Knowledge

Nanoparticle

Source đź“ť

1141: 2188:: Carbon materials have a wide range of uses, ranging from composites for use in vehicles and sports equipment to integrated circuits for electronic components. The interactions between nanomaterials such as carbon nanotubes and natural organic matter strongly influence both their aggregation and deposition, which strongly affects their transport, transformation, and exposure in aquatic environments. In past research, carbon nanotubes exhibited some toxicological impacts that will be evaluated in various environmental settings in current EPA chemical safety research. EPA research will provide data, models, test methods, and best practices to discover the acute health effects of carbon nanotubes and identify methods to predict them. 1006:(CNT). It was believed that the changes in particle size could be described by burst nucleation alone. In 1950, Viktor LaMer used CNT as the nucleation basis for his model of nanoparticle growth. There are three portions to the LaMer model: 1. Rapid increase in the concentration of free monomers in solution, 2. fast nucleation of the monomer characterized by explosive growth of particles, 3. Growth of particles controlled by diffusion of the monomer. This model describes that the growth on the nucleus is spontaneous but limited by diffusion of the precursor to the nuclei surface. The LaMer model has not been able to explain the kinetics of nucleation in any modern system. 1027:(Finke-Watzky) 2-step model provides a firmer mechanistic basis for the design of nanoparticles with a focus on size, shape, and dispersity control. The model was later expanded to a 3-step and two 4-step models between 2004-2008. Here, an additional step was included to account for small particle aggregation, where two smaller particles could aggregate to form a larger particle. Next, a fourth step (another autocatalytic step) was added to account for a small particle agglomerating with a larger particle. Finally in 2014, an alternative fourth step was considered that accounted for a atomistic surface growth on a large particle. 1651: 983:
Homogeneous nucleation occurs when nuclei form uniformly throughout the parent phase and is less common. Heterogeneous nucleation, however, forms on areas such as container surfaces, impurities, and other defects. Crystals may form simultaneously if nucleation is fast, creating a more monodisperse product. However, slow nucleation rates can cause formation of a polydisperse population of crystals with various sizes. Controlling nucleation allows for the control of size, dispersity, and phase of nanoparticles.
1622:
torches with a wide range of gases including inert, reducing, oxidizing, and other corrosive atmospheres. The working frequency is typically between 200 kHz and 40 MHz. Laboratory units run at power levels in the order of 30–50 kW, whereas the large-scale industrial units have been tested at power levels up to 1 MW. As the residence time of the injected feed droplets in the plasma is very short, it is important that the droplet sizes are small enough in order to obtain complete evaporation.
2173:. There are concerns that pharmaceutical companies, seeking regulatory approval for nano-reformulations of existing medicines, are relying on safety data produced during clinical studies of the earlier, pre-reformulation version of the medicine. This could result in regulatory bodies, such as the FDA, missing new side effects that are specific to the nano-reformulation. However considerable research has demonstrated that zinc nanoparticles are not absorbed into the bloodstream in vivo. 2017:. Additionally, sampling and laboratory procedures can perturb their dispersion state or bias the distribution of other properties. In environmental contexts, an additional challenge is that many methods cannot detect low concentrations of nanoparticles that may still have an adverse effect. For some applications, nanoparticles may be characterized in complex matrices such as water, soil, food, polymers, inks, complex mixtures of organic liquids such as in cosmetics, or blood. 33: 10827: 3067: 279: 1067: 10802: 1841:. These targeting agents should ideally be covalently linked to the nanoparticle and should be present in a controlled number per nanoparticle. Multivalent nanoparticles, bearing multiple targeting groups, can cluster receptors, which can activate cellular signaling pathways, and give stronger anchoring. Monovalent nanoparticles, bearing a single binding site, avoid clustering and so are preferable for tracking the behavior of individual proteins. 10839: 3081: 291: 3095: 792: 10814: 1684:
chemical surfactant surrounds the particle during formation and regulates its growth. In sufficient concentrations, the surfactant molecules stay attached to the particle. This prevents it from dissociating or forming clusters with other particles. Formation of nanoparticles using the radiolysis method allows for tailoring of particle size and shape by adjusting precursor concentrations and gamma dose.
340: 458: 9304: 64: 1058:
The final shape of a nanoparticle is also controlled by nucleation. Possible final morphologies created by nucleation can include spherical, cubic, needle-like, worm-like, and more particles. Nucleation can be controlled predominately by time and temperature as well as the supersaturation of the liquid phase and the environment of the synthesis overall.
2194:: Nanoscale cerium oxide is used in electronics, biomedical supplies, energy, and fuel additives. Many applications of engineered cerium oxide nanoparticles naturally disperse themselves into the environment, which increases the risk of exposure. There is ongoing exposure to new diesel emissions using fuel additives containing CeO 5170:"LaMer's 1950 model for particle formation: a review and critical analysis of its classical nucleation and fluctuation theory basis, of competing models and mechanisms for phase-changes and particle formation, and then of its application to silver halide, semiconductor, metal, and metal-oxide nanoparticles" 2345:. Moreover, nanoparticles for nucleic acid delivery offer an unprecedented opportunity to overcome some drawbacks related to the delivery, owing to their tunability with diverse physico-chemical properties, they can readily be functionalized with any type of biomolecules/moieties for selective targeting. 759:
that is well below a red heat (~500 °C), a remarkable change of properties takes place, whereby the continuity of the metallic film is destroyed. The result is that white light is now freely transmitted, reflection is correspondingly diminished, while the electrical resistivity is enormously increased."
2265:
was demonstrated in 2003 and it has been shown to improve conversion efficiencies and to decrease laser beam divergence. Researchers attribute the reduction in beam divergence to improved dn/dT characteristics of the organic-inorganic dye-doped nanocomposite. The optimum composition reported by these
1734:
provides a unique opportunity for growing nanoparticles onto surface without the need for costly spin coating, electrodeposition, or physical vapor deposition. Electroless deposition processes can form colloid suspensions catalytic metal or metal oxide deposition. The suspension of nanoparticles that
1700:
of the desired material. The size of the particles of the latter is adjusted by choosing the concentration of the reagents and the temperature of the solutions, and through the addition of suitable inert agents that affect the viscosity and diffusion rate of the liquid. With different parameters, the
1414:
By introducing a dielectric layer, plasmonic core (metal)-shell (dielectric) nanoparticles enhance light absorption by increasing scattering. Recently, the metal core-dielectric shell nanoparticle has demonstrated a zero backward scattering with enhanced forward scattering on a silicon substrate when
1112:
For nanoparticles dispersed in a medium of different composition, the interfacial layer — formed by ions and molecules from the medium that are within a few atomic diameters of the surface of each particle — can mask or change its chemical and physical properties. Indeed, that layer can be considered
1057:
The initial nucleation stages of the synthesis process heavily influence the properties of a nanoparticle. Nucleation, for example, is vital to the size of the nanoparticle. A critical radius must be met in the initial stages of solid formation, or the particles will redissolve into the liquid phase.
1048:
The properties of a material in nanoparticle form are unusually different from those of the bulk one even when divided into micrometer-size particles. Many of them arise from spatial confinement of sub-atomic particles (i.e. electrons, protons, photons) and electric fields around these particles. The
2240:
As of 2016, the U.S. Environmental Protection Agency had conditionally registered, for a period of four years, only two nanomaterial pesticides as ingredients. The EPA differentiates nanoscale ingredients from non-nanoscale forms of the ingredient, but there is little scientific data about potential
2164:
in organisms, and their interactions with biological systems are relatively unknown. However, it is unlikely the particles would enter the cell nucleus, Golgi complex, endoplasmic reticulum or other internal cellular components due to the particle size and intercellular agglomeration. A recent study
1977:
It would, therefore, appear desirable to process a material in such a way that it is physically uniform with regard to the distribution of components and porosity, rather than using particle size distributions that will maximize the green density. The containment of a uniformly dispersed assembly of
1683:
are required. In this process, reducing radicals will drop metallic ions down to the zero-valence state. A scavenger chemical will preferentially interact with oxidizing radicals to prevent the re-oxidation of the metal. Once in the zero-valence state, metal atoms begin to coalesce into particles. A
758:
provided the first description, in scientific terms, of the optical properties of nanometer-scale metals in his classic 1857 paper. In a subsequent paper, the author (Turner) points out that: "It is well known that when thin leaves of gold or silver are mounted upon glass and heated to a temperature
453:
is between 0.15 and 0.6 nm, a large fraction of the nanoparticle's material lies within a few atomic diameters of its surface. Therefore, the properties of that surface layer may dominate over those of the bulk material. This effect is particularly strong for nanoparticles dispersed in a medium
1026:
In 1997, Finke and Watzky proposed a new kinetic model for the nucleation and growth of nanoparticles. This 2-step model suggested that constant slow nucleation (occurring far from supersaturation) is followed by autocatalytic growth where dispersity of nanoparticles is largely determined. This F-W
1017:
is a process in which large particles grow at the expense of the smaller particles as a result of dissolution of small particles and deposition of the dissolved molecules on the surfaces of the larger particles. It occurs because smaller particles have a higher surface energy than larger particles.
559:
wavelengths by tuning the particle geometry allows using them in the fields of molecular labeling, biomolecular assays, trace metal detection, or nanotechnical applications. Anisotropic nanoparticles display a specific absorption behavior and stochastic particle orientation under unpolarized light,
1973:
size distribution, which is typical with nanoparticles. The reason why modern gas evaporation techniques can produce a relatively narrow size distribution is that aggregation can be avoided. However, even in this case, random residence times in the growth zone, due to the combination of drift and
1410:
Core-shell nanoparticles can support simultaneously both electric and magnetic resonances, demonstrating entirely new properties when compared with bare metallic nanoparticles if the resonances are properly engineered. The formation of the core-shell structure from two different metals enables an
1306:
overcomes these issues by attaching a nanoparticle to the AFM tip, allowing control oversize, shape, and material. While the colloidal probe technique is an effective method for measuring adhesion force, it remains difficult to attach a single nanoparticle smaller than 1 micron onto the AFM force
404:(1-1000 ÎĽm), "fine particles" (sized between 100 and 2500 nm), and "coarse particles" (ranging from 2500 to 10,000 nm), because their smaller size drives very different physical or chemical properties, like colloidal properties and ultrafast optical effects or electric properties. 1641:
to create the metal vapor allows to achieve higher yields. The method can easily be generalized to alloy nanoparticles by choosing appropriate metallic targets. The use of sequential growth schemes, where the particles travel through a second metallic vapor, results in growth of core-shell (CS)
1621:
In RF induction plasma torches, energy coupling to the plasma is accomplished through the electromagnetic field generated by the induction coil. The plasma gas does not come in contact with electrodes, thus eliminating possible sources of contamination and allowing the operation of such plasma
1035:
As of 2014, the classical nucleation theory explained that the nucleation rate will correspond to the driving force. One method for measuring the nucleation rate is through the induction time method. This process uses the stochastic nature of nucleation and determines the rate of nucleation by
1636:
is frequently used to produce metallic nanoparticles. The metal is evaporated in a vacuum chamber containing a reduced atmosphere of an inert gas. Condensation of the supersaturated metal vapor results in creation of nanometer-size particles, which can be entrained in the inert gas stream and
1036:
analysis of the time between constant supersaturation and when crystals are first detected. Another method includes the probability distribution model, analogous to the methods used to study supercooled liquids, where the probability of finding at least one nucleus at a given time is derived.
1762:
Besides being cheap and convenient, the wet chemical approach allows fine control of the particle's chemical composition. Even small quantities of dopants, such as organic dyes and rare earth metals, can be introduced in the reagent solutions end up uniformly dispersed in the final product.
2274:
or other biomolecules can be conjugated to nano particles to aid targeted delivery. This nanoparticle-assisted delivery allows for spatial and temporal controls of the loaded drugs to achieve the most desirable biological outcome. Nanoparticles are also studied for possible applications as
982:
lays the foundation for the nanoparticle synthesis. Initial nuclei play a vital role on the size and shape of the nanoparticles that will ultimately form by acting as templating nuclei for the nanoparticle itself. Long-term stability is also determined by the initial nucleation procedures.
1964:
process, yielding inhomogeneous densification. Some pores and other structural defects associated with density variations have been shown to play a detrimental role in the sintering process by growing and thus limiting end-point densities. Differential stresses arising from inhomogeneous
1156:
of other substances, distinct from both the particle's material and of the surrounding medium. Even when only a single molecule thick, these coatings can radically change the particles' properties, such as and chemical reactivity, catalytic activity, and stability in suspension.
1039:
As of 2019, the early stages of nucleation and the rates associated with nucleation were modelled through multiscale computational modeling. This included exploration into an improved kinetic rate equation model and density function studies using the phase-field crystal model.
655:, with the critical size range (or particle diameter) typically ranging from nanometers (10 m) to micrometers (10 m). Colloids can contain particles too large to be nanoparticles, and nanoparticles can exist in non-colloidal form, for examples as a powder or in a solid matrix. 1301:
is the main contributor to the adhesive force under ambient conditions. The adhesion and friction force can be obtained from the cantilever deflection if the AFM tip is regarded as a nanoparticle. However, this method is limited by tip material and geometric shape. The
1094:) regardless of their size, for nanoparticles, however, this is different: the volume of the surface layer (a few atomic diameters-wide) becomes a significant fraction of the particle's volume; whereas that fraction is insignificant for particles with a diameter of one 2176:
Concern has also been raised over the health effects of respirable nanoparticles from certain combustion processes. Preclinical investigations have demonstrated that some inhaled or injected noble metal nano-architectures avoid persistence in organisms. As of 2013 the
2249:
As the most prevalent morphology of nanomaterials used in consumer products, nanoparticles have an enormous range of potential and actual applications. Table below summarizes the most common nanoparticles used in various product types available on the global markets.
5132:
Whitehead CB, Ă–zkar S, Finke RG (2019). "LaMer's 1950 Model for Particle Formation of Instantaneous Nucleation and Diffusion-Controlled Growth: A Historical Look at the Model's Origins, Assumptions, Equations, and Underlying Sulfur Sol Formation Kinetics Data".
1169:
into or out of the particles at very large rates. The small particle diameter, on the other hand, allows the whole material to reach homogeneous equilibrium with respect to diffusion in a very short time. Thus many processes that depend on diffusion, such as
1996:
Nanoparticles have different analytical requirements than conventional chemicals, for which chemical composition and concentration are sufficient metrics. Nanoparticles have other physical properties that must be measured for a complete description, such as
1678:
in solution. This relatively simple technique uses a minimum number of chemicals. These including water, a soluble metallic salt, a radical scavenger (often a secondary alcohol), and a surfactant (organic capping agent). High gamma doses on the order of 10
1336:
temperature and crystallinity may affect deformation and change the elastic modulus when compared to the bulk material. However, size-dependent behavior of elastic moduli could not be generalized across polymers. As for crystalline metal nanoparticles,
1194:
media, for the stability of their magnetization state, those particles smaller than 10 nm are unstable and can change their state (flip) as the result of thermal energy at ordinary temperatures, thus making them unsuitable for that application.
1824:
that can act as address tags, directing them to specific sites within the body specific organelles within the cell, or causing them to follow specifically the movement of individual protein or RNA molecules in living cells. Common address tags are
1329:. In general, the measurement of the mechanical properties of nanoparticles is influenced by many factors including uniform dispersion of nanoparticles, precise application of load, minimum particle deformation, calibration, and calculation model. 1968:
Inert gas evaporation and inert gas deposition are free many of these defects due to the distillation (cf. purification) nature of the process and having enough time to form single crystal particles, however even their non-aggreated deposits have
2205:: Nano titanium dioxide is currently used in many products. Depending on the type of particle, it may be found in sunscreens, cosmetics, and paints and coatings. It is also being investigated for use in removing contaminants from drinking water. 650:
and nanoparticle are not interchangeable. A colloid is a mixture which has particles of one phase dispersed or suspended within an other phase. The term applies only if the particles are larger than atomic dimensions but small enough to exhibit
555:(Pt) due to their fascinating optical properties are finding diverse applications. Non-spherical geometries of nanoprisms give rise to high effective cross-sections and deeper colors of the colloidal solutions. The possibility of shifting the 2198:
nanoparticles, and the environmental and public health impacts of this new technology are unknown. EPA's chemical safety research is assessing the environmental, ecological, and health implications of nanotechnology-enabled diesel fuel
1808:
For biological applications, the surface coating should be polar to give high aqueous solubility and prevent nanoparticle aggregation. In serum or on the cell surface, highly charged coatings promote non-specific binding, whereas
1931:, Cu + C). In condensed bodies formed from fine powders, the irregular particle sizes and shapes in a typical powder often lead to non-uniform packing morphologies that result in packing density variations in the powder compact. 5378:
Finney EE, Finke RG (2008). "The Four-Step, Double-Autocatalytic Mechanism for Transition-Metal Nanocluster Nucleation, Growth, and Then Agglomeration: Metal, Ligand, Concentration, Temperature, and Solvent Dependency Studies".
2295:
and other mechanical property tests. These nanoparticles are hard, and impart their properties to the polymer (plastic). Nanoparticles have also been attached to textile fibers in order to create smart and functional clothing.
393:. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions. At the lowest range, metal particles smaller than 1 nm are usually called 5594:
Valenti G, Rampazzo R, Bonacchi S, Petrizza L, Marcaccio M, Montalti M, et al. (2016). "Variable Doping Induces Mechanism Swapping in Electrogenerated Chemiluminescence of Ru(bpy)32+ Core Shell Silica Nanoparticles".
2215:
are studying certain products to see whether they transfer nano-size silver particles in real-world scenarios. EPA is researching this topic to better understand how much nano-silver children come in contact with in their
5406:
Kent PD, Mondloch JE, Finke RG (2014). "A Four-Step Mechanism for the Formation of Supported-Nanoparticle Heterogeneous Catalysts in Contact with Solution: The Conversion of Ir(1,5-COD)Cl/Îł-Al2O3 to Ir(0)~170/Îł-Al2O3".
2312:
Being smaller than the wavelengths of visible light, nanoparticles can be dispersed in transparent media without affecting its transparency at those wavelengths. This property is exploited in many applications, such as
5257:
Watzky MA, Finke RG (1997). "Transition Metal Nanocluster Formation Kinetic and Mechanistic Studies. A New Mechanism when Hydrogen is the Reductant: Slow, Continuous Nucleation and Fast Autocatalytic Surface Growth".
5104:
Watzky MA, Finke RG (1997). "Transition Metal Nanocluster Formation Kinetic and Mechanistic Studies. A New Mechanism when Hydrogen is the Reductant: Slow, Continuous Nucleation and Fast Autocatalytic Surface Growth".
600:, a nanoparticle is an object with all three external dimensions in the nanoscale, whose longest and shortest axes do not differ significantly, with a significant difference typically being a factor of at least 3. 5287:"Transition-Metal Nanocluster Kinetic and Mechanistic Studies Emphasizing Nanocluster Agglomeration: Demonstration of a Kinetic Method That Allows Monitoring of All Three Phases of Nanocluster Formation and Aging" 6654:
Valenti G, Rampazzo E, Kesarkar S, Genovese D, Fiorani A, Zanut A, et al. (2018). "Electrogenerated chemiluminescence from metal complexes-based nanoparticles for highly sensitive sensors applications".
1238:
than the bulk material. Furthermore, the high surface-to-volume ratio in nanoparticles makes dislocations more likely to interact with the particle surface. In particular, this affects the nature of the
2325:
Asphalt modification through nanoparticles can be considered as an interesting low-cost technique in asphalt pavement engineering providing novel perspectives in making asphalt materials more durable.
783:
was launched in the United States, the term nanoparticle became more common, for example, see the same senior author's paper 20 years later addressing the same issue, lognormal distribution of sizes.
1286:
between nanoparticle and substrate. The particle deformation can be measured by the deflection of the cantilever tip over the sample. The resulting force-displacement curves can be used to calculate
5351:
Besson C, Finney EE, Finke RG (2005). "Nanocluster Nucleation, Growth, and Then Agglomeration Kinetic and Mechanistic Studies: A More General, Four-Step Mechanism Involving Double Autocatalysis".
1349:
A material may have lower melting point in nanoparticle form than in the bulk form. For example, 2.5 nm gold nanoparticles melt at about 300 Â°C, whereas bulk gold melts at 1064 Â°C.
536:. However, nanoparticles exhibit different dislocation mechanics, which, together with their unique surface structures, results in mechanical properties that are different from the bulk material. 608:"Nanoscale" is usually understood to be the range from 1 to 100 nm because the novel properties that differentiate particles from the bulk material typically develop at that range of sizes. 7438:
Llamosa D, Ruano M, MartĂ­nez L, Mayoral A, Roman E, GarcĂ­a-Hernández M, et al. (2014). "The ultimate step towards a tailored engineering of core@shell and core@shell@shell nanoparticles".
2948: 1399:
nanopowders and nanoparticle suspensions. Absorption of solar radiation is much higher in materials composed of nanoparticles than in thin films of continuous sheets of material. In both solar
623:, stable dispersion, etc., substantial changes characteristic of nanoparticles are observed for particles as large as 500 nm. Therefore, the term is sometimes extended to that size range. 2231:, one of its more prominent current uses is to remove contamination from groundwater. This use, supported by EPA research, is being piloted at a number of sites across the United States. 6445:
Wu J, Yu P, Susha AS, Sablon KA, Chen H, Zhou Z, et al. (1 April 2015). "Broadband efficiency enhancement in quantum dot solar cells coupled with multispiked plasmonic nanostars".
856:
in the precursor preparation, or the shape of pores in a surrounding solid matrix. Some applications of nanoparticles require specific shapes, as well as specific sizes or size ranges.
1411:
energy exchange between the core and the shell, typically found in upconverting nanoparticles and downconverting nanoparticles, and causes a shift in the emission wavelength spectrum.
2156:
Nanoparticles present possible dangers, both medically and environmentally. Most of these are due to the high surface to volume ratio, which can make the particles very reactive or
8437:
Hassellöv M, Readman JW, Ranville JF, Tiede K (July 2008). "Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles".
3511:
Chae SY, Park MK, Lee SK, Kim TY, Kim SK, Lee WI (August 2003). "Preparation of Size-Controlled TiO 2 Nanoparticles and Derivation of Optically Transparent Photocatalytic Films".
9235:
Cassano D, Mapanao AK, Summa M, Vlamidis Y, Giannone G, Santi M, et al. (21 October 2019). "Biosafety and Biokinetics of Noble Metals: The Impact of Their Chemical Nature".
1945:
can also give rise to microstructural heterogeneity. Differential stresses that develop as a result of non-uniform drying shrinkage are directly related to the rate at which the
8950:
Greulich C, Diendorf J, Simon T, Eggeler G, Epple M, Köller M (January 2011). "Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells".
6026:
Kulik A, Kis A, Gremaud G, Hengsberger S, Luengo G, Zysset P, et al. (2007), Bhushan B (ed.), "Nanoscale Mechanical Properties – Measuring Techniques and Applications",
1813:
linked to terminal hydroxyl or methoxy groups repel non-specific interactions. By the immobilization of thiol groups on the surface of nanoparticles or by coating them with
8488:
Powers KW, Palazuelos M, Moudgil BM, Roberts SM (January 2007). "Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies".
2304:
The inclusion of nanoparticles in a solid or liquid medium can substantially change its mechanical properties, such as elasticity, plasticity, viscosity, compressibility.
2253:
Scientific research on nanoparticles is intense as they have many potential applications in pre-clinical and clinical medicine, physics, optics, and electronics. The U.S.
1724:. Alternatively, if the particles are meant to be deposited on the surface of some solid substrate, the starting solutions can be by coated on that surface by dipping or 2972: 2956: 1774:
may be used to treat the surfaces of dielectric materials such as sapphire and silica to make composites with near-surface dispersions of metal or oxide nanoparticles.
9532: 7680:
Sadri R (15 October 2017). "Study of environmentally friendly and facile functionalization of graphene nanoplatelet and its application in convective heat transfer".
3659:
Chen CC, Zhu C, White ER, Chiu CY, Scott MC, Regan BC, et al. (April 2013). "Three-dimensional imaging of dislocations in a nanoparticle at atomic resolution".
1855:
The chemical processing and synthesis of high-performance technological components for the private, industrial, and military sectors requires the use of high-purity
1614:. The thermal plasma can reach temperatures of 10.000 K and can thus also synthesize nanopowders with very high boiling points. Metal wires can be vaporized by the 1341:
were found to influence the mechanical properties of nanoparticles, contradicting the conventional view that dislocations are absent in crystalline nanoparticles.
