Knowledge

Carbon quantum dot

Source 📝

439:
modification and surface passivation with various organic, polymeric, inorganic or biological materials. By surface passivation, the fluorescence properties as well as physical properties of CQDs are enhanced. Recently, it has been discovered that amine and hydroxamic acid functionalized CD can produce tricolor (green, yellow and red) emission when introduced with different pH environment and this tricolor emission can be preserved in ORMOSIL film matrix. A paper published in 2019 showed that CQD can resist temperatures as high as 800 °C, paving way for applications of CQD in high temperature environments. Based on carbon, CQDs possess such properties as good conductivity, benign chemical composition, photochemical and thermal stability.
487:, and polymer-silica nanocomposites through hydrothermal/solvothermal treatment, supported synthetic, and microwave synthetic routes. For instance, Zhu et al. described a simple method of preparing CQDs by heating a solution of poly(ethylene glycol) (PEG) and saccharide in 500 W microwave oven for 2 to 10 min. Also a laser-induced thermal shock method is exploited for synthesis ultra-broadband QCDs. Recently, green synthetic approaches have also been employed for fabrication of CQDs. Care must be taken to separate the "bottom-up" carbon dots from fluorescent byproducts such as small molecules or polyester condensates by using multiple dialysis and chromatography separation methods. 422: 418:, CQDs possess the attractive properties of high stability, good conductivity, low toxicity, environmental friendliness, simple synthetic routes as well as comparable optical properties to quantum dots. Carbon quantum dots have been extensively investigated especially due to their strong and tunable fluorescence emission properties, which enable their applications in biomedicine, optronics, catalysis, and sensing. In most cases CQDs emits the light in a band of about several hundred nanometers in visible or near-infrared range, however it was also reported on broadband CQDs covering the spectrum from 800 to 1600 nm. 515:
photo luminescence emissions. The mechanisms by which Nitrogen doping enhances the fluorescence quantum yield of CQDs, as well as the structure of heavily N-doped CDs, are very debated issues in the literature. Zhou et al. applied XANES and XEOL in investigating the electronic structure and luminescence mechanism in their electrochemically produced carbon QDS and found that N doping is almost certainly responsible for the blue luminescence. Synthesis of new nanocomposites based on CDs have been reported with unusual properties. For example, a nanocomposite has been designed by using of CDs and magnetic
430:
effects, whereas other works, including single particle measurements, have rather attributed the fluorescence to recombination of surface-trapped charges, or proposed a form of coupling between core and surface electronic states. The excitation-dependent fluorescence of CQDs, leading to their characteristic emission tunability, has been mostly linked to the inhomogeneous distribution of their emission characteristics, due to polydispersity, although some works have explained it as a violation of Kasha's rule arising from an unusually slow solvent relaxation.
476:, and electrochemical techniques. For example, Zhou et al. first applied electrochemical method into synthesis of CQDs. They grew multi-walled carbon nanotubes on a carbon paper, then they inserted the carbon paper into an electrochemical cell containing supporting electrolyte including degassed acetonitrile and 0.1 M tetrabutyl ammonium perchlorate. Later, they applied this method in cutting CNTs or assembling CNTs into functional patterns which demonstrated the versatile callability of this method in carbon nanostructure manipulations. 309: 321: 538: 25: 94: 3151:
Zhang, Xiaoyu; Zhang, Yu; Wang, Yu; Kalytchuk, Sergii; Kershaw, Stephen V.; Wang, Yinghui; Wang, Peng; Zhang, Tieqiang; Zhao, Yi; Zhang, Hanzhuang; Cui, Tian; Wang, Yiding; Zhao, Jun; Yu, William W.; Rogach, Andrey L. (2013). "Color-Switchable Electroluminescence of Carbon Dot Light-Emitting Diodes".
1221:
Sun, Ya-Ping; Zhou, Bing; Lin, Yi; Wang, Wei; Fernando, K. A. Shiral; Pathak, Pankaj; Meziani, Mohammed Jaouad; Harruff, Barbara A.; Wang, Xin; Wang, Haifang; Luo, Pengju G.; Yang, Hua; Kose, Muhammet Erkan; Chen, Bailin; Veca, L. Monica; Xie, Su-Yuan (2006). "Quantum-Sized Carbon Dots for Bright and
514:
In addition to surface passivation, doping is also a common method used to tune the properties of CQDs. Various doping methods with elements such as N, S, P have been demonstrated for tuning the properties of CQDs, among which N doping is the most common way due to its great ability in improving the
447:
Synthetic methods for CQDs are roughly divided into two categories, "top-down" and "bottom-up" routes. These can be achieved via chemical, electrochemical or physical techniques. The CQDs obtained could be optimized during preparation or post-treatment. Modification of CQDs is also very important to
429:
The fundamental mechanisms responsible of the fluorescence capability of CQDs are very debated. Some authors have provided evidence of size-dependent fluorescence properties, suggesting that the emission arises from electronic transitions with the core of the dots, influenced by quantum confinement
497:
In addition to post-treatment, controlling the size of CQDs during the preparing process is also widely used. For instance, Zhu et al. reported hydrophilic CQDs through impregnation of citric acid precursor. After pyrolyzing CQDs at 300 °C for 2 hours in air, then removing silica, followed by
596:
CQDs were also applied in biosensing as biosensor carriers for their flexibility in modification, high solubility in water, nontoxicity, good photostability, and excellent biocompatibility. The biosensors based on CQD and CQs-based materials could be used for visual monitoring of cellular copper,
608:
and nucleic acid. A general example is about nucleic acid lateral flow assays. The discriminating tags on the amplicons are recognized by their respective antibodies and fluorescence signals provided by the attached CQDs. More generally, the fluorescence of CQDs efficiently responds to pH, local
506:
Being a new type of fluorescent nanoparticles, applications of CQD lie in the field of bioimaging and biosensing due to their biological and environmental friendly composition and excellent biocompatibility. In order to survive the competition with conventional semiconductor quantum dots, a high
1426:
Mintz, Keenan J.; Bartoli, Mattia; Rovere, Massimo; Zhou, Yiqun; Hettiarachchi, Sajini D.; Paudyal, Suraj; Chen, Jiuyan; Domena, Justin B.; Liyanage, Piumi Y.; Sampson, Rachel; Khadka, Durga; Pandey, Raja R.; Huang, Sunxiang; Chusuei, Charles C.; Tagliaferro, Alberto; Leblanc, Roger M. (2021).
550:
CQDs can be used for bioimaging due to their fluorescence emissions and biocompatibility. By injecting solvents containing CQDs into a living body, images in vivo can be obtained for detection or diagnosis purposes. One example is that organic dye-conjugated CQDs could be used as an effective
510:
To prevent surfaces of CQDs from being polluted by their environment, surface passivation is performed to alleviate the detrimental influence of surface contamination on their optical properties. A thin insulating layer is formed to achieve surface passivation via the attachment of polymeric
438:
The structures and components of CQDs determine their diverse properties. Many carboxyl moieties on the CQD surface impart excellent solubility in water and biocompatibility. Such surface moieties enable CQDs to serve as proton conducting nanoparticles. CQDs are also suitable for chemical
1787:
Oza, Goldie; Oza, Kusum; Pandey, Sunil; Shinde, Sachin; Mewada, Ashmi; Thakur, Mukeshchand; Sharon, Maheshwar; Sharon, Madhuri (2014). "A Green Route Towards Highly Photoluminescent and Cytocompatible Carbon dot Synthesis and its Separation Using Sucrose Density Gradient Centrifugation".
507:
quantum yield should be achieved. Although a good example of CQDs with ~80% quantum yield was synthesized, most of the quantum dots synthesized have a quantum yield below 10% so far. Surface-passivation and doping methods for modifications are usually applied for improving quantum yield.
631:
composites exhibited improved photocatalytic H2 evolution under irradiation with UV-Vis. The CQDs serve as a reservoir for electrons to improve the efficiency of separating of the electron-hole pairs of P25. In the recent times, metal-free CQDs have been found to improve the kinetics of
617:
The nontoxicity and biocompatibility of CQDs enable them with broad applications in biomedicine as drug carriers, fluorescent tracers as well as controlling drug release. This is exemplified by the use of CQDs as photosensitizers in photodynamic therapy to destroy cancer cells.
2889:
Pandey, Sunil; Thakur, Mukeshchand; Mewada, Ashmi; Anjarlekar, Dhanashree; Mishra, Neeraj; Sharon, Madhuri (2013). "Carbon dots functionalized gold nanorod mediated delivery of doxorubicin: Tri-functional nano-worms for drug delivery, photothermal therapy and bioimaging".
2213:
Messina, F.; Sciortino, L.; Popescu, R.; Venezia, A. M.; Sciortino, A.; Buscarino, G.; Agnello, S.; Schneider, R.; Gerthsen, D.; Cannas, M.; Gelardi, F. M. (2016). "Fluorescent nitrogen-rich carbon nanodots with an unexpected β-C3N4nanocrystalline structure".
