 5925: 5921: 5916: 5911: 5906: 5901: 5897: 5893: 5889: 5885: 5881: 5874: 5866: 5862: 5858: 5856:0-07-028594-2 5852: 5848: 5841: 5833: 5829: 5825: 5821: 5814: 5806: 5802: 5797: 5792: 5788: 5784: 5781:: 2265–2276. 5780: 5776: 5772: 5765: 5757: 5751: 5748:. Wiley-VCH. 5747: 5740: 5732: 5728: 5724: 5720: 5716: 5712: 5708: 5701: 5693: 5689: 5685: 5681: 5674: 5666: 5662: 5657: 5652: 5648: 5644: 5640: 5636: 5632: 5625: 5617: 5613: 5608: 5603: 5599: 5595: 5591: 5587: 5579: 5573: 5568: 5560: 5556: 5552: 5548: 5544: 5540: 5535: 5530: 5526: 5522: 5515: 5507: 5503: 5498: 5493: 5489: 5485: 5481: 5477: 5473: 5466: 5458: 5454: 5450: 5446: 5442: 5438: 5434: 5427: 5419: 5415: 5411: 5407: 5403: 5399: 5391: 5383: 5379: 5375: 5371: 5363: 5355: 5351: 5347: 5343: 5336: 5328: 5324: 5320: 5316: 5312: 5308: 5301: 5293: 5289: 5285: 5281: 5277: 5270: 5262: 5258: 5254: 5250: 5242: 5234: 5230: 5226: 5222: 5215: 5209: 5205: 5201: 5197: 5196: 5191: 5186: 5177: 5172: 5168: 5164: 5160: 5153: 5145: 5141: 5137: 5133: 5129: 5125: 5117: 5109: 5105: 5101: 5097: 5089: 5081: 5077: 5073: 5069: 5062: 5054: 5050: 5043: 5035: 5031: 5027: 5023: 5016: 5008: 5004: 5000: 4996: 4992: 4988: 4984: 4977: 4969: 4965: 4961: 4957: 4953: 4949: 4945: 4941: 4934: 4926: 4922: 4917: 4912: 4908: 4904: 4900: 4896: 4892: 4888: 4884: 4877: 4875: 4866: 4862: 4858: 4854: 4850: 4846: 4839: 4830: 4825: 4821: 4817: 4813: 4806: 4798: 4794: 4790: 4786: 4782: 4778: 4774: 4770: 4763: 4755: 4751: 4747: 4743: 4739: 4735: 4731: 4727: 4723: 4719: 4715: 4708: 4700: 4696: 4692: 4688: 4684: 4680: 4673: 4665: 4661: 4657: 4653: 4649: 4645: 4638: 4630: 4626: 4622: 4618: 4614: 4610: 4603: 4595: 4591: 4587: 4583: 4579: 4575: 4571: 4567: 4560: 4558: 4549: 4542: 4540: 4538: 4536: 4527: 4523: 4519: 4515: 4511: 4507: 4500: 4498: 4489: 4485: 4480: 4475: 4471: 4467: 4463: 4459: 4455: 4448: 4439: 4434: 4430: 4426: 4422: 4418: 4414: 4407: 4398: 4393: 4389: 4385: 4381: 4377: 4373: 4366: 4358: 4352: 4348: 4347: 4339: 4331: 4325: 4321: 4317: 4310: 4295: 4291: 4285: 4277: 4271: 4267: 4263: 4259: 4252: 4244: 4240: 4235: 4230: 4226: 4222: 4218: 4214: 4210: 4203: 4195: 4191: 4186: 4181: 4176: 4171: 4167: 4163: 4159: 4155: 4151: 4144: 4135: 4130: 4126: 4122: 4118: 4114: 4110: 4103: 4101: 4085: 4079: 4075: 4074: 4066: 4058: 4052: 4048: 4047: 4039: 4023: 4019: 4013: 4005: 4001: 3996: 3991: 3987: 3983: 3979: 3972: 3964: 3958: 3954: 3947: 3939: 3935: 3931: 3927: 3923: 3919: 3915: 3911: 3904: 3902: 3893: 3889: 3884: 3879: 3875: 3871: 3867: 3863: 3859: 3855: 3851: 3844: 3842: 3840: 3838: 3822: 3818: 3812: 3804: 3800: 3796: 3792: 3788: 3784: 3780: 3776: 3769: 3760: 3755: 3751: 3747: 3743: 3736: 3727: 3722: 3718: 3714: 3711:(1): 013001. 3710: 3706: 3702: 3695: 3687: 3683: 3679: 3675: 3671: 3667: 3663: 3659: 3655: 3651: 3644: 3629: 3623: 3619: 3615: 3611: 3610: 3602: 3594: 3590: 3585: 3580: 3576: 3572: 3568: 3561: 3559: 3550: 3546: 3542: 3538: 3534: 3530: 3523: 3515: 3511: 3507: 3503: 3496: 3494: 3485: 3481: 3476: 3471: 3467: 3463: 3458: 3453: 3449: 3445: 3444:Nanomaterials 3441: 3434: 3426: 3422: 3418: 3414: 3410: 3406: 3402: 3398: 3394: 3390: 3386: 3382: 3378: 3371: 3363: 3359: 3354: 3349: 3345: 3341: 3337: 3330: 3328: 3326: 3324: 3316: 3312: 3306: 3302: 3291: 3288: 3286: 3283: 3281: 3278: 3276: 3273: 3271: 3268: 3266: 3263: 3261: 3258: 3256: 3253: 3251: 3248: 3246: 3243: 3241: 3238: 3236: 3233: 3231: 3228: 3226: 3223: 3221: 3218: 3216: 3213: 3211: 3208: 3206: 3205:Nanomaterials 3203: 3201: 3198: 3196: 3193: 3191: 3188: 3186: 3183: 3181: 3178: 3175: 3172: 3170: 3167: 3165: 3162: 3160: 3157: 3155: 3152: 3150: 3147: 3145: 3142: 3140: 3137: 3135: 3132: 3130: 3127: 3125: 3122: 3120: 3117: 3115: 3112: 3110: 3107: 3105: 3102: 3100: 3097: 3096: 3091: 3085: 3080: 3077: 3071: 3066: 3063: 3057: 3052: 3041: 3037: 3033: 3029: 3025: 3021: 3017: 3013: 3010: 3007: 3004: 3003: 3000: 2996: 2992: 2988: 2984: 2981: 2978: 2975: 2974: 2971: 2967: 2963: 2959: 2955: 2951: 2947: 2943: 2939: 2935: 2931: 2927: 2923: 2919: 2915: 2912: 2909: 2906: 2905: 2901: 2897: 2894: 2891: 2888: 2887: 2884: 2880: 2876: 2872: 2868: 2864: 2860: 2859:boron nitride 2856: 2852: 2848: 2844: 2840: 2836: 2833: 2830: 2827: 2826: 2823: 2819: 2815: 2811: 2807: 2803: 2799: 2795: 2791: 2787: 2783: 2780: 2777: 2774: 2773: 2770: 2766: 2762: 2758: 2754: 2751: 2748: 2745: 2744: 2741: 2737: 2733: 2729: 2725: 2721: 2717: 2713: 2709: 2705: 2701: 2697: 2693: 2690: 2687: 2684: 2683: 2680: 2676: 2672: 2668: 2664: 2660: 2656: 2653: 2650: 2647: 2646: 2643: 2639: 2635: 2631: 2628: 2625: 2622: 2621: 2618: 2614: 2610: 2606: 2602: 2598: 2594: 2590: 2586: 2582: 2579: 2576: 2573: 2572: 2569: 2565: 2561: 2557: 2553: 2549: 2545: 2541: 2537: 2533: 2529: 2526: 2524:construction 2523: 2520: 2519: 2516: 2512: 2508: 2504: 2500: 2496: 2492: 2488: 2484: 2480: 2476: 2472: 2468: 2467:boron nitride 2464: 2460: 2456: 2452: 2448: 2444: 2440: 2436: 2433: 2430: 2427: 2426: 2423: 2419: 2415: 2411: 2407: 2403: 2399: 2395: 2391: 2387: 2384: 2381: 2378: 2377: 2373: 2370: 2367: 2366: 2355: 2353: 2349: 2345: 2335: 2333: 2329: 2325: 2324:drug carriers 2315: 2307: 2305: 2294: 2286: 2283: 2273: 2271: 2267: 2262: 2253: 2250:(PMMA) laser 2249: 2245: 2240: 2231: 2219: 2215: 2211: 2207: 2205:environments. 