Knowledge

Solid lipid nanoparticle

Source đź“ť

799:, but during the 2010s, the earlier research into using LNPs for siRNA became a foundation for new research into using LNPs for mRNA. Lipids intended for short siRNA strands did not work well for much longer mRNA strands, which led to extensive research during the mid-2010s into the creation of novel ionizable cationic lipids appropriate for mRNA. As of late 2020, several mRNA vaccines for SARS-CoV-2 use LNPs as their drug delivery system, including both the Moderna COVID-19 vaccine and the Pfizer–BioNTech COVID-19 vaccines. 605:, as well as in other disciplines. Due to their unique size-dependent properties, lipid nanoparticles offer the possibility to develop new therapeutics. The ability to incorporate drugs into nanocarriers offers a new prototype in drug delivery that could hold great promise for attaining the bioavailability enhancement along with controlled and site-specific drug delivery. SLN's are also considered to well tolerated in general, due to their composition from physiologically similar lipids. 2270: 313: 30: 2245: 2282: 325: 1958: 2257: 638:
targeting, increased drug stability and no problems with respect to large scale production. Furthermore, various functions such as molecules for targeting, PEG chains for stealth properties or thiol groups for adhesion via disulfide bond formation can be immobilized on their surface. A recent study has demonstrated the use of solid lipid nanoparticles as a platform for oral delivery of the nutrient mineral
98: 50: 725:, protection of sensitive drug molecules from the outer environment water, light) and even controlled release characteristics were claimed by the incorporation of poorly water-soluble drugs in the solid lipid matrix. Moreover, SLN can carry both lipophilic and hydrophilic drugs and are more affordable compared to polymeric/surfactant-based carriers. 568:(for structure). Because of rapid clearance by the immune system of the positively charged lipid, neutral ionizable amino lipids were developed. A novel squaramide lipid (that is, partially aromatic four-membered rings, which can participate in pi–pi interactions) has been a favored part of the delivery system used, for example, by Moderna. 764:
developed ionizable cationic lipids which are "positively charged at an acidic pH but neutral in the blood." Cullis also led the development of a technique involving careful adjustments to pH during the process of mixing ingredients in order to create LNPs which could safely pass through the cell
608:
The conventional approaches such as use of permeation enhancers, surface modification, prodrug synthesis, complex formation and colloidal lipid carrier-based strategies have been developed for the delivery of drugs to intestinal lymphatics. In addition, polymeric nanoparticles, self-emulsifying
584:
The obtained LNP formulation can subsequently be filled into sterile containers and subjected to final quality control. However, various measures to monitor and evaluate product quality are integrated in every step of LNP manufacturing and include testing of polydispersity, particle size, drug
637:
drug delivery approaches. It has been proposed that SLNs combine numerous advantages over the other colloidal carriers i.e. incorporation of lipophilic and hydrophilic drugs feasible, no biotoxicity of the carrier, avoidance of organic solvents, possibility of controlled drug release and drug
689:
and yielded some promising results. SLNs have been looked at as a potential drug carrier system since the 1990s. SLNs do not show biotoxicity as they are prepared from physiological lipids. SLNs are especially useful in ocular drug delivery as they can enhance the
859:
cell monolayer could be alternative tissue for development of an in-vitro model to be used as a screening tool before animal studies are undertaken. The results obtained in this model suggested that the main absorption mechanism of carvedilol loaded solid lipid
670:
as a lipid and surfactant, respectively. Another example of drug delivery using SLN would be oral solid SLN suspended in distilled water, which was synthesized to trap drugs within the SLN structure. Upon indigestion, the SLNs are exposed to
512:
An SLN is generally spherical in shape and consists of a solid lipid core stabilized by a surfactant. The core lipids can be fatty acids, acylglycerols, waxes, and mixtures of these surfactants. Biological membrane lipids such as
1873:
Shah, Mansi K.; Madan, Parshotam; Lin, Senshang (June 2014). "Preparation, in vitro evaluation and statistical optimization of carvedilol-loaded solid lipid nanoparticles for lymphatic absorption via oral administration".
580:
is possible using ultrasonification at the cost of long sonication time. Solvent-emulsification is suitable in preparing small, homogeneously sized lipid nanoparticles dispersions with the advantage of avoiding heat.
56:
are ("hollow") lipid nanoparticles which have a phospholipid bilayer as coat, because the bulk of the interior of the particle is composed of aqueous substance. In various popular uses, the optional payload is e.g.
1432:
Shah, Mansi K.; Madan, Parshotam; Lin, Senshang (23 May 2013). "Preparation, evaluation and statistical optimization of carvedilol-loaded solid lipid nanoparticle for lymphatic absorption via oral administration".
1911:
Shah, Mansi K.; Madan, Parshotam; Lin, Senshang (3 October 2015). "Elucidation of intestinal absorption mechanism of carvedilol-loaded solid lipid nanoparticles using Caco-2 cell line as an in-vitro model".