3461:
Chandra, Sourov; Patra, Prasun; Pathan, Shaheen H.; Roy, Shuvrodeb; Mitra, Shouvik; Layek, Animesh; Bhar, Radhaballabh; Pramanik, Panchanan; Goswami, Arunava (2013). "Luminescent S-doped carbon dots: An emergent architecture for multimodal applications".
588:– leading to dual-mode nanohybrids with both optical and X-ray fluorescent properties. Moreover, the conjugation process not only accounts for dual-mode bioimaging but also passivates the rhodium nanoparticle surface, resulting in reduced cytotoxicity. 780:
Fernando, K. A. Shiral; Sahu, Sushant; Liu, Yamin; Lewis, William K.; Guliants, Elena A.; Jafariyan, Amirhossein; Wang, Ping; Bunker, Christopher E.; Sun, Ya-Ping (2015). "Carbon Quantum Dots and Applications in Photocatalytic Energy Conversion".
3187:
Ma, Zheng; Zhang, Yong-Lai; Wang, Lei; Ming, Hai; Li, Haitao; Zhang, Xing; Wang, Fang; Liu, Yang; Kang, Zhenhui; Lee, Shuit-Tong (2013). "Bioinspired Photoelectric Conversion System Based on Carbon-Quantum-Dot-Doped Dye–Semiconductor Complex".
1957:
Bian, Zhengyi; Wallum, Allison; Mehmood, Arshad; Gomez, Eric; Wang, Ziwen; Pandit, Subhendu; Nie, Shuming; Link, Stephan; Levine, Benjamin; Gruebele, Martin (2023). "Properties of Carbon Dots versus Small Molecules from "Bottom-up" Synthesis".
656:, and light emitting devices. CQDs can be used as photosensitizer in dye-sensitized solar cells and the photoelectric conversion efficiency is significantly enhanced. CQD incorporated hybrid silica based sol can be used as transparent 1831:
Mewada, Ashmi; Pandey, Sunil; Shinde, Sachin; Mishra, Neeraj; Oza, Goldie; Thakur, Mukeshchand; Sharon, Maheshwar; Sharon, Madhuri (2013). "Green synthesis of biocompatible carbon dots using aqueous extract of Trapa bispinosa peel".
1108:
Ye, Ruquan; Xiang, Changsheng; Lin, Jian; Peng, Zhiwei; Huang, Kewei; Yan, Zheng; Cook, Nathan P.; Samuel, Errol L.G.; Hwang, Chih-Chau; Ruan, Gedeng; Ceriotti, Gabriel; Raji, Abdul-Rahman O.; Martí, Angel A.; Tour, James M. (2013).
1993:
Zhu, Shoujun; Meng, Qingnan; Wang, Lei; Zhang, Junhu; Song, Yubin; Jin, Han; Zhang, Kai; Sun, Hongchen; Wang, Haiyu; Yang, Bai (2013). "Highly Photoluminescent Carbon Dots for Multicolor Patterning, Sensors, and Bioimaging".
2064:
Xu, Yang; Wu, Ming; Liu, Yang; Feng, Xi-Zeng; Yin, Xue-Bo; He, Xi-Wen; Zhang, Yu-Kui (2013). "Nitrogen-Doped Carbon Dots: A Facile and General Preparation Method, Photoluminescence Investigation, and Imaging Applications".
1158:
Li, Haitao; He, Xiaodie; Kang, Zhenhui; Huang, Hui; Liu, Yang; Liu, Jinglin; Lian, Suoyuan; Tsang, ChiHimA.; Yang, Xiaobao; Lee, Shuit-Tong (2010). "Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design".
2853:
Pandey, Sunil; Mewada, Ashmi; Thakur, Mukeshchand; Tank, Arun; Sharon, Madhuri (2013). "Cysteamine hydrochloride protected carbon dots as a vehicle for the efficient release of the anti-schizophrenic drug haloperidol".
1921:
Thakur, Mukeshchand; Mewada, Ashmi; Pandey, Sunil; Bhori, Mustansir; Singh, Kanchanlata; Sharon, Maheshwar; Sharon, Madhuri (2016). "Milk-derived multi-fluorescent graphene quantum dot-based cancer theranostic system".
1743:
Phadke, Chinmay; Mewada, Ashmi; Dharmatti, Roopa; Thakur, Mukeshchand; Pandey, Sunil; Sharon, Madhuri (2015). "Biogenic Synthesis of Fluorescent Carbon Dots at Ambient Temperature Using Azadirachta indica (Neem) gum".
2100:
Sun, Dong; Ban, Rui; Zhang, Peng-Hui; Wu, Ge-Hui; Zhang, Jian-Rong; Zhu, Jun-Jie (2013). "Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties".
3381:
Li, Haitao; He, Xiaodie; Liu, Yang; Huang, Hui; Lian, Suoyuan; Lee, Shuit-Tong; Kang, Zhenhui (2011). "One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties".
859:
Xu, Xiaoyou; Ray, Robert; Gu, Yunlong; Ploehn, Harry J.; Gearheart, Latha; Raker, Kyle; Scrivens, Walter A. (2004). "Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments".
2128:
Prasad, K. Sudhakara; Pallela, Ramjee; Kim, Dong-Min; Shim, Yoon-Bo (2013). "Microwave-Assisted One-Pot Synthesis of Metal-Free Nitrogen and Phosphorus Dual-Doped Nanocarbon for Electrocatalysis and Cell Imaging".
567:
could tune the blue emission of the organic dye-conjugated CQDs to green. So by using a fluorescence microscope, the organic dye-conjugated CQDs were able to visualize changes in physiologically relevant levels of
626:
The flexibility of functionalization with various groups CQDs makes them possible to absorb lights of different wavelengths, which offers good opportunities for applications in photocatalysis. CQDs-modified P25
2500:
Zhu, Anwei; Qu, Qiang; Shao, Xiangling; Kong, Biao; Tian, Yang (2012). "Carbon-Dot-Based Dual-Emission Nanohybrid Produces a Ratiometric Fluorescent Sensor for InVivo Imaging of Cellular Copper Ions".
2783:
Cayuela, Angelina; Laura Soriano, M.; Valcárcel, Miguel (2013). "Strong luminescence of Carbon Dots induced by acetone passivation: Efficient sensor for a rapid analysis of two different pollutants".
2286:
Zhou, Jigang; Zhou, Xingtai; Li, Ruying; Sun, Xueliang; Ding, Zhifeng; Cutler, Jeffrey; Sham, Tsun-Kong (2009). "Electronic structure and luminescence center of blue luminescent carbon nanocrystals".
2535:
Shi, Wenbing; Wang, Qinlong; Long, Yijuan; Cheng, Zhiliang; Chen, Shihong; Zheng, Huzhi; Huang, Yuming (2011). "Carbon nanodots as peroxidase mimetics and their applications to glucose detection".
1383:
Khan, Syamantak; Gupta, Abhishek; Verma, Navneet C.; Nandi, Chayan K. (2015). "Time-Resolved Emission Reveals Ensemble of Emissive States as the Origin of Multicolor Fluorescence in Carbon Dots".
2818:
Mewada, Ashmi; Pandey, Sunil; Thakur, Mukeshchand; Jadhav, Dhanashree; Sharon, Madhuri (2014). "Swarming carbon dots for folic acid mediated delivery of doxorubicin and biological imaging".
3344:
Bourlinos, Athanasios B.; Stassinopoulos, Andreas; Anglos, Demetrios; Zboril, Radek; Karakassides, Michael; Giannelis, Emmanuel P. (2008). "Surface Functionalized Carbogenic Quantum Dots".
1704:
Zhu, Hui; Wang, Xiaolei; Li, Yali; Wang, Zhongjun; Yang, Fan; Yang, Xiurong (2009). "Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties".
958:
Chan, Warren C.W; Maxwell, Dustin J; Gao, Xiaohu; Bailey, Robert E; Han, Mingyong; Nie, Shuming (2002). "Luminescent quantum dots for multiplexed biological detection and imaging".
3432:
Krysmann, Marta J.; Kelarakis, Antonios; Dallas, Panagiotis; Giannelis, Emmanuel P. (2012). "Formation Mechanism of Carbogenic Nanoparticles with Dual Photoluminescence Emission".
1305:
Sciortino, Alice; Marino, Emanuele; Dam, Bart van; Schall, Peter; Cannas, Marco; Messina, Fabrizio (2016). "Solvatochromism Unravels the Emission Mechanism of Carbon Nanodots".
1544:
Rimal, Vishal; Shishodia, Shubham; Srivastava, P.K. (2020). "Novel synthesis of high-thermal stability carbon dots and nanocomposites from oleic acid as an organic substrate".
