Knowledge

Synthesis of carbon nanotubes

Source 📝

534:). Nanotubes grow at the sites of the metal catalyst; the carbon-containing gas is broken apart at the surface of the catalyst particle, and the carbon is transported to the edges of the particle, where it forms the nanotubes. This mechanism is still being studied. The catalyst particles can stay at the tips of the growing nanotube during growth, or remain at the nanotube base, depending on the adhesion between the catalyst particle and the substrate. Thermal catalytic decomposition of hydrocarbon has become an active area of research and can be a promising route for the bulk production of CNTs. 1035:
and/or additive. Additionally, by changing electrolysis conditions such as electrolyte, electrode, temperature, and/or current density, a wide range of carbon nanotubes can be grown through this process including: helical; thin; thick; doped with either nitrogen, boron, sulfur, or phosphorus; bulbous; and more with multiple macrostructures being produced, some quite porous with potential uses as sponge or electrodes. This method can also utilize non-gas source of carbon, such as from calcium carbonate (CaCO
433:) in Varennes, Canada, by Olivier Smiljanic. In this method, the aim is to reproduce the conditions prevailing in the arc discharge and laser ablation approaches, but a carbon-containing gas is used instead of graphite vapors to supply the necessary carbon. Doing so, the growth of SWNT is more efficient (decomposing the gas can be 10 times less energy-consuming than graphite vaporization). The process is also continuous and low-cost. A gaseous mixture of argon, ethylene and 259: 1076: 271: 20: 572:(i.e., perpendicular to the substrate), a morphology that has been of interest to researchers interested in electron emission from nanotubes. Without the plasma, the resulting nanotubes are often randomly oriented. Under certain reaction conditions, even in the absence of a plasma, closely spaced nanotubes will maintain a vertical growth direction resulting in a dense array of tubes resembling a carpet or forest. 480: 469: 44: 402:, who at the time of the discovery of carbon nanotubes, were blasting metals with a laser to produce various metal molecules. When they heard of the existence of nanotubes they replaced the metals with graphite to create multi-walled carbon nanotubes. Later that year the team used a composite of graphite and metal catalyst particles (the best yield was from a 1067:
uniformity necessary to satisfy the many needs of both research and industry. Recent efforts have focused on producing more uniform carbon nanotubes in controlled flame environments. Such methods have promise for large-scale, low-cost nanotube synthesis based on theoretical models, though they must compete with rapidly developing large scale CVD production.
592:, have concentrated on finding methods to produce large, pure amounts of particular types of nanotubes. Their approach grows long fibers from many small seeds cut from a single nanotube; all of the resulting fibers were found to be of the same diameter as the original nanotube and are expected to be of the same type as the original nanotube. 453:. The method is similar to arc discharge in that both use ionized gas to reach the high temperature necessary to vaporize carbon-containing substances and the metal catalysts necessary for the ensuing nanotube growth. The thermal plasma is induced by high-frequency oscillating currents in a coil, and is maintained in flowing 1138:, which separates surfactant-wrapped nanotubes by the minute difference in their density. This density difference often translates into a difference in the nanotube diameter and (semi)conducting properties. Another method of separation uses a sequence of freezing, thawing, and compression of SWNTs embedded in 498:, or a combination. The metal nanoparticles can also be produced by other ways, including reduction of oxides or oxides solid solutions. The diameters of the nanotubes that are to be grown are related to the size of the metal particles. This can be controlled by patterned (or masked) deposition of the metal, 575:
Of the various means for nanotube synthesis, CVD shows the most promise for industrial-scale deposition, because of its price/unit ratio, and because CVD is capable of growing nanotubes directly on a desired substrate, whereas the nanotubes must be collected in the other growth techniques. The growth
1142:
gel. This process results in a solution containing 70% metallic SWNTs and leaves a gel containing 95% semiconducting SWNTs. The diluted solutions separated by this method show various colors. The separated carbon nanotubes using this method have been applied to electrodes, e.g. electric double-layer
370:
The yield for this method is up to 30% by weight and it produces both single- and multi-walled nanotubes with lengths of up to 50 micrometers with few structural defects. Arc-discharge technique uses higher temperatures (above 1,700 °C) for CNT synthesis which typically causes the expansion of
758:
The super-growth method is essentially a variation of CVD. Therefore, it is possible to grow material containing SWNT, DWNTs and MWNTs, and to alter their ratios by tuning the growth conditions. Their ratios change by the thinness of the catalyst. Many MWNTs are included so that the diameter of the
1124:
may be of toxicological concern. While unencapsulated catalyst metals may be readily removable by acid washing, encapsulated ones require oxidative treatment for opening their carbon shell. The effective removal of catalysts, especially of encapsulated ones, while preserving the CNT structure is a
1034:
of carbon dioxide, while the product is high valued CNTs. This discovery was highlighted as a possible technology for carbon dioxide capture and conversion. Later on non-lithium molten carbonate electrolytes were demonstrated or electrolyte consisting of lithium carbonate plus some other carbonate
608:, Japan. In this process, the activity and lifetime of the catalyst are enhanced by the addition of water into the CVD reactor. Dense millimeter-tall vertically aligned nanotube arrays (VANTAs) or "forests", aligned normal to the substrate, were produced. The forests' height could be expressed, as 1111:
into tubular carbon structures but can also form encapsulating carbon overcoats. Together with metal oxide supports they may therefore attach to or become incorporated into the CNT product. The presence of metal impurities can be problematic for many applications. Especially catalyst metals like
750:
method. The time required to make SWNT forests of the height of 2.5 mm by this method was 10 minutes in 2004. Those SWNT forests can be easily separated from the catalyst, yielding clean SWNT material (purity >99.98%) without further purification. For comparison, the as-grown HiPco CNTs
556:
to increase the surface area for higher yield of the catalytic reaction of the carbon feedstock with the metal particles. One issue in this synthesis route is the removal of the catalyst support via an acid treatment, which sometimes could destroy the original structure of the carbon nanotubes.
1133:
Many electronic applications of carbon nanotubes crucially rely on techniques of selectively producing either semiconducting or metallic CNTs, preferably of a certain chirality. Several methods of separating semiconducting and metallic CNTs are known, but most of them are not yet suitable for
1066:
from both indoor and outdoor air. However, these naturally occurring varieties can be highly irregular in size and quality because the environment in which they are produced is often highly uncontrolled. Thus, although they can be used in some applications, they can lack in the high degree of
2405:
Futaba, Don N.; Hata, Kenji; Yamada, Takeo; Hiraoka, Tatsuki; Hayamizu, Yuhei; Kakudate, Yozo; Tanaike, Osamu; Hatori, Hiroaki; et al. (2006). "Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes".
1163:
can be used to isolate individual SWNT chiralities. Thus far, 12 chiralities have been isolated at purities ranging from 70% for (8,3) and (9,5) SWNTs to 90% for (6,5), (7,5) and (10,5) SWNTs. Alternatively, carbon nanotubes have been successfully sorted by chirality using the
2289:
Hiraoka, Tatsuki; Izadi-Najafabadi, Ali; Yamada, Takeo; Futaba, Don N.; Yasuda, Satoshi; Tanaike, Osamu; Hatori, Hiroaki; Yumura, Motoo; et al. (2009). "Compact and light supercapacitors from a surface-only solid by opened carbon nanotubes with 2,200 m/g".
2149:
Smalley, Richard E.; Li, Yubao; Moore, Valerie C.; Price, B. Katherine; Colorado, Ramon; Schmidt, Howard K.; Hauge, Robert H.; Barron, Andrew R.; Tour, James M. (2006). "Single Wall Carbon Nanotube Amplification: En Route to a Type-Specific Growth Mechanism".
1545: 3841:
Tanaka, Takeshi; Jin, Hehua; Miyata, Yasumitsu; Fujii, Shunjiro; Suga, Hiroshi; Naitoh, Yasuhisa; Minari, Takeo; Miyadera, Tetsuhiko; et al. (2009). "Simple and Scalable Gel-Based Separation of Metallic and Semiconducting Carbon Nanotubes".
437:
is introduced into a microwave plasma torch, where it is atomized by the atmospheric pressure plasma, which has the form of an intense 'flame'. The fumes created by the flame contain SWNT, metallic and carbon nanoparticles and amorphous carbon.
2351:
Yamada, Takeo; Namai, Tatsunori; Hata, Kenji; Futaba, Don N.; Mizuno, Kohei; Fan, Jing; Yudasaka, Masako; Yumura, Motoo; Iijima, Sumio (2006). "Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts".
1150:
In addition to the separation of semiconducting and metallic SWNTs, it is possible to sort SWNTs by length, diameter, and chirality. The highest resolution length sorting, with length variation of <10%, has thus far been achieved by
457:. Typically, a feedstock of carbon black and metal catalyst particles is fed into the plasma, and then cooled down to form single-walled carbon nanotubes. Different single-wall carbon nanotube diameter distributions can be synthesized. 330:(CVD). Most of these processes take place in a vacuum or with process gases. CVD growth of CNTs can occur in a vacuum or at atmospheric pressure. Large quantities of nanotubes can be synthesized by these methods; advances in 771:
by about 70 times and density is 0.55 g/cm. The packed carbon nanotubes are more than 1 mm long and have a carbon purity of 99.9% or higher; they also retain the desirable alignment properties of the nanotubes forest.
3887:
Yamada, Y.; Tanaka, T.; Machida, K.; Suematsu, S.; Tamamitsu, K.; Kataura, H.; Hatori, H. (2012). "Electrochemical behavior of metallic and semiconducting single-wall carbon nanotubes for electric double-layer capacitor".
766:
between the carbon nanotubes. It aligns the nanotubes into a dense material, which can be formed in various shapes, such as sheets and bars, by applying weak compression during the process. Densification increases the
1879:
Pinilla, JL; Moliner, R; Suelves, I; Lazaro, M; Echegoyen, Y; Palacios, J (2007). "Production of hydrogen and carbon nanofibers by thermal decomposition of methane using metal catalysts in a fluidized bed reactor".
4192:
Li, Han; Gordeev, Georgy; Garrity, Oisin; Reich, Stephanie; Flavel, Benjamin S. (2019-01-28). "Separation of Small-Diameter Single-Walled Carbon Nanotubes in One to Three Steps with Aqueous Two-Phase Extraction".
3250:
Murr, L. E.; Bang, J.J.; Esquivel, E.V.; Guerrero, P.A.; Lopez, D.A. (2004). "Carbon nanotubes, nanocrystal forms, and complex nanoparticle aggregates in common fuel-gas combustion sources and the ambient air".