1606:
Mukherjee, S et al. “Solid lipid nanoparticles: a modern formulation approach in drug delivery system.” Indian journal of pharmaceutical sciences vol. 71,4 (2009): 349-58. doi:10.4103/0250-474X.57282
1798:
Shah, Mansi K.; Madan, Parshotam; Lin, Senshang (29 July 2014). "Elucidation of intestinal absorption mechanism of carvedilol-loaded solid lipid nanoparticle using Caco-2 cell line as an model".
773:. The acidity inside the endosomes causes LNPs' ionizable cationic lipids to acquire a positive charge, and this is thought to allow LNPs to escape from endosomes and release their RNA payloads. 576:
Different formulation procedures include high shear homogenization and ultrasound, solvent emulsification/evaporation, or microemulsion. Obtaining size distributions in the range of 30-180 
709:
Advantages of SLNs include the use of physiological lipids (which decreases the danger of acute and chronic toxicity), the avoidance of organic solvents, a potential wide application spectrum (
1220:
Wolfgang Mehnert, Karsten Mäder, Solid lipid nanoparticles: Production, characterization and applications, Advanced Drug Delivery Reviews, Volume 64, 2012, Pages 83-101, ISSN 0169-409X,
457:(emulsifiers). The emulsifier used depends on administration routes and is more limited for parenteral administrations. The term lipid is used here in a broader sense and includes 1511:
Arana, Lide; Salado, Clarisa; Vega, Sandra; Aizpurua-Olaizola, Oier; Arada, Igor de la; Suarez, Tatiana; Usobiaga, Aresatz; Arrondo, José Luis R.; Alonso, Alicia (2015-11-01).
33:
Solid lipid nanoparticles (SLNs). There is only one phospholipid layer because the bulk of the interior of the particle is composed of lipophilic substance. Payloads such as
981:
Jenning, V; ThĂĽnemann, AF; Gohla, SH (2000). "Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids".
634: 505:(with respect to charge and molecular weight) have been used to stabilize the lipid dispersion. It has been found that the combination of emulsifiers might prevent 617:, micellar solutions and recently solid lipid nanoparticles (SLN) have been exploited as probable possibilities as carriers for oral intestinal lymphatic delivery. 745:
in the mid-1980s, Philip Felgner pioneered the use of artificially-created cationic lipids (positively-charged lipids) to bind lipids to nucleic acids in order to
1844:
Müller, Rainer H.; Mäder, Karsten; Gohla, Sven (3 July 2000). "Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art".
1780: 765:
membranes of living organisms. As of 2021, the current understanding of LNPs formulated with such ionizable cationic lipids is that they enter cells through
659: 597:
is one of the emerging fields of lipid nanotechnology (for a review on lipid nanotechnology, see ) with several potential applications in drug delivery,
676: 667: 537:
and the solid state of the lipid permit better controlled drug release due to increased mass transfer resistance. Shah et al. in their book
663: 134: 2001: 124: 355: 129: 2307: 1388: 1154: 965: 556:) are made of four types of lipids: an ionizable cationic lipid (whose positive charge binds to negatively charged mRNA), a 2031: 1022: 420: 1476:
Pandey, Rajesh; Sharma, Sadhna; Khuller, G.K. (2005). "Oral solid lipid nanoparticle-based antitubercular chemotherapy".
1277:
evaluation. Rawat MK, Jain A and Singh S, Journal of Pharmaceutical Sciences, 2011, volume 100, issue 6, pages 2366-2378
1182:"Discovery of a Novel Amino Lipid That Improves Lipid Nanoparticle Performance through Specific Interactions with mRNA" 172: 795:
By that point in time, siRNA drug developers like Alnylam were already looking at other options for future drugs like
2121: 1705: 1678: 629:. SLNs combine the advantages of lipid emulsion and polymeric nanoparticle systems while overcoming the temporal and 1620: 2261: 2055: 761: 246: 2202: 1994: 766: 266: 114: 2078: 206: 139: 2174: 348: 74: 1647: 718: 388: 384: 45:, cell-targeting peptides, and/or other drug molecules can be bound to the exterior surface of the SLN. 2189: 2041: 2036: 2026: 2018: 221: 119: 2212: 2141: 2051: 1987: 835:
cell line as in vitro model was developed. Several researchers have shown the enhancement of oral
721:) and the high pressure homogenization as an established production method. Additionally, improved 553: 416: 299: 70: 1234: 2249: 2197: 2146: 2133: 796: 785: 241: 1967: 1389:"A novel approach to oral iron delivery using ferrous sulphate loaded solid lipid nanoparticles" 1338:
Hock, N; Racaniello, GF; Aspinall, S; Denora, N; Khutoryanskiy, V; Bernkop-SchnĂĽrch, A (2022).
905: 341: 41:
or others can be embedded in the interior, as desired. Optionally, targeting-molecules such as
1695: 1666: 1512: 777: 710: 626: 474: 380: 256: 2073: 1340:"Thiolated Nanoparticles for Biomedical Applications: Mimicking the Workhorses of our Body" 781: 294: 216: 177: 157: 8: 2220: 2109: 526: 261: 226: 167: 1963: 2151: 1937: 1899: 1823: 1756: 1729: 1589: 1540: 1458: 1364: 1339: 1315: 1288: 1203: 1075: 1050: 196: 1857: 1781:"COVID-19: Vancouver's Acuitas Therapeutics a key contributor to coronavirus solution" 1049:
Pardi, Norbert; Hogan, Michael J.; Porter, Frederick W.; Weissman, Drew (April 2018).