8370:
Lange FF, Metcalf M (June 1983). "Processing-Related Fracture Origins: II, Agglomerate Motion and Cracklike Internal Surfaces Caused by Differential Sintering".
10152:
Wang B, Zhang Y, Mao Z, Yu D, Gao C (1 August 2014). "Toxicity of ZnO Nanoparticles to Macrophages Due to Cell Uptake and Intracellular Release of Zinc Ions".
7966:"Dynamic recruitment of phospholipase C at transiently immobilized GPI-anchored receptor clusters induces IP3 Ca2+ signaling: single-molecule tracking study 2" 6402:
Hewakuruppu YL, Dombrovsky LA, Chen C, Timchenko V, Jiang X, Baek S, et al. (2013). "Plasmonic "pump probe" method to study semi-transparent nanofluids".
581:
defined a nanoparticle as "a particle of any shape with dimensions in the 1 Ă— 10 and 1 Ă— 10 m range". This definition evolved from one given by IUPAC in 1997.
2885: 2489: 8791: 2960: 3989:"Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007)" 8743: 7155:
Fan Y, Saito T, Isogai A (17 March 2010). "Individual chitin nano-whiskers prepared from partially deacetylated α-chitin by fibril surface cationization".
5948:
Oh SH, Legros M, Kiener D, Dehm G (February 2009). "In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal".
7540:
Belloni J, Mostafavi M, Remita H, Marignier JL, Delcourt AM (1998). "Radiation-induced synthesis of mono- and multi-metallic clusters and nanocolloids".
3388:"Collective optical Kerr effect exhibited by an integrated configuration of silicon quantum dots and gold nanoparticles embedded in ion-implanted silica" 2525: 772: 11107: 8915:
Thake, T.H.F, Webb, J.R, Nash, A., Rappoport, J.Z., Notman, R. (2013). "Permeation of polystyrene nanoparticles across model lipid bilayer membranes".
6749:
Ghosh Chaudhuri R, Paria S (11 April 2012). "Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications".
1844:
It has been shown that catalytic activity and sintering rates of a functionalized nanoparticle catalyst is correlated to nanoparticles' number density
6784:
Loo JF, Chien YH, Yin F, Kong SK, Ho HP, Yong KT (December 2019). "Upconversion and downconversion nanoparticles for biophotonics and nanomedicine".
5689:
Kulkarni SA, Kadam SS, Meekes H, Stankiewicz AI, Ter Horst JH (2013). "Crystal Nucleation Kinetics from Induction Times and Metastable Zone Widths".
5230:
Kulkarni SA, Kadam SS, Meekes H, Stankiewicz AI, Ter Horst JH (2013). "Crystal Nucleation Kinetics from Induction Times and Metastable Zone Widths".
5200: 5031:
Kulkarni SA, Kadam SS, Meekes H, Stankiewicz AI, Ter Horst JH (2013). "Crystal Nucleation Kinetics from Induction Times and Metastable Zone Widths".
3538:
Jacques Simonis J, Koetzee Basson A (2011). "Evaluation of a low-cost ceramic micro-porous filter for elimination of common disease microorganisms".
578: 6262: 10101:
Heim J, Felder E, Tahir MN, Kaltbeitzel A, Heinrich UR, Brochhausen C, et al. (21 May 2015). "Genotoxic effects of zinc oxide nanoparticles".
2102:
are used to determine particle size, with each method suitable for different size ranges and particle compositions. Some miscellaneous methods are
1860: 4653:
Kralj S, Makovec D (27 October 2015). "Magnetic Assembly of Superparamagnetic Iron Oxide Nanoparticle Clusters into Nanochains and Nanobundles".
539:
Non-spherical nanoparticles (e.g., prisms, cubes, rods etc.) exhibit shape-dependent and size-dependent (both chemical and physical) properties (
8857: 8013:
Sung KM, Mosley DW, Peelle BR, Zhang S, Jacobson JM (2004). "Synthesis of monofunctionalized gold nanoparticles by fmoc solid-phase reactions".
4575:
Kiss LB, Söderlund J, Niklasson GA, Granqvist CG (1 March 1999). "New approach to the origin of lognormal size distributions of nanoparticles".
1098:
or more. In other words, the surface area/volume ratio impacts certain properties of the nanoparticles more prominently than in bulk particles.
962:
hydrogel core shell can be dyed with affinity baits, internally. These affinity baits allow the nanoparticles to isolate and remove undesirable
10040: 430:. For the same reason, dispersions of nanoparticles in transparent media can be transparent, whereas suspensions of larger particles usually 6876:
Whitesides, G.M., et al. (1991). "Molecular Self-Assembly and Nanochemistry: A Chemical Strategy for the Synthesis of Nanostructures".
3618: 1226:
that is inversely proportional to the size of the particle, also well known to impede dislocation motion, in the same way as it does in the
11295: 11290: 1603: 7391:"Plasma-assisted synthesis and high-resolution characterization of anisotropic elemental and bimetallic core shell magnetic nanoparticles" 2291:
Clay nanoparticles, when incorporated into polymer matrices, increase reinforcement, leading to stronger plastics, verifiable by a higher
7120:
Saito T, Kimura S, Nishiyama Y, Isogai A (August 2007). "Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation of Native Cellulose".
1250:
There are unique challenges associated with the measurement of mechanical properties on the nanoscale, as conventional means such as the
6821:"Effects of Plasmonic Metal Core -Dielectric Shell Nanoparticles on the Broadband Light Absorption Enhancement in Thin Film Solar Cells" 3321: 2357:
what is known as the self-cleaning effect, which lend useful water-repellant and antibacterial properties to paints and other products.
2143: 1708:
The nanoparticles formed by this method are then separated from the solvent and soluble byproducts of the reaction by a combination of
631:
Nanoclusters are agglomerates of nanoparticles with at least one dimension between 1 and 10 nanometers and a narrow size distribution.
100: 10558: 9567:
Omidvar A (2016). "Metal-enhanced fluorescence of graphene oxide by palladium nanoparticles in the blue-green part of the spectrum".
1243:
and allows the dislocations to escape the particle before they can multiply, reducing the dislocation density and thus the extent of
90: 7715:
Prime KL, Whitesides GM (1991). "Self-assembled organic monolayers: model systems for studying adsorption of proteins at surfaces".
4894:"Smart Hydrogel Particles: Biomarker Harvesting: One-Step Affinity Purification, Size Exclusion, and Protection against Degradation" 4688:
Choy J.H., Jang E.S., Won J.H., Chung J.H., Jang D.J., Kim Y.W. (2004). "Hydrothermal route to ZnO nanocoral reefs and nanofibers".
4559:
Ultra-fine particles: exploratory science and technology (1997 Translation of the Japan report of the related ERATO Project 1981 86)
2211:: Nano Silver is being incorporated into textiles, clothing, food packaging, and other materials to eliminate bacteria. EPA and the 1297:
forces are important considerations in nanofabrication, lubrication, device design, colloidal stabilization, and drug delivery. The
10876: 8533: 2052:
from sample preparation, or from probe tip geometry in the case of scanning probe microscopy. Additionally, microscopy is based on
1467: 1384:
are nanoparticles of semiconducting material that are small enough (typically sub 10 nm or less) to have quantized electronic
8902: 1965:
densification have also been shown to result in the propagation of internal cracks, thus becoming the strength-controlling flaws.
1782:
Many properties of nanoparticles, notably stability, solubility, and chemical or biological activity, can be radically altered by
1290:. However, it is unclear whether particle size and indentation depth affect the measured elastic modulus of nanoparticles by AFM. 10491:"EMERGNANO: A review of completed and near completed environment, health and safety research on nanomaterials and nanotechnology" 2212: 2083: 584:
In the same 2012 publication, the IUPAC extends the term to include tubes and fibers with only two dimensions below 100 nm.
321: 1821: 767:
During the 1970s and 80s, when the first thorough fundamental studies with nanoparticles were underway in the United States by
95: 9113:"Statement of Evidence: Particulate Emissions and Health (An Bord Plenala, on Proposed Ringaskiddy Waste-to-Energy Facility)." 9112: 6278: 1960:
In addition, any fluctuations in packing density in the compact as it is prepared for the kiln are often amplified during the
1140: 449:
The properties of nanoparticles often differ markedly from those of larger particles of the same substance. Since the typical
11385: 10459: 9355: 8833: 8726: 8222: 7664: 7630: 7576: 6051: 5764: 4365: 4338: 4284: 4092: 4065: 3971: 3919:
Knauer A, Koehler JM (2016). "Explanation of the size dependent in-plane optical resonance of triangular silver nanoprisms".
3636: 1018:
This process is typically undesirable in nanoparticle synthesis as it negatively impacts the functionality of nanoparticles.
39:(a, b, and c) images of prepared mesoporous silica nanoparticles with mean outer diameter: (a) 20nm, (b) 45nm, and (c) 80nm. 9645:
Omidvar A (2018). "Enhancing the nonlinear optical properties of graphene oxide by repairing with palladium nanoparticles".
8187: 10588: 9734:
Singh BN, Prateeksha GV, Chen J, Atanasov AG (2017). "Organic Nanoparticle-Based Combinatory Approaches for Gene Therapy".
8621:"Structural, functional and magnetic ordering modifications in graphene oxide and graphite by 100 MeV gold ion irradiation" 8582:
Linsinger TP, Roebben G, Solans C, Ramsch R (January 2011). "Reference materials for measuring the size of nanoparticles".
2178: 2075: 1659: 593: 10490: 11201: 3290: 2134:
techniques can be used to separate nanoparticles by size or other physical properties before or during characterization.
1407:
applications, by controlling the size, shape, and material of the particles, it is possible to control solar absorption.
1211:, since dislocation climb requires vacancy migration. In addition, there exists a very high internal pressure due to the 9127:"Blood Pressure and Same-Day Exposure to Air Pollution at School: Associations with Nano-Sized to Coarse PM in Children" 5991:
Feruz Y, Mordehai D (January 2016). "Towards a universal size-dependent strength of face-centered cubic nanoparticles".
1574:
often results in aggregates and agglomerates rather than single primary particles. This inconvenience can be avoided by
10531: 8056:
Fu A, Micheel CM, Cha J, Chang H, Yang H, Alivisatos AP (2004). "Discrete nanostructures of quantum dots/Au with DNA".
2254: 1658:(TEM) image of Hf nanoparticles grown by magnetron-sputtering inert-gas condensation (inset: size distribution) and b) 780: 138: 9335: 454:
of different composition since the interactions between the two materials at their interface also becomes significant.
10678: 10354:"Morphometric and stereological assessment of the effects of zinc oxide nanoparticles on the mouse testicular tissue" 9805:"The Effect of Different Levels of Cu, Zn and Mn Nanoparticles in Hen Turkey Diet on the Activity of Aminopeptidases" 9131: 5865: 1991: 1494:, or other size-reducing mechanism until enough of them are in the nanoscale size range. The resulting powder can be 11402: 9922: 9880: 3784:
Carlton C, Rabenberg L, Ferreira P (September 2008). "On the nucleation of partial dislocations in nanoparticles".
1953:. Such stresses have been associated with a plastic-to-brittle transition in consolidated bodies, and can yield to 1655: 1602:
and then condensing the vapor by expansion or quenching in a suitable gas or liquid. The plasma can be produced by
1332:
Like bulk materials, the properties of nanoparticles are materials dependent. For spherical polymer nanoparticles,
1314: 493:
structures, they often exhibit phenomena that are not observed at either scale. They are an important component of
36: 10297:"Retinopathy Induced by Zinc Oxide Nanoparticles in Rats Assessed by Micro-computed Tomography and Histopathology" 10027:
Mendes, B.B., Conniot, J., Avital, A. et al. Nanodelivery of nucleic acids. Nat Rev Methods Primers 2, 24 (2022).
1550:
Another method to create nanoparticles is to turn a suitable precursor substance, such as a gas (e.g. methane) or
10818: 10197:"Comparative hazard identification by a single dose lung exposure of zinc oxide and silver nanomaterials in mice" 7024:"Low temperature synthesis and characterization of single phase multi-component fluorite oxide nanoparticle sols" 2270:(~ 12 nm) in dye-doped PMMA. Nanoparticles are being investigated as potential drug delivery system. Drugs, 1526:
fiber- or needle-like nanoparticles. The biopolymers are disintegrated mechanically in combination with chemical
9803:
Jóźwik A, Marchewka J, StrzaĹ‚kowska N, HorbaĹ„czuk J, Szumacher-Strabel M, CieĹ›lak A, et al. (11 May 2018).
8774: 7493:"Synthesis of hafnium nanoparticles and hafnium nanoparticle films by gas condensation and energetic deposition" 2361:
nanoparticles have been found to have superior UV blocking properties and are widely used in the preparation of
10612: 10518: 9610:
Rashidian V M (2017). "Investigating the extrinsic size effect of palladium and gold spherical nanoparticles".
8292:
Evans, A.G., Davidge, R.W. (1969). "The strength and fracture of fully dense polycrystalline magnesium oxide".
5889:
Ramos M, Ortiz-Jordan L, Hurtado-Macias A, Flores S, Elizalde-Galindo JT, Rocha C, et al. (January 2013).
3265: 3230: 2374:
Various nanoparticle chemical compounds which are commonly used in the consumer products by industrial sectors
1107: 358: 212: 6300:
Casillas G, Palomares-Báez JP, RodrĂ­guez-LĂłpez JL, Luo J, Ponce A, Esparza R, et al. (11 December 2012).
4267:
Zook HA (2001). "Spacecraft Measurements of the Cosmic Dust Flux". In Peucker-Ehrenbrink B, Schmitz B (eds.).
2056:, meaning that large numbers of individual particles must be characterized to estimate their bulk properties. 10759: 10551: 9691:, James, R. O. (2003). "Tunable solid-state lasers incorporating dye-doped polymer-nanoparticle gain media". 8238:
Aksay, I.A., Lange, F.F., Davis, B.I. (1983). "Uniformity of Al2O3-ZrO2 Composites by Colloidal Filtration".
5483:"Atomistic modeling of the nucleation and growth of pure and hybrid nanoparticles by cluster beam deposition" 4724: 3139: 2087: 1317:, which provides real-time, high resolution imaging of nanostructure response to a stimulus. For example, an 612: 232: 80: 17: 8666:
Zoroddu MA, Medici S, Ledda A, Nurchi VM, Peana JI, Peana M (31 October 2014). "Toxicity of Nanoparticles".
7082: 3827: 890:
into their nanoscale building blocks is considered a potential route to produce nanoparticles with enhanced
11334: 10869: 10635: 7768:"Compact Biocompatible Quantum Dots via RAFT-Mediated Synthesis of Imidazole-Based Random Copolymer Ligand" 2292: 871:
Semi-solid and soft nanoparticles have been produced. A prototype nanoparticle of semi-solid nature is the
172: 105: 40: 10496: 8987:"The Influences of Cell Type and ZnO Nanoparticle Size on Immune Cell Cytotoxicity and Cytokine Induction" 8142:"The Energetics of Supported Metal Nanoparticles: Relationships to Sintering Rates and Catalytic Activity" 6177: 10983: 10731: 10484: 8265:
Franks, G.V., Lange, F.F. (1996). "Plastic-to-Brittle Transition of Saturated, Alumina Powder Compacts".
5077:
LaMer VK, Dinegar RH (1950). "Theory, Production and Mechanism of Formation of Monodispersed Hydrosols".
2095: 1791: 1611: 1423:
Nanoparticles of sufficiently uniform size may spontaneously settle into regular arrangements, forming a
1003: 844:
of the material, or by the influence of the environment around their creation, such as the inhibition of
314: 5530:
Buzea C, Pacheco II, Robbie K (December 2007). "Nanomaterials and nanoparticles: Sources and toxicity".
2257:
offers government funding focused on nanoparticle research. The use of nanoparticles in laser dye-doped
817:
Nanoparticles occur in a great variety of shapes, which have been given many names such as nanospheres,
7491:
Michelakaki I, Boukos N, Dragatogiannis DA, Stathopoulos S, Charitidis CA, Tsoukalas D (27 June 2018).
4949:
Gommes CJ (2019). "Ostwald ripening of confined nanoparticles: Chemomechanical coupling in nanopores".
4515:
Granqvist C, Buhrman R, Wyns J, Sievers A (1976). "Far-Infrared Absorption in Ultrafine Al Particles".
3300: 3046: 2053: 2033: 1148:) of lead sulfide with complete passivation by oleic acid, oleyl amine and hydroxyl ligands (size ~5nm) 10918: 5829:
Jiang Q, Liang LH, Zhao DS (July 2001). "Lattice Contraction and Surface Stress of fcc Nanocrystals".
10746: 10598: 10593: 10583: 10575: 9881:"Nano-particle drag prediction at low Reynolds number using a direct Boltzmann–BGK solution approach" 5316:
Besson C, Finney EE, Finke RG (2005). "A Mechanism for Transition-Metal Nanoparticle Self-Assembly".
2976: 2258: 2063: 2029: 2024:
methods generate images of individual nanoparticles to characterize their shape, size, and location.
1463: 1369: 1303: 1263: 1251: 187: 85: 10509: 8711:
Chapter 18 - Toxicity of Nanoparticles: Etiology and Mechanisms, in Antimicrobial Nanoarchitectonics
3387: 3386:
Torres-Torres C, López-Suárez A, Can-Uc B, Rangel-Rojo R, Tamayo-Rivera L, Oliver A (24 July 2015).
1637:
deposited on a substrate or studied in situ. Early studies were based on thermal evaporation. Using
1074:
Bulk materials (>100 nm in size) are expected to have constant physical properties (such as
10769: 10713: 10698: 10608: 10544: 9973:"Ultraviolet aging study on bitumen modified by a composite of clay and fumed silica nanoparticles" 6594:"Nanofluid optical property characterization: Towards efficient direct absorption solar collectors" 2562: 2228: 640: 265: 217: 7359:
Wang JP, Bai J (2005). "High-magnetic-moment core-shell-type FeCo Au AgFeCo Au Ag nanoparticles".
1132:
differences, which otherwise usually result in a material either sinking or floating in a liquid.
768: 43:(d) image corresponding to (b). The insets are a high magnification of mesoporous silica particle. 11390: 11267: 10862: 10806: 10754: 10703: 10690: 10468: 8620: 7324:
Hahn H, Averback RS (1990). "The production of nanocrystalline powders by magnetron sputtering".
4028: 3451:"Selected I-III-VI2 Semiconductors: Synthesis, Properties and Applications in Photovoltaic Cells" 3225: 3200: 3184: 1650: 1267: 1079: 822: 684:
at the rate of thousands of tons per year, is in the nanoparticle range; and the same is true of
207: 9772:"Novel biomaterial strategies for controlled growth factor delivery for biomedical applications" 8327:
Evans AG, Davidge RW (1970). "The strength and oxidation of reaction-sintered silicon nitride".
6535:
Taylor RA, Otanicar TP, Herukerrupu Y, Bremond F, Rosengarten G, Hawkes ER, et al. (2013).
4326: 875:. Various types of liposome nanoparticles are currently used clinically as delivery systems for 11429: 10256:"Calcium ions rescue human lung epithelial cells from the toxicity of zinc oxide nanoparticles" 9530:
Hubler A, Lyon D (2013). "Gap size dependence of the dielectric strength in nano vacuum gaps".
9379:"Hydrogel and nanoparticle carriers for kidney disease therapy: trends and recent advancements" 9289: 8796: 3190: 2627: 2014: 1978:
strongly interacting particles in suspension requires total control over interparticle forces.
1731: 1475: 1187: 1121: 307: 9378: 4355: 4055: 2070:, is useful for some classes of nanoparticles to characterize concentration, size, and shape. 1578:
spray pyrolysis, in which the precursor liquid is forced through an orifice at high pressure.
7654: 7083:"Biosynthesis and antibacterial activity of gold nanoparticles coated with reductase enzymes" 5286: 3255: 2832: 2079: 2044:
is not useful. Electron microscopes can be coupled to spectroscopic methods that can perform
1847:
Coatings that mimic those of red blood cells can help nanoparticles evade the immune system.
1826: 1615: 1165:
The high surface area of a material in nanoparticle form allows heat, molecules, and ions to
811: 494: 222: 10449: 9044:
Vines T, Faunce T (2009). "Assessing the safety and cost-effectiveness of early nanodrugs".
1174:
can take place at lower temperatures and over shorter time scales which can be important in
10630: 10308: 10208: 10195:
Gosens I, Kermanizadeh A, Jacobsen NR, Lenz AG, Bokkers B, de Jong WH, et al. (2015).
10110: 9984: 9937: 9895: 9700: 9654: 9619: 9576: 9486: 9390: 9189: 8998: 8924: 8632: 8446: 8336: 8301: 7877: 7817:"Thiolated Nanoparticles for Biomedical Applications: Mimicking the Workhorses of our Body" 7724: 7689: 7447: 7333: 7288: 7230: 7035: 6986: 6928: 6885: 6832: 6718: 6605: 6548: 6504: 6454: 6411: 6371: 6313: 6185: 6090: 6031: 6000: 5957: 5902: 5494: 4905: 4736: 4697: 4584: 4524: 4476: 4435: 4394: 4231: 4172: 4131: 3928: 3793: 3723: 3668: 3547: 3399: 3295: 3179: 3169: 3159: 2893: 1942: 1693: 1404: 1075: 834: 260: 182: 143: 123: 986:
The process of nucleation and growth within nanoparticles can be described by nucleation,
434:
some or all visible light incident on them. Nanoparticles also easily pass through common
8: 11371: 11346: 10777: 10666: 10066:(January 1999). "Microfine zinc oxide (Z-Cote) as a photostable UVA/UVB sunblock agent". 9588: 7815:
Hock N, Racaniello GF, Aspinall S, Denora N, Khutoryanskiy V, Bernkop-SchnĂĽrch A (2022).
3411: 3285: 3270: 3114: 2570: 2025: 1928: 1810: 1667: 1361: 1326: 1259: 1244: 1216: 713: 677: 635:
are agglomerates of ultrafine particles, nanoparticles, or nanoclusters. Nanometer-sized
533: 427: 227: 192: 133: 10312: 10212: 10114: 9988: 9941: 9899: 9704: 9658: 9623: 9580: 9490: 9394: 9193: 9073:"Influence of anatomical site and topical formulation on skin penetration of sunscreens" 9002: 8928: 8709:
Crisponi, G., Nurchi, V.M., Lachowicz, J., Peana, M., Medici, S., Zoroddu, M.A. (2017).
8636: 8534:"Detection and characterization of engineered nanoparticles in food and the environment" 8450: 8340: 8305: 8091:
Howarth M, Liu W, Puthenveetil S, Zheng Y, Marshall LF, Schmidt MM, et al. (2008).
7881: 7728: 7693: 7451: 7337: 7292: 7234: 7039: 6990: 6932: 6889: 6836: 6722: 6609: 6552: 6508: 6458: 6415: 6375: 6317: 6189: 6103: 6094: 6078: 6035: 6004: 5961: 5906: 5498: 4909: 4740: 4701: 4588: 4528: 4480: 4439: 4398: 4235: 4176: 4135: 3932: 3797: 3736: 3727: 3711: 3672: 3551: 3485: 3450: 3403: 1701:
same general process may yield other nanoscale structures of the same material, such as
1692:
Nanoparticles of certain materials can be created by "wet" chemical processes, in which
1451:. They may be internally homogeneous or heterogenous, e.g. with a core–shell structure. 11282: 11183: 10708: 10329: 10296: 10231: 10196: 10177: 10134: 10005: 9972: 9953: 9831: 9804: 9670: 9592: 9549: 9507: 9474: 9455: 9414: 9260: 9212: 9177: 9153: 9126: 9089: 9072: 9021: 8986: 8885: 8766: 8718: 8691: 8648: 8564: 8505: 8470: 8410: 8383: 8352: 8278: 8251: 8117: 8092: 8038: 7990: 7965: 7941: 7924: 7841: 7816: 7792: 7767: 7766:
Liu W, Greytak AB, Lee J, Wong CR, Park J, Marshall LF, et al. (20 January 2010).
7748: 7517: 7492: 7415: 7390: 7306: 7254: 7102: 7058: 7023: 6973:
Tankard RE, Romeggio F, Akazawa SK, Krabbe A, Sloth OF, Secher NM, et al. (2024).