2203: 2199: 2196: 2193: 2190: 2182: 2179: 2176: 2173: 2172: 2171: 2169: 2163: 2161: 2157: 2152: 2148: 2142: 2138: 2134: 2124: 2122: 2118: 2114: 2110: 2106: 2102: 2098: 2094: 2090: 2086: 2082: 2078: 2074: 2070: 2066: 2062: 2058: 2054: 2050: 2046: 2044: 2040: 2036: 2032: 2028: 2027:visible light 2024: 2020: 2016: 2012: 2007: 2005: 2001: 2000:crystallinity 1997: 1993: 1989: 1982: 1972: 1970: 1964: 1961: 1955: 1952: 1947: 1945: 1941: 1937: 1933: 1930: 1926: 1925:agglomeration 1923:Uncontrolled 1921: 1919: 1915: 1911: 1907: 1903: 1899: 1895: 1891: 1887: 1883: 1879: 1875: 1871: 1867: 1863: 1859: 1855: 1851: 1847: 1837: 1834: 1831: 1829: 1825: 1821: 1817: 1812: 1807: 1805: 1801: 1795: 1793: 1789: 1784: 1782: 1778: 1774: 1764: 1762: 1753: 1749: 1747: 1743: 1739: 1735: 1731: 1727: 1722: 1718: 1716: 1712: 1708: 1704: 1703:sedimentation 1700: 1695: 1693: 1688: 1684: 1677:Wet chemistry 1674: 1671: 1666: 1665:free radicals 1662: 1658: 1650: 1646: 1641: 1632: 1629: 1624: 1621: 1612: 1608: 1606: 1602: 1598: 1594: 1590: 1586: 1582: 1578: 1568: 1566: 1562: 1558: 1554: 1550: 1546: 1542: 1532: 1530: 1526: 1522: 1518: 1514: 1510: 1506: 1502: 1498: 1488: 1486: 1482: 1478: 1468: 1466: 1462: 1458: 1454: 1450: 1446: 1441: 1439: 1435: 1431: 1421: 1419: 1415: 1405: 1401: 1397: 1395: 1394:solar thermal 1391: 1387: 1383: 1378: 1376: 1375:energy levels 1372: 1368: 1364: 1360: 1356: 1355:semiconductor 1352: 1348: 1339: 1331: 1329: 1324: 1319: 1317: 1313: 1309: 1305: 1302: 1297: 1294: 1289: 1285: 1282:Adhesion and 1280: 1278: 1274: 1270: 1266: 1262: 1258: 1254: 1250: 1246: 1242: 1237: 1235: 1231: 1226: 1222: 1218: 1214: 1211: 1207: 1203: 1199: 1195: 1185: 1182: 1178: 1168: 1166: 1162: 1157: 1147: 1144: 1136: 1131: 1122: 1120: 1116: 1112: 1103: 1098: 1088: 1086: 1082: 1078: 1074: 1070: 1066: 1057: 1048: 1039: 1030: 1026: 1017: 1008: 1005: 996: 994: 984: 982: 981:autocatalysis 978: 973: 970: 956: 954: 950: 947: 943: 939: 938:stabilizers. 937: 933: 930:at water/oil 929: 928:self-assemble 925: 921: 917: 913: 908: 906: 902: 898: 894: 890: 889:nanocellulose 886: 882: 878: 873: 871: 867: 863: 853: 851: 846: 844: 841:droplets and 840: 836: 832: 831:crystal habit 827: 825: 822:, nanoreefs, 821: 818:, nanostars, 817: 813: 809: 802: 798: 787: 784:Nanostars of 782: 773: 771: 767: 763: 759: 749: 746: 737: 735: 731: 727: 723: 719: 715: 711: 708: 704: 700: 696: 692: 682: 680: 676: 672: 668: 664: 660: 645: 643: 638: 633: 631: 630:single-domain 627: 623: 613: 611: 607: 603: 598: 590: 588: 584: 574: 571: 569: 565: 550: 547: 543: 539: 535: 531: 526: 524: 520: 516: 515:point defects 511: 509: 505: 501: 497: 493: 489: 485: 481: 477: 473: 469: 465: 461: 453: 448: 444: 441: 436: 434: 430: 426: 422: 418: 414: 410: 409:visible light 405: 403: 399: 394: 392: 387: 385: 384:atom clusters 381: 377: 373: 369: 365: 354: 349: 345: 341: 340: 339:Micromeritics 334: 325: 324: 314: 309: 307: 302: 300: 295: 294: 292: 291: 286: 281: 276: 274: 269: 264: 263: 262: 261: 256: 253: 251: 248: 246: 243: 241: 240:Nanocomposite 238: 237: 236: 235: 232: 229: 228: 223: 220: 218: 215: 213: 210: 208: 205: 203: 202:Iron–platinum 200: 198: 195: 193: 190: 188: 185: 183: 180: 178: 175: 173: 170: 168: 165: 163: 160: 158: 155: 153: 150: 149: 148: 147: 144: 143:nanoparticles 140: 139: 134: 131: 129: 128:Health impact 126: 124: 121: 119: 118:C70 fullerene 116: 114: 111: 110: 109: 108: 105: 102: 101: 96: 93: 91: 88: 86: 83: 81: 78: 76: 73: 71: 68: 67: 66: 65: 62: 59: 58: 54: 50: 49: 46: 45:Nanomaterials 43: 42: 38: 37: 31: 27: 23: 19: 11350:Perflenapent 11332:Microspheres 11293: 11262:Mangafodipir 11252: 11226:Gadopiclenol 11211:Gadofosveset 11189: 11182:Paramagnetic 11138:Propyliodone 11123:Ethyl esters 11045:Hepatotropic 10908:high osmolar 10888:X-ray and CT 10806: 10794: 10772:Nanorobotics 10662: 10610:Nanomedicine 10602:applications 10463:ScienceDaily 10461: 10439: 10391: 10387: 10377: 10350: 10346: 10336: 10293: 10289: 10279: 10252: 10248: 10238: 10193: 10189: 10179: 10146: 10142: 10136: 10095: 10091: 10085: 10063:(1): 85–90. 10060: 10056: 10046: 10034:. Retrieved 10024: 10012: 9972:(1): 11216. 