705: 4356:
Ding, Lei; Tselev, Alexander; Wang, Jinyong; Yuan, Dongning; Chu, Haibin; McNicholas, Thomas P.; Li, Yan; Liu, Jie (2009). "Selective Growth of Well-Aligned Semiconducting Single-Walled Carbon Nanotubes".
2246:
Futaba, Don; Hata, Kenji; Yamada, Takeo; Mizuno, Kohei; Yumura, Motoo; Iijima, Sumio (2005). "Kinetics of Water-Assisted Single-Walled Carbon Nanotube Synthesis Revealed by a Time-Evolution Analysis".
367:'s Fundamental Research Laboratory. The method used was the same as in 1991. During this process, the carbon contained in the negative electrode sublimates because of the high-discharge temperatures. 1175:
An alternative to separation is the development of a selective growth of semiconducting or metallic CNTs. This can be achieved by CVD that involves a combination of ethanol and methanol gases on a
784:
discovered a new pathway to synthesize MWCNTs by electrolysis of molten carbonates. The mechanism is similar to CVD. Some metal ions were reduced to a metal form and attached on the cathode as the
875: 762:
The vertically aligned nanotube forests originate from a "zipping effect" when they are immersed in a solvent and dried. The zipping effect is caused by the surface tension of the solvent and the
391:
is led into the chamber. Nanotubes develop on the cooler surfaces of the reactor as the vaporized carbon condenses. A water-cooled surface may be included in the system to collect the nanotubes.
4293:
Zhang, Li; Tu, Xiaomin; Welsher, Kevin; Wang, Xinran; Zheng, Ming; Dai, Hongjie (2009). "Optical characterizations and electronic devices of nearly pure (10,5) single-walled carbon nanotubes".
965: 1563:
Kim, K.S.; Cota-Sanchez, German; Kingston, Chris; Imris, M.; Simard, Benoît; Soucy, Gervais (2007). "Large-scale production of single-wall carbon nanotubes by induction thermal plasma".
1025: 755:
that damages the nanotubes. Super-growth avoids this problem. Patterned highly organized single-walled nanotube structures were successfully fabricated using the super-growth technique.
3472:
Arnold, Michael S.; Green, Alexander A.; Hulvat, James F.; Stupp, Samuel I.; Hersam, Mark C. (2006). "Sorting carbon nanotubes by electronic structure using density differentiation".
487:
The catalytic vapor phase deposition of carbon was reported in 1952 and 1959, but it was not until 1993 that carbon nanotubes were formed by this process. In 2007, researchers at the
2073:
Neupane, Suman; Lastres, Mauricio; Chiarella, M; Li, W.Z.; Su, Q; Du, G.H. (2012). "Synthesis and field emission properties of vertically aligned carbon nanotube arrays on copper".
1155:(SEC) of DNA-dispersed carbon nanotubes (DNA-SWNT). SWNT diameter separation has been achieved by density-gradient ultracentrifugation (DGU) using surfactant-dispersed SWNTs and by 605: 1469: 1979:
Eftekhari, A.; Jafarkhani, P; Moztarzadeh, F (2006). "High-yield synthesis of carbon nanotubes using a water-soluble catalyst support in catalytic chemical vapor deposition".
1634:
Walker Jr., P. L.; Rakszawski, J. F.; Imperial, G. R. (1959). "Carbon Formation from Carbon Monoxide-Hydrogen Mixtures over Iron Catalysts. I. Properties of Carbon Formed".
1375:
Eatemadi, Ali; Daraee, Hadis; Karimkhanloo, Hamzeh; Kouhi, Mohammad; Zarghami, Nosratollah; Akbarzadeh, Abolfazl; Abasi, Mozhgan; Hanifehpour, Younes; Woo Joo, Sang (2014).
746:
exceeds 1,000 m/g (capped) or 2,200 m/g (uncapped), surpassing the value of 400–1,000 m/g for HiPco samples. The synthesis efficiency is about 100 times higher than for the
3523:
Yamada T, Namai T, Hata K, Futaba DN, Mizuno K, Fan J, et al. (2006). "Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts".
3972:
Huang, Xueying; McLean, Robert S.; Zheng, Ming (2005). "High-Resolution Length Sorting and Purification of DNA-Wrapped Carbon Nanotubes by Size-Exclusion Chromatography".
737: 506:
of a metal layer. The substrate is heated to approximately 700 °C. To initiate the growth of nanotubes, two gases are bled into the reactor: a process gas (such as
1509:
Smiljanic, Olivier; Stansfield, B.L.; Dodelet, J.-P.; Serventi, A.; Désilets, S. (22 April 2002). "Gas-phase synthesis of SWNT by an atmospheric pressure plasma jet".
2185:
Hata, K.; Futaba, DN; Mizuno, K; Namai, T; Yumura, M; Iijima, S (2004). "Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes".
460:
The induction thermal plasma method can produce up to 2 grams of nanotube material per minute, which is higher than the arc discharge or the laser ablation methods.
3329:
Saveliev, A.V.; Merchan-Merchan, Wilson; Kennedy, Lawrence A. (2003). "Metal catalyzed synthesis of carbon nanostructures in an opposed flow methane oxygen flame".
541:
CVD is the most widely used method for the production of carbon nanotubes. For this purpose, the metal nanoparticles are mixed with a catalyst support such as
4106:
Tu, Xiaomin; Manohar, Suresh; Jagota, Anand; Zheng, Ming (2009). "DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes".
3138:
Singer, J.M. (1959). "Carbon formation in very rich hydrocarbon-air flames. I. Studies of chemical content, temperature, ionization and particulate matter".
413:
The laser ablation method yields around 70% and produces primarily single-walled carbon nanotubes with a controllable diameter determined by the reaction
3442:
Naha, Sayangdev; Sen, Swarnendu; De, Anindya K.; Puri, Ishwar K. (2007). "A detailed model for the Flame synthesis of carbon nanotubes and nanofibers".
3574:
MacKenzie KJ, Dunens OM, Harris AT (2010). "An updated review of synthesis parameters and growth mechanisms for carbon nanotubes in fluidized beds".
1125:
challenge and has been addressed in many studies. A new approach to break carbonaceous catalyst encapsulations is based on rapid thermal annealing.
568:), then the nanotube growth will follow the direction of the electric field. By adjusting the geometry of the reactor it is possible to synthesize 3726:
Xu, Ya-Qiong; Peng, Haiqing; Hauge, Robert H.; Smalley, Richard E. (2005). "Controlled multistep purification of single-walled carbon nanotubes".
1834:
Banerjee, Soumik; Naha, Sayangdev; Puri, Ishwar K. (2008). "Molecular simulation of the carbon nanotube growth mode during catalytic synthesis".
1661:
José-Yacamán, M.; Miki-Yoshida, M.; Rendón, L.; Santiesteban, J. G. (1993). "Catalytic growth of carbon microtubules with fullerene structure".
4157:
Khripin, Constantine Y; Fagan, Jeffrey A.; Zheng, Ming (2013). "Spontaneous Partition of Carbon Nanotubes in Polymer-Modified Aqueous Phases".
430: 3399:
Sen, S.; Puri, Ishwar K (2004). "Flame synthesis of carbon nanofibers and nanofibers composites containing encapsulated metal particles".
491:(UC) developed a process to grow aligned carbon nanotube arrays of length 18 mm on a FirstNano ET3000 carbon nanotube growth system. 1058:
and carbon nanotubes are not necessarily products of high-tech laboratories; they are commonly formed in such mundane places as ordinary
3364:
Height, M.J.; Howard, Jack B.; Tester, Jefferson W.; Vander Sande, John B. (2004). "Flame synthesis of single-walled carbon nanotubes".
2650:"Carbon nanotube wools made directly from CO2 by molten electrolysis: Value driven pathways to carbon dioxide greenhouse gas mitigation" 2327: 614: 80: 1492: 3188:
Yuan, Liming; Saito, Kozo; Hu, Wenchong; Chen, Zhi (2001). "Ethylene flame synthesis of well-aligned multi-walled carbon nanotubes".
569: 565: 70: 3814:
Janas, Dawid (2018). "Towards monochiral carbon nanotubes: a review of progress in the sorting of single-walled carbon nanotubes".
2881:"Carbon Nanotubes Produced from Ambient Carbon Dioxide for Environmentally Sustainable Lithium-Ion and Sodium-Ion Battery Anodes" 301: 2603:"CO 2 Utilization by Electrolytic Splitting to Carbon Nanotubes in Non-Lithiated, Cost-Effective, Molten Carbonate Electrolytes" 1159:(IEC) for DNA-SWNT. Purification of individual chiralities has also been demonstrated with IEC of DNA-SWNT: specific short DNA 75: 4236:
Turek, Edyta; Shiraki, Tomohiro; Shiraishi, Tomonari; Shiga, Tamehito; Fujigaya, Tsuyohiko; Janas, Dawid (December 2019).
3779:
Meyer-Plath A, Orts-Gil G, Petrov S, et al. (2012). "Plasma-thermal purification and annealing of carbon nanotubes".
794: 2795:"Exploration of alkali cation variation on the synthesis of carbon nanotubes by electrolysis of CO2 in molten carbonates" 450: 4402:"Fabrication of spintronics device by direct synthesis of single-walled carbon nanotubes from ferromagnetic electrodes" 118: 2938:"Transformation of the greenhouse gas CO2 by molten electrolysis into a wide controlled selection of carbon nanotubes" 1934:
Kumar, M. (2010). "Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production".
1103:
synthesis of CNTs. They allow increasing the growth efficiency of CNTs and may give control over their structure and
890: 4400:
Mohamed, Mohd Ambri; Inami, Nobuhito; Shikoh, Eiji; Yamamoto, Yoshiyuki; Hori, Hidenobu; Fujiwara, Akihiko (2008).
1168:
method. There have been successful efforts to integrate these purified nanotubes into electronic devices, such as
3601:
Jakubek, Lorin M.; Marangoudakis, Spiro; Raingo, Jesica; Liu, Xinyuan; Lipscombe, Diane; Hurt, Robert H. (2009).
2648:
Johnson, Marcus; Ren, Jiawen; Lefler, Matthew; Licht, Gad; Vicini, Juan; Liu, Xinye; Licht, Stuart (2017-09-01).