994: 2286: 1929: 1891: 1861: 1815: 1761: 1701: 1674: 1581: 1532: 1493: 1450: 1411: 1369: 1320: 1255: 1207: 1080: 998: 961: 776:
From 2005 into the early 2010s, LNPs were investigated as a drug delivery system for
598: 329: 236: 1941: 1903: 1827: 1593: 1544: 1462: 533:(cholesterol) are utilized as stabilizers. Biological lipids having minimum carrier 2230: 1921: 1883: 1853: 1807: 1751: 1741: 1571: 1528: 1524: 1485: 1442: 1403: 1359: 1351: 1310: 1300: 1193: 1070: 1062: 990: 953: 848: 828: 400: 1407: 2312: 2179: 2166: 2104: 1925: 1887: 1811: 1576: 1559: 1446: 844: 836: 738: 722: 643: 498: 105: 58: 1746: 1287:
Fam, SY; Chee, CF; Yong, CY; Ho, KL; Mariatulqabtiah, AR; Tan, WS (April 2020).
957: 2274: 2068: 2010: 1489: 1269:
Studies on binary lipid matrix-based solid lipid nanoparticles of repaglinide:
1027: 317: 231: 2301: 2088: 1221: 754: 699: 686: 614: 518: 470: 447: 284: 275: 211: 162: 89: 706:
sterilization, a necessary step towards formulation of ocular preparations.
625:
Solid lipid nanoparticles can function as the basis for oral and parenteral
2225: 2116: 2063: 1933: 1895: 1865: 1819: 1765: 1585: 1536: 1497: 1454: 1415: 1373: 1355: 1324: 1258:; Mashaghi, A. Lipid Nanotechnology. Int. J. Mol. Sci. 2013, 14, 4242-4282. 1198: 1181: 1084: 1002: 881: 861: 852: 840: 753:
experiments that this use of cationic lipids had undesired side effects on
746: 734: 651: 594: 561: 534: 514: 482: 458: 372: 187: 62: 1259: 1155:"Without these lipid shells, there would be no mRNA vaccines for COVID-19" 1513:"Solid lipid nanoparticles for delivery of Calendula officinalis extract" 1305: 1066: 869: 865: 788:'s siRNA drugs. In 2018, the FDA approved Alnylam's siRNA drug Onpattro ( 784:
to commercialize his LNP research; Acuitas worked on developing LNPs for
695: 565: 545: 502: 490: 478: 466: 404: 201: 38: 29: 24: 20: 655: 557: 549: 522: 462: 454: 444: 412: 391:. LNPs as a drug delivery vehicle were first approved in 2018 for the 42: 2269: 312: 2096: 1180:
Cornebise, Mark; Narayanan, Elisabeth; Xia, Yan (November 12, 2021).
910: 789: 749:
the latter into cells. However, by the late 1990s, it was known from
703: 577: 450: 436: 148: 66: 1235:"Lipid nanoparticle (LNP) manufacturing: Challenges & Solutions" 702:
drugs. Solid lipid nanoparticles have another advantage of allowing
924: 920: 899: 893: 816: 812: 770: 741:—meaning they do not easily mix with each other. While working at 694:
absorption of drugs and improve the ocular bioavailability of both
610: 602: 506: 486: 396: 289: 53: 2281: 851:
delivery. To elucidate the absorption mechanism, from solid lipid
737:
is that in nature, lipids and nucleic acids both carry a negative
415:
lipid nanoparticles as their delivery vehicle (including both the
324: 1979: 914: 887: 800: 672: 530: 1510: 948:
Saupe, Anne; Rades, Thomas (2006). "Solid Lipid Nanoparticles".
928: 856: 839:
of poorly water-soluble drugs when encapsulated in solid lipid
832: 808: 804: 742: 733:
A significant obstacle to using LNPs as a delivery vehicle for
714: 691: 683: 539:
Lipid Nanoparticles: Production, Characterization and Stability
432: 34: 1671:
Pharmaceutical Perspectives of Nucleic Acid-Based Therapeutics
679:
that dissolve the SLNs and release the drugs into the system.