9969: 9965: 9955: 9922: 9918: 9905: 9880: 9876: 9863: 9851:. Retrieved 9847: 9838: 9801: 9797: 9787: 9771:(10): e435. 9768: 9764: 9754: 9728: 9724: 9718: 9685: 9681: 9672: 9639: 9635: 9629: 9604: 9600: 9594: 9561: 9557: 9551: 9526: 9520: 9514: 9471: 9467: 9457: 9433:(5): 48–55. 9430: 9426: 9416: 9375: 9371: 9361: 9350:, retrieved 9328: 9318: 9305: 9283:. Retrieved 9229: 9225: 9219: 9174: 9170: 9160: 9125: 9119: 9109: 9096: 9069: 9065: 9055: 9038: 9034: 9028: 8983: 8979: 8969: 8944: 8940: 8934: 8909: 8905: 8899: 8887: 8854: 8850: 8840: 8828:. Retrieved 8813: 8809:Ying, Jackie 8803: 8791:. Retrieved 8784: 8775: 8764:the original 8743: 8739: 8726: 8699: 8693: 8660: 8656: 8650: 8617: 8613: 8603: 8594:10261/333681 8579:(1): 18–27. 8576: 8572: 8566: 8533: 8529: 8485:(1): 42–51. 8482: 8478: 8472: 8431: 8427: 8391: 8387: 8381: 8364: 8360: 8354: 8321: 8317: 8311: 8286: 8282: 8276: 8259: 8255: 8249: 8232: 8228: 8222: 8203: 8197: 8185:. Retrieved 8181:the original 8171: 8138: 8134: 8124: 8092:(5): 397–9. 8089: 8085: 8075: 8050: 8046: 8040: 8007: 8003: 7997: 7962: 7958: 7948: 7921: 7917: 7907: 7862: 7858: 7848: 7813: 7809: 7799: 7764: 7760: 7750: 7709: 7705: 7699: 7674: 7670: 7664: 7644: 7637: 7625:. Retrieved 7610: 7603: 7586: 7582: 7576: 7557: 7551: 7534: 7530: 7524: 7489: 7485: 7475: 7458:10261/182011 7432: 7428: 7422: 7387: 7383: 7353: 7349: 7343: 7318: 7314: 7308: 7273: 7269: 7215: 7211: 7201: 7176: 7172: 7166: 7149: 7145: 7139: 7114: 7110: 7104: 7079: 7075: 7065: 7020: 7017:RSC Advances 7016: 7006: 6971: 6967: 6913: 6909: 6903: 6870: 6866: 6860: 6817: 6813: 6803: 6778: 6774: 6768: 6743: 6739: 6703: 6699: 6667:11585/653909 6649: 6645: 6590: 6586: 6576: 6533: 6529: 6489: 6485: 6439: 6435: 6429: 6396: 6392: 6356: 6352: 6298: 6294: 6284: 6259: 6255: 6217: 6213: 6203: 6170: 6160: 6127: 6123: 6075: 6071: 6016: 6010: 5985: 5981: 5975: 5942: 5938: 5932: 5887: 5883: 5873: 5846: 5840: 5823: 5819: 5813: 5778: 5774: 5764: 5745: 5739: 5714: 5710: 5700: 5683: 5679: 5673: 5638: 5634: 5631:"Nucleation" 5624: 5607:11585/583548 5589: 5585: 5578: 5567: 5524: 5520: 5514: 5479: 5475: 5465: 5440: 5436: 5426: 5401: 5397: 5390: 5373: 5369: 5362: 5345: 5341: 5335: 5310: 5306: 5300: 5283: 5279: 5269: 5252: 5248: 5241: 5224: 5220: 5214: 5193: 5185: 5166: 5162: 5152: 5127: 5123: 5116: 5099: 5095: 5088: 5071: 5067: 5061: 5052: 5048: 5042: 5025: 5021: 5015: 4990: 4986: 4976: 4943: 4939: 4933: 4890: 4887:Nano Letters 4886: 4848: 4844: 4838: 4819: 4815: 4805: 4772: 4768: 4762: 4721: 4717: 4707: 4682: 4678: 4672: 4647: 4643: 4637: 4612: 4608: 4602: 4572:(1): 25–28. 4569: 4565: 4547: 4509: 4505: 4461: 4457: 4447: 4420: 4416: 4406: 4379: 4375: 4365: 4345: 4338: 4319: 4309: 4297:. Retrieved 4294:www.nano.gov 4293: 4284: 4257: 4251: 4216: 4212: 4202: 4157: 4153: 4143: 4116: 4112: 4087:. Retrieved 4072: 4065: 4045: 4038: 4026:. Retrieved 4021: 4012: 3985: 3981: 3971: 3952: 3946: 3913: 3909: 3857: 3854:Nano Reviews 3853: 3824:. Retrieved 3820: 3811: 3778: 3774: 3768: 3749: 3745: 3735: 3708: 3704: 3694: 3653: 3649: 3643: 3631:. Retrieved 3608: 3601: 3574: 3570: 3532: 3528: 3522: 3505: 3501: 3450:(21): 2889. 3447: 3443: 3433: 3384: 3380: 3370: 3343: 3339: 3313:". From the 3305: 3210:Nanomedicine 3134:Eigencolloid 2651:environment 2626:electronics 2459:cobalt oxide 2382:agriculture 2341: 2321: 2313: 2300: 2292: 2279: 2241: 2237: 2234:Applications 2228: 2208:Iron: While 2181:Cerium oxide 2164: 2160:cytotoxicity 2144: 2137:Particulates 2049:Spectroscopy 2047: 2008: 1984: 1969:Monodisperse 1965: 1956: 1948: 1922: 1843: 1835: 1832: 1824:streptavidin 1808: 1796: 1785: 1776: 1770: 1759: 1750: 1719: 1715:spin-coating 1696: 1680: 1654: 1631:structures. 1623:condensation 1618: 1609: 1597:electric arc 1574: 1553:hydrocarbons 1538: 1494: 1474: 1442: 1427: 1411: 1402: 1398: 1379: 1371:Quantum dots 1345: 1337: 1328:dislocations 1320: 1307: 1300: 1298: 1281: 1238: 1198:dislocations 1192:The reduced 1191: 1174: 1153: 1140: 1109: 1100: 1062: 1045: 1036: 1027: 1023: 1014: 1002: 990: 974: 967: 940: 909: 905:nanostarches 874: 859: 847: 828: 824:nanowhiskers 805: 801:desert roses 755: 752:20th century 743: 740:19th century 710:Lycurgus cup 688: 659:cosmological 656: 634: 619: 602:transparency 599: 596: 593:Common usage 580: 572: 561: 527: 519:dislocations 512: 457: 437: 435:techniques. 406: 395: 388: 367: 364:nanoparticle 363: 361: 352: 337: 177:Cobalt oxide 157:Quantum dots 142: 90:Applications 18: 11382:from market 11236:Gadoteridol 11206:Gadodiamide 11143:Iofendylate 11129:, lipiodol) 11127:fatty acids 11125:of iodised 10981:Metrizamide 10973:low osmolar 10030:"Sunscreen" 9883:: 123–141. 9804:(5): 1150. 9642:: 239–245. 9607:: 413–420. 