1713:"Synthesis-condition dependence of carbon nanotube growth by alcohol catalytic chemical vapor deposition method" 1434:
Guo, Ting; Nikolaev, Pavel; Rinzler, Andrew G.; Tomanek, David; Colbert, Daniel T.; Smalley, Richard E. (1995).
976: 1135: 192: 2292: 1907:
Muradov, N (2001). "Hydrogen via methane decomposition: an application for decarbonization of fossil fuels".
1152: 499: 212: 3294:
Vander Wal, R.L. (2002). "Fe-catalyzed single-walled carbon nanotube synthesis within a flame environment".
3153:
Yuan, Liming; Saito, Kozo; Pan, Chunxu; Williams, F.A; Gordon, A.S (2001). "Nanotubes from methane flames".
3026:"Calcium metaborate induced thin walled carbon nanotube syntheses from CO2 by molten carbonate electrolysis" 557:
However, alternative catalyst supports that are soluble in water have proven effective for nanotube growth.
494:
During CVD, a substrate is prepared with a layer of metal catalyst particles, most commonly nickel, cobalt,
3603:"The inhibition of neuronal calcium ion channels by trace levels of yttrium released from carbon nanotubes" 781: 152: 85: 1079:
Centrifuge tube with a solution of carbon nanotubes, which were sorted by diameter using density-gradient
4467: 1080: 294: 2879:
Licht, Stuart; Douglas, Anna; Ren, Jiawen; Carter, Rachel; Lefler, Matthew; Pint, Cary L. (2016-03-23).
446: 3082: 2978: 2937: 2841: 2794: 2690: 2649: 4462: 1100: 538:
is the most widely used reactor for CNT preparation. Scale-up of the reactor is the major challenge.
473: 327: 167: 65: 4055:; et al. (2003). "Structure-Based Carbon Nanotube Sorting by Sequence-Dependent DNA Assembly". 3748: 2979:"Magnetic carbon nanotubes: Carbide nucleated electrochemical growth of ferromagnetic CNTs from CO2" 2207: 1948: 1165: 488: 245: 197: 2977:
Wang, Xirui; Sharif, Farbod; Liu, Xinye; Licht, Gad; Lefler, Matthew; Licht, Stuart (2020-09-01).
2061:
SEM images & TEM images of carbon nanotubes, aligned carbon nanotube arrays, and nanoparticles
1609:О Структуре Углерода, Образующегося При Термическом Разложении Окиси Углерода На Железном Контакте 1195: 1169: 713: 187: 1219: 3743: 2202: 1943: 287: 2602: 2354: 1144: 1108: 1104: 743: 535: 202: 2334: 1791:
Naha, Sayangdev; Ishwar K. Puri (2008). "A model for catalytic growth of carbon nanotubes".
4413: 4366: 4314: 4249: 4238:"Single-step isolation of carbon nanotubes with narrow-band light emission characteristics" 4115: 4064: 4017: 3936: 3897: 3853: 3788: 3735: 3698: 3659: 3532: 3481: 3408: 3373: 3338: 3303: 3260: 3197: 3162: 2749: 2736:
Ren, Jiawen; Li, Fang-Fang; Lau, Jason; González-Urbina, Luis; Licht, Stuart (2015-09-09).
2691:"Amplified CO2 reduction of greenhouse gas emissions with C2CNT carbon nanotube composites" 2476: 2459:
Ren, Jiawen; Li, Fang-Fang; Lau, Jason; González-Urbina, Luis; Licht, Stuart (2015-08-05).
2417: 2363: 2255: 2194: 2121: 2082: 2027: 2015: 1988: 1843: 1800: 1724: 1670: 1572: 1518: 1388: 1341: 1293: 1250: 240: 162: 123: 103: 3441: 8: 4052: 3925:"Continuous Separation of Metallic and Semiconducting Carbon Nanotubes Using Agarose Gel" 3650:
Hou, Peng-Xiang; Liu, Chang; Cheng, Hui-Ming (2008). "Purification of carbon nanotubes".
3272: 1332: 763: 751:
contain about 5–35% of metal impurities; it is therefore purified through dispersion and
600:
Super-growth CVD (water-assisted chemical vapor deposition) was developed by Kenji Hata,
207: 172: 113: 4417: 4370: 4318: 4253: 4119: 4068: 4021: 3940: 3901: 3857: 3792: 3739: 3702: 3663: 3536: 3485: 3412: 3377: 3342: 3307: 3264: 3201: 3166: 2753: 2737: 2577: 2480: 2421: 2367: 2259: 2198: 2125: 2086: 2031: 1992: 1847: 1812: 1804: 1728: 1674: 1576: 1522: 1392: 1345: 1297: 1254: 1179:
substrate, resulting in horizontally aligned arrays of 95–98% semiconducting nanotubes.
441:
Another way to produce single-walled carbon nanotubes with a plasma torch is to use the
417:. However, it is more expensive than either arc discharge or chemical vapor deposition. 4434: 4425: 4401: 4338: 4304: 4270: 4237: 4218: 4139: 4088: 4008:
Hersam, Mark C (2008). "Progress towards monodisperse single-walled carbon nanotubes".
3954: 3627: 3618: 3602: 3556: 3505: 3424: 3276: 3120: 3094: 3058: 3006: 2913: 2880: 2822: 2718: 2630: 2441: 2387: 2309: 2228: 1816: 1588: 1411: 1376: 1309: 1266: 1156: 323: 142: 3350: 3315: 3209: 3174: 1920: 1754:"Crystal Plane Dependent Growth of Aligned Single-Walled Carbon Nanotubes on Sapphire" 1530: 1353: 4439: 4382: 4342: 4330: 4275: 4210: 4174: 4131: 4080: 4033: 3990: 3869: 3761: 3632: 3560: 3548: 3497: 3428: 3420: 3124: 3112: 3063: 3045: 3025: 3010: 2998: 2959: 2918: 2900: 2861: 2826: 2814: 2775: 2767: 2722: 2710: 2671: 2634: 2622: 2558: 2494: 2433: 2391: 2379: 2271: 2220: 2167: 2134: 2109: 2043: 1961: 1820: 1773: 1592: 1584: 1488: 1416: 1357: 881: 275: 182: 4222: 3958: 3280: 2445: 2313: 2232: 2014:
Ren, Z. F.; Huang, ZP; Xu, JW; Wang, JH; Bush, P; Siegal, MP; Provencio, PN (1998).
4429: 4421: 4374: 4322: 4265: 4257: 4202: 4166: 4143: 4123: 4092: 4072: 4025: 3982: 3944: 3905: 3861: 3823: 3796: 3753: 3706: 3667: 3622: 3614: 3583: 3540: 3509: 3489: 3451: 3416: 3381: 3346: 3311: 3268: 3232: 3205: 3170: 3104: 3053: 3037: 2990: 2949: 2908: 2892: 2853: 2806: 2757: 2702: 2661: 2614: 2548: 2517: 2484: 2425: 2408: 2371: 2301: 2263: 2212: 2159: 2129: 2090: 2035: 1996: 1953: 1916: 1893: 1889: 1859: 1851: 1808: 1765: 1753: 1732: 1678: 1643: 1580: 1526: 1484: 1450: 1406: 1396: 1349: 1313: 1301: 1284:
Ebbesen, T. W.; Ajayan, P. M. (1992). "Large-scale synthesis of carbon nanotubes".
1270: 1258: 768: 577: 576:
sites are controllable by careful deposition of the catalyst. In 2007, a team from
561: 442: 2553: 2536: 2267: 2039: 1062:, produced by burning methane, ethylene, and benzene, and they have been found in 3909: 3800: 3671: 3385: 2762: 2706: 2666: 2489: 2460: 2094: 2000: 1435: 1377:"Carbon nanotubes: properties, synthesis, purification, and medical applications" 880:
The formed lithium oxide can in-situ absorb carbon dioxide (if present) and form
589: 585: 546: 542: 399: 395: 315: 51: 3455: 1607: 4261: 3108: 3083:"Co-production of cement and carbon nanotubes with a carbon negative footprint" 3041: 2994: 2954: 2896: 2857: 2810: 2793:
Wang, Xirui; Liu, Xinye; Licht, Gad; Wang, Baohui; Licht, Stuart (2019-12-01).
1752:
Ishigami, N.; Ago, H; Imamoto, K; Tsuji, M; Iakoubovskii, K; Minami, N (2008).
1737: 1712: 1187: 1147:
method. Yield is 95% in semiconductor type SWNT and 90% in metallic type SWNT.
1031: 752: 747: 580:
demonstrated a high-efficiency CVD technique for growing carbon nanotubes from
503: 319: 263: 177: 4051:
Zheng, M.; Jagota, A; Strano, MS; Santos, AP; Barone, P; Chou, SG; Diner, BA;
1711:
Inami, Nobuhito; Ambri Mohamed, Mohd; Shikoh, Eiji; Fujiwara, Akihiko (2007).
4456: 4295: 3923:
Tanaka, Takeshi; Urabe, Yasuko; Nishide, Daisuke; Kataura, Hiromichi (2009).
3116: 3049: 3002: 2963: 2904: 2865: 2818: 2771: 2714: 2675: 2626: 1199: 1097: 230: 221: 157: 108: 35: 4206: 4076: 2521: 2216: 2060: 1698:"UC Researchers Shatter World Records with Length of Carbon Nanotube Arrays" 4443: 4386: 4334: 4279: 4214: 4178: 4135: 4084: 4037: 4029: 3994: 3873: 3844: 3765: 3636: 3552: 3501: 3067: 2922: 2779: 2689:
Licht, S.; Liu, X.; Licht, G.; Wang, X.; Swesi, A.; Chan, Y. (2019-12-01).
2618: 2562: 2498: 2437: 2383: 2305: 2275: 2224: 2171: 1965: 1777: 1420: 1361: 1183: 601: 426: 380: 133: 3949: 3924: 3544: 3493: 2936:
Ren, Jiawen; Johnson, Marcus; Singhal, Richa; Licht, Stuart (2017-03-01).
2375: 2047: 1957: 1660: 1401: 564:
is generated by the application of a strong electric field during growth (
3974: 1134:
large-scale technological processes. The most efficient method relies on
1050: 414: 360: 147: 4127: 3236: 3223:
Duan, H. M.; McKinnon, J. T. (1994). "Nanoclusters Produced in Flames".
1697: 1647: 1454: 3827: 2110:"Carbon Nanotubes from Camphor: An Environment-Friendly Nanotechnology" 1864: 1191: 785: 356: 4378: 4326: 4170: 3986: 3865: 3757: 3587: 2163: 1855: 1769: 1075: 363:
production of carbon nanotubes was made in 1992 by two researchers at
258: 3711: 3686: 2512:
Armitage, Hanae (2015-08-19). "A carbon capture strategy that pays".