494: 440: 392: 376: 1557: 1337: 896:, lipid bilayer shell, an earlier form with some limitations 780:(siRNA) drugs. In 2009, Cullis co-founded a company called 1289:"Stealth Coating of Nanoparticles in Drug-Delivery Systems" 792:), the first drug to use LNPs as the drug delivery system. 639: 633:
stability issues that troubles the conventional as well as
408: 97: 49: 1621:"The first Covid-19 vaccines have changed biotech forever" 831:
absorption mechanism from solid lipid nanoparticles using
803:
uses its own proprietary ionizable cationic lipid called
1730:"Lipid Nanoparticle Systems for Enabling Gene Therapies" 1048: 1846:
European Journal of Pharmaceutics and Biopharmaceutics
1023:"How nanotechnology helps mRNA Covid-19 vaccines work" 760:
During the late 1990s and 2000s, Pieter Cullis of the
658:-loaded solid lipid nanoparticles were prepared using 399:. LNPs became more widely known in late 2020, as some 1179: 980: 1560:"Solid lipid nanoparticles for ocular drug delivery" 682:
Many nano-structured systems have been employed for
1728:Cullis, Pieter R.; Hope, Michael J. (5 July 2017). 1475: 1673:. London: Taylor & Francis. pp. 273–303. 1652:UC San Diego Library: San Diego Technology Archive 822: 2299: 1843: 902:, a complex of plasmid or linear DNA and lipids 1687: 1558:Seyfoddin, Ali; J. Shaw; R. Al-Kassas (2010). 1995: 1286: 1100: 1098: 1096: 1094: 435:with an average diameter between 10 and 1000 349: 1910: 1872: 1797: 1431: 815:licensed an ionizable cationic lipid called 642:, by incorporating the hydrophilic molecule 439:. Solid lipid nanoparticles possess a solid 1721: 1669:. In Mahato, Ram I.; Kim, Sung Wan (eds.). 1619:Foley, Katherine Ellen (22 December 2020). 2002: 1988: 1727: 1654:. Regents of the University of California. 1222:https://doi.org/10.1016/j.addr.2012.09.021 1091: 1051:"mRNA vaccines — a new era in vaccinology" 947: 868:and, more specifically, clathrin-mediated 356: 342: 1914:Pharmaceutical Development and Technology 1876:Pharmaceutical Development and Technology 1800:Pharmaceutical Development and Technology 1755: 1745: 1575: 1435:Pharmaceutical Development and Technology 1363: 1314: 1304: 1263: 1232: 1197: 1074: 585:loading efficiency and endotoxin levels. 1648:"Phil Felgner Interview – July 22, 1997" 1614: 1612: 1386: 1173: 48: 28: 1148: 1146: 1144: 1142: 1140: 1138: 1136: 1134: 1132: 1016: 1014: 1012: 2300: 1700:. Boca Raton: CRC Press. p. 191. 1517:Colloids and Surfaces B: Biointerfaces 1020: 983:International Journal of Pharmaceutics 1983: 1778: 1772: 1693: 1645: 1639: 1618: 1609: 1427: 1425: 1152: 1021:Cooney, Elizabeth (1 December 2020). 2256: 1667:"Cationic lipid-based gene delivery" 1129: 1009: 1664: 1658: 381:pharmaceutical drug delivery system 13: 2009: 1837: 1779:Shore, Randy (November 17, 2020). 1422: 1226: 662:technique for oral delivery using 453:. The lipid core is stabilized by 431:A lipid nanoparticle is typically 426: 14: 2324: 1949: 1233:Marciniak, Mike (June 21, 2023). 421:Pfizer–BioNTech COVID-19 vaccines 2280: 2268: 2255: 2244: 2243: 1956: 728: 650:) in a lipid matrix composed of 620: 509:agglomeration more efficiently. 323: 311: 96: 1791: 1600: 1551: 1504: 1469: 1380: 1331: 1280: 1248: 1214: 1159:Chemical & Engineering News 588: 84:Part of a series of articles on 1529:10.1016/j.colsurfb.2015.07.020 1387:Zariwala, MG (November 2013). 1120: 1111: 1042: 974: 941: 823:Lymphatic absorption mechanism 762:University of British Columbia 1: 2203:Scanning tunneling microscope 1858:10.1016/S0939-6411(00)00087-4 1408:10.1016/j.ijpharm.2013.08.070 1186:Advanced Functional Materials 1153:Cross, Ryan (March 6, 2021). 