8906:Soft Matter 7390:: 466–475. 6820:(1): 7696. 6492:(10): e34. 6442:: 827–835. 6436:Nano Energy 5988:: 433–441. 5482:: 164–173. 5370:Chem. Mater 5342:Chem. Mater 5280:Chem. Mater 5169:: 186-235. 5124:Chem. Mater 4382:: 145 181. 4299:12 December 3315:EPA Website 3270:Silver Nano 3250:Quantum dot 2431:automotive 2310:Road paving 2198:Nano Silver 1792:gallic acid 1699:evaporation 1687:precipitate 1513:anisotropic 1434:dielectrics 1369:materials. 1357:particles, 1263:to measure 1135:quantum dot 1111:Suspensions 934:and act as 926:. They can 918:are termed 916:hydrophobic 912:hydrophilic 877:biopolymers 820:nanoflowers 722:Mesopotamia 720:pottery of 695:glassmakers 622:Nanopowders 553:Definitions 11324:Ultrasound 11310:Perflubron 11290:Iron oxide 11285:Ferristene 11280:Ferumoxsil 11216:Gadolinium 11201:Gadobutrol 11110:Iodinated, 11067:Adipiodone 11031:Iobitridol 10896:Iodinated, 10656:Non-carbon 10647:Nanotubes 10643:Fullerenes 10625:Regulation 10053:Pinnell SR 10036:6 December 9853:6 December 9427:Complexity 9285:6 February 8830:6 December 8620:: 109700. 7627:6 December 7356:: 152502. 6916:: 601–22. 6781:: 213042. 6593:(1): 225. 5163:Mater. Adv 5055:: 236-242. 4685:(2): 287. 4089:6 December 4028:18 January 3297:References 2839:zinc oxide 2831:petroleum 2757:zinc oxide 2708:zinc oxide 2613:kojic acid 2597:zinc oxide 2577:cosmetics 2463:zinc oxide 2422:molybdenum 2418:zinc oxide 2410:phosphorus 2348:Zinc oxide 2338:Sunscreens 2318:Biomedical 2252:gain media 2225:Regulation 2188:additives. 2131:See also: 2121:filtration 2057:wavelength 2011:Microscopy 1929:attractive 1852:, such as 1738:hydrolysis 1711:filtration 1661:gamma rays 1545:combustion 1525:hydrolysed 1471:Mechanical 1424:Production 1095:See also: 1085:micrometer 1033:Properties 987:Nucleation 969:Nucleation 949:acrylamide 932:interfaces 901:nanochitin 897:nanolignin 856:Variations 812:nanochains 718:lusterware 635:The terms 540:(Ag), and 530:anisotropy 376:nanometres 197:Iron oxide 104:Fullerenes 11392:Phase III 11380:Withdrawn 11345:galactose 11021:Iodixanol 11001:Iopromide 10996:Iopamidol 10956:Methiodal 10128:205976044 10092:Nanoscale 9947:125299766 9798:Molecules 9682:Opt. Lett 9664:125645480 9586:125102995 9474:: 15044. 9408:248688540 9400:2516-1091 9254:204266885 8894:europa.eu 8879:210119752 8851:Nanoscale 8793:23 August 8642:225410221 8499:137174566 8346:137539240 8283:Phil. Mag 8155:0001-4842 7677:: 26–36. 7589:: 33–72. 7429:Nanoscale 7248:250860605 7240:1009-0630 6795:203938224 6676:103192810 6652:: 65–81. 6331:137390443 6323:1478-6435 6276:1521-4117 6234:0002-7863 6195:0169-4332 6144:0743-7463 6102:0022-3727 5884:Materials 5534:0801.3280 5506:181326215 5437:Chem. Rev 5144:202880673 4987:Chem. Rev 4940:Nanoscale 4797:136913833 4594:250854158 4160:: 10765. 3874:2000-5121 3826:22 August 3466:2079-4991 3409:0957-4484 3195:Nanofluid 3144:Fullerene 2918:palladium 2892:printing 2778:medicine 2736:palladium 2732:manganese 2642:palladium 2487:palladium 2394:potassium 2352:sunscreen 2147:catalytic 2039:artifacts 1960:lognormal 1951:sintering 1746:chlorides 1742:alkoxides 1740:of metal 1734:hydroxide 1683:solutions 1620:Inert-gas 1561:pyrolysis 1549:pyrolysis 1535:Pyrolysis 1521:enzymatic 1517:oxidation 1497:cellulose 1481:ball mill 1477:ball mill 1461:pyrolysis 1449:attrition 1255:methods. 1165:catalysis 1161:sintering 1081:viscosity 1073:stiffness 946:isopropyl 936:pickering 924:emulsions 893:wood pulp 758:Granqvist 606:turbidity 546:resonance 480:molecular 460:chemistry 386:instead. 374:1 to 100 167:Cellulose 123:Chemistry 75:Chemistry 70:Synthesis 11413:Category 11026:Iomeprol 11016:Iopentol 11011:Ioversol 11006:Iotrolan 10926:Iodamide 10796:Category 10565:Overview 10508:Archived 10420:15119954 10394:(1): 3. 10369:25924642 10328:26191382 10271:26354379 10230:25966284 10190:PLOS ONE 10171:23744621 10163:25935990 10120:25916659 10004:32641741 9830:29751626 9745:28818304 9710:14587824 9506:26463476 9468:Sci. Rep 9246:35021406 9211:36132776 9152:25756964 9088:18360561 9047:19554862 9020:20652105 8961:20709196 8871:31916561 8811:(2001). 8685:24001137 8677:25306903 8558:23910918 8550:18569000 8464:25291395 8456:18483764 8163:23607711 8116:18425138 8067:15339154 8032:24702517 8024:15099078 7989:17517965 7940:15611617 7899:12235356 7840:34773391 7791:20025223 7742:26062996 7516:30013881 7467:25180699 7414:24778973 7300:53659172 7193:24316693 7131:17630692 7096:89082048 7057:35528557 6998:38445363 6946:14113689 6938:11031294 6852:28794487 6760:22204603 6627:21711750 6568:23458793 6464:98282021 6421:24085009 6152:15301482 6124:Langmuir 5967:19151703 5924:28809302 5865:41932585 5805:30202695 5731:25003956 5711:Chem Rev 5665:21132117 5616:27960352 5559:35457219 5551:20419892 5457:25003956 5418:24444431 5327:15926847 5007:25003956 4968:91189669 4960:30938749 4925:18076201 4865:20405913 4789:12481122 4754:16639413 4746:12481134 4664:26394039 4644:ACS Nano 4629:18330181 4243:22678029 4194:26030133 4004:97620232 3938:27241479 3892:22110867 3860:: 5883. 