2429: 2016:"Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass" 1682: 1305: 1262: 1093: 1055: 519: 454: 434: 388: 371:
CNTs with fewer structural defects in comparison with other methods.
348: 331: 94: 3099: 2288: 1470:"Catalytic growth of single-walled nanotubes by laser vaporization" 1220:"The state-of-the-art science and applications of carbon nanotubes" 1160: 523: 515: 511: 384: 235: 4309: 1508: 1241:
Iijima, Sumio (1991). "Helical microtubules of graphitic carbon".
270: 19: 3024:
Wang, Xirui; Liu, Xinye; Licht, Gad; Licht, Stuart (2020-09-15).
1546:"Method and apparatus for producing single-wall carbon nanotubes" 1468:
Guo, Ting; Nikolaev, P; Thess, A; Colbert, D; Smalley, R (1995).
1139: 1121: 700:{\displaystyle H(t)={\beta }{\tau }_{o}({1-e^{-t/{\tau }_{o}}}).} 581: 531: 527: 507: 1710: 334:
and continuous growth are making CNTs more commercially viable.
3685:
Ebbesen, T. W.; Ajayan, P. M.; Hiura, H.; Tanigaki, K. (1994).
2601:
Wang, Xirui; Licht, Gad; Liu, Xinye; Licht, Stuart (May 2022).
1374: 1176: 1117: 1113: 407: 403: 352: 347:
Nanotubes were observed in 1991 in the carbon soot of graphite
3363: 3328: 1978: 1198:
by magnetic field has been demonstrated in such a single-tube
788:
point for the growing of CNTs. The reaction on the cathode is
3600: 1790: 1059: 479: 1633: 1562: 425:
Single-walled carbon nanotubes can also be synthesized by a
3886: 1878: 1751: 1325: 1323: 1063: 495: 468: 43: 4399: 4235: 3684: 1218:
Takeuchi K, Hayashi T, Kim YA, Fujisawa K, Endo M (2014).
1217: 1190:(Fe, Co), which facilitates the production of electronic ( 1039:), in which case it produces lime/cement (CaO) free of CO 3922: 3778: 2072: 1433: 1013: 991: 953: 940: 924: 905: 863: 838: 822: 809: 364: 3249: 2840:
Licht, Stuart; Cui, Baochen; Wang, Baohui (2013-09-01).
1320: 4050: 2735: 2458: 2404: 1467: 1194:) devices. In particular, control of current through a 410:
mixture) to synthesize single-walled carbon nanotubes.
318:(CNTs) in sizable quantities, including arc discharge, 3471: 2935: 2245: 1051:
Natural, incidental, and controlled flame environments
4191: 3573: 3522: 2878: 2647: 2350: 2184: 979: 893: 870:{\displaystyle {\ce {Li2CO3 -> Li2O + CNTs + O2}}} 797: 716: 617: 4105: 3840: 3152: 2148: 1330:Collins, P.G. (2000). "Nanotubes for Electronics". 1143:capacitor. Moreover, SWNTs can be separated by the 351:during an arc discharge, by using a current of 100 4355: 4292: 3725: 2976: 2738:"One-Pot Synthesis of Carbon Nanofibers from CO 2" 1019: 959: 869: 731: 699: 463: 4156: 3023: 2688: 2600: 1107:. During synthesis, catalysts can convert carbon 4454: 3971: 2792: 2537:"Conjuring chemical cornucopias out of thin air" 1833: 3576:Industrial & Engineering Chemistry Research 3187: 3140:Seventh Symposium (International) on Combustion 2511: 2461:"One-Pot Synthesis of Carbon Nanofibers from CO 960:{\displaystyle {\ce {Li2O + CO2 -> Li2CO3}}} 445:method, implemented in 2005 by groups from the 4007: 2013: 431:Institut national de la recherche scientifique 387:target in a high-temperature reactor while an 2142: 1283: 1128: 775: 295: 3222: 2842:"STEP carbon capture – The barium advantage" 2839: 1605: 1224:Nanosystems: Physics, Chemistry, Mathematics 3649: 1020:{\displaystyle {\ce {CO2 -> CNTs + O2}}} 3293: 314:Techniques have been developed to produce 302: 288: 4433: 4308: 4269: 3948: 3747: 3710: 3626: 3098: 3057: 2953: 2912: 2761: 2665: 2552: 2488: 2206: 2133: 2107: 1947: 1936:Journal of Nanoscience and Nanotechnology 1863: 1736: 1410: 1400: 1096:are important ingredients for fixed- and 739:is the characteristic catalyst lifetime. 566:plasma-enhanced chemical vapor deposition 472:Nanotubes being grown by plasma enhanced 4159:Journal of the American Chemical Society 2152:Journal of the American Chemical Society 1909:International Journal of Hydrogen Energy 1882:International Journal of Hydrogen Energy 1074: 478: 467: 429:method, first invented in 2000 at INRS ( 18: 3467: 3465: 3444:Proceedings of the Combustion Institute 3398: 2534: 1906: 1695: 1329: 1087: 710:where β is the initial growth rate and 518:) and a carbon-containing gas (such as 4455: 3880: 3137: 2108:Kumar, Mukul; Ando, Yoshinori (2007). 1240: 3813: 3080: 2114:Journal of Physics: Conference Series 1933: 1793:Journal of Physics D: Applied Physics 1565:Journal of Physics D: Applied Physics 1543: 1436:"Self-Assembly of Tubular Fullerenes" 1030:In other words, the reactant is only 3462: 2575: 1136:density-gradient ultracentrifugation 1599: 595: 570:vertically aligned carbon nanotubes 451:National Research Council of Canada 13: 3619:10.1016/j.biomaterials.2009.08.009 3273:10.1023/B:NANO.0000034651.91325.40 14: 4479: 2535:Service, Robert F. (2015-09-11). 1354:10.1038/scientificamerican1200-62 588:, until recently led by the late 374: 3253:Journal of Nanoparticle Research 1696:Beckman, Wendy (27 April 2007). 342: 322:, high-pressure carbon monoxide 269: 257: 42: 4393: 4349: 4286: 4229: 4185: 4150: 4099: 4044: 4001: 3965: 3916: 3834: 3807: 3772: 3719: 3678: 3643: 3594: 3567: 3516: 3435: 3392: 3357: 3322: 3287: 3243: 3216: 3181: 3146: 3131: 3074: 3017: 2970: 2929: 2872: 2833: 2786: 2729: 2682: 2641: 2594: 2569: 2528: 2505: 2452: 2398: 2344: 2320: 2282: 2239: 2178: 2101: 2066: 2054: 2007: 1972: 1927: 1900: 1872: 1827: 1784: 1745: 1704: 1689: 1654: 1627: 1556: 1182:Nanotubes are usually grown on 1070: 483:Animated pent-first nucleation. 464:Chemical vapor deposition (CVD) 420: 355:, that was intended to produce 30:Part of a series of articles on 2695:Materials Today Sustainability 1894:10.1016/j.ijhydene.2007.08.013 1537: 1502: 1461: 1427: 1368: 1277: 1234: 1211: 994: 927: 825: 691: 650: 627: 621: 394:This process was developed by 1: 3816:Materials Chemistry Frontiers 3351:10.1016/S0010-2180(03)00142-1 3316:10.1016/S0010-2180(02)00360-7 3225:Journal of Physical Chemistry 3210:10.1016/S0009-2614(01)00959-9 3175:10.1016/S0009-2614(01)00435-3 2578:"Carbon fibres made from air" 2576:Webb, Jonathan (2015-08-20). 2554:10.1126/science.349.6253.1160 2293:Advanced Functional Materials 2268:10.1103/PhysRevLett.95.056104 2040:10.1126/science.282.5391.1105 1921:10.1016/S0360-3199(01)00073-8 1813:10.1088/0022-3727/41/6/065304 1531:10.1016/S0009-2614(02)00132-X 1205: 1153:size-exclusion chromatography 1047:turns into CNTs and oxygen. 4426:10.1088/1468-6996/9/2/025019 3910:10.1016/j.carbon.2011.09.062 3801:10.1016/j.carbon.2012.04.049 3672:10.1016/j.carbon.2008.09.009 3386:10.1016/j.carbon.2004.05.010 3081:Licht, Stuart (2017-03-01). 2763:10.1021/acs.nanolett.5b02427 2707:10.1016/j.mtsust.2019.100023 2667:10.1016/j.mtener.2017.07.003 2607:Advanced Sustainable Systems 2490:10.1021/acs.nanolett.5b02427 2095:10.1016/j.carbon.2012.02.024 2001:10.1016/j.carbon.2005.12.006 1606:Radushkevich, L. V. (1952). 1489:10.1016/0009-2614(95)00825-O 1166:aqueous two-phase extraction 884:, as shown in the equation. 782:George Washington University 780:In 2015, researchers in the 7: 3687:"Purification of nanotubes" 3456:10.1016/j.proci.2006.07.224 2328:"Unidym product sheet SWNT" 1700:. University of Cincinnati. 