1055:Nature Reviews Drug Discovery 995:10.1016/S0378-5173(00)00378-1 935: 767:receptor-mediated endocytosis 2308:Nanoparticles by composition 1926:10.3109/10837450.2014.938857 1888:10.3109/10837450.2013.795169 1812:10.3109/10837450.2014.938857 1646:Jones, Mark (22 July 1997). 1577:10.3109/10717544.2010.483257 1447:10.3109/10837450.2013.795169 571: 407:technology coat the fragile 7: 2175:Molecular scale electronics 1747:10.1016/j.ymthe.2017.03.013 1161:. American Chemical Society 958:10.1007/978-1-4020-5041-1_3 875: 593:Development of solid lipid 10: 2329: 1697:Liposomes in Gene Delivery 1490:10.1016/j.tube.2005.08.009 1254:Mashaghi, S.; Jadidi, T.; 827:Elucidation of intestinal 797:chemical conjugate systems 469:(e.g. glycerol bahenate), 389:pharmaceutical formulation 385:nanoparticle drug delivery 18: 16:Novel drug delivery system 2239: 2211: 2190:Scanning probe microscopy 2188: 2165: 2132: 2087: 2050: 2017: 1969:solid lipid nanoparticle 1694:Lasic, Danilo D. (1997). 560:lipid (for stability), a 541:discuss these in detail. 2213:Molecular nanotechnology 2157:Solid lipid nanoparticle 2142:Self-assembled monolayer 950:Nanocarrier Technologies 300:Nanocrystalline material 276:Nanostructured materials 2198:Atomic force microscope 2147:Supramolecular assembly 2134:Molecular self-assembly 786:Alnylam Pharmaceuticals 635:polymeric nanoparticles 552:(the virus that causes 1356:10.1002/advs.202102451 1199:10.1002/adfm.202106727 1126:Manzunath et al., 2005 906:Targeted drug delivery 78: 46: 2287:Technology portal 1665:Byk, Gerardo (2002). 1192:(8). Wiley: 2106727. 778:small interfering RNA 627:drug delivery systems 564:(for structure), and 475:glycerol monostearate 443:core matrix that can 330:Technology portal 125:Mechanical properties 52: 32: 2074:Green nanotechnology 1306:10.3390/nano10040787 1067:10.1038/nrd.2017.243 782:Acuitas Therapeutics 379:. They are a novel 295:Nanoporous materials 158:Buckminsterfullerene 2221:Molecular assembler 884:, the general field 527:sodium taurocholate 369:Lipid nanoparticles 197:Carbon quantum dots 2275:Science portal 2152:DNA nanotechnology 1966:has a profile for 952:. pp. 41–50. 769:and end up inside 660:hot-homogenization 609:delivery systems, 501:). All classes of 318:Science portal 130:Optical properties 79: 47: 2295: 2294: 1972: 1734:Molecular Therapy 967:978-1-4020-5040-4 599:clinical medicine 401:COVID-19 vaccines 366: 365: 178:Carbon allotropes 2320: 2285: 2284: 2273: 2272: 2259: 2258: 2247: 2246: 2231:Mechanosynthesis 2122:characterization 2004: 1997: 1990: 1981: 1980: 1970: 1960: 1959: 1945: 1907: 1869: 1832: 1831: 1795: 1789: 1788: 1776: 1770: 1769: 1759: 1749: 1740:(7): 1467–1475. 1725: 1719: 1718: 1716: 1714: 1691: 1685: 1684: 1662: 1656: 1655: 1643: 1637: 1636: 1634: 1632: 1616: 1607: 1604: 1598: 1597: 1579: 1555: 1549: 1548: 1508: 1502: 1501: 1484:(5–6): 415–420. 1473: 1467: 1466: 1429: 1420: 1419: 1393: 1384: 1378: 1377: 1367: 1335: 1329: 1328: 1318: 1308: 1284: 1278: 1267: 1261: 1252: 1246: 1245: 1243: 1241: 1230: 1224: 1218: 1212: 1211: 1201: 1177: 1171: 1170: 1168: 1166: 1150: 1127: 1124: 1118: 1115: 1109: 1102: 1089: 1088: 1078: 1046: 1040: 1039: 1037: 1035: 1018: 1007: 1006: 978: 972: 971: 945: 855:, human excised 847:is achieved via 843:. This enhanced 677:intestinal acids 358: 351: 344: 328: 327: 316: 315: 267:Titanium dioxide 106:Carbon nanotubes 100: 81: 80: 77:and many others. 