3803:40776948 3678:23535594 3593:26450215 3484:37947733 3475:10648425 3425:45625439 3417:26135968 3362:98107080 3164:Liposome 3048:See also 3008:textile 2934:graphite 2914:titanium 2871:tungsten 2728:platinum 2679:selenium 2634:aluminum 2499:carnauba 2491:platinum 2475:tungsten 2069:infrared 1940:porosity 1906:graphite 1882:nitrides 1862:polymers 1846:ceramics 1828:peptides 1820:aptamers 1804:thiomers 1794:groups. 1788:graphene 1692:aerogels 1585:nitrides 1581:carbides 1367:magnetic 1296:sensor. 1284:friction 1273:adhesion 1265:hardness 1143:coatings 1125:Coatings 953:proteins 942:Hydrogel 870:vaccines 862:liposome 850:isotropy 843:micelles 839:emulsion 808:nanorods 714:dichroic 691:artisans 564:polymers 542:platinum 504:magnetic 500:ceramics 492:plastics 452:platinum 380:diameter 378:(nm) in 245:Nanofoam 212:Platinum 95:Timeline 11133:Iopydol 11036:Ioxilan 10986:Iohexol 10961:Diodone 10808:Commons 10588:Outline 10573:History 10319:4505346 10298:Bibcode 10221:4429007 10198:Bibcode 10100:Bibcode 10077:9922017 9995:7343882 9974:Bibcode 9927:Bibcode 9885:Bibcode 9821:6100587 9690:Bibcode 9644:Bibcode 9609:Bibcode 9566:Bibcode 9497:4604515 9476:Bibcode 9449:6994736 9380:Bibcode 9202:9417912 9179:Bibcode 9143:4492263 9079:1661631 9011:2894345 8988:Bibcode 8914:Bibcode 8622:Bibcode 8436:Bibcode 8326:Bibcode 8291:Bibcode 8107:2637151 7980:2064217 7867:Bibcode 7831:8728822 7782:2871316 7734:2031186 7714:Bibcode 7706:Science 7679:Bibcode 7507:6036986 7437:Bibcode 7405:3999878 7323:Bibcode 7278:Bibcode 7220:Bibcode 7048:9070433 7025:Bibcode 6976:Bibcode 6918:Bibcode 6895:1962191 6875:Bibcode 6867:Science 6843:5550503 6822:Bibcode 6708:Bibcode 6618:3211283 6595:Bibcode 6538:Bibcode 6494:Bibcode 6444:Bibcode 6401:Bibcode 6361:Bibcode 6303:Bibcode 6175:Bibcode 6080:Bibcode 6021:Bibcode 5990:Bibcode 5947:Bibcode 5915:5452105 5892:Bibcode 5796:6122122 5656:2995260 5484:Bibcode 4916:2877922 4895:Bibcode 4769:Science 4726:Bibcode 4718:Science 4687:Bibcode 4574:Bibcode 4514:Bibcode 4466:Bibcode 4425:Bibcode 4384:Bibcode 4221:Bibcode 4185:5377066 4162:Bibcode 4121:Bibcode 3918:Bibcode 3883:3215190 3783:Bibcode 3713:Bibcode 3686:4410909 3658:Bibcode 3571:Science 3537:Bibcode 3389:Bibcode 3265:Silicon 3240:Plasmon 3114:Colloid 3109:Coating 2958:rhodium 2900:printer 2847:diamond 2814:diamond 2765:diamond 2716:calcium 2451:diamond 2398:calcium 2344:imparts 2083:light, 1936:solvent 1773:coating 1726:colloid 1541:aerosol 1386:silicon 1312:twinned 1308:in situ 1301:in situ 1210:lattice 1194:vacancy 1156:diffuse 1119:density 1115:solvent 1077:density 1065:thermal 983:model. 762:Buhrman 699:potters 679:viruses 648:History 637:colloid 472:biology 468:geology 464:physics 425:filters 421:scatter 348:Discuss 172:Ceramic 11375:WHO-EM 10651:Carbon 10598:Impact 10447:  10418:  10411:419715 10408:  10367:  10326:  10316:  10269:  10228:  10218:  10169:  10161:  10126:  10118:  10075:  10002:  9992:  9945:  9828:  9818:  9743:  9708:  9662:  9584:  9543:709782 9541:  9504:  9494:  9447:  9406:  9398:  9352:23 May 9343:  9252:  9244:  9209:  9199:  9150:  9140:  9086:  9076:  9045:  9018:  9008:  8959:  8877:  8869:  8821:  8760:663082 8758:  8714:  8683:  8675:  8640:  8614:Vacuum 8556:  8548:  8497:  8462:  8454:  8344:  8210:  8187:1 July 8161:  8153:  8114:  8104:  8065:  8030:  8022:  7987:  7977:  7938:  7897:  7890:130509 7887:  7838:  7828:  7789:  7779:  7740:  7732:  7652:  7618:  7564:  7514:  7504:  7465:  7412:  7402:  7298:  7246:  7238:  7191:  7129:  7094:  7055:  7045:  6996:  6944:  6936:  6893:  6850:  6840:  6793:  6758:  6674:  6625:  6615:  6566:  6462:  6419:  6329:  6321:  6274:  6232:  6193:  6150:  6142:  6100:  6039:  5965:  5922:  5912:  5863:  5853:  5803:  5793:  5752:  5729:  5663:  5653:  5614:  5557:  5549:  5504:  5455:  5416:  5325:  5142:  5005:  4966:  4958:  4923:  4913:  4863:  4795:  4787:  4752:  4744:  4662:  4627:  4592:  4486:  4353:  4326:  4272:  4241:  4192:  4182:  4080:  4053:  4024:. 