6952: 6853: 6820: 6801: 6682: 6628: 6593: 6470: 6337: 5925: 5890: 5806: 5781: 5666: 5641: 5565: 5539: 5512: 5150: 4974: 4926: 4893: 4803: 4760: 4600: 4494: 4195: 4160: 4010: 3987:
Alemán JV, Chadwick AV, He J, Hess M, Horie K, Jones RG, et al. (1 January 2007).
3893: 3860: 3809: 3692: 3431: 3368: 3109: 2932: 2845: 2445: 2280: 2276: 2099: 2071: 2045: 2041: 1880: 1638: 1373: 1223: 1191: 946: 942: 796: 776: 469:
Nanoparticles occur widely in nature and are objects of study in many sciences such as
439: 423: 162: 10421: 10394: 10079: 9923:"The calculation of drag on nano-cylinders: The calculation of drag on nano-cylinders" 9176:
Mapanao AK, Giannone G, Summa M, Ermini ML, Zamborlin A, Santi M, et al. (2020).
8679: 7900: 7865: 6940: 6197: 11231: 10843: 10455: 10426: 10375: 10334: 10277: 10236: 10169: 10138: 10126: 10083: 10010: 9957: 9836: 9751: 9716: 9674: 9596: 9512: 9434:"Digital quantum batteries: Energy and information storage in nanovacuum tube arrays" 9418: 9406: 9351: 9264: 9252: 9217: 9158: 9094: 9053: 9026: 8967: 8889: 8877: 8829: 8819: 8762: 8722: 8683: 8652: 8556: 8509: 8462: 8356: 8218: 8169: 8161: 8122: 8073: 8030: 7995: 7946: 7905: 7846: 7797: 7740: 7660: 7626: 7572: 7522: 7473: 7420: 7258: 7246: 7199: 7137: 7063: 7004: 6944: 6901: 6858: 6805: 6766: 6706: 6686: 6633: 6574: 6536: 6427: 6341: 6329: 6282: 6240: 6201: 6158: 6150: 6108: 6047: 5973: 5930: 5871: 5861: 5811: 5760: 5737: 5671: 5622: 5557: 5516: 5463: 5424: 5333: 5154: 5013: 4966: 4931: 4871: 4807: 4795: 4752: 4670: 4635: 4604: 4596: 4361: 4334: 4280: 4249: 4200: 4088: 4061: 3967: 3944: 3898: 3880: 3684: 3632: 3599: 3490: 3472: 3423: 3415: 3195: 3164: 3129: 3086: 2816: 2578: 2558: 2521: 2481: 2115: 2111: 1954: 1856: 1575: 1439:
Artificial nanoparticles can be created from any solid or liquid material, including
1424: 1357: 1231: 1124:
of nanoparticles are possible since the interaction of the particle surface with the
354: 295: 202: 10181: 9336:"Nanoparticles for Cardiovascular Medicine: Trends in Myocardial Infarction Therapy" 8695: 8568: 8474: 8042: 7752: 7310: 7242: 7106: 6956: 6474: 5569: 5210: 4978: 4892:
Luchini A, Geho DH, Bishop B, Tran D, Xia C, Dufour RL, et al. (January 2008).
4764: 4014: 3813: 3435: 3372: 2020:
There are several overall categories of methods used to characterize nanoparticles.
1186:
The small size of nanoparticles affects their magnetic and electric properties. The
859:
Amorphous particles typically adopt a spherical shape (due to their microstructural
10946: 10787: 10416: 10406: 10365: 10324: 10316: 10267: 10226: 10216: 10161: 10118: 10075: 10000: 9992: 9945: 9903: 9826: 9816: 9783: 9743: 9708: 9662: 9627: 9584: 9541: 9502: 9494: 9475:"Stability and conductivity of self assembled wires in a transverse electric field" 9459: 9445: 9398: 9343: 9244: 9207: 9197: 9148: 9140: 9084: 9016: 9006: 8959: 8932: 8869: 8758: 8714: 8675: 8640: 8599: 8591: 8548: 8497: 8454: 8406: 8379: 8344: 8309: 8274: 8247: 8153: 8112: 8104: 8065: 8022: 7985: 7977: 7936: 7895: 7885: 7836: 7828: 7787: 7779: 7732: 7701: 7697: 7601: 7549: 7512: 7504: 7463: 7455: 7410: 7402: 7368: 7341: 7296: 7238: 7191: 7164: 7129: 7094: 7053: 7043: 6994: 6936: 6893: 6848: 6840: 6793: 6758: 6726: 6672: 6664: 6623: 6613: 6564: 6556: 6512: 6462: 6419: 6379: 6321: 6274: 6232: 6193: 6142: 6098: 6039: 6008: 5965: 5920: 5910: 5838: 5801: 5793: 5729: 5698: 5661: 5653: 5612: 5604: 5549: 5502: 5455: 5416: 5388: 5360: 5325: 5298: 5267: 5239: 5214: 5205: 5181: 5142: 5114: 5086: 5040: 5005: 4958: 4921: 4913: 4863: 4834: 4787: 4744: 4705: 4662: 4627: 4592: 4532: 4484: 4443: 4402: 4272: 4239: 4190: 4180: 4139: 4000: 3936: 3888: 3872: 3801: 3764: 3731: 3696: 3676: 3624: 3589: 3555: 3520: 3480: 3462: 3407: 3358: 3347:"Terminology for biorelated polymers and applications (IUPAC Recommendations 2012)" 3245: 3240: 3030: 2997: 2964: 2877: 2808: 2779: 2710: 2669: 2595: 2574: 2538: 2505: 2457: 2224: 2202: 2191: 2119: 2049: 1896: 1868: 1771: 1599: 1428: 1427:. These arrangements may exhibit original physical properties, such as observed in 1333: 1322: 1298: 1014: 987: 891: 685: 9747: 9553: 8770: 7923:
Hoshino A, Fujioka K, Oku T, Nakamura S, Suga M, Yamaguchi Y, et al. (2004).
7736: 7168: 6707:"Small particles, big impacts: A review of the diverse applications of nanofluids" 6263:"The Colloidal Probe Technique and its Application to Adhesion Force Measurements" 6012: 5146: 4159:
Simakov SK, Kouchi A, Scribano V, Kimura Y, Hama T, Suzuki N, et al. (2015).
2169:
nanoparticles on human immune cells has found varying levels of susceptibility to
676:, and biological processes. A significant fraction (by number, if not by mass) of 517:
products. The production of nanoparticles with specific properties is a branch of
11251: 11102: 11097: 11082: 11072: 10956: 10926: 10885: 10736: 10723: 10661: 10522: 10480: 10221: 10063: 9631: 8963: 8823: 8644: 8191: 7620: 6705:
Taylor R, Coulombe S, Otanicar T, Phelan P, Gunawan A, Lv W, et al. (2013).
6569: 6466: 6325: 6043: 5717: 5443: 4993: 4839: 4822: 4082: 3769: 3752: 3050: 2936: 2853: 2828: 2812: 2771: 2722: 2677: 2648: 2619: 2611: 2554: 2542: 2513: 2449: 2400: 2338: 2220: 2185: 2103: 2006: 1920: 1900: 1884: 1864: 1287: 1279: 1271: 1255: 1220: 930: 876: 807: 755: 744: 652: 620: 408: 71: 32: 9666: 7182:
Habibi Y (2014). "Key advances in the chemical modification of nanocelluloses".
5507: 5482: 4854:
Le Corre D, Bras J, Dufresne A (10 May 2010). "Starch Nanoparticles: A Review".
4618:
Agam, M. A., Guo Q (2007). "Electron Beam Modification of Polymer Nanospheres".
4276: 1817:
high (muco)adhesive and cellular uptake enhancing properties can be introduced.
1070:
1 kg of particles of 1 mm has the same surface area as 1 mg of particles of 1 nm
11396: 11256: 11241: 11206: 11169: 11092: 11062: 10941: 10931: 10831: 10625: 10567: 9996: 9402: 8985:
Hanley C, Thurber A, Hanna C, Punnoose A, Zhang J, Wingett DG (December 2009).
8595: 7870:
Proceedings of the National Academy of Sciences of the United States of America
7218: 6844: 6301: 4536: 3235: 3210: 3134: 3100: 3072: 3034: 2800: 2314: 2223:
is being investigated for many uses, including "smart fluids" for uses such as
2160:. They are also thought to aggregate on phospholipid bilayers and pass through 2151: 2127: 2123: 1717: 1227: 1212: 1204: 895: 845: 636: 518: 443: 283: 197: 10295:
Kim YH, Kwak KA, Kim TS, Seok JH, Roh HS, Lee JK, et al. (30 June 2015).
9907: 9821: 9545: 9321: 9011: 8708: 8552: 8501: 8458: 8313: 6797: 6668: 4144: 4119: 3805: 3559: 1522:
may be broken down into their individual nanoscale building blocks, obtaining
704:
since prehistory, albeit without knowledge of their nature. They were used by
524:
In general, the small size of nanoparticles leads to a lower concentration of
11423: 11351: 11087: 11067: 11001: 10961: 10951: 10898: 10645: 10320: 10028: 9410: 9347: 9308: 8165: 8093:"Monovalent, reduced-size quantum dots for imaging receptors on living cells" 7250: 6383: 6333: 6286: 6244: 6205: 6154: 6112: 5209:, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) " 3884: 3628: 3476: 3419: 3363: 3346: 3215: 2910: 2869: 2477: 2271: 2161: 2037: 2010: 1998: 1876: 1713: 1675: 1448: 1400: 1365: 991: 938: 899: 841: 450: 419: 401: 349: 250: 241: 177: 128: 55: 9178:"Biokinetics and clearance of inhaled gold ultrasmall-in-nano architectures" 8914: 8397:
Evans, A.G. (1987). "Considerations of Inhomogeneity Effects in Sintering".
6897: 6618: 5875: 5782:"Surface energy of nanoparticles – influence of particle size and structure" 5218: 4791: 4778:
Murphy CJ (13 December 2002). "MATERIALS SCIENCE: Nanocubes and Nanoboxes".
4748: 4666: 4005: 3988: 3594: 3577: 568: 11366: 11360: 11272: 11236: 11221: 11192: 11148: 10889: 10782: 10620: 10473: 10430: 10379: 10338: 10281: 10240: 10173: 10130: 10014: 9840: 9755: 9720: 9688: 9516: 9256: 9248: 9221: 9162: 9098: 9057: 9030: 8971: 8881: 8687: 8560: 8466: 8173: 8126: 8077: 8034: 7999: 7950: 7909: 7890: 7850: 7832: 7801: 7526: 7490: 7477: 7424: 7217:
Jiayin G, Xiaobao F, Dolbec R, Siwen X, Jurewicz J, Boulos M (April 2010).
7203: 7141: 7067: 7008: 6948: 6862: 6770: 6637: 6578: 6431: 6359: 6162: 5977: 5934: 5815: 5741: 5675: 5626: 5561: 5467: 5428: 5337: 5017: 4970: 4935: 4875: 4799: 4756: 4674: 4639: 4489: 4464: 4448: 4423: 4407: 4382: 4253: 4204: 3948: 3902: 3876: 3688: 3603: 3494: 3427: 3345:
Vert M, Doi Y, Hellwich KH, Hess M, Hodge P, Kubisa P, et al. (2012).
3220: 3144: 2469: 2334: 2170: 2147: 2059: 1979: 1935: 1834: 1725: 1633: 1607: 1455: 1385: 1381: 720: 717: 597: 525: 394: 10411: 10165: 10087: 7981: 7744: 7098: 6905: 6131:"Nanoscale Compression of Polymer Microspheres by Atomic Force Microscopy" 5582: 5058:
Volmer M, Weber AZ (1927). "Nucleus Formation in Supersaturated Systems".
3385: 1696:
of suitable compounds are mixed or otherwise treated to form an insoluble
1002:
The original theory from 1927 of nucleation in nanoparticle formation was
11342: 11246: 11216: 11153: 11133: 10991: 10370: 10353: 9854: 9712: 8903:
Nanotechnologies: 6. What are potential harmful effects of nanoparticles?
8858:"The aggregation of striped nanoparticles in mixed phospholipid bilayers" 8792:"Toxic Nanoparticles Might be Entering Human Food Supply, MU Study Finds" 7508: 6560: 6423: 5797: 5608: 4631: 3467: 3280: 3260: 2208: 1802: 1709: 1697: 1680: 1563: 1495: 1338: 1240: 1208: 1145: 926: 922: 732: 705: 673: 529: 167: 9788: 9771: 9377:
Gu X, Liu Z, Tai Y, Zhou Ly, Liu K, Kong D, et al. (1 April 2022).
9144: 8604: 8532:
Tiede K, Boxall AB, Tear SP, Lewis J, David H, Hassellöv M (July 2008).
7605: 7468: 7406: 6677: 6517: 6492: 6299: 6236: 5617: 5090: 3680: 2354: 1066: 1049:
large surface to volume ratio is also significant factor at this scale.
415:
that conversely are usually understood to range from 1 to 1000 nm.
11320: 11300: 11226: 11211: 11137: 11077: 11041: 10854: 10272: 10255: 10122: 9450: 9433: 9202: 8936: 8873: 8348: 8108: 7459: 7195: 7048: 6999: 6974: 5186: 5169: 4962: 4244: 4219: 3940: 3861:"Anisotropic nanomaterials: structure, growth, assembly, and functions" 2849: 2767: 2718: 2623: 2607: 2473: 2432: 2428: 2420: 2358: 2262: 2131: 2107: 2067: 2021: 1748: 1721: 1555: 1535: 1523: 1444: 1095: 979: 959: 887: 830: 728: 632: 540: 435: 431: 10826: 9498: 8157: 8069: 8026: 7783: 7372: 7133: 6762: 6731: 6220: 6146: 5915: 5891:"Hardness and Elastic Modulus on Six-Fold Symmetry Gold Nanoparticles" 5842: 5733: 5702: 5657: 5553: 5459: 5420: 5392: 5364: 5329: 5302: 5271: 5243: 5118: 5044: 5009: 4917: 4867: 4709: 4185: 3961: 3524: 3066: 2032:
are the dominant methods. Because nanoparticles have a size below the
528:
compared to their bulk counterparts, but they do support a variety of
278: 11355: 11031: 11011: 11006: 10966: 10653: 9949: 9802: 7553: 7345: 7301: 7276: 6279:
10.1002/1521-4117(200207)19:3<129::AID-PPSC129>3.0.CO;2-G
5969: 5888: 4498: 3205: 3154: 2928: 2746: 2742: 2652: 2497: 2404: 2362: 2342: 2241:
variation in toxicity. Testing protocols still need to be developed.
2157: 2048:. Microscopy methods are destructive and can be prone to undesirable 1970: 1961: 1924: 1908: 1744: 1671: 1630: 1571: 1559: 1527: 1507: 1491: 1487: 1471: 1175: 1171: 1091: 1083: 956: 903: 724: 669: 616: 556: 514: 490: 470: 386: 114: 10515: 8141: 6302:"In situ TEM study of mechanical behaviour of twinned nanoparticles" 6130: 4687: 3859:
Sajanlal PR, Sreeprasad TS, Samal AK, Pradeep T (16 February 2011).
11129: 11036: 11026: 11021: 11016: 10936: 3174: 3149: 3094: 2944: 2924: 2881: 2738: 2689: 2644: 2509: 2501: 2485: 1950: 1949:
can be removed, and thus highly dependent upon the distribution of
1916: 1798: 1756: 1752: 1391:
Quantum effects are responsible for the deep-red to black color of
1377: 1294: 1283: 1275: 1235: 952: 934: 872: 860: 849: 826: 791: 552: 462: 390: 255: 10838: 6401: 5718:"Mechanisms of nucleation and growth of nanoparticles in solution" 5544: 5444:"Mechanisms of Nucleation and Growth of Nanoparticles in Solution" 4994:"Mechanisms of nucleation and growth of nanoparticles in solution" 4029:"ISO/TS 80004-2: Nanotechnologies Vocabulary Part 2: Nano-objects" 3449:
Shishodia S, Chouchene B, Gries T, Schneider R (31 October 2023).
3080: 1207:
concentration in nanocrystals can negatively affect the motion of
290: 11143: 11046: 10996: 10971: 10536: 9307:
This article incorporates text from this source, which is in the
8237: 7925:"Quantum dots targeted to the assigned organelle in living cells" 7864:
Akerman ME, Chan WC, Laakkonen P, Bhatia SN, Ruoslahti E (2002).
6919:
Dabbs D. M, Aksay I.A., Aksay (2000). "Self-Assembled Ceramics".
6079:"Mechanical properties of nanoparticles: basics and applications" 3712:"Mechanical properties of nanoparticles: basics and applications" 3275: 3250: 3124: 3119: 2968: 2857: 2824: 2775: 2726: 2461: 2408: 2341:
in microscopy. Anisotropic nanoparticles are a good candidate in
1946: 1892: 1872: 1838: 1830: 1814: 1783: 1736: 1702: 1595: 1591: 1551: 1486:
Friable macro- or micro-scale solid particles can be ground in a
1396: 1166: 1153: 1129: 1125: 1087: 963: 880: 853: 818: 709: 701: 647: 574: 510: 502: 482: 478: 474: 412: 7569:
Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing
6534: 4300: 3448: 1454:
There are several methods for creating nanoparticles, including
7652: 7539: 7021: 6653: 6592:
Taylor RA, Phelan PE, Otanicar TP, Adrian R, Prasher R (2011).
5593: 4574: 4269:
Accretion of Extraterrestrial Matter Throughout Earth's History
4120:"Nano- and micron-sized diamond genesis in nature: An overview" 4084:
Subtle is the Lord: The Science and the Life of Albert Einstein
3322:
Module 3: Characteristics of Particles Particle Size Categories
3026: 3022: 3009: 2993: 2980: 2952: 2889: 2873: 2820: 2792: 2763: 2750: 2730: 2702: 2673: 2665: 2640: 2603: 2591: 2566: 2546: 2517: 2465: 2396: 1912: 1739:. Typical instances of this method are the production of metal 1531: 1519: 1515: 1511: 915: 911: 907: 840:
The shapes of nanoparticles may be determined by the intrinsic
740: 736: 548: 382: 10194: 9770:
Wang Z, Wang Z, Lu WW, Zhen W, Yang D, Peng S (October 2017).
8487: 6493:"Nanofluid-based optical filter optimization for PV/T systems" 5688: 5583:
ASTM E 2456 06 Standard Terminology Relating to Nanotechnology
5229: 5030: 3858: 1974:
diffusion, result in a size distribution appearing lognormal.
1360:
effects become noticeable for nanoscale objects. They include
497:, and key ingredients in many industrialized products such as 422:(400-700 nm), nanoparticles cannot be seen with ordinary 10516:
Lectures on All Phases of Nanoparticle Science and Technology
8436: 6819:
Yu P, Yao Y, Wu J, Niu X, Rogach AL, Wang Z (December 2017).
6221:"Direct force measurements between titanium dioxide surfaces" 6219:
Larson I, Drummond CJ, Chan DY, Grieser F (1 December 1993).
4725:"Shape-controlled synthesis of gold and silver nanoparticles" 4556: 4161:"Nanodiamond Finding in the Hyblean Shallow Mantle Xenoliths" 3537: 2906: 2865: 2493: 2424: 2181:
was investigating the safety of the following nanoparticles:
2091: 2002: 1939: 1904: 1740: 1587: 1440: 775:
and Japan within an ERATO Project, researchers used the term
689: 681: 587: 506: 498: 457: 8949: 8581: 7814: 7219:"Development of Nanopowder Synthesis Using Induction Plasma" 6975:"Stable mass-selected AuTiOx nanoparticles for CO oxidation" 6972: 6704: 6178:"Investigation of micro-adhesion by atomic force microscopy" 4383:"Experimental relations of gold (and other metals) to light" 2279:
for delivery of biologically active substances, for example
643:
ultrafine particles, are often referred to as nanocrystals.
560:
showing a distinct resonance mode for each excitable axis.
9733: 9234: 8090: 7437: 6918: 4514: 4424:"The effect of heat and of solvents on thin films of metal" 4158: 3042: 3038: 3005: 3001: 2940: 2861: 2804: 2796: 2734: 2714: 2706: 2685: 2681: 2615: 2599: 2550: 2453: 2416: 2412: 2333:
Nanoscale particles are used in biomedical applications as
1794:
can be used for catalysis of many known organic reactions.
1567: 1539: 1459: 1392: 1021: 544: 486: 63: 10100: 9930:
International Journal for Numerical Methods in Engineering
9533:
IEEE Transactions on Dielectrics and Electrical Insulation
9175: 8984: 8618: 8212: 7963: 7863: 7566: 7119: 6591: 6360:"Size effect on the melting temperature of gold particles" 6025: 3576:
Silvera Batista CA, Larson RG, Kotov NA (9 October 2015).
3575: 1190:
in the micrometer range is a good example: widely used in
1181: 573:
In its 2012 proposed terminology for biologically related
10061: 9687: 9070: 7922: 6490: 6218: 3964:
Compendium of Chemical Terminology: IUPAC Recommendations
2166: 1888: 569:
International Union of Pure and Applied Chemistry (IUPAC)
8665: 8291: 7216: 3783: 3753:"Nanoparticles: Properties, applications and toxicities" 1598:, can be created by vaporizing a solid precursor with a 1254:
cannot be employed. As a result, new techniques such as
10527: 10395:"Applications of nanoparticles in biology and medicine" 10351: 9342:(1 ed.), Boca Raton: CRC Press, pp. 303–327, 8264: 7080: 4331:
Handbook of Nanophysics: Nanoparticles and Quantum Dots
3962:
MacNaught, Alan D., Wilkinson, Andrew R., eds. (1997).
1662:(EDX) mapping of Ni and Ni@Cu core@shell nanoparticles. 9322:
Reducing Pesticide Risks: A Half Century of Progress.
8744:"'Mind the gap': science and ethics in nanotechnology" 1801:
particles can be stabilized by functionalization with
10497:
High transmission Tandem DMA for nanoparticle studies
9647:
Physica E: Low-dimensional Systems and Nanostructures
8741: 8012: 5715: 5441: 4991: 4891: 1415:
surface plasmon is located in front of a solar cell.
1061: 485:. Being at the transition between bulk materials and 9921:
Hafezi F, Ransing RS, Lewis RW (14 September 2017).
8531: 7656:
Molecular Chemistry of Sol-Gel Derived Nanomaterials
6748: 6030:, Springer Handbooks, Springer, pp. 1107–1136, 4853: 3986: 3062: 2365:
lotions, being completely photostable though toxic.