2328: 2327: 2323: 2322: 2321: 2319: 2318: 2317: 2298: 2297: 2296: 2291: 2279: 2267: 2235: 2207: 2184: 2180:Nanolithography 2167:Nanoelectronics 2161: 2128: 2083: 2046: 2037:Popular culture 2013: 2008: 1978: 1977: 1976: 1961: 1957: 1952: 1840: 1838:Further reading 1835: 1796: 1792: 1777: 1773: 1726: 1722: 1712: 1710: 1708: 1692: 1688: 1681: 1663: 1659: 1644: 1640: 1630: 1628: 1617: 1610: 1605: 1601: 1556: 1552: 1509: 1505: 1474: 1470: 1430: 1423: 1391: 1385: 1381: 1344:Adv Sci (Weinh) 1336: 1332: 1285: 1281: 1268: 1264: 1253: 1249: 1239: 1237: 1231: 1227: 1219: 1215: 1178: 1174: 1164: 1162: 1151: 1130: 1125: 1121: 1116: 1112: 1103: 1092: 1047: 1043: 1033: 1031: 1019: 1010: 979: 975: 968: 946: 942: 938: 878: 845:bioavailibility 837:bioavailibility 825: 739:electric charge 731: 723:bioavailability 649: 644:ferrous sulfate 623: 591: 574: 499:cetyl palmitate 429: 427:Characteristics 387:), and a novel 362: 322: 310: 207:Aluminium oxide 27: 17: 12: 11: 5: 2326: 2316: 2315: 2310: 2293: 2292: 2290: 2289: 2277: 2265: 2253: 2240: 2237: 2236: 2234: 2233: 2228: 2223: 2217: 2215: 2209: 2208: 2206: 2205: 2200: 2194: 2192: 2186: 2185: 2183: 2182: 2177: 2171: 2169: 2163: 2162: 2160: 2159: 2154: 2149: 2144: 2138: 2136: 2130: 2129: 2127: 2126: 2125: 2124: 2114: 2113: 2112: 2107: 2099: 2093: 2091: 2085: 2084: 2082: 2081: 2076: 2071: 2069:Nanotoxicology 2066: 2060: 2058: 2048: 2047: 2045: 2044: 2039: 2034: 2029: 2023: 2021: 2015: 2014: 2011:Nanotechnology 2007: 2006: 1999: 1992: 1984: 1962: 1955: 1954: 1953: 1951: 1950:External links 1948: 1947: 1946: 1920:(7): 877–885. 1908: 1882:(4): 475–485. 1870: 1852:(1): 161–177. 1839: 1836: 1834: 1833: 1806:(7): 877–885. 1790: 1771: 1720: 1706: 1686: 1679: 1657: 1638: 1627:. Quartz Media 1608: 1599: 1570:(7): 467–489. 1550: 1503: 1468: 1441:(4): 475–485. 1421: 1379: 1350:(1): 2102451. 1330: 1279: 1262: 1256:Koenderink, G. 1247: 1225: 1213: 1172: 1128: 1119: 1110: 1090: 1061:(4): 261–279. 1041: 1008: 973: 966: 939: 937: 934: 933: 932: 918: 908: 903: 897: 891: 885: 877: 874: 824: 821: 819:from Acuitas. 755:cell membranes 730: 727: 647: 622: 619: 615:microemulsions 590: 587: 573: 570: 519:sphingomyelins 471:monoglycerides 428: 425: 364: 363: 361: 360: 353: 346: 338: 335: 334: 333: 332: 320: 305: 304: 303: 302: 297: 292: 287: 279: 278: 272: 271: 270: 269: 264: 259: 254: 249: 244: 239: 234: 229: 224: 219: 214: 209: 204: 199: 191: 190: 183: 182: 181: 180: 175: 170: 165: 160: 152: 151: 145: 144: 143: 142: 137: 132: 127: 122: 117: 109: 108: 102: 101: 93: 92: 86: 85: 15: 9: 6: 4: 3: 2: 2325: 2314: 2311: 2309: 2306: 2305: 2303: 2288: 2283: 2278: 2276: 2271: 2266: 2264: 2263: 2254: 2252: 2251: 2242: 2241: 2238: 2232: 2229: 2227: 2224: 2222: 2219: 2218: 2216: 2214: 2210: 2204: 2201: 2199: 2196: 2195: 2193: 2191: 2187: 2181: 2178: 2176: 2173: 2172: 2170: 2168: 2164: 2158: 2155: 2153: 2150: 2148: 2145: 2143: 2140: 2139: 2137: 2135: 2131: 2123: 2120: 2119: 2118: 2117:Nanoparticles 2115: 2111: 2108: 2106: 2103: 2102: 2100: 2098: 2095: 2094: 2092: 2090: 2089:Nanomaterials 2086: 2080: 2077: 2075: 2072: 2070: 2067: 2065: 2062: 2061: 2059: 2057: 2053: 2049: 2043: 2040: 2038: 2035: 2033: 2032:Organizations 2030: 2028: 2025: 2024: 2022: 2020: 2016: 2012: 2005: 2000: 1998: 1993: 1991: 1986: 1985: 1982: 1974: 1973: 1965: 1943: 1939: 1935: 1931: 1927: 1923: 1919: 1915: 1909: 1905: 1901: 1897: 1893: 1889: 1885: 1881: 1877: 1871: 1867: 1863: 1859: 1855: 1851: 1847: 1842: 1841: 1829: 1825: 1821: 1817: 1813: 1809: 1805: 1801: 1794: 1786: 1785:Vancouver Sun 1782: 1775: 1767: 1763: 1758: 1753: 1748: 1743: 1739: 1735: 1731: 1724: 1709: 1707:9780849331091 1703: 1699: 1698: 1690: 1682: 1680:9780203300961 1676: 1672: 1668: 1661: 1653: 1649: 1642: 1626: 1622: 1615: 1613: 1603: 1595: 1591: 1587: 1583: 1578: 1573: 1569: 1565: 1564:Drug Delivery 1561: 1554: 1546: 1542: 1538: 1534: 1530: 1526: 1522: 1518: 1514: 1507: 1499: 1495: 1491: 1487: 1483: 1479: 1472: 1464: 1460: 1456: 1452: 1448: 1444: 1440: 1436: 1428: 1426: 1417: 1413: 1409: 1405: 1401: 1397: 1390: 1383: 1375: 1371: 1366: 1361: 1357: 1353: 1349: 1345: 1341: 1334: 1326: 1322: 1317: 1312: 1307: 1302: 1298: 1294: 1293:Nanomaterials 1290: 1283: 1276: 1272: 1266: 1260: 1257: 1251: 1236: 1229: 1223: 1217: 1209: 1205: 1200: 1195: 1191: 1187: 1183: 1176: 1160: 1156: 1149: 1147: 1145: 1143: 1141: 1139: 1137: 1135: 1133: 1123: 1114: 1107: 1101: 1099: 1097: 1095: 1086: 1082: 1077: 1072: 1068: 1064: 1060: 1056: 1052: 1045: 1030: 1029: 1024: 1017: 1015: 1013: 1004: 1000: 996: 992: 989:(2): 167–77. 