2578:
Shi, Wen; Li, Xiaohua; Ma, Huimin (2012). "A Tunable Ratiometric pH Sensor Based on Carbon Nanodots for the Quantitative Measurement of the Intracellular pH of Whole Cells".
3403:
Zong, Jie; Zhu, Yihua; Yang, Xiaoling; Shen, Jianhua; Li, Chunzhong (2011). "Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors".
1580: 584:. demonstrated the concept using MW-assisted synthesized nitrogen-doped excitation-independent CQDs. These were conjugated with rhodium nanoparticles – X-ray fluorescence 1340:
Demchenko, Alexander P.; Dekaliuk, Mariia O. (2016). "The origin of emissive states of carbon nanoparticles derived from ensemble-averaged and single-molecular studies".
498:
dialysis, they prepared CQDs with a uniform size of 1.5–2.5 nm which showed low toxicity, excellent luminescence, good photostability, and up-conversion properties.
2656:
Kong, Weiguang; Wu, Huizhen; Ye, Zhenyu; Li, Ruifeng; Xu, Tianning; Zhang, Bingpo (2014). "Optical properties of pH-sensitive carbon-dots with different modifications".
609:
polarity, and to the presence of metal ions in solution, which further expands their potential for nanosensing applications, for instance in the analysis of pollutants.
2367:
Oza, Goldie; Ravichandran, M.; Merupo, Victor-Ishrayelu; Shinde, Sachin; Mewada, Ashmi; Ramirez, Jose Tapia; Velumani, S.; Sharon, Madhuri; Sharon, Maheshwar (2016).
1043:
Li, Yan; Zhao, Yang; Cheng, Huhu; Hu, Yue; Shi, Gaoquan; Dai, Liming; Qu, Liangti (2012). "Nitrogen-Doped Graphene Quantum Dots with Oxygen-Rich Functional Groups".
2251:
Zhou, Juan; Yang, Yong; Zhang, Chun-Yang (2013). "A low-temperature solid-phase method to synthesize highly fluorescent carbon nitride dots with tunable emission".
2613:
Li, Hailong; Zhang, Yingwei; Wang, Lei; Tian, Jingqi; Sun, Xuping (2011). "Nucleic acid detection using carbon nanoparticles as a fluorescent sensing platform".
816:
Gao, Xiaohu; Cui, Yuanyuan; Levenson, Richard M; Chung, Leland W K; Nie, Shuming (2004). "In vivo cancer targeting and imaging with semiconductor quantum dots".
2691:
Chaudhary, Savita; Kumar, Sandeep; Kaur, Bhawandeep; Mehta, S. K. (2016). "Potential prospects for carbon dots as a fluorescence sensing probe for metal ions".
3089:
Xie, Shilei; Su, Hua; Wei, Wenjie; Li, Mingyang; Tong, Yexiang; Mao, Zongwan (2014). "Remarkable photoelectrochemical performance of carbon dots sensitized TiO
3120:
Zhu, Yirong; Ji, Xiaobo; Pan, Chenchi; Sun, Qingqing; Song, Weixin; Fang, Laibing; Chen, Qiyuan; Banks, Craig E. (2013). "A carbon quantum dot decorated RuO
1468:
Mondal, Somen; Agam, Yuval; Amdursky, Nadav (2020). "Enhanced Proton Conductivity across Protein Biopolymers Mediated by Doped Carbon Nanoparticles".
1872:"Antibiotic Conjugated Fluorescent Carbon Dots as a Theranostic Agent for Controlled Drug Release, Bioimaging, and Enhanced Antimicrobial Activity" 3305:
Fernandes, Diogo; Krysmann, Marta J.; Kelarakis, Antonios (2015). "Carbon dot based nanopowders and their application for fingerprint recovery".
2441:
Saladino, Giovanni M.; Kilic, Nuzhet I.; Brodin, Bertha; Hamawandi, Bejan; Yazgan, Idris; Hertz, Hans M.; Toprak, Muhammet S. (September 2021).
1513:"Carbon Dots from a Single Source Exhibiting Tunable Luminescent Colors through the Modification of Surface Functional Groups in ORMOSIL Films" 2925:
Juzenas, Petras; Kleinauskas, Andrius; George Luo, Pengju; Sun, Ya-Ping (2013). "Photoactivatable carbon nanodots for cancer therapy".
130: 120: 3491:
Kim, Jinhyun; Lee, Sahng Ha; Tieves, Florian; Choi, Da Som; Hollmann, Frank; Paul, Caroline E.; Park, Chan Beum (15 October 2018).
3223:
Mishra, Manish Kr; Chakravarty, Amrita; Bhowmik, Koushik; De, Goutam (2015). "Carbon nanodot–ORMOSIL fluorescent paint and films".
2960:
Kim, Jinhyun; Lee, Sahng Ha; Tieves, Florian; Choi, Da Som; Hollmann, Frank; Paul, Caroline E.; Park, Chan Beum (15 October 2018).
2369:"Camphor-mediated synthesis of carbon nanoparticles, graphitic shell encapsulated carbon nanocubes and carbon dots for bioimaging" 2324:
Yousefinejad, Saeed; Rasti, Hamid; Hajebi, Mehdi; Kowsari, Masoud; Sadravi, Shima; Honarasa, Fatemeh (2017). "Design of C-dots/Fe
351: 1081:
Sinelnik, A.D.; et al. (2023). "Ultra-Broadband Photoluminescent Carbon Dots Synthesized by Laser-Induced Thermal Shock".
125: 1672:
Peng, Hui; Travas-Sejdic, Jadranka (2009). "Simple Aqueous Solution Route to Luminescent Carbogenic Dots from Carbohydrates".
1257:
Liu, Yun; Liu, Chun-yan; Zhang, Zhi-Ying (2011). "Synthesis and surface photochemistry of graphitized carbon quantum dots".
392: 1645:
Zhou, Jigang (2013). "An electrochemical approach to fabricating honeycomb assemblies from multiwall carbon nanotubes".
576:. Another example can be dual-mode bioimaging using their highly accessible surface functional groups to conjugate them 1870:
Thakur, Mukeshchand; Pandey, Sunil; Mewada, Ashmi; Patil, Vaibhav; Khade, Monika; Goshi, Ekta; Sharon, Madhuri (2014).
168: 690: 64: 1579:
Zhou, Jigang; Booker, Christina; Li, Ruying; Zhou, Xingtai; Sham, Tsun-Kong; Sun, Xueliang; Ding, Zhifeng (2007).
35: 242: 3546: 262: 110: 529:
Post synthesis electrochemical etching results in dramatic changes in GQDs size and fluorescence intensity.
202: 135: 695: 633: 344: 425:
Carbon dots prepared from different precursors: urea, alanine and sucrose (made by Paliienko Konstantin)
3492: 2961: 1581:"An Electrochemical Avenue to Blue Luminescent Nanocrystals from Multiwalled Carbon Nanotubes (MWCNTs)" 645: 217: 115: 897:"'Luminescent carbon nanodots: Current prospects on synthesis, properties and sensing applications'" 421: 2168:; Rubio, Angel; Pichler, Thomas (2010). "The physical and chemical properties of heteronanotubes". 685: 295: 247: 42: 3493:"Biocatalytic C=C Bond Reduction through Carbon Nanodot‐Sensitized Regeneration of NADH Analogues" 3264:"3D printed ABS/paraffin hybrid rocket fuels with carbon dots for superior combustion performance" 3044:"Metal-free oleic acid-derived carbon dots as efficient catalysts for hydrogen evolution reaction" 2962:"Biocatalytic C=C Bond Reduction through Carbon Nanodot‐Sensitized Regeneration of NADH Analogues" 541:
CQDs with unique properties have great potential in biomedicine, optronics, catalysis and sensors
237: 3007:
Mandal, Tapas K.; Parvin, Nargish (2011). "Rapid Detection of Bacteria by Carbon Quantum Dots".
337: 2332:
magnetic nanocomposite as an efficient new nanozyme and its application for determination of H
1008:
Lim, Shi Ying; Shen, Wei; Gao, Zhiqiang (2015). "Carbon quantum dots and their applications".
3541: 411:. This discovery triggered extensive studies to exploit the fluorescence properties of CQDs. 252: 1194:"Unraveling the Fluorescence Mechanism of Carbon Dots with Sub-Single-Particle Resolution". 3353: 3268: 2934: 2863: 2700: 2665: 2443:"Carbon Quantum Dots Conjugated Rhodium Nanoparticles as Hybrid Multimodal Contrast Agents" 2380: 2295: 2177: 2038: 1392: 1349: 1266: 1122: 908: 700: 290: 212: 173: 153: 2425: 448:
get good surface properties which are essential for solubility and selected applications.
8: 3259: 1618:
Zhou, Jigang (2009). "Tailoring multi-wall carbon nanotubes for smaller nanostructures".