848:
on certain faces by coating additives, the shape of
10528:
ENPRA – Risk Assessment of Engineered NanoParticles
7964:Suzuki KG, Fujiwara TK, Edidin M, Kusumi A (2007). 7022:Anandkumar M, Bhattacharya S, Deshpande AS (2019). 5855: 5779: 5167: 5131: 3344: 1982:nanoparticles and colloids provide this potential. 1030: 465:, about 2 nm in diameter, showing individual atoms. 442:, so that separation from liquids requires special 9920: 9071:Benson HA, Sarveiya V, Risk S, Roberts MS (2005). 8742:Mnyusiwalla A, Daar AS, Singer PA (1 March 2003). 8619:Rawat PS, Srivastava R, Dixit G, Asokan K (2020). 6968: 6966: 5947: 5529: 3325: 9970: 8055: 7765: 7592:Hench LL, West JK (1990). "The sol-gel process". 6175: 5780:Vollath D, Fischer FD, Holec D (23 August 2018). 5405: 5350: 5315: 2062:, which measures the particles' interaction with 735:(9th century CE). The latter is characterized by 461:Idealized model of a crystalline nanoparticle of 11421: 9472: 7388: 7274: 6875: 6537:"Feasibility of nanofluid-based optical filters" 6267:Particle & Particle Systems Characterization 5754: 5480: 4380: 3854: 3852: 3850: 3848: 3658: 1786:them with various substances — a process called 1728:, and the reaction can be carried out in place. 10481:"Nanoparticles: An occupational hygiene review" 7714: 6963: 6783: 6444: 6176:Ouyang Q, Ishida K, Okada K (15 January 2001). 3540:Physics and Chemistry of the Earth, Parts A/B/C 2368: 1321:force probe holder in TEM was used to compress 1160: 933:and are particularly effective for stabilizing 898:. The most common example is the production of 10447: 10294: 10253: 10151: 10068:Journal of the American Academy of Dermatology 9769: 7154: 6128: 5828: 5284: 4823:"Nanocellulose: a new ageless bionanomaterial" 4617: 4053: 4033:International Organization for Standardization 3914: 3912: 3510: 428:electron microscopes or microscopes with laser 10870: 10552: 10469:Nanoparticles Used in Solar Energy Conversion 9431: 8855: 8188:"Nanoparticles play at being red blood cells" 6491:Taylor RA, Otanicar T, Rosengarten G (2012). 6256: 6254: 5990: 4465:"Transparent Silver and Other Metallic Films" 3918: 3845: 3750: 1562:. This is a generalization of the burning of 1258:have been developed that complement existing 668:Nanoparticles are naturally produced by many 532:that can be visualized using high-resolution 315: 9376: 9340:Nanopharmaceuticals in Regenerative Medicine 9284: 9282: 9280: 9278: 9276: 9274: 8818: 8527: 8525: 8523: 8521: 8519: 8432: 8430: 8428: 8426: 8424: 8422: 8420: 8369: 8326: 7384: 7382: 7323: 7270: 7268: 6700: 6698: 6696: 6649: 6647: 6530: 6528: 6486: 6484: 6129:Tan S, Sherman RL, Ford WT (1 August 2004). 5076: 4722: 4652: 4510: 4508: 3578:"Nonadditivity of nanoparticle interactions" 1352: 695: 10352:Moridian M, Khorsandi L, Talebi AR (2015). 10033: 9609: 9523: 9425: 9043: 8396: 8213:Onoda, G.Y. Jr., Hench, L.L., eds. (1979). 8180: 7622:Sol-Gel Optics: Processing and Applications 6744: 6742: 6397: 6395: 6393: 6357: 6353: 6351: 6124: 6122: 6072: 6070: 6068: 6066: 6064: 6062: 5377: 5256: 5103: 5057: 4887: 4885: 4570: 4568: 4552: 4550: 4548: 4546: 4324: 4113: 4111: 3909: 3340: 3338: 3336: 3334: 1581: 1501: 1344: 786: 418:Being much smaller than the wavelengths of 10877: 10863: 10559: 10545: 10188: 10145: 10055: 10029:https://doi.org/10.1038/s43586-022-00104-y 9971:Cheraghian G, Wistuba MP (December 2020). 9727: 9529: 9466: 9333: 9314: 9037: 8978: 8390: 8363: 8320: 8285: 8231: 8206: 7653:Corriu, Robert, Anh, NguyĂŞn Trong (2009). 7612: 7585: 7533: 7081:Hosseini M, Mashreghi M, Eshghi H (2016). 6818: 6251: 4557:Hayashi, C., Uyeda, R, Tasaki, A. (1997). 4462: 4428:Proceedings of the Royal Society of London 4021: 3571: 3569: 3506: 3504: 3320:U.S. Environmental Protection Agency (): " 2299: 2144:Health and safety hazards of nanomaterials 1850: 1735:result from this process is an example of 692:have diameters in the nanoparticle range. 588:International Standards Organization (ISO) 322: 308: 10420: 10410: 10386: 10369: 10345: 10328: 10271: 10247: 10230: 10220: 10154:Journal of Nanoscience and Nanotechnology 10094: 10004: 9914: 9872: 9847: 9830: 9820: 9796: 9787: 9763: 9681: 9638: 9603: 9560: 9506: 9449: 9320:Susan Wayland and Penelope Fenner-Crisp. 9271: 9211: 9201: 9152: 9118: 9105: 9088: 9077:Therapeutics and Clinical Risk Management 9064: 9020: 9010: 8943: 8908: 8896: 8812: 8735: 8702: 8659: 8603: 8575: 8541:Food Additives & Contaminants: Part A 8516: 8481: 8417: 8258: 8116: 8084: 8006: 7989: 7957: 7940: 7916: 7899: 7889: 7857: 7840: 7791: 7708: 7673: 7646: 7591: 7560: 7516: 7484: 7467: 7431: 7414: 7379: 7352: 7317: 7300: 7265: 7057: 7047: 6998: 6912: 6869: 6852: 6777: 6730: 6693: 6676: 6644: 6627: 6617: 6568: 6525: 6516: 6481: 6260: 6102: 6076: 5924: 5914: 5805: 5716:Thanh NT, MacLean N, Mahiddine S (2014). 5665: 5616: 5587: 5576: 5543: 5506: 5442:Thanh NT, MacLean N, Mahiddine S (2014). 5185: 4992:Thanh NT, MacLean N, Mahiddine S (2014). 4925: 4838: 4620:Journal of Nanoscience and Nanotechnology 4505: 4488: 4447: 4406: 4318: 4243: 4194: 4184: 4143: 4047: 4004: 3955: 3892: 3768: 3751:Khan I, Saeed K, Khan I (November 2019). 3735: 3709: 3593: 3484: 3466: 3362: 1625: 1215:present in small nanoparticles with high 1052: 10884: 10288: 9855:"The Textiles Nanotechnology Laboratory" 8139: 8058:Journal of the American Chemical Society 8015:Journal of the American Chemical Society 7772:Journal of the American Chemical Society 7759: 7015: 6739: 6585: 6390: 6348: 6225:Journal of the American Chemical Society 6119: 6059: 5748: 5523: 5168:Whitehead CB, Ă–zkar S, Finke RG (2021). 5079:Journal of the American Chemical Society 4882: 4820: 4771: 4681: 4646: 4611: 4565: 4543: 4456: 4415: 4374: 4347: 4293: 4271:. Boston, MA: Springer. pp. 75–92. 4260: 4211: 4152: 4108: 4080: 4074: 3980: 3331: 2286: 1649: 1198: 1139: 1065: 1022:Two-step mechanism – autocatalysis model 969: 790: 456: 31: 9644: 9566: 9124: 8784: 8372:Journal of the American Ceramic Society 8049: 7358: 5639: 5487:Current Opinion in Chemical Engineering 4716: 4220:"Cosmic dust in the earth's atmosphere" 4117: 3566: 3531: 3501: 3314: 2213:U.S. Consumer Product Safety Commission 2084:nuclear magnetic resonance spectroscopy 1666:Nanoparticles can also be formed using 1182:Ferromagnetic and ferroelectric effects 1152:Nanoparticles often develop or receive 1113:an integral part of each nanoparticle. 974: 14: 11422: 10392: 7181: 6812: 6438: 6077:Guo D, Xie G, Luo J (8 January 2014). 4948: 4777: 4421: 3710:Guo D, Xie G, Luo J (8 January 2014). 3616: 779:. However, during the 1990s, when the 743:nanoparticles dispersed in the glassy 10858: 10540: 10260:The Journal of Toxicological Sciences 9878: 7679: 7618: 7567:Brinker, C.J., Scherer, G.W. (1990). 6083:Journal of Physics D: Applied Physics 5860:(2nd ed.). Boston: McGraw Hill. 4217: 3716:Journal of Physics D: Applied Physics 2949:zirconium(IV) oxide-yttria stabilized 1957:in the unfired body if not relieved. 966:while enhancing the target analytes. 663: 411:, they usually do not sediment, like 400:Nanoparticles are distinguished from 10813: 7389:Hennes M, Lotnyk A, Mayr SG (2014). 5060:Zeitschrift fĂĽr Physikalische Chemie 4353: 4266: 2179:U.S. Environmental Protection Agency 2137: 1777: 1645: 1566:or other organic vapors to generate 1101: 594:International Standards Organization 333: 10043:. U.S. Food and Drug Administration 9334:Tai Y, Midgley AC (29 March 2022), 9324:EPA Alumni Association. March 2016. 8584:TrAC Trends in Analytical Chemistry 7497:Beilstein Journal of Nanotechnology 6979:Physical Chemistry Chemical Physics 6028:Springer Handbook of Nanotechnology 5831:The Journal of Physical Chemistry B 5786:Beilstein Journal of Nanotechnology 3966:(2nd ed.). Blackwell Science. 3921:Physical Chemistry Chemical Physics 3620:Imperfections in Crystalline Solids 3291:Synthesis of nanoparticles by fungi 3150:Fiveling or decahedral nanoparticle 1985: 1766: 1116: 1009: 626: 27:Particle with size less than 100 nm 24: 10566: 10532:Institute of Occupational Medicine 10441: 9383:Progress in Biomedical Engineering 8719:10.1016/B978-0-323-52733-0.00018-5 8411:10.1111/j.1151-2916.1982.tb10340.x 8384:10.1111/j.1151-2916.1983.tb10069.x 8279:10.1111/j.1151-2916.1996.tb08091.x 8252:10.1111/j.1151-2916.1983.tb10550.x 7942:10.1111/j.1348-0421.2004.tb03621.x 5206:Compendium of Chemical Terminology 4469:Proceedings of the Royal Society A 2255:National Nanotechnology Initiative 2114:for crystal structure, as well as 1418: 1062:Large surface-area-to-volume ratio 781:National Nanotechnology Initiative 543:). Non-spherical nanoparticles of 25: 11441: 10503: 9292:. Environmental Protection Agency 9132:Environmental Health Perspectives 8856:Noh SY, Nash A, Notman R (2020). 8680:10.2174/0929867321666140601162314 7275:Granqvist CG, Buhrman RA (1976). 6941:10.1146/annurev.physchem.51.1.601 6497:Light: Science & Applications 2307: 1992:Characterization of nanoparticles 1534:treatment to promote breakup, or 10837: 10825: 10812: 10801: 10800: 10021: 9964: 9888:Journal of Computational Physics 9370: 9327: 9302: 9290:"Nanomaterials EPA is Assessing" 9228: 9169: 8849: 8612: 8215:Ceramic Processing Before Firing 8133: 7808: 7682:Energy Conversion and Management 5858:Mechanical behavior of materials 4301:"Nanotechnology Timeline | Nano" 3617:Cai W, Nix WD (September 2016). 3093: 3079: 3065: 2086:can be used with nanoparticles. 1687: 1656:Transmission electron microscopy 1031:Measuring the rate of nucleation 338: 289: 277: 62: 10454:. Academic Press. pp. 5–. 9473:Stephenson C, Hubler A (2015). 7866:"Nanocrystal targeting in vivo" 7210: 7175: 7148: 7113: 7074: 6293: 6212: 6169: 6019: 5984: 5941: 5882: 5849: 5822: 5773: 5709: 5682: 5633: 5474: 5435: 5399: 5371: 5344: 5309: 5285:Hornstein BJ, Finke RG (2004). 5278: 5250: 5223: 5194: 5161: 5125: 5097: 5070: 5051: 5024: 4985: 4942: 4847: 4814: 3820: 3777: 3744: 3703: 2353:Titanium dioxide nanoparticles 2244: 1325:nanoparticles and characterize 762: 750: 727:glass (4th century CE) and the 680:, that is still falling on the 603: 50:Part of a series of articles on 9859:nanotextiles.human.cornell.edu 9589:10.1088/1674-1056/25/11/118102 8713:. ELSEVIER. pp. 511 546. 8217:. New York: Wiley & Sons. 8140:Campbell CT (20 August 2013). 7702:10.1016/j.enconman.2017.07.036 6786:Coordination Chemistry Reviews 6657:Coordination Chemistry Reviews 4060:. Springer. pp. 282 283. 3786:Philosophical Magazine Letters 3652: 3610: 3442: 3412:10.1088/0957-4484/26/29/295701 3379: 3266:Self-assembly of nanoparticles 3231:Nanoparticle tracking analysis 2913:onto paper or other substrate 2320: 1822:linked to biological molecules 1612:radio frequency (RF) induction 1586:Nanoparticles of pure metals, 1498:to extract the nanoparticles. 1108:Nanoparticle interfacial layer 596:(ISO) technical specification 563: 13: 1: 10760:Scanning tunneling microscope 10254:Hanagata N, Morita H (2015). 10080:10.1016/s0190-9622(99)70532-3 9748:10.1016/j.tibtech.2017.07.010 8146:Accounts of Chemical Research 7737:10.1126/science.252.5009.1164 7223:Plasma Science and Technology 7169:10.1016/j.carbpol.2009.10.044 6198:10.1016/S0169-4332(00)00804-7 6104:10.1088/0022-3727/47/1/013001 6013:10.1016/j.actamat.2015.10.027 5147:10.1021/acs.chemmater.9b01273 4422:Beilby GT (31 January 1904). 3737:10.1088/0022-3727/47/1/013001 3307: 3140:Colloid-facilitated transport 2348: 2328: 2266:researchers is 30% w/w of SiO 2235: 2108:Brunauer–Emmett–Teller method 1481: 1434: 1372:in some metal particles, and 1270:(AFM) can be used to perform 1128:is strong enough to overcome 1043: 997: 866: 837:, nanofibers, and nanoboxes. 810:structure resembling that of 10399:Journal of Nanobiotechnology 10222:10.1371/journal.pone.0126934 9632:10.1016/j.optmat.2017.01.014 9432:Hubler A, Osuagwu O (2010). 8964:10.1016/j.actbio.2010.08.003 8828:. New York: Academic Press. 8645:10.1016/j.vacuum.2020.109700 6467:10.1016/j.nanoen.2015.02.012 6326:10.1080/14786435.2012.709951 6044:10.1007/978-3-540-29857-1_36 5856:Courtney, Thomas H. (2000). 4840:10.1016/j.mattod.2013.06.004 3828:"Anisotropic Nanostructures" 3770:10.1016/j.arabjc.2017.05.011 3757:Arabian Journal of Chemistry 2369:Compounds by industrial area 2293:glass transition temperature 2054:single-particle measurements 1797:For example, suspensions of 1792:nanomaterial-based catalysts 1705:and other porous networks. 1545: 1161:Diffusion across the surface 1144:Semiconductor nanoparticle ( 921:Nanoparticles with one half 7: 10732:Molecular scale electronics 10485:Health and Safety Executive 10062:Mitchnick MA, Fairhurst D, 9667:10.1016/j.physe.2018.06.013 9046:Journal of Law and Medicine 8668:Current Medicinal Chemistry 7970:The Journal of Cell Biology 7929:Microbiology and Immunology 7277:"Ultrafine metal particles" 6358:Buffat P, Borel JP (1976). 5691:Crystal Growth & Design 5646:Crystal Growth & Design 5508:10.1016/j.coche.2019.04.004 5481:Grammatikopoulos P (2019). 5232:Crystal Growth & Design 5033:Crystal Growth & Design 4333:. CRC Press. pp. 2 1. 4277:10.1007/978-1-4419-8694-8_5 4087:. Oxford University Press. 3058: 1674:can create strongly active 1230:of materials. For example, 1135: 1004:Classical Nucleation Theory 700:Nanoparticles were used by 364:Proposed since August 2024. 347:It has been suggested that 10: 11446: 10530:EC FP7 Project led by the 10358:Bratislava Medical Journal 9997:10.1038/s41598-020-68007-0 8991:Nanoscale Research Letters 8763:10.1088/0957-4484/14/3/201 8596:10.1016/j.trac.2010.09.005 7326:Journal of Applied Physics 7281:Journal of Applied Physics 6845:10.1038/s41598-017-08077-9 6711:Journal of Applied Physics 6598:Nanoscale Research Letters 6184:. 169–170 (1–2): 644–648. 4597:10.1088/0957-4484/10/1/006 4537:10.1103/PhysRevLett.37.625 4360:. CRC Press. p. 328. 4357:Biotechnology Fundamentals 4325:Reiss G, Hutten A (2010). 3993:Pure and Applied Chemistry 3351:Pure and Applied Chemistry 3301:Upconverting nanoparticles 3047:polyethylene terephthalate 2165:looking at the effects of 2141: 1989: 1554:, into solid particles by 1370:localized surface plasmons 1105: 990:or the two-step mechanism- 658: 611:For some properties, like 407:Being more subject to the 11380: 11333: 11313: 11281: 11191: 11182: 11162: 11120: 11055: 10980: 10915: 10906: 10897: 10796: 10768: 10747:Scanning probe microscopy 10745: 10722: 10689: 10644: 10607: 10574: 10483:by RJ Aitken and others. 9908:10.1016/j.jcp.2017.09.038 9822:10.3390/molecules23051150 9546:10.1109/TDEI.2013.6571470 9237:ACS Applied Bio Materials 9012:10.1007/s11671-009-9413-8 8553:10.1080/02652030802007553 8502:10.1080/17435390701314902 8459:10.1007/s10646-008-0225-x 8314:10.1080/14786436908228708 7243:10.1088/1009-0630/12/2/12 6798:10.1016/j.ccr.2019.213042 6669:10.1016/j.ccr.2018.04.011 6261:Kappl M, Butt HJ (2002). 5755:Gubin, Sergey P. (2009). 4387:Phil. Trans. R. Soc. Lond 4381:Faraday, Michael (1857). 4145:10.1016/j.gsf.2017.10.006 3806:10.1080/09500830802307641 3560:10.1016/j.pce.2011.07.064 3187:a.k.a. magnetic nanochain 2977:barium strontium titanate 2973:sm-doped-cerium(IV) oxide 2957:gd-doped-cerium(IV) oxide 2259:poly(methyl methacrylate) 2227:and as a better-absorbed 2064:electromagnetic radiation 2030:scanning probe microscopy 1353:Quantum mechanics effects 1304:colloidal probe technique 1252:universal testing machine 696:Pre-industrial technology 10770:Molecular nanotechnology 10714:Solid lipid nanoparticle 10699:Self-assembled monolayer 10493:by RJ Aitken and others. 10487:Research Report 274/2004 10451:Nanostructured Materials 10321:10.5487/TR.2015.31.2.157 9879:Evans B (January 2018). 9403:10.1088/2516-1091/ac6e18 9348:10.1201/9781003153504-17 9125:Pieters N (March 2015). 9115:Retrieved 26 April 2011. 8825:Nanostructured Materials 7542:New Journal of Chemistry 7395:Beilstein J. Nanotechnol 7087:Micro & Nano Letters 6384:10.1103/PhysRevA.13.2287 4821:Dufresne A (June 2013). 4327:"Magnetic Nanoparticles" 4224:Chemical Society Reviews 3629:10.1017/cbo9781316389508 3364:10.1351/PAC-REC-10-12-04 2563:calcium silicate hydrate 2229:iron nutrient supplement 2106:for surface charge, the 1582:Condensation from plasma 1502:Breakdown of biopolymers 1345:Melting point depression 955:nanoparticles made of N- 827:decahedral nanoparticles 787:Morphology and structure 716:, as exemplified by the 266:Nanocrystalline material 242:Nanostructured materials 11268:Ferric ammonium citrate 10755:Atomic force microscope 10704:Supramolecular assembly 10691:Molecular self-assembly 10512:images of nanoparticles 10448:Jackie Y. Ying (2001). 7659:. John Wiley and Sons. 6898:10.1126/science.1962191 6717:(1): 011301–011301–19. 6619:10.1186/1556-276X-6-225 6182:Applied Surface Science 5219:10.1351/goldbook.O04348 4792:10.1126/science.1080007 4749:10.1126/science.1077229 4723:Sun, Y, Xia, Y (2002). 4667:10.1021/acsnano.5b02328 4517:Physical Review Letters 4329:. In Sattler KD (ed.). 4054:Fahlman, B. D. (2007). 