988: 984: 977: 969: 963: 959: 955: 951: 944: 940: 930: 926: 922: 919: 916: 912: 909: 907: 904: 901: 898: 895: 892: 890:, lipid cored 889: 886: 883: 880: 879: 873: 871: 867: 863: 858: 854: 850: 846: 842: 838: 834: 830: 820: 818: 814: 810: 806: 802: 798: 793: 791: 787: 783: 779: 774: 772: 768: 763: 758: 756: 752: 748: 744: 740: 736: 735:nucleic acids 729:Nucleic acids 726: 724: 720: 716: 712: 707: 705: 701: 697: 693: 688: 687:drug delivery 685: 680: 678: 674: 669: 668:poloxamer 188 665: 661: 657: 653: 645: 641: 636: 632: 628: 621:Drug delivery 618: 616: 612: 606: 604: 600: 596: 595:nanoparticles 586: 582: 579: 569: 567: 563: 559: 555: 551: 547: 546:mRNA vaccines 544:LNPs used in 542: 540: 536: 532: 528: 524: 520: 516: 515:phospholipids 510: 508: 504: 500: 496: 492: 488: 484: 480: 476: 472: 468: 464: 460: 459:triglycerides 456: 452: 449: 446: 442: 438: 434: 424: 422: 418: 414: 411:strands with 410: 406: 402: 398: 394: 390: 386: 383:(and part of 382: 378: 374: 373:nanoparticles 370: 359: 354: 352: 347: 345: 340: 339: 337: 336: 331: 326: 321: 319: 314: 309: 308: 307: 306: 301: 298: 296: 293: 291: 288: 286: 285:Nanocomposite 283: 282: 281: 280: 277: 274: 273: 268: 265: 263: 260: 258: 255: 253: 250: 248: 247:Iron–platinum 245: 243: 240: 238: 235: 233: 230: 228: 225: 223: 220: 218: 215: 213: 210: 208: 205: 203: 200: 198: 195: 194: 193: 192: 189: 188:nanoparticles 185: 184: 179: 176: 174: 173:Health impact 171: 169: 166: 164: 163:C70 fullerene 161: 159: 156: 155: 154: 153: 150: 147: 146: 141: 138: 136: 133: 131: 128: 126: 123: 121: 118: 116: 113: 112: 111: 110: 107: 104: 103: 99: 95: 94: 91: 90:Nanomaterials 88: 87: 83: 82: 76: 72: 68: 64: 60: 55: 51: 44: 40: 36: 31: 26: 22: 2260: 2248: 2226:Nanorobotics 2156: 2064:Nanomedicine 2056:applications 1968: 1917: 1913: 1879: 1875: 1849: 1845: 1803: 1799: 1793: 1784: 1774: 1737: 1733: 1723: 1711:. Retrieved 1696: 1689: 1670: 1660: 1651: 1641: 1629:. Retrieved 1624: 1602: 1567: 1563: 1553: 1520: 1516: 1506: 1481: 1478:Tuberculosis 1477: 1471: 1438: 1434: 1402:(2): 400–7. 1399: 1395: 1382: 1347: 1343: 1333: 1296: 1292: 1282: 1274: 1270: 1265: 1250: 1238:. Retrieved 1228: 1216: 1189: 1185: 1175: 1163:. Retrieved 1158: 1122: 1113: 1105: 1058: 1054: 1044: 1032:. Retrieved 1026: 986: 982: 976: 949: 943: 882:Nanomedicine 862:nanoparticle 853:nanoparticle 841:nanoparticle 826: 794: 775: 759: 750: 732: 708: 681: 652:stearic acid 630: 624: 607: 592: 589:Applications 583: 575: 562:phospholipid 543: 538: 535:cytotoxicity 511: 483:stearic acid 467:diglycerides 430: 375:composed of 368: 367: 251: 222:Cobalt oxide 202:Quantum dots 135:Applications 63:Gene therapy 59:DNA vaccines 1396:Int J Pharm 1117:Small, 1986 931:, uses LNPs 917:, uses LNPs 870:endocytosis 866:endocytosis 719:intravenous 696:hydrophilic 566:cholesterol 503:emulsifiers 491:cholesterol 479:fatty acids 455:surfactants 405:RNA vaccine 371:(LNPs) are 71:antibiotics 39:RNA vaccine 25:DNA vaccine 21:RNA vaccine 2302:Categories 2110:Non-carbon 2101:Nanotubes 2097:Fullerenes 2079:Regulation 1971:(Q7557912) 1713:11 January 1631:11 January 1299:(4): 787. 1034:3 December 936:References 700:lipophilic 656:Carvedilol 550:SARS-CoV-2 523:bile salts 463:tristearin 448:lipophilic 445:solubilize 437:nanometers 242:Iron oxide 149:Fullerenes 43:antibodies 19:See also: 1523:: 18–26. 