710: 396: 257: 222: 163: 3357: 2938: 2867: 2704: 2669: 2384: 2299: 2181: 2042: 1396: 1353: 1270: 1126: 912: 407:
CQDs were first discovered by Xu et al. in 2004 accidentally during the purification of
3520: 3287: 3282: 3240: 3071: 3043: 2989: 2760: 2727: 2638: 2560: 2477: 2442: 2401: 2368: 2146: 1898: 1871: 1813: 1769: 1725: 1561: 1493: 1450: 940: 841: 649: 2736:, Au(III), and "Turn-OFF–ON" Hg(II) Sensors as Logic Gates and Molecular Keypad Locks" 971: 3512: 3479: 3449: 3420: 3369: 3322: 3291: 3263: 3205: 3169: 3075: 3063: 3024: 2981: 2907: 2835: 2800: 2765: 2630: 2595: 2552: 2517: 2482: 2464: 2427:
Graphene Quantum Dots as Fluorescent and Passivation Agents for Multimodal Bioimaging
2406: 2268: 2082: 2011: 1975: 1939: 1903: 1849: 1805: 1761: 1729: 1717: 1600: 1565: 1497: 1485: 1454: 1408: 1365: 1322: 1282: 1239: 1176: 1140: 1060: 1025: 975: 944: 932: 924: 877: 833: 798: 657: 479:"Bottom-up" synthetic route involves synthesizing CQDs from small precursors such as 325: 232: 3524: 3244: 2993: 2642: 2564: 2150: 1817: 1773: 845: 456:"Top-down" synthetic route refers to breaking down larger carbon structures such as 3504: 3471: 3441: 3412: 3391: 3361: 3314: 3277: 3232: 3197: 3161: 3133: 3102: 3055: 3016: 2973: 2942: 2899: 2871: 2827: 2792: 2755: 2747: 2708: 2673: 2622: 2587: 2544: 2509: 2472: 2454: 2396: 2388: 2349: 2303: 2260: 2231: 2223: 2193: 2185: 2138: 2110: 2074: 2046: 2003: 1967: 1931: 1893: 1883: 1841: 1797: 1753: 1709: 1681: 1654: 1627: 1592: 1553: 1524: 1477: 1440: 1400: 1357: 1314: 1274: 1231: 1203: 1168: 1130: 1090: 1052: 1017: 967: 916: 869: 825: 790: 760: 461: 3395: 2677: 2307: 2114: 1658: 1631: 1445: 1428: 1404: 408: 101: 1318: 41:
The references used may be made clearer with a different or consistent style of
3059: 2189: 2165: 1935: 1845: 1557: 1278: 920: 653: 585: 469: 313: 227: 46: 3124:
network: Outstanding supercapacitances under ultrafast charge and discharge".
3042:
Rimal, Vishal; Mahapatra, Susanta Sinha; Srivastava, Prem Kumar (2022-10-15).
2796: 2353: 1801: 1757: 3535: 3067: 2751: 2468: 1529: 1512: 928: 473: 415: 388: 280: 271: 207: 158: 85: 1971: 1207: 3516: 3508: 3483: 3453: 3424: 3373: 3365: 3326: 3209: 3173: 3028: 2985: 2977: 2911: 2839: 2804: 2769: 2634: 2599: 2591: 2556: 2521: 2513: 2486: 2410: 2272: 2142: 2086: 2078: 2015: 2007: 1979: 1943: 1907: 1853: 1809: 1765: 1721: 1604: 1489: 1481: 1412: 1369: 1326: 1286: 1243: 1180: 1172: 1144: 1094: 1064: 1029: 979: 936: 896: 881: 837: 802: 794: 480: 183: 3258:
Oztan, Cagri; Ginzburg, Eric; Akin, Mert; Zhou, Yiqun; Leblanc, Roger M.;
3020: 1888: 2726:
Bogireddy, Naveen Kumar Reddy; Barba, Victor; Agarwal, Vivechana (2019).
2459: 705: 465: 197: 2236: 3475: 3416: 3318: 3236: 3137: 3106: 2903: 2875: 2831: 2712: 2626: 2548: 2264: 2227: 2198: 1361: 1135: 1110: 1021: 765: 748: 3445: 3201: 3165: 2946: 2392: 2050: 1685: 1596: 1235: 1056: 873: 308: 1713: 144: 3343: 829: 457: 285: 2029:
Nicollian, E. H. (1971). "Surface Passivation of Semiconductors".
320: 484: 3431: 2924: 537: 2323: 2212: 1511:
Bhattacharya, Dipsikha; Mishra, Manish K.; De, Goutam (2017).
2782: 749:"Carbon quantum dots: Synthesis, properties and applications" 2888: 2440: 2366: 1742: 93: 3304: 3222: 1003: 1001: 999: 997: 995: 993: 991: 989: 676:
CQDs are used for the enhancement of latent fingerprints.
668:
Recently, CQDs have been employed in hybrid rocket fuels.
3041: 2817: 1830: 1543: 1429:"A deep investigation into the structure of carbon dots" 1304: 3150: 2690: 2163: 1920: 1869: 1300: 1298: 1296: 986: 644:
CQDs possess the potential in serving as materials for
2852: 2728:"Nitrogen-Doped Graphene Oxide Dots-Based "Turn-OFF" H 1956: 1425: 3460: 3257: 2725: 1111:"Coal as an abundant source of graphene quantum dots" 2127: 1865: 1863: 1510: 1293: 957: 779: 742: 740: 738: 736: 734: 732: 730: 728: 726: 526:
nanoparticles as precursors with nanozyme activity.
2319: 2317: 1382: 815: 1786: 1467: 636:, making CQDs a sustainable choice for catalysis. 1860: 1699: 1697: 1695: 1671: 1339: 723: 3533: 3490: 2959: 2534: 2314: 2131:Particle & Particle Systems Characterization 1992: 1578: 1076: 1074: 3402: 3186: 2612: 1692: 1220: 1107: 1080: 2499: 2285: 2250: 2099: 1703: 1157: 1071: 1042: 895:Kottam, Nagaraju; S P, Smrithi (2021-01-09). 858: 345: 3380: 3006: 3119: 2063: 1256: 511:materials on CQDs surface treated by acid. 3088: 2655: 1007: 352: 338: 3281: 2759: 2476: 2458: 2400: 2235: 2197: 2028: 1897: 1887: 1528: 1444: 1307:The Journal of Physical Chemistry Letters 1134: 894: 764: 65:Learn how and when to remove this message 3434:Journal of the American Chemical Society 2031:Journal of Vacuum Science and Technology 1585:Journal of the American Chemical Society 1259:Journal of Colloid and Interface Science 1224:Journal of the American Chemical Society 1045:Journal of the American Chemical Society 901:Methods and Applications in Fluorescence 862:Journal of the American Chemical Society 536: 420: 3497:Angewandte Chemie International Edition 2966:Angewandte Chemie International Edition 2580:Angewandte Chemie International Edition 2577: 2502:Angewandte Chemie International Edition 1996:Angewandte Chemie International Edition 1161:Angewandte Chemie International Edition 671: 3534: 3190:ACS Applied Materials & Interfaces 783:ACS Applied Materials & Interfaces 746: 2423: 414:As a new class of fluorescent carbon 3009:Journal of Biomedical Nanotechnology 1924:Materials Science and Engineering: C 1834:Materials Science and Engineering: C 1644: 1617: 451: 18: 3048:Journal of Applied Electrochemistry 13: 3337: 3283:10.1016/j.combustflame.2020.11.024 3126:Energy & Environmental Science 3093:under visible light irradiation". 