1157:ion-exchange chromatography 732:{\displaystyle {\tau }_{o}} 10: 4484: 4262:10.1038/s41598-018-37675-4 3421:10.1088/0957-4484/15/3/005 3109:10.1016/j.jcou.2017.02.011 3087:Journal of CO2 Utilization 3042:10.1038/s41598-020-71644-0 2995:10.1016/j.jcou.2020.101218 2983:Journal of CO2 Utilization 2955:10.1016/j.jcou.2017.02.005 2942:Journal of CO2 Utilization 2897:10.1021/acscentsci.5b00400 2858:10.1016/j.jcou.2013.03.006 2846:Journal of CO2 Utilization 2811:10.1016/j.jcou.2019.07.007 2799:Journal of CO2 Utilization 2135:10.1088/1742-6596/61/1/129 1738:10.1016/j.stam.2007.02.009 1585:10.1088/0022-3727/40/8/S17 1381:Nanoscale Research Letters 1129:Application-related issues 776:Liquid electrolysis method 23:Powder of carbon nanotubes 970:Thus the net reaction is 474:chemical vapor deposition 328:chemical vapor deposition 4406:Sci. Technol. Adv. Mater 3190:Chemical Physics Letters 3155:Chemical Physics Letters 2022:(Submitted manuscript). 1717:Sci. Technol. Adv. Mater 1608: 1511:Chemical Physics Letters 1170:field-effect transistors 489:University of Cincinnati 447:Université de Sherbrooke 443:induction thermal plasma 337: 246:Nanocrystalline material 222:Nanostructured materials 4207:10.1021/acsnano.8b09579 4077:10.1126/science.1091911 3929:Applied Physics Express 2522:10.1126/science.aad1644 2217:10.1126/science.1104962 1836:Applied Physics Letters 1617:Журнал Физической Химии 1196:field-effect transistor 4030:10.1038/nnano.2008.135 2654:Materials Today Energy 2619:10.1002/adsu.202100481 2306:10.1002/adfm.200901927 1084: 1021: 961: 871: 733: 701: 484: 476: 24: 16:Class of manufacturing 4010:Nature Nanotechnology 3950:10.1143/APEX.2.125002 3545:10.1038/nnano.2006.95 3525:Nature Nanotechnology 3494:10.1038/nnano.2006.52 3474:Nature Nanotechnology 2376:10.1038/nnano.2006.95 2355:Nature Nanotechnology 1958:10.1166/jnn.2010.2939 1402:10.1186/1556-276X-9-1 1145:column chromatography 1078: 1022: 962: 872: 734: 702: 536:Fluidized bed reactor 482: 471: 379:In laser ablation, a 276:Technology portal 71:Mechanical properties 22: 1544:Smiljanic, Olivier. 1088:Removal of catalysts 977: 891: 795: 764:van der Waals forces 714: 615: 359:. However the first 241:Nanoporous materials 104:Buckminsterfullerene 4418:2008STAdM...9b5019A 4371:2009NanoL...9..800D 4319:2009arXiv0902.0010Z 4254:2019NatSR...9..535T 4128:10.1038/nature08116 4120:2009Natur.460..250T 4069:2003Sci...302.1545Z 4063:(5650): 1545–1548. 4022:2008NatNa...3..387H 3941:2009APExp...2l5002T 3902:2012Carbo..50.1422Y 3858:2009NanoL...9.1497T 3793:2012Carbo..50.3934M 3740:2005NanoL...5..163X 3703:1994Natur.367..519E 3664:2008Carbo..46.2003H 3537:2006NatNa...1..131Y 3486:2006NatNa...1...60A 3413:2004Nanot..15..264S 3378:2004Carbo..42.2295H 3343:2003CoFl..135...27S 3308:2002CoFl..130...37V 3265:2004JNR.....6..241M 3237:10.1021/j100100a001 3231:(49): 12815–12818. 3202:2001CPL...346...23Y 3167:2001CPL...340..237Y 2885:ACS Central Science 2754:2015NanoL..15.6142R 2481:2015NanoL..15.6142R 2422:2006NatMa...5..987F 2368:2006NatNa...1..131Y 2260:2005PhRvL..95e6104F 2199:2004Sci...306.1362H 2193:(5700): 1362–1365. 2158:(49): 15824–15829. 2126:2007JPhCS..61..643K 2087:2012Carbo..50.2641N 2032:1998Sci...282.1105R 1993:2006Carbo..44.1343E 1848:2008ApPhL..92w3121B 1805:2008JPhD...41f5304N 1729:2007STAdM...8..292I 1675:1993ApPhL..62..657J 1648:10.1021/j150572a002 1577:2007JPhD...40.2375K 1523:2002CPL...356..189S 1455:10.1021/j100027a002 1449:(27): 10694–10697. 1393:2014NRL.....9....1L 1346:2000SciAm.283f..62C 1333:Scientific American 1298:1992Natur.358..220E 1255:1991Natur.354...56I 1081:ultracentrifugation 1015: 993: 955: 942: 926: 907: 865: 840: 824: 811: 143:Carbon quantum dots 4468:Chemical synthesis 4242:Scientific Reports 3828:10.1039/C7QM00427C 3030:Scientific Reports 1085: 1017: 1003: 981: 957: 943: 930: 914: 895: 867: 853: 828: 812: 799: 729: 697: 604:and co-workers at 485: 477: 398:and co-workers at 324:disproportionation 264:Science portal 76:Optical properties 25: 4379:10.1021/nl803496s 4327:10.1021/ja8096674 4171:10.1021/ja402762e 4165:(18): 6822–6825. 4114:(7252): 250–253. 3987:10.1021/ac0508954 3981:(19): 6225–6228. 3866:10.1021/nl8034866 3787:(10): 3934–3942. 3758:10.1021/nl048300s 3658:(15): 2003–2025. 3613:(31): 6351–6357. 3588:10.1021/ie9019787 3372:(11): 2295–2307. 2164:10.1021/ja065767r 1915:(11): 1165–1175. 1888:(18): 4821–4829. 1856:10.1063/1.2945798 1770:10.1021/ja8024752 1764:(30): 9918–9924. 1292:(6383): 220–222. 1006: 999: 984: 946: 933: 917: 910: 898: 882:lithium carbonate 856: 849: 843: 831: 815: 802: 584:. Researchers at 312: 311: 124:Carbon allotropes 4475: 4463:Carbon nanotubes 4448: 4447: 4437: 4397: 4391: 4390: 4353: 4347: 4346: 4312: 4303:(7): 2454–2455. 4290: 4284: 4283: 4273: 4233: 4227: 4226: 4201:(2): 2567–2578. 4189: 4183: 4182: 4154: 4148: 4147: 4103: 4097: 4096: 4048: 4042: 4041: 4005: 3999: 3998: 3969: 3963: 3962: 3952: 3920: 3914: 3913: 3896:(3): 1422–1424. 3884: 3878: 3877: 3852:(4): 1497–1500. 3838: 3832: 3831: 3811: 3805: 3804: 3776: 3770: 3769: 3751: 3723: 3717: 3716: 3714: 3712:10.1038/367519a0 3682: 3676: 3675: 3647: 3641: 3640: 3630: 3598: 3592: 3591: 3571: 3565: 3564: 3520: 3514: 3513: 3469: 3460: 3459: 3439: 3433: 3432: 3396: 3390: 3389: 3361: 3355: 3354: 3326: 3320: 3319: 3291: 3285: 3284: 3259:(2/3): 241–251. 3247: 3241: 3240: 3220: 3214: 3213: 3185: 3179: 3178: 3161:(3–4): 237–241. 3150: 3144: 3143: 3135: 3129: 3128: 3102: 3078: 3072: 3071: 3061: 3021: 3015: 3014: 2974: 2968: 2967: 2957: 2933: 2927: 2926: 2916: 2876: 2870: 2869: 2837: 2831: 2830: 2790: 2784: 2783: 2765: 2748:(9): 6142–6148. 2733: 2727: 2726: 2686: 2680: 2679: 2669: 2645: 2639: 2638: 2598: 2592: 2591: 2589: 2588: 2573: 2567: 2566: 2556: 2532: 2526: 2525: 2509: 2503: 2502: 2492: 2475:(9): 6142–6148. 2456: 2450: 2449: 2430:10.1038/nmat1782 2409:Nature Materials 2402: 2396: 2395: 2348: 2342: 2341: 2339: 2333:. Archived from 2332: 2324: 2318: 2317: 2286: 2280: 2279: 2243: 2237: 2236: 2210: 2182: 2176: 2175: 2146: 2140: 2139: 2137: 2105: 2099: 2098: 2070: 2064: 2058: 2052: 2051: 2026:(5391): 1105–7. 2011: 2005: 2004: 1987:(7): 1343–1345. 1976: 1970: 1969: 1951: 1942:(6): 3739–3758. 1931: 1925: 1924: 1904: 1898: 1897: 1876: 1870: 1869: 1867: 1831: 1825: 1824: 1788: 1782: 1781: 1758:J. Am. Chem. Soc 1749: 1743: 1742: 1740: 1708: 1702: 1701: 1693: 1687: 1686: 1683:10.1063/1.108857 1663:Appl. Phys. Lett 1658: 1652: 1651: 1631: 1625: 1624: 1614: 1603: 1597: 1596: 1571:(8): 2375–2387. 1560: 1554: 1553: 1541: 1535: 1534: 1517:(3–4): 189–193. 1506: 1500: 1499: 1498:on 24 July 2011. 