1208:244085785 911:mRNA-1273 864:could be 849:lymphatic 829:lymphatic 790:patisiran 771:endosomes 747:transfect 704:autoclave 664:compritol 611:liposomes 572:Synthesis 558:PEGylated 451:molecules 433:spherical 413:PEGylated 403:that use 212:Cellulose 168:Chemistry 120:Chemistry 115:Synthesis 75:cosmetics 54:Liposomes 2250:Category 2019:Overview 1942:40506806 1934:25069593 1904:42174732 1896:23697916 1866:10840199 1828:40506806 1820:25069593 1766:28412170 1594:25357639 1586:20491540 1545:41621205 1537:26231862 1498:16256437 1463:42174732 1455:23697916 1416:24012860 1374:34773391 1325:32325941 1271:in vitro 1165:March 6, 1104:Mehnert 1085:29326426 1003:10802410 925:BioNTech 921:BNT162b2 900:Lipoplex 894:Liposome 876:See also 817:ALC-0315 813:BioNTech 807:, while 751:in vitro 603:research 554:COVID-19 507:particle 487:steroids 419:and the 397:Onpattro 290:Nanofoam 257:Platinum 140:Timeline 67:vitamins 2262:Commons 2042:Outline 2027:History 1964:Scholia 1757:5498813 1365:8728822 1316:7221919 1275:in vivo 1240:July 5, 1076:5906799 923:, from 915:Moderna 913:, from 888:Micelle 801:Moderna 692:corneal 673:gastric 631:in vivo 531:sterols 529:), and 493:), and 417:Moderna 217:Ceramic 2313:Lipids 2105:Carbon 2052:Impact 1940:  1932:  1902:  1894:  1864:  1826:  1818:  1764:  1754:  1704:  1677:  1625:Quartz 1592:  1584:  1543:  1535:  1496:  1461:  1453:  1414:  1372:  1362:  1323:  1313:  1206:  1108:, 2001 1106:et al. 1083:  1073:  1001:  964:  929:Pfizer 857:Caco-2 833:Caco-2 809:Pfizer 805:SM-102 743:Syntex 715:per os 711:dermal 684:ocular 497:(e.g. 489:(e.g. 481:(e.g. 473:(e.g. 461:(e.g. 377:lipids 262:Silver 227:Copper 186:Other 35:modRNA 1938:S2CID 1900:S2CID 1824:S2CID 1590:S2CID 1541:S2CID 1459:S2CID 1392:(PDF) 1204:S2CID 646:(FeSO 495:waxes 441:lipid 395:drug 393:siRNA 252:Lipid 2054:and 1930:PMID 1892:PMID 1862:PMID 1816:PMID 1762:PMID 1715:2021 1702:ISBN 1675:ISBN 1633:2021 1582:PMID 1533:PMID 1494:PMID 1451:PMID 1412:PMID 1370:PMID 1321:PMID 1273:and 1242:2023 1167:2021 1081:PMID 1036:2020 1028:Stat 999:PMID 962:ISBN 811:and 698:and 675:and 666:and 640:iron 601:and 548:for 409:mRNA 237:Iron 232:Gold 23:and 1922:doi 1884:doi 1854:doi 1808:doi 1752:PMC 1742:doi 1572:doi 1525:doi 1521:135 1486:doi 1443:doi 1404:doi 1400:456 1360:PMC 1352:doi 1311:PMC 1301:doi 1194:doi 1071:PMC 1063:doi 991:doi 987:199 954:doi 485:), 477:), 465:), 423:). 2304:: 1936:. 1928:. 1918:20 1916:. 1898:. 1890:. 1880:19 1878:. 1860:. 1850:50 1848:. 1822:. 1814:. 1804:20 1802:. 1783:. 1760:. 1750:. 1738:25 1736:. 1732:. 1650:. 1623:. 1611:^ 1588:. 1580:. 1568:17 1566:. 1562:. 1539:. 1531:. 1519:. 1515:. 1492:. 1482:85 1480:. 1457:. 1449:. 1439:19 1437:. 1424:^ 1410:. 1398:. 1394:. 1368:. 1358:. 1346:. 1342:. 1319:. 1309:. 1297:10 1295:. 1291:. 1202:. 1190:32 1188:. 1184:. 1157:. 1131:^ 1093:^ 1079:. 1069:. 1059:17 1057:. 1053:. 1025:. 1011:^ 997:. 985:. 960:. 872:. 757:. 717:, 713:, 654:. 613:, 578:nm 521:, 517:, 73:, 69:, 65:, 61:, 37:, 2003:e 1996:t 1989:v 1975:. 1944:. 1924:: 1906:. 1886:: 1868:. 1856:: 1830:. 1810:: 1787:. 1768:. 1744:: 1717:. 1683:. 1635:. 1596:. 1574:: 1547:. 1527:: 1500:. 1488:: 1465:. 1445:: 1418:. 1406:: 1376:. 1354:: 1348:9 1327:. 1303:: 1244:. 1210:. 1196:: 1169:. 1087:. 1065:: 1038:. 1005:. 993:: 970:. 956:: 927:/ 648:4 525:( 357:e 350:t 343:v

Index

RNA vaccine
DNA vaccine

modRNA
RNA vaccine
antibodies

Liposomes
DNA vaccines
Gene therapy
vitamins
antibiotics
cosmetics
Nanomaterials

Carbon nanotubes
Synthesis
Chemistry
Mechanical properties
Optical properties
Applications
Timeline
Fullerenes
Buckminsterfullerene
C70 fullerene
Chemistry
Health impact
Carbon allotropes
nanoparticles
Carbon quantum dots

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