2015 4002:  3959:  3936:  3890:  3880:  3872:  3821:Mirkin 3801:  3684:  3676:  3650:Nature 3633:21 May 3624:  3591:  3482:  3472:  3464:  3423:  3415:  3407:  3360:  3016:carbon 3012:silver 2999:carbon 2983:silver 2970:silver 2942:carbon 2879:carbon 2863:silver 2810:carbon 2782:silver 2753:silver 2740:carbon 2720:copper 2692:silver 2663:carbon 2655:silver 2630:silver 2593:carbon 2581:silver 2556:carbon 2536:silver 2507:silver 2455:copper 2386:silver 2139:, and 2119:, and 2085:X-rays 2071:, and 2002:, and 1894:metals 1868:, and 1593:dc jet 1583:, and 1577:oxides 1527:using 1509:starch 1505:chitin 1501:lignin 1436:, and 1430:metals 1271:, and 1225:harder 1213:strain 1079:, and 730:copper 726:silver 566:, the 538:silver 536:(Au), 502:, and 496:metals 488:paints 476:atomic 470:, and 372:matter 344:merged 217:Silver 182:Copper 141:Other 11303:Other 11253:Other 10167:S2CID 10124:S2CID 9943:S2CID 9915:(PDF) 9873:(PDF) 9660:S2CID 9582:S2CID 9539:S2CID 9445:S2CID 9404:S2CID 9250:S2CID 8875:S2CID 8767:(PDF) 8756:S2CID 8736:(PDF) 8681:S2CID 8638:S2CID 8554:S2CID 8526:(PDF) 8495:S2CID 8460:S2CID 8342:S2CID 8028:S2CID 7738:S2CID 7296:S2CID 7244:S2CID 7092:S2CID 6942:S2CID 6791:S2CID 6672:S2CID 6460:S2CID 6327:S2CID 5555:S2CID 5529:arXiv 5502:S2CID 5190:IUPAC 5140:S2CID 4964:S2CID 4793:S2CID 4750:S2CID 4590:S2CID 4488:93060 4484:JSTOR 4000:S2CID 3799:S2CID 3682:S2CID 3421:S2CID 3358:S2CID 2896:toner 2855:boron 2688:food 2483:boron 2414:boron 2087:, or 2081:laser 2061:X-ray 1992:shape 1872:, as 1826:, or 1730:oxide 1599:, or 1507:, or 903:, or 891:from 734:glaze 707:Roman 671:Earth 628:, or 587:80004 568:IUPAC 207:Lipid 10600:and 10445:ISBN 10416:PMID 10365:PMID 10324:PMID 10267:PMID 10226:PMID 10159:PMID 10116:PMID 10073:PMID 10038:2016 10000:PMID 9855:2016 9826:PMID 9741:PMID 9706:PMID 9502:PMID 9396:ISSN 9354:2022 9341:ISBN 9287:2013 9242:PMID 9207:PMID 9148:PMID 9084:PMID 9043:PMID 9016:PMID 8957:PMID 8867:PMID 8832:2016 8819:ISBN 8795:2013 8712:ISBN 8673:PMID 8546:PMID 8452:PMID 8208:ISBN 8189:2011 8159:PMID 8151:ISSN 8112:PMID 8063:PMID 8020:PMID 7985:PMID 7936:PMID 7895:PMID 7836:PMID 7787:PMID 7730:PMID 7650:ISBN 7629:2016 7616:ISBN 7562:ISBN 7512:PMID 7463:PMID 7410:PMID 7236:ISSN 7189:PMID 7127:PMID 7053:PMID 6994:PMID 6934:PMID 6891:PMID 6848:PMID 6756:PMID 6623:PMID 6564:PMID 6417:PMID 6319:ISSN 6272:ISSN 6230:ISSN 6191:ISSN 6148:PMID 6140:ISSN 6098:ISSN 6037:ISBN 5963:PMID 5920:PMID 5861:OCLC 5851:ISBN 5801:PMID 5750:ISBN 5727:PMID 5661:PMID 5612:PMID 5547:PMID 5453:PMID 5414:PMID 5323:PMID 5003:PMID 4956:PMID 4921:PMID 4861:PMID 4785:PMID 4742:PMID 4660:PMID 4625:PMID 4351:ISBN 4324:ISBN 4301:2016 4270:ISBN 4239:PMID 4190:PMID 4091:2016 4078:ISBN 4051:ISBN 4030:2018 3957:ISBN 3934:PMID 3888:PMID 3870:ISSN 3828:2021 3674:PMID 3635:2020 3622:ISBN 3589:PMID 3480:PMID 3462:ISSN 3413:PMID 3405:ISSN 3038:and 3032:gold 3028:clay 2997:and 2995:clay 2991:gold 2968:and 2930:clay 2881:and 2851:clay 2820:and 2794:clay 2786:gold 2767:and 2738:and 2724:zinc 2704:gold 2696:clay 2677:and 2675:gold 2671:clay 2640:and 2615:and 2605:clay 2589:gold 2566:and 2540:clay 2513:and 2443:clay 2420:and 2406:zinc 2402:iron 2368:No. 2017:and 1988:size 1744:and 1670:gray 1557:soot 1529:acid 1392:and 1382:gold 1251:and 1067:and 883:and 868:and 760:and 728:and 697:and 534:gold 192:Iron 187:Gold 11343:of 11334:of 11173:MRI 11121:(= 10879:V08 10406:PMC 10396:doi 10355:doi 10351:116 10314:PMC 10306:doi 10257:doi 10216:PMC 10206:doi 10151:doi 10108:doi 10065:doi 9990:PMC 9982:doi 9935:doi 9923:111 9893:doi 9881:352 9816:PMC 9806:doi 9773:doi 9733:doi 9698:doi 9652:doi 9640:103 9617:doi 9574:doi 9531:doi 9492:PMC 9484:doi 9435:doi 9388:doi 9333:doi 9234:doi 9197:PMC 9187:doi 9138:PMC 9130:doi 9126:123 9074:PMC 9006:PMC 8996:doi 8949:doi 8922:doi 8859:doi 8748:doi 8704:doi 8665:doi 8630:doi 8618:182 8589:hdl 8581:doi 8538:doi 8487:doi 8444:doi 8396:doi 8369:doi 8334:doi 8299:doi 8264:doi 8237:doi 8143:doi 8102:PMC 8094:doi 8055:doi 8051:126 8012:doi 8008:126 7975:PMC 7967:doi 7963:177 7926:doi 7885:PMC 7875:doi 7826:PMC 7818:doi 7777:PMC 7769:doi 7765:132 7722:doi 7710:252 7687:doi 7675:150 7591:doi 7539:doi 7502:PMC 7494:doi 7453:hdl 7445:doi 7400:PMC 7392:doi 7358:doi 7331:doi 7286:doi 7228:doi 7181:doi 7154:doi 7119:doi 7084:doi 7043:PMC 7033:doi 6984:doi 6926:doi 6883:doi 6871:254 6838:PMC 6830:doi 6783:doi 6779:400 6748:doi 6744:112 6716:doi 6704:113 6662:hdl 6654:doi 6650:367 6613:PMC 6603:doi 6554:hdl 6546:doi 6502:doi 6452:doi 6409:doi 6369:doi 6311:doi 6264:doi 6222:doi 6218:115 6183:doi 6132:doi 6088:doi 6029:doi 5998:doi 5986:103 5955:doi 5910:PMC 5900:doi 5828:doi 5824:105 5791:PMC 5783:doi 5719:doi 5715:114 5688:doi 5651:PMC 5643:doi 5602:hdl 5594:doi 5590:138 5539:doi 5492:doi 5445:doi 5441:114 5406:doi 5402:136 5378:doi 5350:doi 5315:doi 5311:127 5288:doi 5257:doi 5253:119 5229:doi 5204:doi 5202:". 