4006:10.1351/pac200779101801 3595:10.1126/science.1242477 3226:Nanoparticle deposition 3201:Nanocrystalline silicon 3185:Magnetoelastic filament 2339:imaging contrast agents 2300:Liquid properties tuner 2118:for particle mass, and 1851:Uniformity requirements 1660:energy dispersive X-ray 1268:Atomic force microscopy 1188:ferromagnetic materials 1080:electrical conductivity 426:, requiring the use of 10521:29 August 2010 at the 10301:Toxicological Research 9249:10.1021/acsabm.9b00630 8797:University of Missouri 7891:10.1073/pnas.152463399 7833:10.1002/advs.202102451 6306:Philosophical Magazine 5757:Magnetic nanoparticles 4490:10.1098/rspa.1908.0084 4449:10.1098/rspl.1903.0046 4408:10.1098/rstl.1857.0011 3877:10.3402/nano.v2i0.5883 3513:Chemistry of Materials 3191:Magnetic nanoparticles 2628:hydroxycarboxylic acid 2343:biomolecular detection 2110:for surface area, and 1732:Electroless deposition 1663: 1626:Inert gas condensation 1476:hydrothermal synthesis 1464:chemical precipitation 1149: 1071: 1053:Controlling properties 814: 466: 44: 10844:Technology portal 10412:10.1186/1477-3155-2-3 10166:10.1166/jnn.2014.8876 8780:on 26 September 2020. 7982:10.1083/jcb.200609175 7157:Carbohydrate Polymers 7099:10.1049/mnl.2016.0065 6921:Annu. Rev. Phys. Chem 6570:1959.4/unsworks_57107 4561:. Noyes Publications. 3256:Platinum nanoparticle 2833:ytterbium trifluoride 2287:Polymer reinforcement 2122:for particle number. 1827:monoclonal antibodies 1820:Nanoparticles can be 1653: 1616:exploding wire method 1310:Another technique is 1199:Mechanical properties 1143: 1069: 970:Nucleation and growth 906:. Other examples are 794: 495:atmospheric pollution 460: 296:Technology portal 91:Mechanical properties 35: 10631:Green nanotechnology 10371:10.4149/bll_2015_060 9713:10.1364/OL.28.002088 7509:10.3762/bjnano.9.179 6561:10.1364/AO.52.001413 6424:10.1364/AO.52.006041 5798:10.3762/bjnano.9.211 5609:10.1021/jacs.6b08239 4632:10.1166/jnn.2007.814 4434:(477–486): 226–235. 4124:Geoscience Frontiers 3546:(14–15): 1129–1134. 3468:10.3390/nano13212889 3296:Transparent material 3180:Magnetic immunoassay 3170:Indium(III) selenide 3160:Gallium(II) selenide 2894:molybdenum disulfide 1943:van der Waals forces 1639:magnetron sputtering 1478:, and biosynthesis. 975:Impact of nucleation 534:electron microscopes 357:into this article. ( 261:Nanoporous materials 124:Buckminsterfullerene 11372:Sulfur hexafluoride 10778:Molecular assembler 10313:2015ToxRe..31..157K 10213:2015PLoSO..1026934G 10115:2015Nanos...7.8931H 9989:2020NatSR..1011216C 9942:2017IJNME.111.1025H 9900:2018JCoPh.352..123E 9789:10.1038/am.2017.171 9705:2003OptL...28.2088D 9659:2018PhyE..103..239O 9624:2017OptMa..64..413R 9581:2016ChPhB..25k8102O 9491:2015NatSR...515044S 9395:2022PBioE...4b2006G 9194:2020NanoA...2.3815M 9145:10.1289/ehp.1408121 9111:Howard, V. (2009). 9003:2009NRL.....4.1409H 8929:2013SMat....910265T 8923:(43): 10265 10274. 8637:2020Vacuu.182j9700R 8451:2008Ecotx..17..344H 8341:1970JMatS...5..314E 8306:1969PMag...20..373E 7882:2002PNAS...9912617A 7876:(20): 12617–12621. 7729:1991Sci...252.1164P 7694:2017ECM...150...26S 7625:. Springer Verlag. 7606:10.1021/cr00099a003 7452:2014Nanos...613483L 7446:(22): 13483–13486. 7407:10.3762/bjnano.5.54 7338:1990JAP....67.1113H 7293:1976JAP....47.2200G 7235:2010PlST...12..188G 7040:2019RSCAd...926825A 7034:(46): 26825–26830. 6991:2024PCCP...26.9253T 6933:2000ARPC...51..601D 6890:1991Sci...254.1312W 6884:(5036): 1312–1319. 6837:2017NatSR...7.7696Y 6723:2013JAP...113a1301T 6610:2011NRL.....6..225T 6553:2013ApOpt..52.1413T 6518:10.1038/lsa.2012.34 6509:2012LSA.....1E..34T 6459:2015NEne...13..827W 6416:2013ApOpt..52.6041H 6376:1976PhRvA..13.2287B 6318:2012PMag...92.4437C 6237:10.1021/ja00078a029 6231:(25): 11885–11890. 6190:2001ApSS..169..644O 6095:2014JPhD...47a3001G 6036:2007shnt.book.1107K 6005:2016AcMat.103..433F 5962:2009NatMa...8...95O 5907:2013Mate....6..198R 5640:Vekilov PG (2010). 5603:(49): 15935–15942. 5499:2019COCE...23..164G 5266:(43): 10382-10400. 5113:(43): 10382-10400. 5091:10.1021/ja01167a001 4910:2008NanoL...8..350L 4786:(5601): 2139–2141. 4741:2002Sci...298.2176S 4702:2004ApPhL..84..287C 4589:1999Nanot..10...25K 4529:1976PhRvL..37..625G 4481:1908RSPSA..81..301T 4463:Turner, T. (1908). 4440:1903RSPS...72..226B 4399:1857RSPT..147..145F 4236:2012ChSRv..41.6507P 4177:2015NatSR...510765S 4136:2018GeoFr...9.1849S 4118:Simakov SK (2018). 4057:Materials Chemistry 3933:2016PCCP...1815943K 3927:(23): 15943–15949. 3798:2008PMagL..88..715C 3728:2014JPhD...47a3001G 3681:10.1038/nature12009 3673:2013Natur.496...74C 3552:2011PCE....36.1129S 3404:2015Nanot..26C5701T 3271:Silicon quantum dot 3115:Ceramic engineering 2990:sports and fitness 2961:nickel cobalt oxide 2921:renewable energies 2571:aluminium phosphate 2382:Industrial sectors 2375: 2277:dietary supplements 2076:ultraviolet–visible 2026:Electron microscopy 1929:aluminium carbonate 1881:composite materials 1811:polyethylene glycol 1668:radiation chemistry 1362:quantum confinement 1260:electron microscope 1245:plastic deformation 925:and the other half 777:ultrafine particles 714:Classical Antiquity 678:interplanetary dust 451:diameter of an atom 424:optical microscopes 413:colloidal particles 163:Carbon quantum dots 11407:Never to phase III 10832:Science portal 10709:DNA nanotechnology 10393:Salata OV (2004). 10273:10.2131/jts.40.625 10123:10.1039/c5nr01167a 9977:Scientific Reports 9776:NPG Asia Materials 9451:10.1002/cplx.20306 9203:10.1039/D0NA00521E 9182:Nanoscale Advances 8952:Acta Biomaterialia 8937:10.1039/c3sm51225h 8874:10.1039/c9nr07106g 8349:10.1007/BF02397783 8109:10.1038/nmeth.1206 7571:. Academic Press. 7460:10.1039/c4nr02913e 7196:10.1039/c3cs60204d 7049:10.1039/C9RA04636D 7000:10.1039/D4CP00211C 6825:Scientific Reports 5187:10.1039/d0ma00439a 4963:10.1039/C9NR01349K 4245:10.1039/C2CS35132C 4165:Scientific Reports 3941:10.1039/c6cp00953k 3623:. Cambridge Core. 3110:Carbon quantum dot 2933:tungsten disulfide 2846:tungsten disulfide 2446:tungsten disulfide 2373: 2100:neutron scattering 2046:elemental analysis 2042:optical microscopy 2007:surface properties 1938:of powders due to 1670:. Radiolysis from 1664: 1374:superparamagnetism 1241:dislocation source 1234:are significantly 1232:gold nanoparticles 1217:radii of curvature 1192:magnetic recording 1150: 1072: 815: 797:vanadium(IV) oxide 664:Natural occurrence 467: 379:ultrafine particle 284:Science portal 96:Optical properties 45: 11417: 11416: 11329: 11328: 11283:Superparamagnetic 11232:Gadopentetic acid 11178: 11177: 11116: 11115: 10852: 10851: 10461:978-0-12-744451-2 9936:(11): 1025–1046. 9742:(12): 1121–1124. 9736:Trends Biotechnol 9612:Optical Materials 9569:Chinese Physics B 9499:10.1038/srep15044 9357:978-1-003-15350-4 9243:(10): 4464–4470. 8997:(12): 1409–1420. 8835:978-0-12-744451-2 8728:978-0-323-52733-0 8674:(33): 3837–3853. 8399:J. Am. Ceram. Soc 8273:(12): 3161 3168. 8267:J. Am. Ceram. Soc 8240:J. Am. Ceram. Soc 8224:978-0-471-65410-0 8158:10.1021/ar3003514 8070:10.1021/ja046747x 8027:10.1021/ja049578p 7784:10.1021/ja908137d 7666:978-0-470-72117-9 7632:978-0-7923-9424-2 7578:978-0-12-134970-7 7548:(11): 1239 1255. 7373:10.1063/1.2089171 7134:10.1021/bm0703970 7122:Biomacromolecules 6985:(12): 9253–9263. 6763:10.1021/cr100449n 6732:10.1063/1.4754271 6364:Physical Review A 6312:(35): 4437–4453. 6147:10.1021/la049597c 6141:(17): 7015–7020. 6053:978-3-540-29857-1 5916:10.3390/ma6010198 5843:10.1021/jp010995n 5837:(27): 6275–6277. 5766:978-3-527-40790-3 5734:10.1021/cr400544s 5728:(15): 7610–7630. 5703:10.1021/cg400139t 5658:10.1021/cg1011633 5652:(12): 5007–5019. 5554:10.1116/1.2815690 5460:10.1021/cr400544s 5454:(15): 7610–7630. 5421:10.1021/ja410194r 5393:10.1021/cm071088j 5365:10.1021/cm050207x 5359:(20): 4925-4938. 5330:10.1021/ja0504439 5324:(22): 8179–8184. 5303:10.1021/cm034585i 5272:10.1021/ja9705102 5244:10.1021/cg400139t 5141:(18): 7116-7132. 5119:10.1021/ja9705102 5085:(11): 4847-4854. 5045:10.1021/cg400139t 5010:10.1021/cr400544s 5004:(15): 7610–7630. 4957:(15): 7386–7393. 4918:10.1021/nl072174l 4868:10.1021/bm901428y 4856:Biomacromolecules 4710:10.1063/1.1639514 4367:978-1-4398-2009-4 4340:978-1-4200-7545-8 4286:978-1-4613-4668-5 4230:(19): 6507–6518. 4218:Plane JM (2012). 4186:10.1038/srep10765 4094:978-0-19-280672-7 4081:Pais, A. (2005). 4067:978-1-4020-6119-6 3999:(10): 1801–1829. 3973:978-0-86542-684-9 3792:(9–10): 715–724. 3638:978-1-107-12313-7 3588:(6257): 1242477. 3525:10.1021/cm030171d 3519:(17): 3326–3331. 3196:Nanobiotechnology 3165:Icosahedral twins 3130:Colloidal crystal 3087:Technology portal 3056: 3055: 2909:, deposited by a 2886:Îł-aluminium oxide 2817:zirconium dioxide 2579:calcium hydroxide 2559:calcium carbonate 2526:calcium sulfonate 2522:calcium carbonate 2490:Îł-aluminium oxide 2482:zirconium dioxide 2138:Health and safety 2120:particle counters 2116:mass spectrometry 2112:X-ray diffraction 2066:as a function of 2034:diffraction limit 1955:crack propagation 1897:Aluminum nitrides 1790:. Functionalized 1788:functionalization 1778:Functionalization 1747:nanoparticles by 1646:Radiolysis method 1576:ultrasonic nozzle 1506:Biopolymers like 1429:photonic crystals 1425:colloidal crystal 1358:Quantum mechanics 1102:Interfacial layer 886:The breakdown of 592:According to the 438:, such as common 381:is a particle of 371: 370: 366: 332: 331: 144:Carbon allotropes 16:(Redirected from 11437: 11365:Microspheres of 11202:Gadolinium-based 11189: 11188: 11108:Calcium iopodate 10947:Ioxitalamic acid 10913: 10912: 10904: 10903: 10879: 10872: 10865: 10856: 10855: 10842: 10841: 10830: 10829: 10816: 10815: 10804: 10803: 10788:Mechanosynthesis 10679:characterization 10561: 10554: 10547: 10538: 10537: 10465: 10435: 10434: 10424: 10414: 10390: 10384: 10383: 10373: 10349: 10343: 10342: 10332: 10292: 10286: 10285: 10275: 10251: 10245: 10244: 10234: 10224: 10192: 10186: 10185: 10160:(8): 5688–5696. 10149: 10143: 10142: 10098: 10092: 10091: 10059: 10053: 10052: 10050: 10048: 10037: 10031: 10025: 10019: 10018: 10008: 9968: 9962: 9961: 9950:10.1002/nme.5489 9927: 9918: 9912: 9911: 9885: 9876: 9870: 9869: 9867: 9865: 9851: 9845: 9844: 9834: 9824: 9800: 9794: 9793: 9791: 9767: 9761: 9759: 9731: 9725: 9724: 9685: 9679: 9678: 9642: 9636: 9635: 9607: 9601: 9600: 9564: 9558: 9557: 9540:(4): 1467 1471. 9527: 9521: 9520: 9510: 9470: 9464: 9463: 9453: 9429: 9423: 9422: 9374: 9368: 9367: 9366: 9364: 9331: 9325: 9318: 9312: 9306: 9305: 9301: 9299: 9297: 9286: 9269: 9268: 9232: 9226: 9225: 9215: 9205: 9188:(9): 3815–3820. 9173: 9167: 9166: 9156: 9122: 9116: 9109: 9103: 9102: 9092: 9068: 9062: 9061: 9041: 9035: 9034: 9024: 9014: 8982: 8976: 8975: 8947: 8941: 8940: 8912: 8906: 8900: 8894: 8893: 8853: 8847: 8846: 8844: 8842: 8816: 8810: 8809: 8807: 8805: 8800:. 22 August 2013 8788: 8782: 8781: 8779: 8773:. Archived from 8748: 8739: 8733: 8732: 8706: 8700: 8699: 8663: 8657: 8656: 8616: 8610: 8609: 8607: 8579: 8573: 8572: 8538: 8529: 8514: 8513: 8485: 8479: 8478: 8434: 8415: 8414: 8394: 8388: 8387: 8367: 8361: 8360: 8324: 8318: 8317: 8300:(164): 373 388. 8289: 8283: 8282: 8262: 8256: 8255: 8235: 8229: 8228: 8210: 8204: 8203: 8201: 8199: 8190:. Archived from 8184: 8178: 8177: 8152:(8): 1712–1719. 8137: 8131: 8130: 8120: 8088: 8082: 8081: 8053: 8047: 8046: 8010: 8004: 8003: 7993: 7961: 7955: 7954: 7944: 7920: 7914: 7913: 7903: 7893: 7861: 7855: 7854: 7844: 7821:Advanced Science 7812: 7806: 7805: 7795: 7763: 7757: 7756: 7723:(5009): 1164–7. 7712: 7706: 7705: 7677: 7671: 7670: 7650: 7644: 7643: 7641: 7639: 7619:Klein L (1994). 7616: 7610: 7609: 7594:Chemical Reviews 7589: 7583: 7582: 7564: 7558: 7557: 7554:10.1039/A801445K 7537: 7531: 7530: 7520: 7488: 7482: 7481: 7471: 7435: 7429: 7428: 7418: 7386: 7377: 7376: 7361:Appl. Phys. Lett 7356: 7350: 7349: 7346:10.1063/1.345798 7332:(2): 1113 1115. 7321: 7315: 7314: 7304: 7302:10.1063/1.322870 7287:(5): 2200 2219. 7272: 7263: 7262: 7214: 7208: 7207: 7190:(5): 1519–1542. 7179: 7173: 7172: 7163:(4): 1046–1051. 7152: 7146: 7145: 7128:(8): 2485–2491. 7117: 7111: 7110: 7078: 7072: 7071: 7061: 7051: 7019: 7013: 7012: 7002: 6970: 6961: 6960: 6916: 6910: 6909: 6873: 6867: 6866: 6856: 6816: 6810: 6809: 6781: 6775: 6774: 6757:(4): 2373–2433. 6751:Chemical Reviews 6746: 6737: 6736: 6734: 6702: 6691: 6690: 6680: 6651: 6642: 6641: 6631: 6621: 6589: 6583: 6582: 6572: 6532: 6523: 6522: 6520: 6488: 6479: 6478: 6442: 6436: 6435: 6399: 6388: 6387: 6370:(6): 2287–2298. 6355: 6346: 6345: 6297: 6291: 6290: 6258: 6249: 6248: 6216: 6210: 6209: 6173: 6167: 6166: 6126: 6117: 6116: 6106: 6074: 6057: 6056: 6023: 6017: 6016: 5988: 5982: 5981: 5970:10.1038/nmat2370 5950:Nature Materials 5945: 5939: 5938: 5928: 5918: 5886: 5880: 5879: 5853: 5847: 5846: 5826: 5820: 5819: 5809: 5777: 5771: 5770: 5752: 5746: 5745: 5713: 5707: 5706: 5697:(6): 2435-2440. 5686: 5680: 5679: 5669: 5637: 5631: 5630: 5620: 5597:J. Am. Chem. Soc 5591: 5585: 5580: 5574: 5573: 5547: 5538:(4): MR17–MR71. 5527: 5521: 5520: 5510: 5478: 5472: 5471: 5439: 5433: 5432: 5415:(5): 1930–1941. 5409:J. Am. Chem. Soc 5403: 5397: 5396: 5387:(5): 1956-1970. 5375: 5369: 5368: 5348: 5342: 5341: 5318:J. Am. Chem. Soc 5313: 5307: 5306: 5282: 5276: 5275: 5260:J. Am. Chem. Soc 5254: 5248: 5247: 5238:(6): 2435-2440. 5227: 5221: 5211:Ostwald ripening 5198: 5192: 5191: 5189: 5165: 5159: 5158: 5129: 5123: 5122: 5107:J. Am. Chem. Soc 5101: 5095: 5094: 5074: 5068: 5067: 5055: 5049: 5048: 5039:(6): 2435-2440. 5028: 5022: 5021: 4989: 4983: 4982: 4946: 4940: 4939: 4929: 4889: 4880: 4879: 4862:(5): 1139–1153. 4851: 4845: 4844: 4842: 4818: 4812: 4811: 4775: 4769: 4768: 4735:(5601): 2176–9. 4720: 4714: 4713: 4690:Appl. Phys. Lett 4685: 4679: 4678: 4650: 4644: 4643: 4615: 4609: 4608: 4572: 4563: 4562: 4554: 4541: 4540: 4512: 4503: 4502: 4492: 4475:(548): 301–310. 4460: 4454: 4453: 4451: 4419: 4413: 4412: 4410: 4378: 4372: 4371: 4354:Khan FA (2012). 4351: 4345: 4344: 4322: 4316: 4315: 4313: 4311: 4297: 4291: 4290: 4264: 4258: 4257: 4247: 4215: 4209: 4208: 4198: 4188: 4156: 4150: 4149: 4147: 4130:(6): 1849–1858. 4115: 4106: 4105: 4103: 4101: 4078: 4072: 4071: 4051: 4045: 4044: 4042: 4040: 4025: 4019: 4018: 4008: 3984: 3978: 3977: 3959: 3953: 3952: 3916: 3907: 3906: 3896: 3856: 3843: 3842: 3840: 3838: 3824: 3818: 3817: 3781: 3775: 3774: 3772: 3748: 3742: 3741: 3739: 3707: 3701: 3700: 3656: 3650: 3649: 3647: 3645: 3614: 3608: 3607: 3597: 3573: 3564: 3563: 3535: 3529: 3528: 3508: 3499: 3498: 3488: 3470: 3446: 3440: 3439: 3383: 3377: 3376: 3366: 3342: 3329: 3318: 3246:Photonic crystal 3241:Patchy particles 3103: 3098: 3097: 3089: 3084: 3083: 3075: 3070: 3069: 3031:titanium dioxide 2998:titanium dioxide 2965:nickel(II) oxide 2878:titanium dioxide 2809:titanium dioxide 2780:titanium dioxide 2711:titanium dioxide 2670:titanium dioxide 2596:titanium dioxide 2575:cerium(IV) oxide 2539:titanium dioxide 2506:cerium(IV) oxide 2458:titanium dioxide 2376: 2372: 2281:mineral elements 2225:optics polishing 2203:Titanium dioxide 2186:Carbon nanotubes 2088:Light-scattering 2015:dispersion state 1986:Characterization 1923:), and layered ( 1921:carbon nanotubes 1869:copper(II) oxide 1772:Ion implantation 1767:Ion implantation 1468:ion implantation 1456:gas condensation 1334:glass transition 1219:. This causes a 1117:Solvent affinity 1015:Ostwald ripening 1010:Ostwald ripening 988:Ostwald ripening 896:biodegradability 892:biocompatibility 877:anticancer drugs 808:crystal clusters 805: 688:particles. Many 686:atmospheric dust 627:Related concepts 362: 342: 341: 334: 324: 317: 310: 294: 293: 282: 281: 233:Titanium dioxide 72:Carbon nanotubes 66: 47: 46: 21: 11445: 11444: 11440: 11439: 11438: 11436: 11435: 11434: 11420: 11419: 11418: 11413: 11412: 11397:Clinical trials 11376: 11325: 11309: 11277: 11252:Gadoversetamide 11174: 11158: 11123:Water insoluble 11122: 11112: 11103:Tyropanoic acid 11098:Sodium iopodate 11083:Iobenzamic acid 11073:Ioglycamic acid 11051: 10982: 10976: 10957:Acetrizoic acid 10927:Diatrizoic acid 10917: 10908: 10893: 10883: 10853: 10848: 10836: 10824: 10792: 10764: 10741: 10737:Nanolithography 10724:Nanoelectronics 10718: 10685: 10640: 10603: 10594:Popular culture 10570: 10565: 10523:Wayback Machine 10506: 10499:by SEADM, 2014. 10462: 10444: 10442:Further reading 10439: 10438: 10391: 10387: 10350: 10346: 10293: 10289: 10252: 10248: 10207:(5): e0126934. 10193: 10189: 10150: 10146: 10099: 10095: 10060: 10056: 10046: 10044: 10039: 10038: 10034: 10026: 10022: 9969: 9965: 9925: 9919: 9915: 9883: 9877: 9873: 9863: 9861: 9853: 9852: 9848: 9801: 9797: 9768: 9764: 9732: 9728: 9699:(21): 2088–90. 9686: 9682: 9643: 9639: 9608: 9604: 9565: 9561: 9528: 9524: 9471: 9467: 9430: 9426: 9375: 9371: 9362: 9360: 9358: 9332: 9328: 9319: 9315: 9303: 9295: 9293: 9288: 9287: 9272: 9233: 9229: 9174: 9170: 9123: 9119: 9110: 9106: 9069: 9065: 9042: 9038: 8983: 8979: 8948: 8944: 8913: 8909: 8901: 8897: 8854: 8850: 8840: 8838: 8836: 8817: 8813: 8803: 8801: 8790: 8789: 8785: 8777: 8746: 8740: 8736: 8729: 8707: 8703: 8664: 8660: 8617: 8613: 8580: 8576: 8536: 8530: 8517: 8486: 8482: 8435: 8418: 8405:(10): 497–501. 8395: 8391: 8368: 8364: 8325: 8321: 8290: 8286: 8263: 8259: 8236: 8232: 8225: 8211: 8207: 8197: 8195: 8186: 8185: 8181: 8138: 8134: 8089: 8085: 8064:(35): 10832–3. 8054: 8050: 8011: 8007: 7962: 7958: 7921: 7917: 7862: 7858: 7813: 7809: 7764: 7760: 7713: 7709: 7678: 7674: 7667: 7651: 7647: 7637: 7635: 7633: 7617: 7613: 7590: 7586: 7579: 7565: 7561: 7538: 7534: 7489: 7485: 7436: 7432: 7387: 7380: 7357: 7353: 7322: 7318: 7273: 7266: 7215: 7211: 7180: 7176: 7153: 7149: 7118: 7114: 7079: 7075: 7020: 7016: 6971: 6964: 6917: 6913: 6874: 6870: 6817: 6813: 6782: 6778: 6747: 6740: 6703: 6694: 6652: 6645: 6590: 6586: 6533: 6526: 6489: 6482: 6443: 6439: 6410:(24): 6041–50. 