14: 3558: 2342:Sensors and Actuators B: Chemical 691:Carbon nanotubes in photovoltaics 634:hydrogen evolution reaction (HER) 3464:Journal of Materials Chemistry B 3225:Journal of Materials Chemistry C 3095:Journal of Materials Chemistry A 2892:Journal of Materials Chemistry B 2820:Journal of Materials Chemistry B 2216:Journal of Materials Chemistry C 960:Current Opinion in Biotechnology 753:Journal of Materials Chemistry C 612: 319: 307: 92: 23: 3298: 3251: 3216: 3180: 3144: 3113: 3082: 3035: 3000: 2953: 2918: 2882: 2846: 2811: 2776: 2719: 2684: 2649: 2606: 2571: 2528: 2493: 2434: 2417: 2360: 2279: 2244: 2206: 2157: 2121: 2093: 2057: 2022: 1986: 1950: 1914: 1824: 1780: 1736: 1665: 1638: 1611: 1572: 1537: 1517:Journal of Physical Chemistry C 1504: 1461: 1419: 1376: 1333: 1250: 1214: 1187: 1151: 1101: 747:Wang, Youfu; Hu, Aiguo (2014). 663: 532: 501: 490: 80:Part of a series of articles on 2067:Chemistry - A European Journal 1036: 951: 888: 852: 809: 773: 409:single-walled carbon nanotubes 395:in size and have some form of 1: 1222:Colorful Photoluminescence". 1083:Laser & Photonics Reviews 972:10.1016/S0958-1669(02)00282-3 716: 597:glucose, pH, trace levels of 545: 433: 3396:10.1016/j.carbon.2010.10.004 2678:10.1016/j.jlumin.2013.12.007 2308:10.1016/j.cplett.2009.04.075 2164:Ayala, Paola; Arenal, Raul; 2115:10.1016/j.carbon.2013.07.095 1659:10.1016/j.carbon.2013.03.001 1632:10.1016/j.carbon.2008.11.032 1446:10.1016/j.carbon.2020.11.017 1405:10.1021/acs.nanolett.5b03915 639: 621: 580:EDC-NHS chemistry. Saladino 442: 7: 2424:Kilic, Nüzhet Inci (2021). 1319:10.1021/acs.jpclett.6b01590 696:Carbon nanotube quantum dot 679: 16:Type of carbon nanoparticle 10: 3563: 3060:10.1007/s10800-022-01780-0 2190:10.1103/RevModPhys.82.1843 1936:10.1016/j.msec.2016.05.007 1846:10.1016/j.msec.2013.03.018 1558:10.1007/s13204-019-01178-z 1279:10.1016/j.jcis.2011.01.065 646:dye-sensitized solar cells 591: 402: 2797:10.1016/j.aca.2013.10.031 2354:10.1016/j.snb.2017.02.145 2170:Reviews of Modern Physics 1802:10.1007/s10895-014-1477-x 1758:10.1007/s10895-015-1598-x 2752:10.1021/acsomega.9b00858 2288:Chemical Physics Letters 1876:Journal of Drug Delivery 1530:10.1021/acs.jpcc.7b08039 1010:Chemical Society Reviews 921:10.1088/2050-6120/abc008 686:Cadmium-free quantum dot 296:Nanocrystalline material 272:Nanostructured materials 3307:Chemical Communications 2927:Applied Physics Letters 2658:Journal of Luminescence 2615:Chemical Communications 2537:Chemical Communications 2253:Chemical Communications 1972:10.1021/acsnano.3c07486 1790:Journal of Fluorescence 1746:Journal of Fluorescence 1706:Chemical Communications 1208:10.1021/acsnano.0c01924 551:fluorescent probes for 3509:10.1002/anie.201804409 3366:10.1002/smll.200700578 2978:10.1002/anie.201804409 2785:Analytica Chimica Acta 2592:10.1002/anie.201202533 2514:10.1002/anie.201109089 2143:10.1002/ppsc.201300020 2079:10.1002/chem.201203641 2008:10.1002/anie.201300519 1674:Chemistry of Materials 1482:10.1002/smll.202005526 1173:10.1002/anie.200906154 1095:10.1002/lpor.202200295 795:10.1021/acsami.5b00448 542: 426: 3021:10.1166/jbn.2011.1344 2340:in nanomolar level". 1115:Nature Communications 540: 424: 367:also commonly called 326:Technology portal 121:Mechanical properties 3547:Allotropes of carbon 3269:Combustion and Flame 3260:Coverstone, Victoria 2460:10.3390/nano11092165 818:Nature Biotechnology 701:Graphene quantum dot 672:Fingerprint recovery 391:which are less than 291:Nanoporous materials 154:Buckminsterfullerene 3503:(42): 13825–13828. 3358:2008APS..MARY30007B 2972:(42): 13825–13828. 2939:2013ApPhL.103f3701J 2868:2013RSCAd...326290P 2705:2016RSCAd...690526C 2670:2014JLum..148..238K 2385:2016NatSR...621286O 2300:2009CPL...474..320Z 2182:2010RvMP...82.1843A 2043:1971JVST....8S..39N 1966:(22): 22788–22799. 1889:10.1155/2014/282193 1546:Applied Nanoscience 1397:2015NanoL..15.8300K 1354:2016Nanos...814057D 1271:2011JCIS..356..416L 1127:2013NatCo...4.2943Y 913:2021MApFl...9a2001K 711:Silicon quantum dot 650:organic solar cells 397:surface passivation 365:Carbon quantum dots 193:Carbon quantum dots 3476:10.1039/C3TB00583F 3417:10.1039/C0CC03092A 3319:10.1039/C5CC00468C 3237:10.1039/C4TC02140A 3138:10.1039/C3EE41776J 3107:10.1039/C4TA03203A 2904:10.1039/C3TB20761G 2876:10.1039/C3RA42139B 2832:10.1039/C3TB21436B 2746:(6): 10702–10713. 2713:10.1039/C6RA15691F 2627:10.1039/C0CC04326E 2549:10.1039/C1CC11943E 2373:Scientific Reports 2265:10.1039/C3CC42266F 2228:10.1039/C5TC04096E 1362:10.1039/C6NR02669A 1136:10.1038/ncomms3943 1022:10.1039/C4CS00269E 766:10.1039/C4TC00988F 559:. The presence of 543: 427: 314:Science portal 126:Optical properties 3446:10.1021/ja204661r 3313:(23): 4902–4905. 3202:10.1021/am400930h 3166:10.1021/nn405017q 2947:10.1063/1.4817787 2393:10.1038/srep21286 2348:(August): 691–6. 2051:10.1116/1.1316388 1686:10.1021/cm901593y 1597:10.1021/ja0669070 1236:10.1021/ja062677d 1202:: 6127–37. 2020. 1057:10.1021/ja206030c 874:10.1021/ja040082h 658:Fluorescent paint 452:Synthetic methods 362: 361: 174:Carbon allotropes 75: 74: 67: 3554: 3528: 3487: 3457: 3428: 3399: 3377: 3331: 3330: 3302: 3296: 3295: 3285: 3255: 3249: 3248: 3220: 3214: 3213: 3184: 3178: 3177: 3160:(12): 11234–41. 3148: 3142: 3141: 3117: 3111: 3110: 3086: 3080: 3079: 3039: 3033: 3032: 3004: 2998: 2997: 2957: 2951: 2950: 2922: 2916: 2915: 2886: 2880: 2879: 2850: 2844: 2843: 2815: 2809: 2808: 2780: 2774: 2773: 2763: 2723: 2717: 2716: 2699:(93): 90526–36. 2688: 2682: 2681: 2653: 2647: 2646: 2610: 2604: 2603: 2575: 2569: 2568: 2532: 2526: 2525: 2497: 2491: 2490: 2480: 2462: 2438: 2432: 2431: 2421: 2415: 2414: 2404: 2364: 2358: 2357: 2321: 2312: 2311: 2294:(4–6): 320–324. 2283: 2277: 2276: 2248: 2242: 2241: 2239: 2222:(13): 2598–605. 2210: 2204: 2203: 2201: 2161: 2155: 2154: 2125: 2119: 2118: 2097: 2091: 2090: 2061: 2055: 2054: 2026: 2020: 2019: 1990: 1984: 1983: 1954: 1948: 1947: 1918: 1912: 1911: 1901: 1891: 1867: 1858: 1857: 1828: 1822: 1821: 1784: 1778: 1777: 1740: 1734: 1733: 1714:10.1039/B907612C 1701: 1690: 1689: 1669: 1663: 1662: 1642: 1636: 1635: 1615: 1609: 1608: 1576: 1570: 1569: 1541: 1535: 1534: 1532: 1523:(50): 28106–16. 