5171:doi 5132:doi 5104:doi 5100:119 5076:doi 5053:125 5030:doi 4995:doi 4991:114 4948:doi 4911:PMC 4903:doi 4853:doi 4824:doi 4777:doi 4773:298 4734:doi 4722:298 4695:doi 4652:doi 4617:doi 4582:doi 4522:doi 4474:doi 4433:doi 4392:doi 4380:147 4262:doi 4229:doi 4180:PMC 4170:doi 4129:doi 3990:doi 3926:doi 3878:PMC 3862:doi 3791:doi 3754:doi 3721:doi 3666:doi 3654:496 3614:doi 3579:doi 3575:350 3545:doi 3510:doi 3470:PMC 3452:doi 3397:doi 3348:doi 3005:14 2976:13 2907:12 2889:11 2828:10 2326:or 2156:ZnO 2025:of 1892:), 1880:), 1878:SiC 1860:), 1856:or 1732:or 1643:a) 1547:or 1519:or 1384:or 1365:in 1353:in 1304:TEM 852:). 712:of 701:in 604:or 478:or 366:or 342:be 30:SEM 26:TEM 11415:: 11388:: 11292:, 11255:: 11194:: 10466:). 10414:. 10404:. 10390:. 10386:. 10363:. 10349:. 10345:. 10322:. 10312:. 10304:. 10294:31 10292:. 10288:. 10265:. 10253:40 10251:. 10247:. 10224:. 10214:. 10204:. 10194:10 10192:. 10188:. 10165:. 10157:. 10147:14 10145:. 10122:. 10114:. 10106:. 10094:. 10071:. 10061:40 10059:. 9998:. 9988:. 9980:. 9970:10 9968:. 9964:. 9941:. 9933:. 9921:. 9917:. 9891:. 9879:. 9875:. 9846:. 9824:. 9814:. 9802:23 9800:. 9796:. 9767:. 9763:. 9739:. 9729:35 9727:. 9704:. 9696:. 9686:28 9684:. 9658:. 9650:. 9638:. 9615:. 9605:64 9603:. 9580:. 9572:. 9562:25 9560:. 9537:. 9527:20 9525:. 9500:. 9490:. 9482:. 9470:. 9466:. 9443:. 9431:15 9429:. 9425:. 9402:. 9394:. 9386:. 9374:. 9370:. 9339:, 9327:, 9262:^ 9248:. 9240:. 9228:. 9205:. 9195:. 9185:. 9173:. 9169:. 9146:. 9136:. 9124:. 9118:. 9082:. 9068:. 9064:. 9039:16 9037:. 9014:. 9004:. 8994:. 8982:. 8978:. 8955:. 8943:. 8920:. 8908:. 8873:. 8865:. 8855:12 8853:. 8849:. 8783:. 8754:. 8744:14 8742:. 8738:. 8710:. 8679:. 8671:. 8661:21 8659:. 8636:. 8628:. 8616:. 8612:. 8587:. 8577:30 8575:. 8552:. 8544:. 8534:25 8532:. 8528:. 8507:^ 8493:. 8481:. 8458:. 8450:. 8442:. 8432:17 8430:. 8408:^ 8392:65 8390:. 8365:66 8363:. 8340:. 8332:. 8320:. 8297:. 8287:20 8285:. 8260:79 8258:. 8233:66 8231:. 8157:. 8149:. 8139:46 8137:. 8133:. 8110:. 8100:. 8088:. 8084:. 8061:. 8049:. 8026:. 8018:. 8006:. 7983:. 7973:. 7961:. 7957:. 7934:. 7922:48 7920:. 7916:. 7893:. 7883:. 7873:. 7863:99 7861:. 7857:. 7834:. 7824:. 7812:. 7808:. 7785:. 7775:. 7763:. 7759:. 7736:. 7728:. 7720:. 7708:. 7685:. 7673:. 7587:90 7585:. 7535:22 7533:. 7510:. 7500:. 7488:. 7484:. 7461:. 7451:. 7443:. 7431:. 7408:. 7398:. 7386:. 7382:. 7370:^ 7354:87 7352:. 7329:. 7319:67 7317:. 7294:. 7284:. 7274:47 7272:. 7268:. 7256:^ 7242:. 7234:. 7226:. 7216:12 7214:. 7210:. 7187:. 7177:43 7175:. 7150:79 7148:. 7125:. 7113:. 7090:. 7080:11 7078:. 7074:. 7051:. 7041:. 7031:. 7019:. 7015:. 6992:. 6982:. 6972:26 6970:. 6966:. 6954:^ 6940:. 6932:. 6924:. 6914:51 6912:. 6889:. 6881:. 6869:. 6846:. 6836:. 6828:. 6816:. 6812:. 6789:. 6777:. 6754:. 6742:. 6730:^ 6714:. 6702:. 6698:. 6684:^ 6670:. 6660:. 6648:. 6635:^ 6621:. 6611:. 6601:. 6589:. 6585:. 6562:. 6552:. 6544:. 6534:52 6532:. 6528:. 6516:^ 6500:. 6488:. 6484:. 6472:^ 6458:. 6450:. 6440:13 6438:. 6415:. 6407:. 6397:52 6395:. 6381:^ 6367:. 6357:13 6355:. 6351:. 6339:^ 6325:. 6317:. 6309:. 6299:92 6297:. 6293:. 6270:. 6260:19 6258:. 6254:. 6242:^ 6228:. 6216:. 6212:. 6189:. 6181:. 6169:. 6146:. 6138:. 6128:20 6126:. 6122:. 6110:^ 6096:. 6086:. 6076:47 6074:. 6070:. 6050:^ 6035:, 6027:, 5996:. 5984:. 5961:. 5953:. 5941:. 5918:. 5908:. 5898:. 5886:. 5882:. 5859:. 5822:. 5799:. 5789:. 5777:. 5773:. 5725:. 5713:. 5709:. 5684:13 5682:. 5659:. 5649:. 5639:10 5637:. 5633:. 5610:. 5600:. 5588:. 5553:. 5545:. 5537:. 5523:. 5500:. 5490:. 5480:23 5478:. 5474:. 5451:. 5439:. 5435:. 5412:. 5400:. 5374:20 5372:. 5346:17 5344:. 5321:. 5309:. 5284:16 5282:. 5278:. 5251:. 5225:13 5223:. 5192:, 5165:. 5161:. 5138:. 5128:31 5126:. 5098:. 5072:72 5070:. 5051:. 5026:13 5024:. 5001:. 4989:. 4985:. 4962:. 4954:. 4944:11 4942:. 4919:. 4909:. 4901:. 4889:. 4885:. 4873:^ 4859:. 4849:11 4847:. 4820:16 4818:. 4814:. 4791:. 4783:. 4771:. 4748:. 4740:. 4732:. 4720:. 4716:. 4693:. 4683:84 4681:. 4658:. 4646:. 4623:. 4611:. 4588:. 4580:. 4570:10 4568:. 4556:^ 4534:^ 4520:. 4510:37 4508:. 4496:^ 4482:. 4472:. 4462:81 4460:. 4456:. 4431:. 4421:72 4419:. 4415:. 4390:. 4378:. 4374:. 4292:. 4268:. 4237:. 4227:. 4217:41 4215:. 4211:. 4188:. 4178:. 4168:. 4156:. 4152:. 4127:. 4115:. 4111:. 4099:^ 4020:. 3998:. 3986:79 3984:. 3980:. 3932:. 3924:. 3914:18 3912:. 3900:^ 3886:. 3876:. 3868:. 3856:. 3852:. 3836:^ 3819:. 3797:. 3789:. 3779:88 3777:. 3750:12 3748:. 3744:. 3719:. 3709:47 3707:. 3703:. 3680:. 3672:. 3664:. 3652:. 3620:. 3587:. 3573:. 3569:. 3557:^ 3543:. 3533:36 3531:. 3506:15 3504:. 3492:^ 3478:. 3468:. 3460:. 3448:13 3446:. 3442:. 3419:. 3411:. 3403:. 3395:. 3385:26 3383:. 3379:. 3356:. 3344:84 3342:. 3338:. 