1497: 1491:. Archived from 1477:Chem. Phys. Lett 1474: 1465: 1459: 1458: 1440: 1431: 1425: 1424: 1414: 1404: 1372: 1366: 1365: 1327: 1318: 1317: 1306:10.1038/358220a0 1281: 1275: 1274: 1263:10.1038/354056a0 1238: 1232: 1231: 1215: 1092:Nanoscale metal 1026: 1024: 1023: 1018: 1016: 1014: 1011: 1004: 997: 992: 989: 982: 966: 964: 963: 958: 956: 954: 951: 944: 941: 938: 931: 925: 922: 915: 908: 906: 903: 896: 876: 874: 873: 868: 866: 864: 861: 854: 847: 841: 839: 836: 829: 823: 820: 813: 810: 807: 800: 769:Vickers hardness 744:specific surface 738: 736: 735: 730: 728: 727: 722: 706: 704: 703: 698: 690: 689: 688: 687: 686: 681: 675: 649: 648: 643: 637: 596:Super-growth CVD 578:Meijo University 316:carbon nanotubes 304: 297: 290: 274: 273: 262: 261: 213:Titanium dioxide 52:Carbon nanotubes 46: 27: 26: 4483: 4482: 4478: 4477: 4476: 4474: 4473: 4472: 4453: 4452: 4451: 4398: 4394: 4354: 4350: 4291: 4287: 4234: 4230: 4190: 4186: 4155: 4151: 4104: 4100: 4053:Dresselhaus, MS 4049: 4045: 4006: 4002: 3970: 3966: 3921: 3917: 3885: 3881: 3839: 3835: 3812: 3808: 3777: 3773: 3749:10.1.1.739.1034 3724: 3720: 3683: 3679: 3648: 3644: 3599: 3595: 3582:(11): 5323–38. 3572: 3568: 3521: 3517: 3470: 3463: 3440: 3436: 3397: 3393: 3362: 3358: 3327: 3323: 3292: 3288: 3248: 3244: 3221: 3217: 3186: 3182: 3151: 3147: 3136: 3132: 3079: 3075: 3022: 3018: 2975: 2971: 2934: 2930: 2877: 2873: 2838: 2834: 2791: 2787: 2734: 2730: 2687: 2683: 2646: 2642: 2599: 2595: 2586: 2584: 2574: 2570: 2533: 2529: 2510: 2506: 2464: 2457: 2453: 2416:(12): 987–994. 2403: 2399: 2349: 2345: 2337: 2330: 2326: 2325: 2321: 2287: 2283: 2248:Phys. Rev. Lett 2244: 2240: 2208:10.1.1.467.9078 2183: 2179: 2147: 2143: 2106: 2102: 2071: 2067: 2063:. Nano-lab.com. 2059: 2055: 2012: 2008: 1977: 1973: 1949:10.1.1.459.5003 1932: 1928: 1905: 1901: 1877: 1873: 1832: 1828: 1789: 1785: 1750: 1746: 1709: 1705: 1694: 1690: 1659: 1655: 1632: 1628: 1612: 1610: 1604: 1600: 1561: 1557: 1542: 1538: 1507: 1503: 1495: 1472: 1466: 1462: 1438: 1432: 1428: 1373: 1369: 1328: 1321: 1282: 1278: 1249:(6348): 56–58. 1239: 1235: 1216: 1212: 1208: 1131: 1090: 1073: 1053: 1046: 1042: 1038: 1012: 1007: 990: 985: 980: 978: 975: 974: 952: 947: 939: 934: 923: 918: 904: 899: 894: 892: 889: 888: 862: 857: 837: 832: 821: 816: 808: 803: 798: 796: 793: 792: 778: 723: 718: 717: 715: 712: 711: 682: 677: 676: 671: 664: 660: 653: 644: 639: 638: 633: 616: 613: 612: 598: 590:Richard Smalley 586:Rice University 554: 550: 466: 423: 400:Rice University 396:Richard Smalley 377: 345: 340: 308: 268: 256: 153:Aluminium oxide 17: 12: 11: 5: 4481: 4471: 4470: 4465: 4450: 4449: 4392: 4348: 4285: 4228: 4184: 4149: 4098: 4043: 4016:(7): 387–394. 4000: 3964: 3935:(12): 125002. 3915: 3879: 3833: 3806: 3771: 3734:(1): 163–168. 3718: 3677: 3642: 3593: 3566: 3531:(2): 131–136. 3515: 3461: 3450:(2): 1821–29. 3434: 3407:(3): 264–268. 3401:Nanotechnology 3391: 3356: 3337:(1–2): 27–33. 3331:Combust. Flame 3321: 3302:(1–2): 37–47. 3296:Combust. Flame 3286: 3242: 3215: 3196:(1–2): 23–28. 3180: 3145: 3130: 3073: 3016: 2969: 2928: 2891:(3): 162–168. 2871: 2832: 2785: 2728: 2681: 2640: 2593: 2568: 2547:(6253): 1160. 2527: 2504: 2462: 2451: 2397: 2362:(2): 131–136. 2343: 2340:on 2011-07-17. 2319: 2300:(3): 422–428. 2281: 2238: 2177: 2141: 2120:(1): 643–646. 2100: 2081:(7): 2641–50. 2065: 2053: 2006: 1971: 1926: 1899: 1871: 1842:(23): 233121. 1826: 1783: 1744: 1723:(4): 292–295. 1703: 1688: 1653: 1642:(2): 133–140. 1626: 1619:(in Russian). 1598: 1555: 1536: 1501: 1483:(1–2): 49–54. 1460: 1426: 1367: 1319: 1276: 1233: 1209: 1207: 1204: 1188:magnetic metal 1130: 1127: 1089: 1086: 1072: 1069: 1052: 1049: 1044: 1040: 1036: 1032:greenhouse gas 1028: 1027: 1010: 1002: 996: 988: 968: 967: 950: 937: 929: 921: 913: 902: 878: 877: 860: 852: 846: 835: 827: 819: 806: 777: 774: 759:tube is wide. 753:centrifugation 748:laser ablation 726: 721: 708: 707: 696: 693: 685: 680: 674: 670: 667: 663: 659: 656: 652: 647: 642: 636: 632: 629: 626: 623: 620: 597: 594: 552: 548: 504:plasma etching 465: 462: 427:thermal plasma 422: 419: 376: 375:Laser ablation 373: 344: 341: 339: 336: 320:laser ablation 310: 309: 307: 306: 299: 292: 284: 281: 280: 279: 278: 266: 251: 250: 249: 248: 243: 238: 233: 225: 224: 218: 217: 216: 215: 210: 205: 200: 195: 190: 185: 180: 175: 170: 165: 160: 155: 150: 145: 137: 136: 129: 128: 127: 126: 121: 116: 111: 106: 98: 97: 91: 90: 89: 88: 83: 78: 73: 68: 63: 55: 54: 48: 47: 39: 38: 32: 31: 15: 9: 6: 4: 3: 2: 4480: 4469: 4466: 4464: 4461: 4460: 4458: 4445: 4441: 4436: 4431: 4427: 4423: 4419: 4415: 4412:(2): 025019. 4411: 4407: 4403: 4396: 4388: 4384: 4380: 4376: 4372: 4368: 4364: 4360: 4352: 4344: 4340: 4336: 4332: 4328: 4324: 4320: 4316: 4311: 4306: 4302: 4298: 4297: 4296:J Am Chem Soc 4289: 4281: 4277: 4272: 4267: 4263: 4259: 4255: 4251: 4247: 4243: 4239: 4232: 4224: 4220: 4216: 4212: 4208: 4204: 4200: 4196: 4188: 4180: 4176: 4172: 4168: 4164: 4160: 4153: 4145: 4141: 4137: 4133: 4129: 4125: 4121: 4117: 4113: 4109: 4102: 4094: 4090: 4086: 4082: 4078: 4074: 4070: 4066: 4062: 4058: 4054: 4047: 4039: 4035: 4031: 4027: 4023: 4019: 4015: 4011: 4004: 3996: 3992: 3988: 3984: 3980: 3977: 3976: 3968: 3960: 3956: 3951: 3946: 3942: 3938: 3934: 3930: 3926: 3919: 3911: 3907: 3903: 3899: 3895: 3891: 3883: 3875: 3871: 3867: 3863: 3859: 3855: 3851: 3847: 3846: 3837: 3829: 3825: 3821: 3817: 3810: 3802: 3798: 3794: 3790: 3786: 3782: 3775: 3767: 3763: 3759: 3755: 3750: 3745: 3741: 3737: 3733: 3729: 3722: 3713: 3708: 3704: 3700: 3697:(6463): 519. 3696: 3692: 3688: 3681: 3673: 3669: 3665: 3661: 3657: 3653: 3646: 3638: 3634: 3629: 3624: 3620: 3616: 3612: 3608: 3604: 3597: 3589: 3585: 3581: 3577: 3570: 3562: 3558: 3554: 3550: 3546: 3542: 3538: 3534: 3530: 3526: 3519: 3511: 3507: 3503: 3499: 3495: 3491: 3487: 3483: 3479: 3475: 3468: 3466: 3457: 3453: 3449: 3445: 3438: 3430: 3426: 3422: 3418: 3414: 3410: 3406: 3402: 3395: 3387: 3383: 3379: 3375: 3371: 3367: 3360: 3352: 3348: 3344: 3340: 3336: 3332: 3325: 3317: 3313: 3309: 3305: 3301: 3297: 3290: 3282: 3278: 3274: 3270: 3266: 3262: 3258: 3254: 3246: 3238: 3234: 3230: 3226: 3219: 3211: 3207: 3203: 3199: 3195: 3191: 3184: 3176: 3172: 3168: 3164: 3160: 3156: 3149: 3141: 3134: 3126: 3122: 3118: 3114: 3110: 3106: 3101: 3096: 3092: 3088: 3084: 3077: 3069: 3065: 3060: 3055: 3051: 3047: 3043: 3039: 3035: 3031: 3027: 3020: 3012: 3008: 3004: 3000: 2996: 2992: 2988: 2984: 2980: 2973: 2965: 2961: 2956: 2951: 2947: 2943: 2939: 2932: 2924: 2920: 2915: 2910: 2906: 2902: 2898: 2894: 2890: 2886: 2882: 2875: 2867: 2863: 2859: 2855: 2851: 2847: 2843: 2836: 2828: 2824: 2820: 2816: 2812: 2808: 2804: 2800: 2796: 2789: 2781: 2777: 2773: 2769: 2764: 2759: 2755: 2751: 2747: 2743: 2739: 2732: 2724: 2720: 2716: 2712: 2708: 2704: 2700: 2696: 2692: 2685: 2677: 2673: 2668: 2663: 2659: 2655: 2651: 2644: 2636: 2632: 2628: 2624: 2620: 2616: 2612: 2608: 2604: 2597: 2583: 2579: 2572: 2564: 2560: 2555: 2550: 2546: 2542: 2538: 2531: 2523: 2519: 2515: 2508: 2500: 2496: 2491: 2486: 2482: 2478: 2474: 2470: 2466: 2455: 2447: 2443: 2439: 2435: 2431: 2427: 2423: 2419: 2415: 2411: 2410: 2401: 2393: 2389: 2385: 2381: 2377: 2373: 2369: 2365: 2361: 2357: 2356: 2347: 2336: 2329: 2323: 2315: 2311: 2307: 2303: 2299: 2295: 2294: 2285: 2277: 2273: 2269: 2265: 2261: 2257: 2254:(5): 056104. 