6400: 6391: 6356: 6349: 6298: 6294: 6259: 6252: 6217: 6213: 6174: 6170: 6127: 6120: 6075: 6060: 6054: 6024: 6020: 5993:Acta Materialia 5989: 5985: 5946: 5942: 5887: 5883: 5868: 5854: 5850: 5827: 5823: 5778: 5774: 5767: 5753: 5749: 5714: 5710: 5687: 5683: 5638: 5634: 5592: 5588: 5581: 5577: 5528: 5524: 5479: 5475: 5440: 5436: 5404: 5400: 5376: 5372: 5349: 5345: 5314: 5310: 5283: 5279: 5255: 5251: 5228: 5224: 5199: 5195: 5166: 5162: 5130: 5126: 5102: 5098: 5075: 5071: 5056: 5052: 5029: 5025: 4990: 4986: 4947: 4943: 4890: 4883: 4852: 4848: 4827:Materials Today 4819: 4815: 4776: 4772: 4721: 4717: 4686: 4682: 4651: 4647: 4616: 4612: 4573: 4566: 4555: 4544: 4523:(10): 625 629. 4513: 4506: 4461: 4457: 4420: 4416: 4379: 4375: 4368: 4352: 4348: 4341: 4323: 4319: 4309: 4307: 4299: 4298: 4294: 4287: 4265: 4261: 4216: 4212: 4157: 4153: 4116: 4109: 4099: 4097: 4095: 4079: 4075: 4068: 4052: 4048: 4038: 4036: 4027: 4026: 4022: 3985: 3981: 3974: 3960: 3956: 3917: 3910: 3857: 3846: 3836: 3834: 3826: 3825: 3821: 3782: 3778: 3749: 3745: 3708: 3704: 3667:(7443): 74–77. 3657: 3653: 3643: 3641: 3639: 3615: 3611: 3574: 3567: 3536: 3532: 3509: 3502: 3447: 3443: 3384: 3380: 3343: 3332: 3319: 3315: 3310: 3305: 3286:Sol–gel process 3099: 3092: 3085: 3078: 3071: 3064: 3061: 3051:silicon dioxide 2937:silicon dioxide 2854:silicon dioxide 2829:aluminium oxide 2813:silicon dioxide 2772:silicon dioxide 2760:home appliance 2723:silicon dioxide 2678:manganese oxide 2649:silicon dioxide 2620:sodium silicate 2612:silicon dioxide 2555:aluminium oxide 2543:silicon dioxide 2514:aluminium oxide 2450:silicon dioxide 2401:silicon dioxide 2371: 2351: 2331: 2323: 2310: 2302: 2289: 2269: 2247: 2238: 2221:nano-scale iron 2197: 2154: 2140: 2104:electrophoresis 2040:, conventional 1994: 1988: 1915:), non-metals ( 1901:Silicon nitride 1865:aluminium oxide 1853: 1780: 1769: 1720:, washing, and 1690: 1648: 1628: 1584: 1548: 1504: 1484: 1437: 1421: 1419:Regular packing 1355: 1347: 1299:capillary force 1288:elastic modulus 1280:elastic modulus 1272:nanoindentation 1256:nanoindentation 1201: 1184: 1163: 1138: 1119: 1110: 1104: 1064: 1055: 1046: 1033: 1024: 1012: 1000: 977: 972: 931:Janus particles 869: 806:) exhibiting a 804: 800: 789: 765: 756:Michael Faraday 753: 698: 666: 661: 653:Brownian motion 637:single crystals 629: 621:ultrafiltration 606: 590: 571: 566: 440:ceramic candles 409:Brownian motion 367: 343: 339: 328: 288: 276: 173:Aluminium oxide 28: 23: 22: 15: 12: 11: 5: 11443: 11433: 11432: 11415: 11414: 11411: 11410: 11409: 11408: 11405: 11394: 11388: 11382: 11381: 11378: 11377: 11375: 11374: 11369: 11363: 11358: 11352:Microparticles 11349: 11339: 11337: 11331: 11330: 11327: 11326: 11324: 11323: 11317: 11315: 11311: 11310: 11308: 11307: 11298: 11293: 11287: 11285: 11279: 11278: 11276: 11275: 11270: 11260: 11259: 11257:Gadoxetic acid 11254: 11249: 11244: 11242:Gadoteric acid 11239: 11234: 11229: 11224: 11219: 11214: 11209: 11207:Gadobenic acid 11197: 11195: 11186: 11180: 11179: 11176: 11175: 11173: 11172: 11170:Barium sulfate 11166: 11164: 11160: 11159: 11157: 11156: 11151: 11146: 11141: 11130:Ethiodized oil 11126: 11124: 11118: 11117: 11114: 11113: 11111: 11110: 11105: 11100: 11095: 11093:Iocetamic acid 11090: 11085: 11080: 11075: 11070: 11065: 11063:Iodoxamic acid 11059: 11057: 11053: 11052: 11050: 11049: 11044: 11039: 11034: 11029: 11024: 11019: 11014: 11009: 11004: 10999: 10994: 10988: 10986: 10978: 10977: 10975: 10974: 10969: 10964: 10959: 10954: 10949: 10944: 10942:Iotalamic acid 10939: 10934: 10932:Metrizoic acid 10929: 10923: 10921: 10910: 10901: 10895: 10894: 10886:Contrast media 10882: 10881: 10874: 10867: 10859: 10850: 10849: 10847: 10846: 10834: 10822: 10810: 10797: 10794: 10793: 10791: 10790: 10785: 10780: 10774: 10772: 10766: 10765: 10763: 10762: 10757: 10751: 10749: 10743: 10742: 10740: 10739: 10734: 10728: 10726: 10720: 10719: 10717: 10716: 10711: 10706: 10701: 10695: 10693: 10687: 10686: 10684: 10683: 10682: 10681: 10671: 10670: 10669: 10664: 10656: 10650: 10648: 10642: 10641: 10639: 10638: 10633: 10628: 10626:Nanotoxicology 10623: 10617: 10615: 10605: 10604: 10602: 10601: 10596: 10591: 10586: 10580: 10578: 10572: 10571: 10568:Nanotechnology 10564: 10563: 10556: 10549: 10541: 10535: 10534: 10525: 10513: 10510:Nanohedron.com 10505: 10504:External links 10502: 10501: 10500: 10494: 10488: 10478: 10466: 10460: 10443: 10440: 10437: 10436: 10385: 10364:(5): 321–325. 10344: 10307:(2): 157–163. 10287: 10246: 10187: 10144: 10109:(19): 8931–8. 10093: 10054: 10032: 10020: 9963: 9913: 9871: 9846: 9795: 9762: 9726: 9680: 9637: 9602: 9575:(11): 118102. 9559: 9522: 9465: 9424: 9369: 9356: 9326: 9313: 9270: 9227: 9168: 9139:(7): 737–742. 9117: 9104: 9083:(3): 209–218. 9063: 9036: 8977: 8958:(1): 347–354. 8942: 8907: 8895: 8868:(8): 4868–81. 8848: 8834: 8811: 8783: 8751:Nanotechnology 8734: 8727: 8701: 8658: 8611: 8574: 8547:(7): 795–821. 8515: 8490:Nanotoxicology 8480: 8445:(5): 344–361. 8416: 8389: 8378:(6): 398–406. 8362: 8335:(4): 314 325. 8319: 8284: 8257: 8230: 8223: 8205: 8194:on 1 July 2011 8179: 8132: 8097:Nature Methods 8083: 8048: 8021:(16): 5064–5. 8005: 7956: 7935:(12): 985–94. 7915: 7856: 7827:(1): 2102451. 7807: 7778:(2): 472–483. 7758: 7707: 7672: 7665: 7645: 7631: 7611: 7584: 7577: 7559: 7532: 7483: 7430: 7378: 7351: 7316: 7264: 7229:(2): 188–199. 7209: 7184:Chem. Soc. Rev 7174: 7147: 7112: 7093:(9): 484–489. 7073: 7014: 6962: 6911: 6868: 6811: 6776: 6738: 6692: 6643: 6584: 6547:(7): 1413–22. 6541:Applied Optics 6524: 6480: 6437: 6404:Applied Optics 6389: 6347: 6292: 6273:(3): 129–143. 6250: 6211: 6168: 6118: 6058: 6052: 6018: 5983: 5940: 5901:(1): 198–205. 5881: 5866: 5848: 5821: 5772: 5765: 5747: 5708: 5681: 5632: 5586: 5575: 5532:Biointerphases 5522: 5473: 5434: 5398: 5370: 5343: 5308: 5297:(1): 139-150. 5277: 5249: 5222: 5193: 5160: 5124: 5096: 5069: 5050: 5023: 4984: 4941: 4904:(1): 350–361. 4881: 4846: 4833:(6): 220–227. 4813: 4770: 4715: 4680: 4661:(10): 9700–7. 4645: 4626:(10): 3615–9. 4610: 4577:Nanotechnology 4564: 4542: 4504: 4455: 4414: 4373: 4366: 4346: 4339: 4317: 4292: 4285: 4259: 4210: 4151: 4107: 4093: 4073: 4066: 4046: 4020: 3979: 3972: 3954: 3908: 3844: 3819: 3776: 3763:(7): 908–931. 3743: 3702: 3651: 3637: 3609: 3565: 3530: 3500: 3441: 3398:(29): 295701. 3392:Nanotechnology 3378: 3357:(2): 377–410. 3330: 3312: 3311: 3309: 3306: 3304: 3303: 3298: 3293: 3288: 3283: 3278: 3273: 3268: 3263: 3258: 3253: 3248: 3243: 3238: 3236:Nanotechnology 3233: 3228: 3223: 3218: 3213: 3211:Nanogeoscience 3208: 3203: 3198: 3193: 3188: 3182: 3177: 3172: 3167: 3162: 3157: 3152: 3147: 3142: 3137: 3135:Colloidal gold 3132: 3127: 3122: 3117: 3112: 3106: 3105: 3104: 3101:Biology portal 3090: 3076: 3073:Science portal 3060: 3057: 3054: 3053: 3035:copper sulfide 3020: 3017: 3013: 3012: 2991: 2988: 2984: 2983: 2922: 2919: 2915: 2914: 2904: 2901: 2897: 2896: 2843: 2840: 2836: 2835: 2801:hydroxyapatite 2790: 2787: 2783: 2782: 2761: 2758: 2754: 2753: 2700: 2697: 2693: 2692: 2663: 2660: 2656: 2655: 2638: 2635: 2631: 2630: 2589: 2586: 2582: 2581: 2536: 2533: 2529: 2528: 2443: 2440: 2436: 2435: 2394: 2391: 2387: 2386: 2385:Nanoparticles 2383: 2380: 2370: 2367: 2350: 2347: 2330: 2327: 2322: 2319: 2315:photocatalysis 2309: 2308:Photocatalysis 2306: 2301: 2298: 2288: 2285: 2272:growth factors 2267: 2246: 2243: 2237: 2234: 2233: 2232: 2217: 2206: 2200: 2195: 2189: 2162:cell membranes 2152:Nanotoxicology 2139: 2136: 2128:centrifugation 2124:Chromatography 2090:methods using 1990:Main article: 1987: 1984: 1885:metal carbides 1877:glass-ceramics 1861:oxide ceramics 1852: 1849: 1779: 1776: 1768: 1765: 1718:centrifugation 1689: 1686: 1647: 1644: 1627: 1624: 1600:thermal plasma 1583: 1580: 1570:. Traditional 1547: 1544: 1503: 1500: 1496:air classified 1490:, a planetary 1483: 1480: 1449:semiconductors 1436: 1433: 1420: 1417: 1354: 1351: 1346: 1343: 1327:yield strength 1264:scanning probe 1228:work hardening 1213:surface stress 1200: 1197: 1183: 1180: 1162: 1159: 1137: 1134: 1118: 1115: 1103: 1100: 1063: 1060: 1054: 1051: 1045: 1042: 1032: 1029: 1023: 1020: 1011: 1008: 999: 996: 976: 973: 971: 968: 868: 865: 846:crystal growth 802: 788: 785: 764: 761: 752: 749: 697: 694: 674:meteorological 672:, geological, 665: 662: 660: 657: 628: 625: 605: 602: 589: 586: 570: 567: 565: 562: 519:nanotechnology 444:nanofiltration 402:microparticles 369: 368: 346: 344: 337: 330: 329: 327: 326: 319: 312: 304: 301: 300: 299: 298: 286: 271: 270: 269: 268: 263: 258: 253: 245: 244: 238: 237: 236: 235: 230: 225: 220: 215: 210: 205: 200: 195: 190: 185: 180: 175: 170: 165: 157: 156: 149: 148: 147: 146: 141: 136: 131: 126: 118: 117: 111: 110: 109: 108: 103: 98: 93: 88: 83: 75: 74: 68: 67: 59: 58: 52: 51: 26: 9: 6: 4: 3: 2: 11442: 11431: 11430:Nanoparticles 11428: 11427: 11425: 11406: 11404: 11401: 11400: 11398: 11395: 11392: 11389: 11387: 11384: 11383: 11379: 11373: 11370: 11368: 11367:phospholipids 11364: 11362: 11359: 11357: 11353: 11350: 11348: 11347:human albumin 11344: 11341: 11340: 11338: 11336: 11332: 11322: 11319: 11318: 11316: 11312: 11306: 11305:nanoparticles 11302: 11299: 11297: 11294: 11292: 11289: 11288: 11286: 11284: 11280: 11274: 11271: 11269: 11265: 11262: 11261: 11258: 11255: 11253: 11250: 11248: 11245: 11243: 11240: 11238: 11235: 11233: 11230: 11228: 11225: 11223: 11220: 11218: 11215: 11213: 11210: 11208: 11204: 11203: 11199: 11198: 11196: 11194: 11190: 11187: 11185: 11181: 11171: 11168: 11167: 11165: 11163:Non-iodinated 11161: 11155: 11152: 11150: 11147: 11145: 11142: 11139: 11135: 11131: 11128: 11127: 11125: 11119: 11109: 11106: 11104: 11101: 11099: 11096: 11094: 11091: 11089: 11088:Iopanoic acid 11086: 11084: 11081: 11079: 11076: 11074: 11071: 11069: 11068:Iotroxic acid 11066: 11064: 11061: 11060: 11058: 11054: 11048: 11045: 11043: 11040: 11038: 11035: 11033: 11030: 11028: 11025: 11023: 11020: 11018: 11015: 11013: 11010: 11008: 11005: 11003: 11002:Ioxaglic acid 11000: 10998: 10995: 10993: 10990: 10989: 10987: 10985: 10981:Nephrotropic, 10979: 10973: 10970: 10968: 10965: 10963: 10962:Iocarmic acid 10960: 10958: 10955: 10953: 10952:Ioglicic acid 10950: 10948: 10945: 10943: 10940: 10938: 10935: 10933: 10930: 10928: 10925: 10924: 10922: 10920: 10916:Nephrotropic, 10914: 10911: 10909:Water soluble 10905: 10902: 10900: 10896: 10891: 10887: 10880: 10875: 10873: 10868: 10866: 10861: 10860: 10857: 10845: 10840: 10835: 10833: 10828: 10823: 10821: 10820: 10811: 10809: 10808: 10799: 10798: 10795: 10789: 10786: 10784: 10781: 10779: 10776: 10775: 10773: 10771: 10767: 10761: 10758: 10756: 10753: 10752: 10750: 10748: 10744: 10738: 10735: 10733: 10730: 10729: 10727: 10725: 10721: 10715: 10712: 10710: 10707: 10705: 10702: 10700: 10697: 10696: 10694: 10692: 10688: 10680: 10677: 10676: 10675: 10674:Nanoparticles 10672: 10668: 10665: 10663: 10660: 10659: 10657: 10655: 10652: 10651: 10649: 10647: 10646:Nanomaterials 10643: 10637: 10634: 10632: 10629: 10627: 10624: 10622: 10619: 10618: 10616: 10614: 10610: 10606: 10600: 10597: 10595: 10592: 10590: 10589:Organizations 10587: 10585: 10582: 10581: 10579: 10577: 10573: 10569: 10562: 10557: 10555: 10550: 10548: 10543: 10542: 10539: 10533: 10529: 10526: 10524: 10520: 10517: 10514: 10511: 10508: 10507: 10498: 10495: 10492: 10489: 10486: 10482: 10479: 10476: 10475: 10470: 10467: 10463: 10457: 10453: 10452: 10446: 10445: 10432: 10428: 10423: 10418: 10413: 10408: 10404: 10400: 10396: 10389: 10381: 10377: 10372: 10367: 10363: 10359: 10355: 10348: 10340: 10336: 10331: 10326: 10322: 10318: 10314: 10310: 10306: 10302: 10298: 10291: 10283: 10279: 10274: 10269: 10266:(5): 625–35. 10265: 10261: 10257: 10250: 10242: 10238: 10233: 10228: 10223: 10218: 10214: 10210: 10206: 10202: 10198: 10191: 10183: 10179: 10175: 10171: 10167: 10163: 10159: 10155: 10148: 10140: 10136: 10132: 10128: 10124: 10120: 10116: 10112: 10108: 10104: 10097: 10089: 10085: 10081: 10077: 10073: 10069: 10065: 10058: 10042: 10036: 10030: 10024: 10016: 10012: 10007: 10002: 9998: 9994: 9990: 9986: 9982: 9978: 9974: 9967: 9959: 9955: 9951: 9947: 9943: 9939: 9935: 9931: 9924: 9917: 9909: 9905: 9901: 9897: 9893: 9889: 9882: 9875: 9860: 9856: 9850: 9842: 9838: 9833: 9828: 9823: 9818: 9814: 9810: 9806: 9799: 9790: 9785: 9781: 9777: 9773: 9766: 9757: 9753: 9749: 9745: 9741: 9737: 9730: 9722: 9718: 9714: 9710: 9706: 9702: 9698: 9694: 9690: 9689:Duarte, F. J. 9684: 9676: 9672: 9668: 9664: 9660: 9656: 9652: 9648: 9641: 9633: 9629: 9625: 9621: 9617: 9613: 9606: 9598: 9594: 9590: 9586: 9582: 9578: 9574: 9570: 9563: 9555: 9551: 9547: 9543: 9539: 9535: 9534: 9526: 9518: 9514: 9509: 9504: 9500: 9496: 9492: 9488: 9484: 9480: 9476: 9469: 9461: 9457: 9452: 9447: 9443: 9439: 9435: 9428: 9420: 9416: 9412: 9408: 9404: 9400: 9396: 9392: 9389:(2): 022006. 9388: 9384: 9380: 9373: 9359: 9353: 9349: 9345: 9341: 9337: 9330: 9323: 9317: 9310: 9309:public domain 9291: 9285: 9283: 9281: 9279: 9277: 9275: 9266: 9262: 9258: 9254: 9250: 9246: 9242: 9238: 9231: 9223: 9219: 9214: 9209: 9204: 9199: 9195: 9191: 9187: 9183: 9179: 9172: 9164: 9160: 9155: 9150: 9146: 9142: 9138: 9134: 9133: 9128: 9121: 9114: 9108: 9100: 9096: 9091: 9086: 9082: 9078: 9074: 9067: 9059: 9055: 9052:(5): 822–45. 9051: 9047: 9040: 9032: 9028: 9023: 9018: 9013: 9008: 9004: 9000: 8996: 8992: 8988: 8981: 8973: 8969: 8965: 8961: 8957: 8953: 8946: 8938: 8934: 8930: 8926: 8922: 8918: 8911: 8904: 8899: 8891: 8887: 8883: 8879: 8875: 8871: 8867: 8863: 8859: 8852: 8837: 8831: 8827: 8826: 8821: 8815: 8799: 8798: 8793: 8787: 8776: 8772: 8768: 8764: 8760: 8757:(3): R9–R13. 8756: 8752: 8745: 8738: 8730: 8724: 8720: 8716: 8712: 8705: 8697: 8693: 8689: 8685: 8681: 8677: 8673: 8669: 8662: 8654: 8650: 8646: 8642: 8638: 8634: 8630: 8626: 8622: 8615: 8606: 8601: 8597: 8593: 8589: 8585: 8578: 8570: 8566: 8562: 8558: 8554: 8550: 8546: 8542: 8535: 8528: 8526: 8524: 8522: 8520: 8511: 8507: 8503: 8499: 8495: 8491: 8484: 8476: 8472: 8468: 8464: 8460: 8456: 8452: 8448: 8444: 8440: 8439:Ecotoxicology 8433: 8431: 8429: 8427: 8425: 8423: 8421: 8412: 8408: 8404: 8400: 8393: 8385: 8381: 8377: 8373: 8366: 8358: 8354: 8350: 8346: 8342: 8338: 8334: 8330: 8329:J. Mater. Sci 8323: 8315: 8311: 8307: 8303: 8299: 8295: 8288: 8280: 8276: 8272: 8268: 8261: 8253: 8249: 8246:(10): C 190. 8245: 8241: 8234: 8226: 8220: 8216: 8209: 8193: 8189: 8183: 8175: 8171: 8167: 8163: 8159: 8155: 8151: 8147: 8143: 8136: 8128: 8124: 8119: 8114: 8110: 8106: 8102: 8098: 8094: 8087: 8079: 8075: 8071: 8067: 8063: 8059: 8052: 8044: 8040: 8036: 8032: 8028: 8024: 8020: 8016: 8009: 8001: 7997: 7992: 7987: 7983: 7979: 7976:(4): 731–42. 7975: 7971: 7967: 7960: 7952: 7948: 7943: 7938: 7934: 7930: 7926: 7919: 7911: 7907: 7902: 7897: 7892: 7887: 7883: 7879: 7875: 7871: 7867: 7860: 7852: 7848: 7843: 7838: 7834: 7830: 7826: 7822: 7818: 7811: 7803: 7799: 7794: 7789: 7785: 7781: 7777: 7773: 7769: 7762: 7754: 7750: 7746: 7742: 7738: 7734: 7730: 7726: 7722: 7718: 7711: 7703: 7699: 7695: 7691: 7687: 7683: 7676: 7668: 7662: 7658: 7657: 7649: 7634: 7628: 7624: 7623: 7615: 7607: 7603: 7599: 7595: 7588: 7580: 7574: 7570: 7563: 7555: 7551: 7547: 7543: 7536: 7528: 7524: 7519: 7514: 7510: 7506: 7503:: 1868–1880. 7502: 7498: 7494: 7487: 7479: 7475: 7470: 7465: 7461: 7457: 7453: 7449: 7445: 7441: 7434: 7426: 7422: 7417: 7412: 7408: 7404: 7400: 7396: 7392: 7385: 7383: 7374: 7370: 7366: 7362: 7355: 7347: 7343: 7339: 7335: 7331: 7327: 7320: 7312: 7308: 7303: 7298: 7294: 7290: 7286: 7282: 7278: 7271: 7269: 7260: 7256: 7252: 7248: 7244: 7240: 7236: 7232: 7228: 7224: 7220: 7213: 7205: 7201: 7197: 7193: 7189: 7185: 7178: 7170: 7166: 7162: 7158: 7151: 7143: 7139: 7135: 7131: 7127: 7123: 7116: 7108: 7104: 7100: 7096: 7092: 7088: 7084: 7077: 7069: 7065: 7060: 7055: 7050: 7045: 7041: 7037: 7033: 7029: 7025: 7018: 7010: 7006: 7001: 6996: 6992: 6988: 6984: 6980: 6976: 6969: 6967: 6958: 6954: 6950: 6946: 6942: 6938: 6934: 6930: 6926: 6922: 6915: 6907: 6903: 6899: 6895: 6891: 6887: 6883: 6879: 6872: 6864: 6860: 6855: 6850: 6846: 6842: 6838: 6834: 6830: 6826: 6822: 6815: 6807: 6803: 6799: 6795: 6791: 6787: 6780: 6772: 6768: 6764: 6760: 6756: 6752: 6745: 6743: 6733: 6728: 6724: 6720: 6716: 6712: 6708: 6701: 6699: 6697: 6688: 6684: 6679: 6674: 6670: 6666: 6662: 6658: 6650: 6648: 6639: 6635: 6630: 6625: 6620: 6615: 6611: 6607: 6603: 6599: 6595: 6588: 6580: 6576: 6571: 6566: 6562: 6558: 6554: 6550: 6546: 6542: 6538: 6531: 6529: 6519: 6514: 6510: 6506: 6502: 6498: 6494: 6487: 6485: 6476: 6472: 6468: 6464: 6460: 6456: 6452: 6448: 6441: 6433: 6429: 6425: 6421: 6417: 6413: 6409: 6405: 6398: 6396: 6394: 6385: 6381: 6377: 6373: 6369: 6365: 6361: 6354: 6352: 6343: 6339: 6335: 6331: 6327: 6323: 6319: 6315: 6311: 6307: 6303: 6296: 6288: 6284: 6280: 6276: 6272: 6268: 6264: 6257: 6255: 6246: 6242: 6238: 6234: 6230: 6226: 6222: 6215: 6207: 6203: 6199: 6195: 6191: 6187: 6183: 6179: 6172: 6164: 6160: 6156: 6152: 6148: 6144: 6140: 6136: 6132: 6125: 6123: 6114: 6110: 6105: 6100: 6096: 6092: 6089:(1): 013001. 6088: 6084: 6080: 6073: 6071: 6069: 6067: 6065: 6063: 6055: 6049: 6045: 6041: 6037: 6033: 6029: 6022: 6014: 6010: 6006: 6002: 5998: 5994: 5987: 5979: 5975: 5971: 5967: 5963: 5959: 5956:(2): 95–100. 