3322:^ 3034:, 3030:, 3026:, 3022:, 3018:, 3014:, 2993:, 2989:, 2985:, 2964:, 2960:, 2956:, 2952:, 2948:, 2944:, 2940:, 2936:, 2932:, 2928:, 2924:, 2920:, 2916:, 2877:, 2873:, 2869:, 2865:, 2861:, 2857:, 2853:, 2849:, 2845:, 2841:, 2837:, 2816:, 2812:, 2808:, 2804:, 2800:, 2796:, 2792:, 2788:, 2784:, 2775:9 2763:, 2759:, 2755:, 2746:8 2734:, 2730:, 2726:, 2722:, 2718:, 2714:, 2710:, 2706:, 2702:, 2698:, 2694:, 2685:7 2673:, 2669:, 2665:, 2661:, 2657:, 2648:6 2636:, 2632:, 2623:5 2611:, 2607:, 2603:, 2599:, 2595:, 2591:, 2587:, 2583:, 2574:4 2562:, 2558:, 2554:, 2550:, 2546:, 2542:, 2538:, 2534:, 2530:, 2521:3 2509:, 2505:, 2501:, 2497:, 2493:, 2489:, 2485:, 2481:, 2477:, 2473:, 2469:, 2465:, 2461:, 2457:, 2453:, 2449:, 2445:, 2441:, 2437:, 2428:2 2416:, 2412:, 2408:, 2404:, 2400:, 2396:, 2392:, 2388:, 2379:1 2306:. 2272:. 2135:, 2115:, 2067:, 2063:, 1998:, 1994:, 1990:, 1916:+ 1914:Al 1908:, 1902:Cu 1900:, 1898:Al 1888:, 1864:, 1822:, 1818:, 1748:. 1705:, 1701:, 1607:. 1595:, 1579:, 1531:. 1503:, 1499:, 1463:, 1459:, 1455:, 1451:, 1447:, 1432:, 1420:. 1390:PV 1377:. 1267:, 1236:. 1167:. 1075:, 1071:, 907:. 899:, 872:. 814:, 810:, 790:VO 736:. 608:, 510:. 498:, 494:, 490:, 466:, 462:, 362:A 10881:) 10877:( 10867:e 10860:t 10853:v 10549:e 10542:t 10535:v 10460:( 10453:. 10422:. 10398:: 10392:2 10371:. 10357:: 10330:. 10308:: 10300:: 10273:. 10259:: 10232:. 10208:: 10200:: 10173:. 10153:: 10130:. 10110:: 10102:: 10096:7 10079:. 10067:: 10040:. 10006:. 9984:: 9976:: 9949:. 9937:: 9929:: 9899:. 9895:: 9887:: 9857:. 9832:. 9808:: 9781:. 9775:: 9769:9 9749:. 9747:. 9735:: 9712:. 9700:: 9692:: 9666:. 9654:: 9646:: 9623:. 9619:: 9611:: 9588:. 9576:: 9568:: 9545:. 9533:: 9508:. 9486:: 9478:: 9472:5 9451:. 9437:: 9410:. 9390:: 9382:: 9376:4 9335:: 9300:. 9289:. 9256:. 9236:: 9230:2 9213:. 9189:: 9181:: 9175:2 9154:. 9132:: 9090:. 9070:1 9049:. 9022:. 8998:: 8990:: 8984:4 8963:. 8951:: 8945:7 8928:. 8924:: 8916:: 8910:9 8881:. 8861:: 8834:. 8797:. 8750:: 8720:. 8706:: 8687:. 8667:: 8644:. 8632:: 8624:: 8597:. 8591:: 8583:: 8560:. 8540:: 8501:. 8489:: 8483:1 8466:. 8446:: 8438:: 8402:. 8398:: 8375:. 8371:: 8348:. 8336:: 8328:: 8322:5 8305:. 8301:: 8293:: 8270:. 8266:: 8243:. 8239:: 8216:. 8191:. 8165:. 8145:: 8118:. 8096:: 8090:5 8069:. 8057:: 8034:. 8014:: 7991:. 7969:: 7942:. 7928:: 7901:. 7877:: 7869:: 7842:. 7820:: 7814:9 7793:. 7771:: 7744:. 7724:: 7716:: 7693:. 7689:: 7681:: 7658:. 7631:. 7597:. 7593:: 7570:. 7545:. 7541:: 7518:. 7496:: 7490:9 7469:. 7455:: 7447:: 7439:: 7433:6 7416:. 7394:: 7388:5 7364:. 7360:: 7337:. 7333:: 7325:: 7302:. 7288:: 7280:: 7250:. 7230:: 7222:: 7195:. 7183:: 7160:. 7156:: 7133:. 7121:: 7115:8 7098:. 7086:: 7059:. 7035:: 7027:: 7021:9 7000:. 6986:: 6978:: 6948:. 6928:: 6920:: 6897:. 6885:: 6877:: 6854:. 6832:: 6824:: 6818:7 6797:. 6785:: 6762:. 6750:: 6724:. 6718:: 6710:: 6678:. 6664:: 6656:: 6629:. 6605:: 6597:: 6591:6 6570:. 6556:: 6548:: 6540:: 6510:. 6504:: 6496:: 6490:1 6466:. 6454:: 6446:: 6423:. 6411:: 6403:: 6375:. 6371:: 6363:: 6333:. 6313:: 6305:: 6278:. 6266:: 6236:. 6224:: 6197:. 6185:: 6177:: 6154:. 6134:: 6104:. 6090:: 6082:: 6031:: 6023:: 6004:. 6000:: 5992:: 5969:. 5957:: 5949:: 5943:8 5926:. 5902:: 5894:: 5888:6 5867:. 5834:. 5830:: 5807:. 5785:: 5779:9 5758:. 5733:. 5721:: 5694:. 5690:: 5667:. 5645:: 5618:. 5604:: 5596:: 5561:. 5541:: 5531:: 5525:2 5508:. 5494:: 5486:: 5459:. 5447:: 5420:. 5408:: 5384:. 5380:: 5356:. 5352:: 5329:. 5317:: 5294:. 5290:: 5263:. 5259:: 5235:. 5231:: 5206:: 5179:. 5173:: 5167:2 5146:. 5134:: 5110:. 5106:: 5082:. 5078:: 5036:. 5032:: 5009:. 4997:: 4970:. 4950:: 4927:. 4905:: 4897:: 4891:8 4867:. 4855:: 4832:. 4826:: 4799:. 4779:: 4756:. 4736:: 4728:: 4701:. 4697:: 4689:: 4666:. 4654:: 4648:9 4631:. 4619:: 4613:7 4596:. 4584:: 4576:: 4528:. 4524:: 4516:: 4490:. 4476:: 4468:: 4441:. 4435:: 4427:: 4400:. 4394:: 4386:: 4359:. 4332:. 4303:. 4278:. 4264:: 4245:. 4231:: 4223:: 4196:. 4172:: 4164:: 4158:5 4137:. 4131:: 4123:: 4117:9 4093:. 4059:. 4032:. 4006:. 3992:: 3965:. 3940:. 3928:: 3920:: 3894:. 3864:: 3858:2 3830:. 3805:. 3793:: 3785:: 3762:. 3756:: 3729:. 3723:: 3715:: 3688:. 3668:: 3660:: 3637:. 3616:: 3595:. 3581:: 3551:. 3547:: 3539:: 3516:. 3512:: 3486:. 3454:: 3427:. 3399:: 3391:: 3364:. 3350:: 3317:. 2257:2 2185:2 1896:( 1884:( 1876:( 1848:( 792:2 788:( 350:) 312:e 305:t 298:v

Index


TEM
SEM
Nanomaterials

Carbon nanotubes
Synthesis
Chemistry
Mechanical properties
Optical properties
Applications
Timeline
Fullerenes
Buckminsterfullerene
C70 fullerene
Chemistry
Health impact
Carbon allotropes
nanoparticles
Carbon quantum dots
Quantum dots
Aluminium oxide
Cellulose
Ceramic
Cobalt oxide
Copper
Gold
Iron
Iron oxide
Iron–platinum

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