1508: 1502: 1501: 1465: 1459: 1458: 1448: 1423: 1417: 1416: 1380: 1374: 1373: 1348:(29): 14057–69. 1337: 1331: 1330: 1302: 1291: 1290: 1254: 1248: 1247: 1218: 1212: 1211: 1191: 1185: 1184: 1155: 1149: 1148: 1138: 1105: 1099: 1098: 1078: 1069: 1068: 1040: 1034: 1033: 1005: 984: 983: 955: 949: 948: 892: 886: 885: 856: 850: 849: 813: 807: 806: 777: 771: 770: 768: 744: 607: 575: 566: 558: 525: 468:into CQDs using 462:carbon nanotubes 375:(abbreviated as 369:carbon nano dots 354: 347: 340: 324: 323: 312: 311: 263:Titanium dioxide 102:Carbon nanotubes 96: 77: 76: 70: 63: 59: 56: 50: 27: 26: 19: 3562: 3561: 3557: 3556: 3555: 3553: 3552: 3551: 3532: 3531: 3470:(18): 2375–82. 3340: 3338:Further reading 3335: 3334: 3303: 3299: 3256: 3252: 3221: 3217: 3185: 3181: 3149: 3145: 3132:(12): 3665–75. 3123: 3118: 3114: 3101:(39): 16365–8. 3092: 3087: 3083: 3040: 3036: 3005: 3001: 2958: 2954: 2923: 2919: 2898:(38): 4972–82. 2887: 2883: 2862:(48): 26290–6. 2851: 2847: 2816: 2812: 2781: 2777: 2735: 2731: 2724: 2720: 2689: 2685: 2654: 2650: 2611: 2607: 2576: 2572: 2533: 2529: 2498: 2494: 2439: 2435: 2422: 2418: 2365: 2361: 2339: 2335: 2331: 2327: 2322: 2315: 2284: 2280: 2249: 2245: 2211: 2207: 2166:Loiseau, Annick 2162: 2158: 2126: 2122: 2098: 2094: 2062: 2058: 2027: 2023: 1991: 1987: 1955: 1951: 1919: 1915: 1868: 1861: 1829: 1825: 1785: 1781: 1741: 1737: 1708:(34): 5118–20. 1702: 1693: 1670: 1666: 1643: 1639: 1616: 1612: 1577: 1573: 1542: 1538: 1509: 1505: 1476:(50): 2005526. 1466: 1462: 1424: 1420: 1381: 1377: 1338: 1334: 1313:(17): 3419–23. 1303: 1294: 1255: 1251: 1219: 1215: 1193: 1192: 1188: 1156: 1152: 1106: 1102: 1079: 1072: 1041: 1037: 1006: 987: 956: 952: 893: 889: 868:(40): 12736–7. 857: 853: 814: 810: 789:(16): 8363–76. 778: 774: 759:(34): 6921–39. 745: 724: 719: 682: 674: 666: 642: 630: 624: 615: 606: 602: 598: 594: 586:contrast agents 573: 569: 564: 560: 556: 552: 548: 535: 524: 520: 516: 504: 493: 454: 445: 436: 405: 358: 318: 306: 203:Aluminium oxide 71: 60: 54: 51: 40: 34:has an unclear 28: 24: 17: 12: 11: 5: 3560: 3550: 3549: 3544: 3530: 3529: 3488: 3458: 3429: 3400: 3378: 3339: 3336: 3333: 3332: 3297: 3250: 3215: 3196:(11): 5080–4. 3179: 3143: 3121: 3112: 3090: 3081: 3054:(2): 285–295. 3034: 2999: 2952: 2917: 2881: 2845: 2826:(6): 698–705. 2810: 2775: 2733: 2729: 2718: 2683: 2648: 2605: 2586:(26): 6432–5. 2570: 2543:(23): 6695–7. 2527: 2508:(29): 7185–9. 2492: 2433: 2416: 2359: 2337: 2333: 2329: 2325: 2313: 2278: 2259:(77): 8605–7. 2243: 2205: 2156: 2120: 2092: 2073:(7): 2276–83. 2056: 2037:(5): S39–S49. 2021: 2002:(14): 3953–7. 1985: 1949: 1913: 1859: 1823: 1779: 1735: 1691: 1680:(23): 5563–5. 1664: 1653:(3): 130–139. 1637: 1626:(3): 829–838. 1610: 1571: 1552:(2): 455–464. 1536: 1503: 1460: 1418: 1391:(12): 8300–5. 1375: 1332: 1292: 1249: 1230:(24): 7756–7. 1213: 1186: 1167:(26): 4430–4. 1150: 1100: 1070: 1035: 985: 950: 887: 851: 830:10.1038/nbt994 808: 772: 721: 720: 718: 715: 714: 713: 708: 703: 698: 693: 688: 681: 678: 673: 670: 665: 662: 654:supercapacitor 641: 638: 628: 623: 620: 614: 611: 604: 600: 593: 590: 571: 562: 554: 547: 544: 534: 531: 522: 518: 503: 500: 492: 489: 470:laser ablation 453: 450: 444: 441: 435: 432: 404: 401: 360: 359: 357: 356: 349: 342: 334: 331: 330: 329: 328: 316: 301: 300: 299: 298: 293: 288: 283: 275: 274: 268: 267: 266: 265: 260: 255: 250: 245: 240: 235: 230: 225: 220: 215: 210: 205: 200: 195: 187: 186: 179: 178: 177: 176: 171: 166: 161: 156: 148: 147: 141: 140: 139: 138: 133: 128: 123: 118: 113: 105: 104: 98: 97: 89: 88: 82: 81: 73: 72: 36:citation style 31: 29: 22: 15: 9: 6: 4: 3: 2: 3559: 3548: 3545: 3543: 3540: 3539: 3537: 3526: 3522: 3518: 3514: 3510: 3506: 3502: 3498: 3494: 3489: 3485: 3481: 3477: 3473: 3469: 3465: 3459: 3455: 3451: 3447: 3443: 3440:(2): 747–50. 3439: 3435: 3430: 3426: 3422: 3418: 3414: 3410: 3406: 3401: 3397: 3393: 3389: 3385: 3379: 3375: 3371: 3367: 3363: 3359: 3355: 3351: 3347: 3342: 3341: 3328: 3324: 3320: 3316: 3312: 3308: 3301: 3293: 3289: 3284: 3279: 3275: 3271: 3270: 3265: 3261: 3254: 3246: 3242: 3238: 3234: 3230: 3226: 3219: 3211: 3207: 3203: 3199: 3195: 3191: 3183: 3175: 3171: 3167: 3163: 3159: 3155: 3147: 3139: 3135: 3131: 3127: 3116: 3108: 3104: 3100: 3096: 3085: 3077: 3073: 3069: 3065: 3061: 3057: 3053: 3049: 3045: 3038: 3030: 3026: 3022: 3018: 3014: 3010: 3003: 2995: 2991: 2987: 2983: 2979: 2975: 2971: 2967: 2963: 2956: 2948: 2944: 2940: 2936: 2933:(6): 063701. 2932: 2928: 2921: 2913: 2909: 2905: 2901: 2897: 2893: 2885: 2877: 2873: 2869: 2865: 2861: 2857: 2849: 2841: 2837: 2833: 2829: 2825: 2821: 2814: 2806: 2802: 2798: 2794: 2790: 2786: 2779: 2771: 2767: 2762: 2757: 2753: 2749: 2745: 2741: 2737: 2722: 2714: 2710: 2706: 2702: 2698: 2694: 2687: 2679: 2675: 2671: 2667: 2663: 2659: 2652: 2644: 2640: 2636: 2632: 2628: 2624: 2620: 2616: 2609: 2601: 2597: 2593: 2589: 2585: 2581: 2574: 2566: 2562: 2558: 2554: 2550: 2546: 2542: 2538: 2531: 2523: 2519: 2515: 2511: 2507: 2503: 2496: 2488: 2484: 2479: 2474: 2470: 2466: 2461: 2456: 2452: 2448: 2447:Nanomaterials 2444: 2437: 2429: 2428: 2420: 2412: 2408: 2403: 2398: 2394: 2390: 2386: 2382: 2378: 2374: 2370: 2363: 2355: 2351: 2347: 2343: 2320: 2318: 2309: 2305: 2301: 2297: 2293: 2289: 2282: 2274: 2270: 2266: 2262: 2258: 2254: 2247: 2238: 2233: 2229: 2225: 2221: 2217: 2209: 2200: 2195: 2191: 2187: 2183: 2179: 2175: 2171: 2167: 2160: 2152: 2148: 2144: 2140: 2137:(6): 557–64. 2136: 2132: 2124: 2116: 2112: 2108: 2104: 2096: 2088: 2084: 2080: 2076: 2072: 2068: 2060: 2052: 2048: 2044: 2040: 2036: 2032: 2025: 2017: 2013: 2009: 2005: 2001: 1997: 1989: 1981: 1977: 1973: 1969: 1965: 1961: 1953: 1945: 1941: 1937: 1933: 1929: 1925: 1917: 1909: 1905: 1900: 1895: 1890: 1885: 1881: 1877: 1873: 1866: 1864: 1855: 1851: 1847: 1843: 1840:(5): 2914–7. 1839: 1835: 1827: 1819: 1815: 1811: 1807: 1803: 1799: 1795: 1791: 1783: 1775: 1771: 1767: 1763: 1759: 1755: 1752:(4): 1103–7. 