5955: 5951: 5944: 5936: 5932: 5927: 5922: 5917: 5912: 5908: 5904: 5900: 5896: 5892: 5885: 5877: 5873: 5869: 5867:0-07-028594-2 5863: 5859: 5852: 5844: 5840: 5836: 5832: 5825: 5817: 5813: 5808: 5803: 5799: 5795: 5792:: 2265–2276. 5791: 5787: 5783: 5776: 5768: 5762: 5759:. Wiley-VCH. 5758: 5751: 5743: 5739: 5735: 5731: 5727: 5723: 5719: 5712: 5704: 5700: 5696: 5692: 5685: 5677: 5673: 5668: 5663: 5659: 5655: 5651: 5647: 5643: 5636: 5628: 5624: 5619: 5614: 5610: 5606: 5602: 5598: 5590: 5584: 5579: 5571: 5567: 5563: 5559: 5555: 5551: 5546: 5541: 5537: 5533: 5526: 5518: 5514: 5509: 5504: 5500: 5496: 5492: 5488: 5484: 5477: 5469: 5465: 5461: 5457: 5453: 5449: 5445: 5438: 5430: 5426: 5422: 5418: 5414: 5410: 5402: 5394: 5390: 5386: 5382: 5374: 5366: 5362: 5358: 5354: 5347: 5339: 5335: 5331: 5327: 5323: 5319: 5312: 5304: 5300: 5296: 5292: 5288: 5281: 5273: 5269: 5265: 5261: 5253: 5245: 5241: 5237: 5233: 5226: 5220: 5216: 5212: 5208: 5207: 5202: 5197: 5188: 5183: 5179: 5175: 5171: 5164: 5156: 5152: 5148: 5144: 5140: 5136: 5128: 5120: 5116: 5112: 5108: 5100: 5092: 5088: 5084: 5080: 5073: 5065: 5061: 5054: 5046: 5042: 5038: 5034: 5027: 5019: 5015: 5011: 5007: 5003: 4999: 4995: 4988: 4980: 4976: 4972: 4968: 4964: 4960: 4956: 4952: 4945: 4937: 4933: 4928: 4923: 4919: 4915: 4911: 4907: 4903: 4899: 4895: 4888: 4886: 4877: 4873: 4869: 4865: 4861: 4857: 4850: 4841: 4836: 4832: 4828: 4824: 4817: 4809: 4805: 4801: 4797: 4793: 4789: 4785: 4781: 4774: 4766: 4762: 4758: 4754: 4750: 4746: 4742: 4738: 4734: 4730: 4726: 4719: 4711: 4707: 4703: 4699: 4695: 4691: 4684: 4676: 4672: 4668: 4664: 4660: 4656: 4649: 4641: 4637: 4633: 4629: 4625: 4621: 4614: 4606: 4602: 4598: 4594: 4590: 4586: 4582: 4578: 4571: 4569: 4560: 4553: 4551: 4549: 4547: 4538: 4534: 4530: 4526: 4522: 4518: 4511: 4509: 4500: 4496: 4491: 4486: 4482: 4478: 4474: 4470: 4466: 4459: 4450: 4445: 4441: 4437: 4433: 4429: 4425: 4418: 4409: 4404: 4400: 4396: 4392: 4388: 4384: 4377: 4369: 4363: 4359: 4358: 4350: 4342: 4336: 4332: 4328: 4321: 4306: 4302: 4296: 4288: 4282: 4278: 4274: 4270: 4263: 4255: 4251: 4246: 4241: 4237: 4233: 4229: 4225: 4221: 4214: 4206: 4202: 4197: 4192: 4187: 4182: 4178: 4174: 4170: 4166: 4162: 4155: 4146: 4141: 4137: 4133: 4129: 4125: 4121: 4114: 4112: 4096: 4090: 4086: 4085: 4077: 4069: 4063: 4059: 4058: 4050: 4034: 4030: 4024: 4016: 4012: 4007: 4002: 3998: 3994: 3990: 3983: 3975: 3969: 3965: 3958: 3950: 3946: 3942: 3938: 3934: 3930: 3926: 3922: 3915: 3913: 3904: 3900: 3895: 3890: 3886: 3882: 3878: 3874: 3870: 3866: 3862: 3855: 3853: 3851: 3849: 3833: 3829: 3823: 3815: 3811: 3807: 3803: 3799: 3795: 3791: 3787: 3780: 3771: 3766: 3762: 3758: 3754: 3747: 3738: 3733: 3729: 3725: 3722:(1): 013001. 3721: 3717: 3713: 3706: 3698: 3694: 3690: 3686: 3682: 3678: 3674: 3670: 3666: 3662: 3655: 3640: 3634: 3630: 3626: 3622: 3621: 3613: 3605: 3601: 3596: 3591: 3587: 3583: 3579: 3572: 3570: 3561: 3557: 3553: 3549: 3545: 3541: 3534: 3526: 3522: 3518: 3514: 3507: 3505: 3496: 3492: 3487: 3482: 3478: 3474: 3469: 3464: 3460: 3456: 3455:Nanomaterials 3452: 3445: 3437: 3433: 3429: 3425: 3421: 3417: 3413: 3409: 3405: 3401: 3397: 3393: 3389: 3382: 3374: 3370: 3365: 3360: 3356: 3352: 3348: 3341: 3339: 3337: 3335: 3327: 3323: 3317: 3313: 3302: 3299: 3297: 3294: 3292: 3289: 3287: 3284: 3282: 3279: 3277: 3274: 3272: 3269: 3267: 3264: 3262: 3259: 3257: 3254: 3252: 3249: 3247: 3244: 3242: 3239: 3237: 3234: 3232: 3229: 3227: 3224: 3222: 3219: 3217: 3216:Nanomaterials 3214: 3212: 3209: 3207: 3204: 3202: 3199: 3197: 3194: 3192: 3189: 3186: 3183: 3181: 3178: 3176: 3173: 3171: 3168: 3166: 3163: 3161: 3158: 3156: 3153: 3151: 3148: 3146: 3143: 3141: 3138: 3136: 3133: 3131: 3128: 3126: 3123: 3121: 3118: 3116: 3113: 3111: 3108: 3107: 3102: 3096: 3091: 3088: 3082: 3077: 3074: 3068: 3063: 3052: 3048: 3044: 3040: 3036: 3032: 3028: 3024: 3021: 3018: 3015: 3014: 3011: 3007: 3003: 2999: 2995: 2992: 2989: 2986: 2985: 2982: 2978: 2974: 2970: 2966: 2962: 2958: 2954: 2950: 2946: 2942: 2938: 2934: 2930: 2926: 2923: 2920: 2917: 2916: 2912: 2908: 2905: 2902: 2899: 2898: 2895: 2891: 2887: 2883: 2879: 2875: 2871: 2870:boron nitride 2867: 2863: 2859: 2855: 2851: 2847: 2844: 2841: 2838: 2837: 2834: 2830: 2826: 2822: 2818: 2814: 2810: 2806: 2802: 2798: 2794: 2791: 2788: 2785: 2784: 2781: 2777: 2773: 2769: 2765: 2762: 2759: 2756: 2755: 2752: 2748: 2744: 2740: 2736: 2732: 2728: 2724: 2720: 2716: 2712: 2708: 2704: 2701: 2698: 2695: 2694: 2691: 2687: 2683: 2679: 2675: 2671: 2667: 2664: 2661: 2658: 2657: 2654: 2650: 2646: 2642: 2639: 2636: 2633: 2632: 2629: 2625: 2621: 2617: 2613: 2609: 2605: 2601: 2597: 2593: 2590: 2587: 2584: 2583: 2580: 2576: 2572: 2568: 2564: 2560: 2556: 2552: 2548: 2544: 2540: 2537: 2535:construction 2534: 2531: 2530: 2527: 2523: 2519: 2515: 2511: 2507: 2503: 2499: 2495: 2491: 2487: 2483: 2479: 2478:boron nitride 2475: 2471: 2467: 2463: 2459: 2455: 2451: 2447: 2444: 2441: 2438: 2437: 2434: 2430: 2426: 2422: 2418: 2414: 2410: 2406: 2402: 2398: 2395: 2392: 2389: 2388: 2384: 2381: 2378: 2377: 2366: 2364: 2360: 2356: 2346: 2344: 2340: 2336: 2335:drug carriers 2326: 2318: 2316: 2305: 2297: 2294: 2284: 2282: 2278: 2273: 2264: 2261:(PMMA) laser 2260: 2256: 2251: 2242: 2230: 2226: 2222: 2218: 2216:environments. 2214: 2210: 2207: 2204: 2201: 2193: 2190: 2187: 2184: 2183: 2182: 2180: 2174: 2172: 2168: 2163: 2159: 2153: 2149: 2145: 2135: 2133: 2129: 2125: 2121: 2117: 2113: 2109: 2105: 2101: 2097: 2093: 2089: 2085: 2081: 2077: 2073: 2069: 2065: 2061: 2057: 2055: 2051: 2047: 2043: 2039: 2038:visible light 2035: 2031: 2027: 2023: 2018: 2016: 2012: 2011:crystallinity 2008: 2004: 2000: 1993: 1983: 1981: 1975: 1972: 1966: 1963: 1958: 1956: 1952: 1948: 1944: 1941: 1937: 1936:agglomeration 1934:Uncontrolled 1932: 1930: 1926: 1922: 1918: 1914: 1910: 1906: 1902: 1898: 1894: 1890: 1886: 1882: 1878: 1874: 1870: 1866: 1862: 1858: 1848: 1845: 1842: 1840: 1836: 1832: 1828: 1823: 1818: 1816: 1812: 1806: 1804: 1800: 1795: 1793: 1789: 1785: 1775: 1773: 1764: 1760: 1758: 1754: 1750: 1746: 1742: 1738: 1733: 1729: 1727: 1723: 1719: 1715: 1714:sedimentation 1711: 1706: 1704: 1699: 1695: 1688:Wet chemistry 1685: 1682: 1677: 1676:free radicals 1673: 1669: 1661: 1657: 1652: 1643: 1640: 1635: 1632: 1623: 1619: 1617: 1613: 1609: 1605: 1601: 1597: 1593: 1589: 1579: 1577: 1573: 1569: 1565: 1561: 1557: 1553: 1543: 1541: 1537: 1533: 1529: 1525: 1521: 1517: 1513: 1509: 1499: 1497: 1493: 1489: 1479: 1477: 1473: 1469: 1465: 1461: 1457: 1452: 1450: 1446: 1442: 1432: 1430: 1426: 1416: 1412: 1408: 1406: 1405:solar thermal 1402: 1398: 1394: 1389: 1387: 1386:energy levels 1383: 1379: 1375: 1371: 1367: 1366:semiconductor 1363: 1359: 1350: 1342: 1340: 1335: 1330: 1328: 1324: 1320: 1316: 1313: 1308: 1305: 1300: 1296: 1293:Adhesion and 1291: 1289: 1285: 1281: 1277: 1273: 1269: 1265: 1261: 1257: 1253: 1248: 1246: 1242: 1237: 1233: 1229: 1225: 1222: 1218: 1214: 1210: 1206: 1196: 1193: 1189: 1179: 1177: 1173: 1168: 1158: 1155: 1147: 1142: 1133: 1131: 1127: 1123: 1114: 1109: 1099: 1097: 1093: 1089: 1085: 1081: 1077: 1068: 1059: 1050: 1041: 1037: 1028: 1019: 1016: 1007: 1005: 995: 993: 992:autocatalysis 989: 984: 981: 967: 965: 961: 958: 954: 950: 949:stabilizers. 948: 944: 941:at water/oil 940: 939:self-assemble 936: 932: 928: 924: 919: 917: 913: 909: 905: 901: 900:nanocellulose 897: 893: 889: 884: 882: 878: 874: 864: 862: 857: 855: 852:droplets and 851: 847: 843: 842:crystal habit 838: 836: 833:, nanoreefs, 832: 829:, nanostars, 828: 824: 820: 813: 809: 798: 795:Nanostars of 793: 784: 782: 778: 774: 770: 760: 757: 748: 746: 742: 738: 734: 730: 726: 722: 719: 715: 711: 707: 703: 693: 691: 687: 683: 679: 675: 671: 656: 654: 649: 644: 642: 641:single-domain 638: 634: 624: 622: 618: 614: 609: 601: 599: 595: 585: 582: 580: 576: 561: 558: 554: 550: 546: 542: 537: 535: 531: 527: 526:point defects 522: 520: 516: 512: 508: 504: 500: 496: 492: 488: 484: 480: 476: 472: 464: 459: 455: 452: 447: 445: 441: 437: 433: 429: 425: 421: 420:visible light 416: 414: 410: 405: 403: 398: 396: 395:atom clusters 392: 388: 384: 380: 376: 365: 360: 356: 352: 351: 350:Micromeritics 345: 336: 335: 325: 320: 318: 313: 311: 306: 305: 303: 302: 297: 292: 287: 285: 280: 275: 274: 273: 272: 267: 264: 262: 259: 257: 254: 252: 251:Nanocomposite 249: 248: 247: 246: 243: 240: 239: 234: 231: 229: 226: 224: 221: 219: 216: 214: 213:Iron–platinum 211: 209: 206: 204: 201: 199: 196: 194: 191: 189: 186: 184: 181: 179: 176: 174: 171: 169: 166: 164: 161: 160: 159: 158: 155: 154:nanoparticles 151: 150: 145: 142: 140: 139:Health impact 137: 135: 132: 130: 129:C70 fullerene 127: 125: 122: 121: 120: 119: 116: 113: 112: 107: 104: 102: 99: 97: 94: 92: 89: 87: 84: 82: 79: 78: 77: 76: 73: 70: 69: 65: 61: 60: 57: 56:Nanomaterials 54: 53: 49: 48: 42: 38: 34: 30: 19: 18:Nanoparticles 11361:Perflenapent 11343:Microspheres 11304: 11273:Mangafodipir 11263: 11237:Gadopiclenol 11222:Gadofosveset 11200: 11193:Paramagnetic 11149:Propyliodone 11134:Ethyl esters 11056:Hepatotropic 10919:high osmolar 10899:X-ray and CT 10817: 10805: 10783:Nanorobotics 10673: 10621:Nanomedicine 10613:applications 10474:ScienceDaily 10472: 10450: 10402: 10398: 10388: 10361: 10357: 10347: 10304: 10300: 10290: 10263: 10259: 10249: 10204: 10200: 10190: 10157: 10153: 10147: 10106: 10102: 10096: 10074:(1): 85–90. 10071: 10067: 10057: 10045:. Retrieved 10035: 10023: 9983:(1): 11216. 9980: 9976: 9966: 9933: 9929: 9916: 9891: 9887: 9874: 9862:. Retrieved 9858: 9849: 9812: 9808: 9798: 9782:(10): e435. 9779: 9775: 9765: 9739: 9735: 9729: 9696: 9692: 9683: 9650: 9646: 9640: 9615: 9611: 9605: 9572: 9568: 9562: 9537: 9531: 9525: 9482: 9478: 9468: 9444:(5): 48–55. 9441: 9437: 9427: 9386: 9382: 9372: 9361:, retrieved 9339: 9329: 9316: 9294:. Retrieved 9240: 9236: 9230: 9185: 9181: 9171: 9136: 9130: 9120: 9107: 9080: 9076: 9066: 9049: 9045: 9039: 8994: 8990: 8980: 8955: 8951: 8945: 8920: 8916: 8910: 8898: 8865: 8861: 8851: 8839:. Retrieved 8824: 8820:Ying, Jackie 8814: 8802:. Retrieved 8795: 8786: 8775:the original 8754: 8750: 8737: 8710: 8704: 8671: 8667: 8661: 8628: 8624: 8614: 8605:10261/333681 8590:(1): 18–27. 8587: 8583: 8577: 8544: 8540: 8496:(1): 42–51. 8493: 8489: 8483: 8442: 8438: 8402: 8398: 8392: 8375: 8371: 8365: 8332: 8328: 8322: 8297: 8293: 8287: 8270: 8266: 8260: 8243: 8239: 8233: 8214: 8208: 8196:. Retrieved 8192:the original 8182: 8149: 8145: 8135: 8103:(5): 397–9. 8100: 8096: 8086: 8061: 8057: 8051: 8018: 8014: 8008: 7973: 7969: 7959: 7932: 7928: 7918: 7873: 7869: 7859: 7824: 7820: 7810: 7775: 7771: 7761: 7720: 7716: 7710: 7685: 7681: 7675: 7655: 7648: 7636:. Retrieved 7621: 7614: 7597: 7593: 7587: 7568: 7562: 7545: 7541: 7535: 7500: 7496: 7486: 7469:10261/182011 7443: 7439: 7433: 7398: 7394: 7364: 7360: 7354: 7329: 7325: 7319: 7284: 7280: 7226: 7222: 7212: 7187: 7183: 7177: 7160: 7156: 7150: 7125: 7121: 7115: 7090: 7086: 7076: 7031: 7028:RSC Advances 7027: 7017: 6982: 6978: 6924: 6920: 6914: 6881: 6877: 6871: 6828: 6824: 6814: 6789: 6785: 6779: 6754: 6750: 6714: 6710: 6678:11585/653909 6660: 6656: 6601: 6597: 6587: 6544: 6540: 6500: 6496: 6450: 6446: 6440: 6407: 6403: 6367: 6363: 6309: 6305: 6295: 6270: 6266: 6228: 6224: 6214: 6181: 6171: 6138: 6134: 6086: 6082: 6027: 6021: 5996: 5992: 5986: 5953: 5949: 5943: 5898: 5894: 5884: 5857: 5851: 5834: 5830: 5824: 5789: 5785: 5775: 5756: 5750: 5725: 5721: 5711: 5694: 5690: 5684: 5649: 5645: 5642:"Nucleation" 5635: 5618:11585/583548 5600: 5596: 5589: 5578: 5535: 5531: 5525: 5490: 5486: 5476: 5451: 5447: 5437: 5412: 5408: 5401: 5384: 5380: 5373: 5356: 5352: 5346: 5321: 5317: 5311: 5294: 5290: 5280: 5263: 5259: 5252: 5235: 5231: 5225: 5204: 5196: 5177: 5173: 5163: 5138: 5134: 5127: 5110: 5106: 5099: 5082: 5078: 5072: 5063: 5059: 5053: 5036: 5032: 5026: 5001: 4997: 4987: 4954: 4950: 4944: 4901: 4898:Nano Letters 4897: 4859: 4855: 4849: 4830: 4826: 4816: 4783: 4779: 4773: 4732: 4728: 4718: 4693: 4689: 4683: 4658: 4654: 4648: 4623: 4619: 4613: 4583:(1): 25–28. 4580: 4576: 4558: 4520: 4516: 4472: 4468: 4458: 4431: 4427: 4417: 4390: 4386: 4376: 4356: 4349: 4330: 4320: 4308:. Retrieved 4305:www.nano.gov 4304: 4295: 4268: 4262: 4227: 4223: 4213: 4168: 4164: 4154: 4127: 4123: 4098:. Retrieved 4083: 4076: 4056: 4049: 4037:. Retrieved 4032: 4023: 3996: 3992: 3982: 3963: 3957: 3924: 3920: 3868: 3865:Nano Reviews 3864: 3835:. Retrieved 3831: 3822: 3789: 3785: 3779: 3760: 3756: 3746: 3719: 3715: 3705: 3664: 3660: 3654: 3642:. Retrieved 3619: 3612: 3585: 3581: 3543: 3539: 3533: 3516: 3512: 3461:(21): 2889. 3458: 3454: 3444: 3395: 3391: 3381: 3354: 3350: 3324:". From the 3316: 3221:Nanomedicine 3145:Eigencolloid 2662:environment 2637:electronics 2470:cobalt oxide 2393:agriculture 2352: 2332: 2324: 2311: 2303: 2290: 2252: 2248: 2245:Applications 2239: 2219:Iron: While 2192:Cerium oxide 2175: 2171:cytotoxicity 2155: 2148:Particulates 2060:Spectroscopy 2058: 2019: 1995: 1980:Monodisperse 1976: 1967: 1959: 1933: 1854: 1846: 1843: 1835:streptavidin 1819: 1807: 1796: 1787: 1781: 1770: 1761: 1730: 1726:spin-coating 1707: 1691: 1665: 1642:structures. 1634:condensation 1629: 1620: 1608:electric arc 1585: 1564:hydrocarbons 1549: 1505: 1485: 1453: 1438: 1422: 1413: 1409: 1390: 1382:Quantum dots 1356: 1348: 1339:dislocations 1331: 1318: 1311: 1309: 1292: 1249: 1209:dislocations 1203:The reduced 1202: 1185: 1164: 1151: 1120: 1111: 1073: 1056: 1047: 1038: 1034: 1025: 1013: 1001: 985: 978: 951: 920: 916:nanostarches 885: 870: 858: 839: 835:nanowhiskers 816: 812:desert roses 766: 763:20th century 754: 751:19th century 721:Lycurgus cup 699: 670:cosmological 667: 645: 630: 613:transparency 610: 607: 604:Common usage 591: 583: 572: 538: 530:dislocations 523: 468: 448: 446:techniques. 417: 406: 399: 378: 375:nanoparticle 374: 372: 363: 348: 188:Cobalt oxide 168:Quantum dots 153: 101:Applications 29: 11393:from market 11247:Gadoteridol 11217:Gadodiamide 11154:Iofendylate 11140:, lipiodol) 11138:fatty acids 11136:of iodised 10992:Metrizamide 10984:low osmolar 10041:"Sunscreen" 9894:: 123–141. 9815:(5): 1150. 9653:: 239–245. 9618:: 413–420. 8917:Soft Matter 7401:: 466–475. 6831:(1): 7696. 6503:(10): e34. 6453:: 827–835. 6447:Nano Energy 5999:: 433–441. 5493:: 164–173. 5381:Chem. Mater 5353:Chem. Mater 5291:Chem. Mater 5180:: 186-235. 5135:Chem. Mater 4393:: 145 181. 4310:12 December 3326:EPA Website 3281:Silver Nano 3261:Quantum dot 2442:automotive 2321:Road paving 2209:Nano Silver 1803:gallic acid 1710:evaporation 1698:precipitate 1524:anisotropic 1445:dielectrics 1380:materials. 1368:particles, 1274:to measure 1146:quantum dot 1122:Suspensions 945:and act as 937:. They can 929:are termed 927:hydrophobic 923:hydrophilic 888:biopolymers 831:nanoflowers 733:Mesopotamia 731:pottery of 706:glassmakers 633:Nanopowders 564:Definitions 11335:Ultrasound 11321:Perflubron 11301:Iron oxide 11296:Ferristene 11291:Ferumoxsil 11227:Gadolinium 11212:Gadobutrol 11121:Iodinated, 11078:Adipiodone 11042:Iobitridol 10907:Iodinated, 10667:Non-carbon 10658:Nanotubes 10654:Fullerenes 10636:Regulation 10064:Pinnell SR 10047:6 December 9864:6 December 9438:Complexity 9296:6 February 8841:6 December 8631:: 109700. 7638:6 December 7367:: 152502. 6927:: 601–22. 6792:: 213042. 6604:(1): 225. 5174:Mater. Adv 5066:: 236-242. 4696:(2): 287. 4100:6 December 4039:18 January 3308:References 2850:zinc oxide 2842:petroleum 2768:zinc oxide 2719:zinc oxide 2624:kojic acid 2608:zinc oxide 2588:cosmetics 2474:zinc oxide 2433:molybdenum 2429:zinc oxide 2421:phosphorus 2359:Zinc oxide 2349:Sunscreens 2329:Biomedical 2263:gain media 2236:Regulation 2199:additives. 2142:See also: 2132:filtration 2068:wavelength 2022:Microscopy 1940:attractive 1863:, such as 1749:hydrolysis 1722:filtration 1672:gamma rays 1556:combustion 1536:hydrolysed 1482:Mechanical 1435:Production 1106:See also: 1096:micrometer 1044:Properties 998:Nucleation 980:Nucleation 960:acrylamide 943:interfaces 912:nanochitin 908:nanolignin 867:Variations 823:nanochains 729:lusterware 646:The terms 551:(Ag), and 541:anisotropy 387:nanometres 208:Iron oxide 115:Fullerenes 11403:Phase III 11391:Withdrawn 11356:galactose 11032:Iodixanol 11012:Iopromide 11007:Iopamidol 10967:Methiodal 10139:205976044 10103:Nanoscale 9958:125299766 9809:Molecules 9693:Opt. Lett 9675:125645480 9597:125102995 9485:: 15044. 9419:248688540 9411:2516-1091 9265:204266885 8905:europa.eu 8890:210119752 8862:Nanoscale 8804:23 August 8653:225410221 8510:137174566 8357:137539240 8294:Phil. Mag 8166:0001-4842 7688:: 26–36. 7600:: 33–72. 7440:Nanoscale 7259:250860605 7251:1009-0630 6806:203938224 6687:103192810 6663:: 65–81. 6342:137390443 6334:1478-6435 6287:1521-4117 6245:0002-7863 6206:0169-4332 6155:0743-7463 6113:0022-3727 5895:Materials 5545:0801.3280 5517:181326215 5448:Chem. Rev 5155:202880673 4998:Chem. Rev 4951:Nanoscale 4808:136913833 4605:250854158 4171:: 10765. 3885:2000-5121 3837:22 August 3477:2079-4991 3420:0957-4484 3206:Nanofluid 3155:Fullerene 2929:palladium 2903:printing 2789:medicine 2747:palladium 2743:manganese 2653:palladium 2498:palladium 2405:potassium 2363:sunscreen 2158:catalytic 2050:artifacts 1971:lognormal 1962:sintering 1757:chlorides 1753:alkoxides 1751:of metal 1745:hydroxide 1694:solutions 1631:Inert-gas 1572:pyrolysis 1560:pyrolysis 1546:Pyrolysis 1532:enzymatic 1528:oxidation 1508:cellulose 1492:ball mill 1488:ball mill 1472:pyrolysis 1460:attrition 1266:methods. 