2253: 2249: 2242: 2234: 2230: 2226: 2222: 2218: 2214: 2209: 2204: 2200: 2196: 2192: 2188: 2181: 2173: 2169: 2165: 2161: 2157: 2153: 2145: 2136: 2131: 2127: 2123: 2119: 2115: 2111: 2104: 2096: 2092: 2088: 2084: 2080: 2076: 2069: 2062: 2057: 2049: 2045: 2041: 2037: 2033: 2029: 2025: 2021: 2017: 2010: 2002: 1998: 1994: 1990: 1986: 1982: 1975: 1967: 1963: 1959: 1955: 1950: 1945: 1941: 1937: 1930: 1922: 1918: 1914: 1910: 1903: 1895: 1891: 1887: 1883: 1875: 1866: 1861: 1857: 1853: 1849: 1845: 1841: 1837: 1830: 1822: 1818: 1814: 1810: 1806: 1802: 1799:(6): 065304. 1798: 1794: 1787: 1779: 1775: 1771: 1767: 1763: 1759: 1755: 1748: 1739: 1734: 1730: 1726: 1722: 1718: 1714: 1707: 1699: 1692: 1684: 1680: 1676: 1672: 1668: 1664: 1657: 1649: 1645: 1641: 1637: 1636:J. Phys. Chem 1630: 1622: 1618: 1611: 1602: 1594: 1590: 1586: 1582: 1578: 1574: 1570: 1566: 1559: 1551: 1547: 1540: 1532: 1528: 1524: 1520: 1516: 1512: 1505: 1494: 1490: 1486: 1482: 1478: 1471: 1464: 1456: 1452: 1448: 1444: 1443:J. Phys. Chem 1437: 1430: 1422: 1418: 1413: 1408: 1403: 1398: 1394: 1390: 1386: 1382: 1378: 1371: 1363: 1359: 1355: 1351: 1347: 1343: 1339: 1335: 1334: 1326: 1324: 1315: 1311: 1307: 1303: 1299: 1295: 1291: 1287: 1280: 1272: 1268: 1264: 1260: 1256: 1252: 1248: 1244: 1237: 1229: 1225: 1221: 1214: 1210: 1203: 1201: 1200:nanostructure 1197: 1193: 1189: 1185: 1184:nanoparticles 1180: 1178: 1173: 1171: 1167: 1162: 1158: 1154: 1148: 1146: 1141: 1137: 1126: 1123: 1119: 1115: 1110: 1106: 1102: 1099: 1098:fluidized-bed 1095: 1082: 1077: 1068: 1065: 1061: 1057: 1048: 1033: 1008: 1000: 986: 973: 972: 971: 948: 935: 919: 911: 900: 887: 886: 885: 883: 858: 850: 844: 833: 817: 804: 791: 790: 789: 787: 783: 773: 770: 765: 760: 756: 754: 749: 745: 740: 724: 719: 694: 683: 678: 672: 668: 665: 661: 657: 654: 645: 640: 634: 630: 624: 618: 611: 610: 609: 607: 603: 593: 591: 587: 583: 579: 573: 571: 567: 563: 558: 555: 544: 539: 537: 533: 529: 525: 521: 517: 513: 509: 505: 501: 497: 492: 490: 481: 475: 470: 461: 458: 456: 452: 448: 444: 439: 436: 432: 428: 418: 416: 411: 409: 405: 401: 397: 392: 390: 386: 382: 372: 368: 366: 362: 358: 354: 350: 343:Arc discharge 335: 333: 329: 325: 321: 317: 305: 300: 298: 293: 291: 286: 285: 283: 282: 277: 272: 267: 265: 260: 255: 254: 253: 252: 247: 244: 242: 239: 237: 234: 232: 231:Nanocomposite 229: 228: 227: 226: 223: 220: 219: 214: 211: 209: 206: 204: 201: 199: 196: 194: 193:Iron–platinum 191: 189: 186: 184: 181: 179: 176: 174: 171: 169: 166: 164: 161: 159: 156: 154: 151: 149: 146: 144: 141: 140: 139: 138: 135: 134:nanoparticles 131: 130: 125: 122: 120: 119:Health impact 117: 115: 112: 110: 109:C70 fullerene 107: 105: 102: 101: 100: 99: 96: 93: 92: 87: 84: 82: 79: 77: 74: 72: 69: 67: 64: 62: 59: 58: 57: 56: 53: 50: 49: 45: 41: 40: 37: 36:Nanomaterials 34: 33: 29: 28: 21: 4409: 4405: 4395: 4365:(2): 800–5. 4362: 4359:Nano Letters 4358: 4351: 4300: 4294: 4288: 4245: 4241: 4231: 4198: 4194: 4187: 4162: 4158: 4152: 4111: 4107: 4101: 4060: 4056: 4046: 4013: 4009: 4003: 3978: 3973: 3967: 3932: 3928: 3918: 3893: 3889: 3882: 3849: 3845:Nano Letters 3843: 3836: 3822:(1): 36–63. 3819: 3815: 3809: 3784: 3780: 3774: 3731: 3728:Nano Letters 3727: 3721: 3694: 3690: 3680: 3655: 3651: 3645: 3610: 3607:Biomaterials 3606: 3596: 3579: 3575: 3569: 3528: 3524: 3518: 3477: 3473: 3447: 3443: 3437: 3404: 3400: 3394: 3369: 3365: 3359: 3334: 3330: 3324: 3299: 3295: 3289: 3256: 3252: 3245: 3228: 3224: 3218: 3193: 3189: 3183: 3158: 3154: 3148: 3139: 3133: 3090: 3086: 3076: 3036:(1): 15146. 3033: 3029: 3019: 2986: 2982: 2972: 2945: 2941: 2931: 2888: 2884: 2874: 2849: 2845: 2835: 2802: 2798: 2788: 2745: 2742:Nano Letters 2741: 2731: 2698: 2694: 2684: 2657: 2653: 2643: 2610: 2606: 2596: 2585:. Retrieved 2581: 2571: 2544: 2540: 2530: 2513: 2507: 2472: 2469:Nano Letters 2468: 2454: 2413: 2407: 2400: 2359: 2353: 2346: 2335:the original 2322: 2297: 2291: 2284: 2251: 2247: 2241: 2190: 2186: 2180: 2155: 2151: 2144: 2117: 2113: 2103: 2078: 2074: 2068: 2056: 2023: 2019: 2009: 1984: 1980: 1974: 1939: 1935: 1929: 1912: 1908: 1902: 1885: 1881: 1874: 1839: 1835: 1829: 1796: 1792: 1786: 1761: 1757: 1747: 1720: 1716: 1706: 1691: 1666: 1662: 1656: 1639: 1635: 1629: 1620: 1616: 1601: 1568: 1564: 1558: 1549: 1539: 1514: 1510: 1504: 1493:the original 1480: 1476: 1463: 1446: 1442: 1429: 1384: 1380: 1370: 1340:(6): 67–69. 1337: 1331: 1289: 1285: 1279: 1246: 1242: 1236: 1227: 1223: 1213: 1181: 1174: 1149: 1132: 1091: 1071:Purification 1054: 1029: 969: 879: 779: 761: 757: 741: 709: 602:Sumio Iijima 599: 574: 559: 540: 493: 486: 459: 440: 424: 421:Plasma torch 412: 393: 383:vaporizes a 381:pulsed laser 378: 369: 346: 313: 168:Cobalt oxide 148:Quantum dots 81:Applications 60: 3975:Anal. Chem. 3480:(1): 60–5. 3093:: 378–389. 2948:: 335–344. 2805:: 303–312. 2660:: 230–236. 1865:10919/47394 1387:(1): 1–13. 1230:(1): 15–24. 1043:as that CO 415:temperature 361:macroscopic 4457:Categories 4248:(1): 535. 3100:1608.00946 2989:: 101218. 2701:: 100023. 2587:2018-10-26 1669:(6): 657. 1206:References 1192:spintronic 1109:precursors 1056:Fullerenes 786:nucleation 357:fullerenes 349:electrodes 188:Iron oxide 95:Fullerenes 4343:207136668 4310:0902.0010 3744:CiteSeerX 3561:205442034 3429:250758527 3125:119281669 3117:2212-9820 3050:2045-2322 3011:225302213 3003:2212-9820 2964:2212-9820 2905:2374-7943 2866:2212-9820 2852:: 58–63. 2827:199765298 2819:2212-9820 2772:1530-6984 2723:202944797 2715:2589-2347 2676:2468-6069 2635:247135488 2627:2366-7486 2392:205442034 2203:CiteSeerX 1944:CiteSeerX 1821:122029563 1593:122907049 1550:US Patent 1161:oligomers 1105:chirality 1094:catalysts 995:⟶ 928:⟶ 826:⟶ 720:τ 679:τ 666:− 658:− 641:τ 635:β 520:acetylene 500:annealing 455:inert gas 435:ferrocene 389:inert gas 332:catalysis 158:Cellulose 114:Chemistry 66:Chemistry 61:Synthesis 4444:27877994 4387:19159186 4335:19193007 4280:30679809 4223:59224819 4215:30673278 4195:ACS Nano 4179:23611526 4136:19587767 4085:14645843 4038:18654561 3995:16194082 3959:94375558 3874:19243112 3766:15792432 3637:19698989 3553:18654165 3502:18654143 3281:92974544 3068:32934276 2923:27163042 2780:26237131 2582:BBC News 2563:26359385 2499:26237131 2446:28831020 2438:17128258 2384:18654165 2314:98195823 2276:16090893 2233:34377168 2225:15550668 2172:17147393 1966:20355365 1778:18597459 1623:: 88–95. 