1751: 1747: 1739: 1731: 1727: 1723: 1719: 1715: 1711: 1707: 1700: 1698: 1696: 1687: 1683: 1679: 1675: 1668: 1660: 1656: 1652: 1648: 1641: 1633: 1629: 1625: 1621: 1614: 1606: 1602: 1598: 1594: 1590: 1586: 1582: 1575: 1567: 1563: 1559: 1555: 1551: 1547: 1540: 1531: 1526: 1522: 1518: 1514: 1507: 1499: 1495: 1491: 1487: 1483: 1479: 1475: 1471: 1464: 1456: 1452: 1447: 1442: 1438: 1434: 1430: 1422: 1414: 1410: 1406: 1402: 1398: 1394: 1390: 1386: 1379: 1371: 1367: 1363: 1359: 1355: 1351: 1347: 1343: 1336: 1328: 1324: 1320: 1316: 1312: 1308: 1301: 1299: 1297: 1288: 1284: 1280: 1276: 1272: 1268: 1265:(2): 416–21. 1264: 1260: 1253: 1245: 1241: 1237: 1233: 1229: 1225: 1217: 1209: 1205: 1201: 1197: 1190: 1182: 1178: 1174: 1170: 1166: 1162: 1154: 1146: 1142: 1137: 1132: 1128: 1124: 1120: 1116: 1112: 1104: 1096: 1092: 1088: 1084: 1077: 1075: 1066: 1062: 1058: 1054: 1050: 1046: 1039: 1031: 1027: 1023: 1019: 1016:(1): 362–81. 1015: 1011: 1004: 1002: 1000: 998: 996: 994: 992: 990: 981: 977: 973: 969: 965: 961: 954: 946: 942: 938: 934: 930: 926: 922: 918: 914: 910: 907:(1): 012001. 906: 902: 898: 891: 883: 879: 875: 871: 867: 863: 855: 847: 843: 839: 835: 831: 827: 824:(8): 969–76. 823: 819: 812: 804: 800: 796: 792: 788: 784: 776: 767: 762: 758: 754: 750: 743: 741: 739: 737: 735: 733: 731: 729: 727: 722: 712: 709: 707: 704: 702: 699: 697: 694: 692: 689: 687: 684: 683: 677: 669: 661: 659: 655: 651: 647: 637: 635: 619: 613:Drug delivery 610: 589: 587: 583: 579: 539: 530: 527: 512: 508: 499: 495: 488: 486: 482: 481:carbohydrates 477: 475: 474:arc discharge 471: 467: 463: 459: 449: 440: 431: 423: 419: 417: 416:nanomaterials 412: 410: 400: 398: 394: 390: 389:nanoparticles 387:) are carbon 386: 382: 378: 374: 370: 366: 355: 350: 348: 343: 341: 336: 335: 333: 332: 327: 322: 317: 315: 310: 305: 304: 303: 302: 297: 294: 292: 289: 287: 284: 282: 281:Nanocomposite 279: 278: 277: 276: 273: 270: 269: 264: 261: 259: 256: 254: 251: 249: 246: 244: 243:Iron–platinum 241: 239: 236: 234: 231: 229: 226: 224: 221: 219: 216: 214: 211: 209: 206: 204: 201: 199: 196: 194: 191: 190: 189: 188: 185: 184:nanoparticles 181: 180: 175: 172: 170: 169:Health impact 167: 165: 162: 160: 159:C70 fullerene 157: 155: 152: 151: 150: 149: 146: 143: 142: 137: 134: 132: 129: 127: 124: 122: 119: 117: 114: 112: 109: 108: 107: 106: 103: 100: 99: 95: 91: 90: 87: 86:Nanomaterials 84: 83: 79: 78: 69: 66: 58: 48: 44: 38: 37: 32:This article 30: 21: 20: 3542:Quantum dots 3500: 3496: 3467: 3463: 3437: 3433: 3411:(2): 764–6. 3408: 3405:Chem. Commun 3404: 3390:(2): 605–9. 3387: 3383: 3352:(4): 455–8. 3349: 3345: 3310: 3306: 3300: 3273: 3267: 3253: 3231:(4): 714–9. 3228: 3224: 3218: 3193: 3189: 3182: 3157: 3153: 3146: 3129: 3125: 3115: 3098: 3094: 3084: 3051: 3047: 3037: 3015:(6): 846–8. 3012: 3008: 3002: 2969: 2965: 2955: 2930: 2926: 2920: 2895: 2891: 2884: 2859: 2856:RSC Advances 2855: 2848: 2823: 2819: 2813: 2788: 2784: 2778: 2743: 2739: 2721: 2696: 2693:RSC Advances 2692: 2686: 2661: 2657: 2651: 2621:(3): 961–3. 2618: 2614: 2608: 2583: 2579: 2573: 2540: 2536: 2530: 2505: 2501: 2495: 2450: 2446: 2436: 2426: 2419: 2376: 2372: 2362: 2345: 2341: 2291: 2287: 2281: 2256: 2252: 2246: 2237:10447/179373 2219: 2215: 2208: 2173: 2169: 2159: 2134: 2130: 2123: 2106: 2102: 2095: 2070: 2066: 2059: 2034: 2030: 2024: 1999: 1995: 1988: 1963: 1959: 1952: 1927: 1923: 1916: 1879: 1875: 1837: 1833: 1826: 1793: 1789: 1782: 1749: 1745: 1738: 1705: 1677: 1673: 1667: 1650: 1646: 1640: 1623: 1619: 1613: 1591:(4): 744–5. 1588: 1584: 1574: 1549: 1545: 1539: 1520: 1516: 1506: 1473: 1469: 1463: 1436: 1432: 1421: 1388: 1385:Nano Letters 1384: 1378: 1345: 1341: 1335: 1310: 1306: 1262: 1258: 1252: 1227: 1223: 1216: 1199: 1195: 1189: 1164: 1160: 1153: 1118: 1114: 1103: 1086: 1082: 1048: 1044: 1038: 1013: 1009: 963: 959: 953: 904: 900: 890: 865: 861: 854: 821: 817: 811: 786: 782: 775: 756: 752: 675: 667: 664:Rocket fuels 643: 625: 616: 595: 581: 577: 549: 533:Applications 528: 513: 509: 505: 502:Modification 496: 494: 491:Size control 478: 466:nanodiamonds 455: 446: 437: 428: 413: 406: 384: 380: 376: 372: 368: 364: 363: 218:Cobalt oxide 198:Quantum dots 192: 131:Applications 61: 52: 33: 3276:: 428–434. 2453:(9): 2165. 2199:10261/44279 2176:(2): 1843. 1796:(1): 9–14. 1439:: 433–447. 1089:: 2200295. 1051:(1): 15–8. 966:(1): 40–6. 706:Quantum dot 373:carbon dots 3536:Categories 2791:: 246–51. 2664:: 238–42. 2109:: 424–34. 1930:: 468–77. 1882:: 282193. 717:References 546:Bioimaging 434:Properties 393:10 nm 371:or simply 238:Iron oxide 145:Fullerenes 47:footnoting 3292:229419770 3076:252950678 3068:0021-891X 2740:ACS Omega 2469:2079-4991 2379:: 21286. 1730:205730336 1566:203986488 1498:225083071 1455:228855625 1342:Nanoscale 945:222301676 929:2050-6120 640:Optronics 622:Catalysis 443:Synthesis 208:Cellulose 164:Chemistry 116:Chemistry 111:Synthesis 3525:51870319 3517:30062834 3484:32261072 3454:22201260 3425:21069221 3374:18350555 3327:25704392 3262:(2021). 3245:54851790 3210:23668995 3174:24246067 3154:ACS Nano 3029:22416585 2994:51870319 2986:30062834 2912:32261087 2840:32261288 2805:24267089 2770:31460168 2643:11066086 2635:21079843 2600:22644672 2565:23383050 2557:21562663 2522:22407813 2487:34578481 2411:26905737 2273:23749222 2151:93569150 2087:23322649 2016:23450679 1980:37970787 1960:ACS Nano 1944:27287144 1908:24744921 1854:23623114 1818:13623073 1810:25367312 1774:17521709 1766:26123675 1722:20448965 1605:17243794 1490:33108059 1413:26566016 1370:27399599 1327:27525451 1287:21306724 1244:16771487 1196:ACS Nano 1181:20461744 1145:24309588 1121:: 2943. 1065:22136359 1030:25316556 980:11849956 937:33043896 882:15469243 846:41561027 838:15258594 803:25845394 680:See also 458:graphite 286:Nanofoam 253:Platinum 136:Timeline 55:May 2016 43:citation 3354:Bibcode 2935:Bibcode 2864:Bibcode 2761:6648105 2701:Bibcode 2666:Bibcode 2478:8470909 2402:4764906 2381:Bibcode 2296:Bibcode 2178:Bibcode 2039:Bibcode 1899:3976943 1393:Bibcode 1350:Bibcode 1267:Bibcode 1123:Bibcode 909:Bibcode 592:Sensing 485:citrate 403:History 213:Ceramic 3523:  3515:  3482:  3452:  3423:  3384:Carbon 3372:  3325:  3290:  3243:  3208:  3172:  3074:  3066:  3027:  2992:  2984:  2910:  2838:  2803:  2768:  2758:  2641:  2633:  2598:  2563:  2555:  2520:  2485:  2475:  2467:  2409:  2399:  2271:  2149:  2103:Carbon 2085:  2014:  1978:  1942:  1906:  1896:  1852:  1816:  1808:  1772:  1764:  1728:  1720:  1647:Carbon 1620:Carbon 1603:  1564:  1496:  1488:  1453:  1433:Carbon 1411:  1368:  1325:  1285:  1242:  1179:  1143:  1063:  1028:  978:  943:  935:  927:  880:  844:  836:  801:  464:, and 381:C-dots 258:Silver 223:Copper 182:Other 3521:S2CID 3346:Small 3288:S2CID 3241:S2CID 3072:S2CID 2990:S2CID 2639:S2CID 2561:S2CID 2147:S2CID 1814:S2CID 1770:S2CID 1726:S2CID 1562:S2CID 1494:S2CID 1470:Small 1451:S2CID 941:S2CID 842:S2CID 582:et al 248:Lipid 3513:PMID 3480:PMID 3450:PMID 3421:PMID 3370:PMID 3323:PMID 3206:PMID 3170:PMID 3064:ISSN 3025:PMID 2982:PMID 2908:PMID 2836:PMID 2801:PMID 2766:PMID 2631:PMID 2596:PMID 2553:PMID 2518:PMID 2483:PMID 2465:ISSN 2407:PMID 2269:PMID 2083:PMID 2012:PMID 1976:PMID 1940:PMID 1904:PMID 1880:2014 1850:PMID 1806:PMID 1762:PMID 1718:PMID 1601:PMID 1486:PMID 1409:PMID 1366:PMID 1323:PMID 1283:PMID 1240:PMID 1177:PMID 1141:PMID 1061:PMID 1026:PMID 976:PMID 933:PMID 925:ISSN 878:PMID 834:PMID 799:PMID 377:CQDs 233:Iron 228:Gold 45:and 3505:doi 3472:doi 3442:doi 3438:134 3413:doi 3392:doi 3362:doi 3315:doi 3278:doi 3274:225 3233:doi 3198:doi 3162:doi 3134:doi 3103:doi 3056:doi 3017:doi 2974:doi 2943:doi 2931:103 2900:doi 2872:doi 2828:doi 2793:doi 2789:804 2756:PMC 2748:doi 2709:doi 2674:doi 2662:148 2623:doi 2588:doi 2545:doi 2510:doi 2473:PMC 2455:doi 2397:PMC 2389:doi 2350:doi 2346:247 2304:doi 2292:474 2261:doi 2232:hdl 2224:doi 2194:hdl 2186:doi 2139:doi 2111:doi 2075:doi 2047:doi 2004:doi 1968:doi 1932:doi 1894:PMC 1884:doi 1842:doi 1798:doi 1754:doi 1710:doi 1682:doi 1655:doi 1628:doi 1593:doi 1589:129 1554:doi 1525:doi 1521:121 1478:doi 1441:doi 1437:173 1401:doi 1358:doi 1315:doi 1275:doi 1263:356 1232:doi 1228:128 1204:doi 1169:doi 1131:doi 1091:doi 1053:doi 1049:134 1018:doi 968:doi 917:doi 870:doi 866:126 826:doi 791:doi 761:doi 627:TiO 578:via 385:CDs 383:or 3538:: 3519:. 3511:. 3501:57 3499:. 3495:. 3478:. 3466:. 3448:. 3436:. 3419:. 3409:47 3407:. 3388:49 3386:. 3368:. 3360:. 3348:. 3321:. 3311:51 3309:. 3286:. 3272:. 3266:. 3239:. 3227:. 3204:. 3192:. 3168:. 3156:. 3128:. 3097:. 3070:. 3062:. 3052:53 3050:. 3046:. 3023:. 3011:. 2988:. 2980:. 2970:57 2968:. 2964:. 2941:. 2929:. 2906:. 2894:. 2870:. 2858:. 2834:. 2822:. 2799:. 2787:. 2764:. 2754:. 2742:. 2738:. 2707:. 2695:. 2672:. 2660:. 2637:. 2629:. 2619:47 2617:. 2594:. 2584:51 2582:. 2559:. 2551:. 2541:47 2539:. 2516:. 2506:51 2504:. 2481:. 2471:. 2463:. 2451:11 2449:. 2445:. 2405:. 2395:. 2387:. 2375:. 2371:. 2344:. 2316:^ 2302:. 2290:. 2267:. 2257:49 2255:. 2230:. 2218:. 2192:. 2184:. 2174:82 2172:. 2145:. 2135:30 2133:. 2107:64 2105:. 2081:. 2071:19 2069:. 2045:. 2033:. 2010:. 2000:52 1998:. 1974:. 1964:17 1962:. 1938:. 1928:67 1926:. 1902:. 1892:. 1878:. 1874:. 1862:^ 1848:. 1838:33 1836:. 1812:. 1804:. 1794:25 1792:. 1768:. 1760:. 1750:25 1748:. 1724:. 1716:. 1694:^ 1678:21 1676:. 1651:59 1649:. 1624:47 1622:. 1599:. 1587:. 1583:. 1560:. 1550:10 1548:. 1519:. 1515:. 1492:. 1484:. 1474:16 1472:. 1449:. 1435:. 1431:. 1407:. 1399:. 1389:15 1387:. 1364:. 1356:. 1344:. 1321:. 1309:. 1295:^ 1281:. 1273:. 1261:. 1238:. 1226:. 1200:14 1198:. 1175:. 1165:49 1163:. 1139:. 1129:. 1117:. 1113:. 1087:17 1085:. 1073:^ 1059:. 1047:. 1024:. 1014:44 1012:. 988:^ 974:. 964:13 962:. 939:. 931:. 923:. 915:. 903:. 899:. 876:. 864:. 840:. 832:. 822:22 820:. 797:. 785:. 755:. 751:. 725:^ 660:, 652:, 648:, 517:Fe 483:, 472:, 460:, 399:. 379:, 3527:. 3507:: 3486:. 3474:: 3468:1 3456:. 3444:: 3427:. 3415:: 3398:. 3394:: 3376:. 3364:: 3356:: 3350:4 3329:. 3317:: 3294:. 3280:: 3247:. 3235:: 3229:3 3212:. 3200:: 3194:5 3176:. 3164:: 3158:7 3140:. 3136:: 3130:6 3122:2 3109:. 3105:: 3099:2 3091:2 3078:. 3058:: 3031:. 3019:: 3013:7 2996:. 2976:: 2949:. 2945:: 2937:: 2914:. 2902:: 2896:1 2878:. 2874:: 2866:: 2860:3 2842:. 2830:: 2824:2 2807:. 2795:: 2772:. 2750:: 2744:4 2734:2 2732:O 2730:2 2715:. 2711:: 2703:: 2697:6 2680:. 2676:: 2668:: 2645:. 2625:: 2602:. 2590:: 2567:. 2547:: 2524:. 2512:: 2489:. 2457:: 2430:. 2413:. 2391:: 2383:: 2377:6 2356:. 2352:: 2338:2 2336:O 2334:2 2330:4 2328:O 2326:3 2310:. 2306:: 2298:: 2275:. 2263:: 2240:. 2234:: 2226:: 2220:4 2202:. 2196:: 2188:: 2180:: 2153:. 2141:: 2117:. 2113:: 2089:. 2077:: 2053:. 2049:: 2041:: 2035:8 2018:. 2006:: 1982:. 1970:: 1946:. 1934:: 1910:. 1886:: 1856:. 1844:: 1820:. 1800:: 1776:. 1756:: 1732:. 1712:: 1688:. 1684:: 1661:. 1657:: 1634:. 1630:: 1607:. 1595:: 1568:. 1556:: 1533:. 1527:: 1500:. 1480:: 1457:. 1443:: 1415:. 1403:: 1395:: 1372:. 1360:: 1352:: 1346:8 1329:. 1317:: 1311:7 1289:. 1277:: 1269:: 1246:. 1234:: 1210:. 1206:: 1183:. 1171:: 1147:. 1133:: 1125:: 1119:4 1097:. 1093:: 1067:. 1055:: 1032:. 1020:: 982:. 970:: 947:. 919:: 911:: 905:9 884:. 872:: 848:. 828:: 805:. 793:: 787:7 769:. 763:: 757:2 629:2 605:2 603:O 601:2 599:H 574:S 572:2 570:H 565:S 563:2 561:H 557:S 555:2 553:H 523:4 521:O 519:3 353:e 346:t 339:v 68:) 62:( 57:) 53:( 49:. 39:.

Index

citation style
citation
footnoting
Learn how and when to remove this message
Nanomaterials

Carbon nanotubes
Synthesis
Chemistry
Mechanical properties
Optical properties
Applications
Timeline
Fullerenes
Buckminsterfullerene
C70 fullerene
Chemistry
Health impact
Carbon allotropes
nanoparticles
Carbon quantum dots
Quantum dots
Aluminium oxide
Cellulose
Ceramic
Cobalt oxide
Copper
Gold
Iron
Iron oxide

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.