1421:24380376 1362:11103460 524:ethylene 516:hydrogen 512:nitrogen 502:, or by 449:and the 385:graphite 236:Nanofoam 203:Platinum 86:Timeline 4435:5099751 4414:Bibcode 4367:Bibcode 4315:Bibcode 4271:6345979 4250:Bibcode 4144:4417004 4116:Bibcode 4093:2960962 4065:Bibcode 4057:Science 4018:Bibcode 3937:Bibcode 3898:Bibcode 3854:Bibcode 3789:Bibcode 3736:Bibcode 3699:Bibcode 3660:Bibcode 3628:2753181 3533:Bibcode 3510:5060091 3482:Bibcode 3409:Bibcode 3374:Bibcode 3339:Bibcode 3304:Bibcode 3261:Bibcode 3198:Bibcode 3163:Bibcode 3059:7493996 2914:4827670 2750:Bibcode 2541:Science 2514:Science 2477:Bibcode 2418:Bibcode 2364:Bibcode 2256:Bibcode 2195:Bibcode 2187:Science 2122:Bibcode 2083:Bibcode 2048:9804545 2028:Bibcode 2020:Science 1989:Bibcode 1844:Bibcode 1801:Bibcode 1725:Bibcode 1671:Bibcode 1573:Bibcode 1519:Bibcode 1412:3895740 1389:Bibcode 1342:Bibcode 1314:4270290 1294:Bibcode 1271:4302490 1251:Bibcode 1140:agarose 1122:yttrium 582:camphor 532:methane 528:ethanol 508:ammonia 163:Ceramic 4442:  4432:  4385:  4341:  4333:  4278:  4268:  4221:  4213:  4177:  4142:  4134:  4108:Nature 4091:  4083:  4036:  3993:  3957:  3890:Carbon 3872:  3781:Carbon 3764:  3746:  3691:Nature 3652:Carbon 3635:  3625:  3559:  3551:  3508:  3500:  3427:  3366:Carbon 3279:  3123:  3115:  3066:  3056:  3048:  3009:  3001:  2962:  2921:  2911:  2903:  2864:  2825:  2817:  2778:  2770:  2721:  2713:  2674:  2633:  2625:  2561:  2497:  2444:  2436:  2390:  2382:  2312:  2274:  2231:  2223:  2205:  2170:  2075:Carbon 2046:  1981:Carbon 1964:  1946:  1819:  1776:  1591:  1419:  1409:  1360:  1312:  1286:Nature 1269:  1243:Nature 1177:quartz 1118:cobalt 1114:nickel 1060:flames 742:Their 562:plasma 408:nickel 404:cobalt 326:, and 208:Silver 173:Copper 132:Other 4339:S2CID 4305:arXiv 4219:S2CID 4140:S2CID 4089:S2CID 3955:S2CID 3557:S2CID 3506:S2CID 3425:S2CID 3277:S2CID 3121:S2CID 3095:arXiv 3007:S2CID 2823:S2CID 2719:S2CID 2631:S2CID 2613:(5). 2442:S2CID 2388:S2CID 2338:(PDF) 2331:(PDF) 2310:S2CID 2229:S2CID 1817:S2CID 1613:(PDF) 1589:S2CID 1496:(PDF) 1473:(PDF) 1439:(PDF) 1310:S2CID 1267:S2CID 560:If a 338:Types 198:Lipid 4440:PMID 4383:PMID 4331:PMID 4276:PMID 4211:PMID 4175:PMID 4132:PMID 4081:PMID 4034:PMID 3991:PMID 3870:PMID 3762:PMID 3633:PMID 3549:PMID 3498:PMID 3113:ISSN 3064:PMID 3046:ISSN 2999:ISSN 2960:ISSN 2919:PMID 2901:ISSN 2862:ISSN 2815:ISSN 2776:PMID 2768:ISSN 2711:ISSN 2672:ISSN 2623:ISSN 2559:PMID 2495:PMID 2434:PMID 2380:PMID 2272:PMID 2221:PMID 2168:PMID 2044:PMID 1962:PMID 1774:PMID 1417:PMID 1358:PMID 1064:soot 998:CNTs 848:CNTs 606:AIST 496:iron 406:and 353:amps 183:Iron 178:Gold 4430:PMC 4422:doi 4375:doi 4323:doi 4301:131 4266:PMC 4258:doi 4203:doi 4167:doi 4163:135 4124:doi 4112:460 4073:doi 4061:302 4026:doi 3983:doi 3945:doi 3906:doi 3862:doi 3824:doi 3797:doi 3754:doi 3707:doi 3695:367 3668:doi 3623:PMC 3615:doi 3584:doi 3541:doi 3490:doi 3452:doi 3417:doi 3382:doi 3347:doi 3335:135 3312:doi 3300:130 3269:doi 3233:doi 3206:doi 3194:346 3171:doi 3159:340 3105:doi 3054:PMC 3038:doi 2991:doi 2950:doi 2909:PMC 2893:doi 2854:doi 2807:doi 2758:doi 2703:doi 2662:doi 2615:doi 2549:doi 2545:349 2518:doi 2485:doi 2426:doi 2372:doi 2302:doi 2264:doi 2213:doi 2191:306 2160:doi 2156:128 2130:doi 2091:doi 2036:doi 2024:282 1997:doi 1954:doi 1917:doi 1890:doi 1860:hdl 1852:doi 1809:doi 1766:doi 1762:130 1733:doi 1679:doi 1644:doi 1581:doi 1527:doi 1515:356 1485:doi 1481:243 1451:doi 1407:PMC 1397:doi 1350:doi 1338:283 1302:doi 1290:358 1259:doi 1247:354 1186:of 1120:or 1101:CVD 545:or 543:MgO 530:or 514:or 365:NEC 4459:: 4438:. 4428:. 4420:. 4408:. 4404:. 4381:. 4373:. 4361:. 4337:. 4329:. 4321:. 4313:. 4299:. 4274:. 4264:. 4256:. 4244:. 4240:. 4217:. 4209:. 4199:13 4197:. 4173:. 4161:. 4138:. 4130:. 4122:. 4110:. 4087:. 4079:. 4071:. 4059:. 4032:. 4024:. 4012:. 3989:. 3979:77 3953:. 3943:. 3931:. 3927:. 3904:. 3894:50 3892:. 3868:. 3860:. 3848:. 3818:. 3795:. 3785:50 3783:. 3760:. 3752:. 3742:. 3730:. 3705:. 3693:. 3689:. 3666:. 3656:46 3654:. 3631:. 3621:. 3611:30 3609:. 3605:. 3580:49 3578:. 3555:. 3547:. 3539:. 3527:. 3504:. 3496:. 3488:. 3476:. 3464:^ 3448:31 3446:. 3423:. 3415:. 3405:15 3403:. 3380:. 3370:42 3368:. 3345:. 3333:. 3310:. 3298:. 3275:. 3267:. 3255:. 3229:98 3227:. 3204:. 3192:. 3169:. 3157:. 3119:. 3111:. 3103:. 3091:18 3089:. 3085:. 3062:. 3052:. 3044:. 3034:10 3032:. 3028:. 3005:. 2997:. 2987:40 2985:. 2981:. 2958:. 2946:18 2944:. 2940:. 2917:. 2907:. 2899:. 2887:. 2883:. 2860:. 2848:. 2844:. 2821:. 2813:. 2803:34 2801:. 2797:. 2774:. 2766:. 2756:. 2746:15 2744:. 2740:. 2717:. 2709:. 2697:. 2693:. 2670:. 2656:. 2652:. 2629:. 2621:. 2609:. 2605:. 2580:. 2557:. 2543:. 2539:. 2516:. 2493:. 2483:. 2473:15 2471:. 2467:. 2440:. 2432:. 2424:. 2412:. 2386:. 2378:. 2370:. 2358:. 2308:. 2298:20 2296:. 2270:. 2262:. 2252:95 2250:. 2227:. 2219:. 2211:. 2201:. 2189:. 2166:. 2154:. 2128:. 2118:61 2116:. 2112:. 2089:. 2079:50 2077:. 2042:. 2034:. 2018:. 1995:. 1985:44 1983:. 1960:. 1952:. 1940:10 1938:. 1913:26 1911:. 1886:32 1884:. 1858:. 1850:. 1840:92 1838:. 1815:. 1807:. 1797:41 1795:. 1772:. 1760:. 1756:. 1731:. 1719:. 1715:. 1677:. 1667:62 1665:. 1640:63 1638:. 1621:26 1615:. 1587:. 1579:. 1569:40 1567:. 1548:. 1525:. 1513:. 1479:. 1475:. 1447:99 1445:. 1441:. 1415:. 1405:. 1395:. 1383:. 1379:. 1356:. 1348:. 1336:. 1322:^ 1308:. 1300:. 1288:. 1265:. 1257:. 1245:. 1226:. 1222:. 1202:. 1172:. 1116:, 983:CO 945:CO 932:Li 916:CO 897:Li 830:Li 814:CO 801:Li 547:Al 526:, 522:, 510:, 4446:. 4424:: 4416:: 4410:9 4389:. 4377:: 4369:: 4363:9 4345:. 4325:: 4317:: 4307:: 4282:. 4260:: 4252:: 4246:9 4225:. 4205:: 4181:. 4169:: 4146:. 4126:: 4118:: 4095:. 4075:: 4067:: 4040:. 4028:: 4020:: 4014:3 3997:. 3985:: 3961:. 3947:: 3939:: 3933:2 3912:. 3908:: 3900:: 3876:. 3864:: 3856:: 3850:9 3830:. 3826:: 3820:2 3803:. 3799:: 3791:: 3768:. 3756:: 3738:: 3732:5 3715:. 3709:: 3701:: 3674:. 3670:: 3662:: 3639:. 3617:: 3590:. 3586:: 3563:. 3543:: 3535:: 3529:1 3512:. 3492:: 3484:: 3478:1 3458:. 3454:: 3431:. 3419:: 3411:: 3388:. 3384:: 3376:: 3353:. 3349:: 3341:: 3318:. 3314:: 3306:: 3283:. 3271:: 3263:: 3257:6 3239:. 3235:: 3212:. 3208:: 3200:: 3177:. 3173:: 3165:: 3142:. 3127:. 3107:: 3097:: 3070:. 3040:: 3013:. 2993:: 2966:. 2952:: 2925:. 2895:: 2889:2 2868:. 2856:: 2850:2 2829:. 2809:: 2782:. 2760:: 2752:: 2725:. 2705:: 2699:6 2678:. 2664:: 2658:5 2637:. 2617:: 2611:6 2590:. 2565:. 2551:: 2524:. 2520:: 2501:. 2487:: 2479:: 2465:" 2463:2 2448:. 2428:: 2420:: 2414:5 2394:. 2374:: 2366:: 2360:1 2316:. 2304:: 2278:. 2266:: 2258:: 2235:. 2215:: 2197:: 2174:. 2162:: 2138:. 2132:: 2124:: 2097:. 2093:: 2085:: 2050:. 2038:: 2030:: 2003:. 1999:: 1991:: 1968:. 1956:: 1923:. 1919:: 1896:. 1892:: 1868:. 1862:: 1854:: 1846:: 1823:. 1811:: 1803:: 1780:. 1768:: 1741:. 1735:: 1727:: 1721:8 1685:. 1681:: 1673:: 1650:. 1646:: 1595:. 1583:: 1575:: 1552:. 1533:. 1529:: 1521:: 1487:: 1457:. 1453:: 1423:. 1399:: 1391:: 1385:9 1364:. 1352:: 1344:: 1316:. 1304:: 1296:: 1273:. 1261:: 1253:: 1228:5 1083:. 1045:2 1041:2 1037:3 1009:2 1005:O 1001:+ 987:2 949:3 936:2 920:2 912:+ 909:O 901:2 859:2 855:O 851:+ 845:+ 842:O 834:2 818:3 805:2 725:o 695:. 692:) 684:o 673:/ 669:t 662:e 655:1 651:( 646:o 631:= 628:) 625:t 622:( 619:H 553:3 551:O 549:2 303:e 296:t 289:v

Index


Nanomaterials

Carbon nanotubes
Synthesis
Chemistry
Mechanical properties
Optical properties
Applications
Timeline
Fullerenes
Buckminsterfullerene
C70 fullerene
Chemistry
Health impact
Carbon allotropes
nanoparticles
Carbon quantum dots
Quantum dots
Aluminium oxide
Cellulose
Ceramic
Cobalt oxide
Copper
Gold
Iron
Iron oxide
Iron–platinum
Lipid
Platinum

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.