1176:catalysis 1172:sintering 1092:viscosity 1084:stiffness 957:isopropyl 947:pickering 935:emulsions 904:wood pulp 769:Granqvist 617:turbidity 557:resonance 491:molecular 471:chemistry 397:instead. 385:1 to 100 178:Cellulose 134:Chemistry 86:Chemistry 81:Synthesis 11424:Category 11037:Iomeprol 11027:Iopentol 11022:Ioversol 11017:Iotrolan 10937:Iodamide 10807:Category 10576:Overview 10519:Archived 10431:15119954 10405:(1): 3. 10380:25924642 10339:26191382 10282:26354379 10241:25966284 10201:PLOS ONE 10182:23744621 10174:25935990 10131:25916659 10015:32641741 9841:29751626 9756:28818304 9721:14587824 9517:26463476 9479:Sci. Rep 9257:35021406 9222:36132776 9163:25756964 9099:18360561 9058:19554862 9031:20652105 8972:20709196 8882:31916561 8822:(2001). 8696:24001137 8688:25306903 8569:23910918 8561:18569000 8475:25291395 8467:18483764 8174:23607711 8127:18425138 8078:15339154 8043:24702517 8035:15099078 8000:17517965 7951:15611617 7910:12235356 7851:34773391 7802:20025223 7753:26062996 7527:30013881 7478:25180699 7425:24778973 7311:53659172 7204:24316693 7142:17630692 7107:89082048 7068:35528557 7009:38445363 6957:14113689 6949:11031294 6863:28794487 6771:22204603 6638:21711750 6579:23458793 6475:98282021 6432:24085009 6163:15301482 6135:Langmuir 5978:19151703 5935:28809302 5876:41932585 5816:30202695 5742:25003956 5722:Chem Rev 5676:21132117 5627:27960352 5570:35457219 5562:20419892 5468:25003956 5429:24444431 5338:15926847 5018:25003956 4979:91189669 4971:30938749 4936:18076201 4876:20405913 4800:12481122 4765:16639413 4757:12481134 4675:26394039 4655:ACS Nano 4640:18330181 4254:22678029 4205:26030133 4015:97620232 3949:27241479 3903:22110867 3871:: 5883. 3814:40776948 3689:23535594 3604:26450215 3495:37947733 3486:10648425 3436:45625439 3428:26135968 3373:98107080 3175:Liposome 3059:See also 3019:textile 2945:graphite 2925:titanium 2882:tungsten 2739:platinum 2690:selenium 2645:aluminum 2510:carnauba 2502:platinum 2486:tungsten 2080:infrared 1951:porosity 1917:graphite 1893:nitrides 1873:polymers 1857:ceramics 1839:peptides 1831:aptamers 1815:thiomers 1805:groups. 1799:graphene 1703:aerogels 1596:nitrides 1592:carbides 1378:magnetic 1307:sensor. 1295:friction 1284:adhesion 1276:hardness 1154:coatings 1136:Coatings 964:proteins 953:Hydrogel 881:vaccines 873:liposome 861:isotropy 854:micelles 850:emulsion 819:nanorods 725:dichroic 702:artisans 575:polymers 553:platinum 515:magnetic 511:ceramics 503:plastics 463:platinum 391:diameter 389:(nm) in 256:Nanofoam 223:Platinum 106:Timeline 11144:Iopydol 11047:Ioxilan 10997:Iohexol 10972:Diodone 10819:Commons 10599:Outline 10584:History 10330:4505346 10309:Bibcode 10232:4429007 10209:Bibcode 10111:Bibcode 10088:9922017 10006:7343882 9985:Bibcode 9938:Bibcode 9896:Bibcode 9832:6100587 9701:Bibcode 9655:Bibcode 9620:Bibcode 9577:Bibcode 9508:4604515 9487:Bibcode 9460:6994736 9391:Bibcode 9213:9417912 9190:Bibcode 9154:4492263 9090:1661631 9022:2894345 8999:Bibcode 8925:Bibcode 8633:Bibcode 8447:Bibcode 8337:Bibcode 8302:Bibcode 8118:2637151 7991:2064217 7878:Bibcode 7842:8728822 7793:2871316 7745:2031186 7725:Bibcode 7717:Science 7690:Bibcode 7518:6036986 7448:Bibcode 7416:3999878 7334:Bibcode 7289:Bibcode 7231:Bibcode 7059:9070433 7036:Bibcode 6987:Bibcode 6929:Bibcode 6906:1962191 6886:Bibcode 6878:Science 6854:5550503 6833:Bibcode 6719:Bibcode 6629:3211283 6606:Bibcode 6549:Bibcode 6505:Bibcode 6455:Bibcode 6412:Bibcode 6372:Bibcode 6314:Bibcode 6186:Bibcode 6091:Bibcode 6032:Bibcode 6001:Bibcode 5958:Bibcode 5926:5452105 5903:Bibcode 5807:6122122 5667:2995260 5495:Bibcode 4927:2877922 4906:Bibcode 4780:Science 4737:Bibcode 4729:Science 4698:Bibcode 4585:Bibcode 4525:Bibcode 4477:Bibcode 4436:Bibcode 4395:Bibcode 4232:Bibcode 4196:5377066 4173:Bibcode 4132:Bibcode 3929:Bibcode 3894:3215190 3794:Bibcode 3724:Bibcode 3697:4410909 3669:Bibcode 3582:Science 3548:Bibcode 3400:Bibcode 3276:Silicon 3251:Plasmon 3125:Colloid 3120:Coating 2969:rhodium 2911:printer 2858:diamond 2825:diamond 2776:diamond 2727:calcium 2462:diamond 2409:calcium 2355:imparts 2094:light, 1947:solvent 1784:coating 1737:colloid 1552:aerosol 1397:silicon 1323:twinned 1319:in situ 1312:in situ 1221:lattice 1205:vacancy 1167:diffuse 1130:density 1126:solvent 1088:density 1076:thermal 994:model. 773:Buhrman 710:potters 690:viruses 659:History 648:colloid 483:biology 479:geology 475:physics 436:filters 432:scatter 359:Discuss 183:Ceramic 11386:WHO-EM 10662:Carbon 10609:Impact 10458:  10429:  10422:419715 10419:  10378:  10337:  10327:  10280:  10239:  10229:  10180:  10172:  10137:  10129:  10086:  10013:  10003:  9956:  9839:  9829:  9754:  9719:  9673:  9595:  9554:709782 9552:  9515:  9505:  9458:  9417:  9409:  9363:23 May 9354:  9263:  9255:  9220:  9210:  9161:  9151:  9097:  9087:  9056:  9029:  9019:  8970:  8888:  8880:  8832:  8771:663082 8769:  8725:  8694:  8686:  8651:  8625:Vacuum 8567:  8559:  8508:  8473:  8465:  8355:  8221:  8198:1 July 8172:  8164:  8125:  8115:  8076:  8041:  8033:  7998:  7988:  7949:  7908:  7901:130509 7898:  7849:  7839:  7800:  7790:  7751:  7743:  7663:  7629:  7575:  7525:  7515:  7476:  7423:  7413:  7309:  7257:  7249:  7202:  7140:  7105:  7066:  7056:  7007:  6955:  6947:  6904:  6861:  6851:  6804:  6769:  6685:  6636:  6626:  6577:  6473:  6430:  6340:  6332:  6285:  6243:  6204:  6161:  6153:  6111:  6050:  5976:  5933:  5923:  5874:  5864:  5814:  5804:  5763:  5740:  5674:  5664:  5625:  5568:  5560:  5515:  5466:  5427:  5336:  5153:  5016:  4977:  4969:  4934:  4924:  4874:  4806:  4798:  4763:  4755:  4673:  4638:  4603:  4497:  4364:  4337:  4283:  4252:  4203:  4193:  4091:  4064:  4035:. 2015 4013:  3970:  3947:  3901:  3891:  3883:  3832:Mirkin 3812:  3695:  3687:  3661:Nature 3644:21 May 3635:  3602:  3493:  3483:  3475:  3434:  3426:  3418:  3371:  3027:carbon 3023:silver 3010:carbon 2994:silver 2981:silver 2953:carbon 2890:carbon 2874:silver 2821:carbon 2793:silver 2764:silver 2751:carbon 2731:copper 2703:silver 2674:carbon 2666:silver 2641:silver 2604:carbon 2592:silver 2567:carbon 2547:silver 2518:silver 2466:copper 2397:silver 2150:, and 2130:, and 2096:X-rays 2082:, and 2013:, and 1905:metals 1879:, and 1604:dc jet 1594:, and 1588:oxides 1538:using 1520:starch 1516:chitin 1512:lignin 1447:, and 1441:metals 1282:, and 1236:harder 1224:strain 1090:, and 741:copper 737:silver 577:, the 549:silver 547:(Au), 513:, and 507:metals 499:paints 487:atomic 481:, and 383:matter 355:merged 228:Silver 193:Copper 152:Other 11314:Other 11264:Other 10178:S2CID 10135:S2CID 9954:S2CID 9926:(PDF) 9884:(PDF) 9671:S2CID 9593:S2CID 9550:S2CID 9456:S2CID 9415:S2CID 9261:S2CID 8886:S2CID 8778:(PDF) 8767:S2CID 8747:(PDF) 8692:S2CID 8649:S2CID 8565:S2CID 8537:(PDF) 8506:S2CID 8471:S2CID 8353:S2CID 8039:S2CID 7749:S2CID 7307:S2CID 7255:S2CID 7103:S2CID 6953:S2CID 6802:S2CID 6683:S2CID 6471:S2CID 6338:S2CID 5566:S2CID 5540:arXiv 5513:S2CID 5201:IUPAC 5151:S2CID 4975:S2CID 4804:S2CID 4761:S2CID 4601:S2CID 4499:93060 4495:JSTOR 4011:S2CID 3810:S2CID 3693:S2CID 3432:S2CID 3369:S2CID 2907:toner 2866:boron 2699:food 2494:boron 2425:boron 2098:, or 2092:laser 2072:X-ray 2003:shape 1883:, as 1837:, or 1741:oxide 1610:, or 1518:, or 914:, or 902:from 745:glaze 718:Roman 682:Earth 639:, or 598:80004 579:IUPAC 218:Lipid 10611:and 10456:ISBN 10427:PMID 10376:PMID 10335:PMID 10278:PMID 10237:PMID 10170:PMID 10127:PMID 10084:PMID 10049:2016 10011:PMID 9866:2016 9837:PMID 9752:PMID 9717:PMID 9513:PMID 9407:ISSN 9365:2022 9352:ISBN 9298:2013 9253:PMID 9218:PMID 9159:PMID 9095:PMID 9054:PMID 9027:PMID 8968:PMID 8878:PMID 8843:2016 8830:ISBN 8806:2013 8723:ISBN 8684:PMID 8557:PMID 8463:PMID 8219:ISBN 8200:2011 8170:PMID 8162:ISSN 8123:PMID 8074:PMID 8031:PMID 7996:PMID 7947:PMID 7906:PMID 7847:PMID 7798:PMID 7741:PMID 7661:ISBN 7640:2016 7627:ISBN 7573:ISBN 7523:PMID 7474:PMID 7421:PMID 7247:ISSN 7200:PMID 7138:PMID 7064:PMID 7005:PMID 6945:PMID 6902:PMID 6859:PMID 6767:PMID 6634:PMID 6575:PMID 6428:PMID 6330:ISSN 6283:ISSN 6241:ISSN 6202:ISSN 6159:PMID 6151:ISSN 6109:ISSN 6048:ISBN 5974:PMID 5931:PMID 5872:OCLC 5862:ISBN 5812:PMID 5761:ISBN 5738:PMID 5672:PMID 5623:PMID 5558:PMID 5464:PMID 5425:PMID 5334:PMID 5014:PMID 4967:PMID 4932:PMID 4872:PMID 4796:PMID 4753:PMID 4671:PMID 4636:PMID 4362:ISBN 4335:ISBN 4312:2016 4281:ISBN 4250:PMID 4201:PMID 4102:2016 4089:ISBN 4062:ISBN 4041:2018 3968:ISBN 3945:PMID 3899:PMID 3881:ISSN 3839:2021 3685:PMID 3646:2020 3633:ISBN 3600:PMID 3491:PMID 3473:ISSN 3424:PMID 3416:ISSN 3049:and 3043:gold 3039:clay 3008:and 3006:clay 3002:gold 2979:and 2941:clay 2892:and 2862:clay 2831:and 2805:clay 2797:gold 2778:and 2749:and 2735:zinc 2715:gold 2707:clay 2688:and 2686:gold 2682:clay 2651:and 2626:and 2616:clay 2600:gold 2577:and 2551:clay 2524:and 2454:clay 2431:and 2417:zinc 2413:iron 2379:No. 2028:and 1999:size 1755:and 1681:gray 1568:soot 1540:acid 1403:and 1393:gold 1262:and 1078:and 894:and 879:and 771:and 739:and 708:and 545:gold 203:Iron 198:Gold 11354:of 11345:of 11184:MRI 11132:(= 10890:V08 10417:PMC 10407:doi 10366:doi 10362:116 10325:PMC 10317:doi 10268:doi 10227:PMC 10217:doi 10162:doi 10119:doi 10076:doi 10001:PMC 9993:doi 9946:doi 9934:111 9904:doi 9892:352 9827:PMC 9817:doi 9784:doi 9744:doi 9709:doi 9663:doi 9651:103 9628:doi 9585:doi 9542:doi 9503:PMC 9495:doi 9446:doi 9399:doi 9344:doi 9245:doi 9208:PMC 9198:doi 9149:PMC 9141:doi 9137:123 9085:PMC 9017:PMC 9007:doi 8960:doi 8933:doi 8870:doi 8759:doi 8715:doi 8676:doi 8641:doi 8629:182 8600:hdl 8592:doi 8549:doi 8498:doi 8455:doi 8407:doi 8380:doi 8345:doi 8310:doi 8275:doi 8248:doi 8154:doi 8113:PMC 8105:doi 8066:doi 8062:126 8023:doi 8019:126 7986:PMC 7978:doi 7974:177 7937:doi 7896:PMC 7886:doi 7837:PMC 7829:doi 7788:PMC 7780:doi 7776:132 7733:doi 7721:252 7698:doi 7686:150 7602:doi 7550:doi 7513:PMC 7505:doi 7464:hdl 7456:doi 7411:PMC 7403:doi 7369:doi 7342:doi 7297:doi 7239:doi 7192:doi 7165:doi 7130:doi 7095:doi 7054:PMC 7044:doi 6995:doi 6937:doi 6894:doi 6882:254 6849:PMC 6841:doi 6794:doi 6790:400 6759:doi 6755:112 6727:doi 6715:113 6673:hdl 6665:doi 6661:367 6624:PMC 6614:doi 6565:hdl 6557:doi 6513:doi 6463:doi 6420:doi 6380:doi 6322:doi 6275:doi 6233:doi 6229:115 6194:doi 6143:doi 6099:doi 6040:doi 6009:doi 5997:103 5966:doi 5921:PMC 5911:doi 5839:doi 5835:105 5802:PMC 5794:doi 5730:doi 5726:114 5699:doi 5662:PMC 5654:doi 5613:hdl 5605:doi 5601:138 5550:doi 5503:doi 5456:doi 5452:114 5417:doi 5413:136 5389:doi 5361:doi 5326:doi 5322:127 5299:doi 5268:doi 5264:119 5240:doi 5215:doi 5213:". 5182:doi 5143:doi 5115:doi 5111:119 5087:doi 5064:125 5041:doi 5006:doi 5002:114 4959:doi 4922:PMC 4914:doi 4864:doi 4835:doi 4788:doi 4784:298 4745:doi 4733:298 4706:doi 4663:doi 4628:doi 4593:doi 4533:doi 4485:doi 4444:doi 4403:doi 4391:147 4273:doi 4240:doi 4191:PMC 4181:doi 4140:doi 4001:doi 3937:doi 3889:PMC 3873:doi 3802:doi 3765:doi 3732:doi 3677:doi 3665:496 3625:doi 3590:doi 3586:350 3556:doi 3521:doi 3481:PMC 3463:doi 3408:doi 3359:doi 3016:14 2987:13 2918:12 2900:11 2839:10 2337:or 2167:ZnO 2036:of 1903:), 1891:), 1889:SiC 1871:), 1867:or 1743:or 1654:a) 1558:or 1530:or 1395:or 1376:in 1364:in 1315:TEM 863:). 723:of 712:in 615:or 489:or 377:or 353:be 41:SEM 37:TEM 11426:: 11399:: 11303:, 11266:: 11205:: 10477:). 10425:. 10415:. 10401:. 10397:. 10374:. 10360:. 10356:. 10333:. 10323:. 10315:. 10305:31 10303:. 10299:. 10276:. 10264:40 10262:. 10258:. 10235:. 10225:. 10215:. 10205:10 10203:. 10199:. 10176:. 10168:. 10158:14 10156:. 10133:. 10125:. 10117:. 10105:. 10082:. 10072:40 10070:. 10009:. 9999:. 9991:. 9981:10 9979:. 9975:. 9952:. 9944:. 9932:. 9928:. 9902:. 9890:. 9886:. 9857:. 9835:. 9825:. 9813:23 9811:. 9807:. 9778:. 9774:. 9750:. 9740:35 9738:. 9715:. 9707:. 9697:28 9695:. 9669:. 9661:. 9649:. 9626:. 9616:64 9614:. 9591:. 9583:. 9573:25 9571:. 9548:. 9538:20 9536:. 9511:. 9501:. 9493:. 9481:. 9477:. 9454:. 9442:15 9440:. 9436:. 9413:. 9405:. 9397:. 9385:. 9381:. 9350:, 9338:, 9273:^ 9259:. 9251:. 9239:. 9216:. 9206:. 9196:. 9184:. 9180:. 9157:. 9147:. 9135:. 9129:. 9093:. 9079:. 9075:. 9050:16 9048:. 9025:. 9015:. 9005:. 8993:. 8989:. 8966:. 8954:. 8931:. 8919:. 8884:. 8876:. 8866:12 8864:. 8860:. 8794:. 8765:. 8755:14 8753:. 8749:. 8721:. 8690:. 8682:. 8672:21 8670:. 8647:. 8639:. 8627:. 8623:. 8598:. 8588:30 8586:. 8563:. 8555:. 8545:25 8543:. 8539:. 8518:^ 8504:. 8492:. 8469:. 8461:. 8453:. 8443:17 8441:. 8419:^ 8403:65 8401:. 8376:66 8374:. 8351:. 8343:. 8331:. 8308:. 8298:20 8296:. 8271:79 8269:. 8244:66 8242:. 8168:. 8160:. 8150:46 8148:. 8144:. 8121:. 8111:. 8099:. 8095:. 8072:. 8060:. 8037:. 8029:. 8017:. 7994:. 7984:. 7972:. 7968:. 7945:. 7933:48 7931:. 7927:. 7904:. 7894:. 7884:. 7874:99 7872:. 7868:. 7845:. 7835:. 7823:. 7819:. 7796:. 7786:. 7774:. 7770:. 7747:. 7739:. 7731:. 7719:. 7696:. 7684:. 7598:90 7596:. 7546:22 7544:. 7521:. 7511:. 7499:. 7495:. 7472:. 7462:. 7454:. 7442:. 7419:. 7409:. 7397:. 7393:. 7381:^ 7365:87 7363:. 7340:. 7330:67 7328:. 7305:. 7295:. 7285:47 7283:. 7279:. 7267:^ 7253:. 7245:. 7237:. 7227:12 7225:. 7221:. 7198:. 7188:43 7186:. 7161:79 7159:. 7136:. 7124:. 7101:. 7091:11 7089:. 7085:. 7062:. 7052:. 7042:. 7030:. 7026:. 7003:. 6993:. 6983:26 6981:. 6977:. 6965:^ 6951:. 6943:. 6935:. 6925:51 6923:. 6900:. 6892:. 6880:. 6857:. 6847:. 6839:. 6827:. 6823:. 6800:. 6788:. 6765:. 6753:. 6741:^ 6725:. 6713:. 6709:. 6695:^ 6681:. 6671:. 6659:. 6646:^ 6632:. 6622:. 6612:. 6600:. 6596:. 6573:. 6563:. 6555:. 6545:52 6543:. 6539:. 6527:^ 6511:. 6499:. 6495:. 6483:^ 6469:. 6461:. 6451:13 6449:. 6426:. 6418:. 6408:52 6406:. 6392:^ 6378:. 6368:13 6366:. 6362:. 6350:^ 6336:. 6328:. 6320:. 6310:92 6308:. 6304:. 6281:. 6271:19 6269:. 6265:. 6253:^ 6239:. 6227:. 6223:. 6200:. 6192:. 6180:. 6157:. 6149:. 6139:20 6137:. 6133:. 6121:^ 6107:. 6097:. 6087:47 6085:. 6081:. 6061:^ 6046:, 6038:, 6007:. 5995:. 5972:. 5964:. 5952:. 5929:. 5919:. 5909:. 5897:. 5893:. 5870:. 5833:. 5810:. 5800:. 5788:. 5784:. 5736:. 5724:. 5720:. 5695:13 5693:. 5670:. 5660:. 5650:10 5648:. 5644:. 5621:. 5611:. 5599:. 5564:. 5556:. 5548:. 5534:. 5511:. 5501:. 5491:23 5489:. 5485:. 5462:. 5450:. 5446:. 5423:. 5411:. 5385:20 5383:. 5357:17 5355:. 5332:. 5320:. 5295:16 5293:. 5289:. 5262:. 5236:13 5234:. 5203:, 5176:. 5172:. 5149:. 5139:31 5137:. 5109:. 5083:72 5081:. 5062:. 5037:13 5035:. 5012:. 5000:. 4996:. 4973:. 4965:. 4955:11 4953:. 4930:. 4920:. 4912:. 4900:. 4896:. 4884:^ 4870:. 4860:11 4858:. 4831:16 4829:. 4825:. 4802:. 4794:. 4782:. 4759:. 4751:. 4743:. 4731:. 4727:. 4704:. 4694:84 4692:. 4669:. 4657:. 4634:. 4622:. 4599:. 4591:. 4581:10 4579:. 4567:^ 4545:^ 4531:. 4521:37 4519:. 4507:^ 4493:. 4483:. 4473:81 4471:. 4467:. 4442:. 4432:72 4430:. 4426:. 4401:. 4389:. 4385:. 4303:. 4279:. 4248:. 4238:. 4228:41 4226:. 4222:. 4199:. 4189:. 4179:. 4167:. 4163:. 4138:. 4126:. 4122:. 4110:^ 4031:. 4009:. 3997:79 3995:. 3991:. 3943:. 3935:. 3925:18 3923:. 3911:^ 3897:. 3887:. 3879:. 3867:. 3863:. 3847:^ 3830:. 3808:. 3800:. 3790:88 3788:. 3761:12 3759:. 3755:. 3730:. 3720:47 3718:. 3714:. 3691:. 3683:. 3675:. 3663:. 3631:. 3598:. 3584:. 3580:. 3568:^ 3554:. 3544:36 3542:. 3517:15 3515:. 3503:^ 3489:. 3479:. 3471:. 3459:13 3457:. 3453:. 3430:. 3422:. 3414:. 3406:. 3396:26 3394:. 3390:. 3367:. 3355:84 3353:. 3349:. 3333:^ 3045:, 3041:, 3037:, 3033:, 3029:, 3025:, 3004:, 3000:, 2996:, 2975:, 2971:, 2967:, 2963:, 2959:, 2955:, 2951:, 2947:, 2943:, 2939:, 2935:, 2931:, 2927:, 2888:, 2884:, 2880:, 2876:, 2872:, 2868:, 2864:, 2860:, 2856:, 2852:, 2848:, 2827:, 2823:, 2819:, 2815:, 2811:, 2807:, 2803:, 2799:, 2795:, 2786:9 2774:, 2770:, 2766:, 2757:8 2745:, 2741:, 2737:, 2733:, 2729:, 2725:, 2721:, 2717:, 2713:, 2709:, 2705:, 2696:7 2684:, 2680:, 2676:, 2672:, 2668:, 2659:6 2647:, 2643:, 2634:5 2622:, 2618:, 2614:, 2610:, 2606:, 2602:, 2598:, 2594:, 2585:4 2573:, 2569:, 2565:, 2561:, 2557:, 2553:, 2549:, 2545:, 2541:, 2532:3 2520:, 2516:, 2512:, 2508:, 2504:, 2500:, 2496:, 2492:, 2488:, 2484:, 2480:, 2476:, 2472:, 2468:, 2464:, 2460:, 2456:, 2452:, 2448:, 2439:2 2427:, 2423:, 2419:, 2415:, 2411:, 2407:, 2403:, 2399:, 2390:1 2317:. 2283:. 2146:, 2126:, 2078:, 2074:, 2009:, 2005:, 2001:, 1927:+ 1925:Al 1919:, 1913:Cu 1911:, 1909:Al 1899:, 1875:, 1833:, 1829:, 1759:. 1716:, 1712:, 1618:. 1606:, 1590:, 1542:. 1514:, 1510:, 1474:, 1470:, 1466:, 1462:, 1458:, 1443:, 1431:. 1401:PV 1388:. 1278:, 1247:. 1178:. 1086:, 1082:, 918:. 910:, 883:. 825:, 821:, 801:VO 747:. 619:, 521:. 509:, 505:, 501:, 477:, 473:, 373:A 10892:) 10888:( 10878:e 10871:t 10864:v 10560:e 10553:t 10546:v 10471:( 10464:. 10433:. 10409:: 10403:2 10382:. 10368:: 10341:. 10319:: 10311:: 10284:. 10270:: 10243:. 10219:: 10211:: 10184:. 10164:: 10141:. 10121:: 10113:: 10107:7 10090:. 10078:: 10051:. 10017:. 9995:: 9987:: 9960:. 9948:: 9940:: 9910:. 9906:: 9898:: 9868:. 9843:. 9819:: 9792:. 9786:: 9780:9 9760:. 9758:. 9746:: 9723:. 9711:: 9703:: 9677:. 9665:: 9657:: 9634:. 9630:: 9622:: 9599:. 9587:: 9579:: 9556:. 9544:: 9519:. 9497:: 9489:: 9483:5 9462:. 9448:: 9421:. 9401:: 9393:: 9387:4 9346:: 9311:. 9300:. 9267:. 9247:: 9241:2 9224:. 9200:: 9192:: 9186:2 9165:. 9143:: 9101:. 9081:1 9060:. 9033:. 9009:: 9001:: 8995:4 8974:. 8962:: 8956:7 8939:. 8935:: 8927:: 8921:9 8892:. 8872:: 8845:. 8808:. 8761:: 8731:. 8717:: 8698:. 8678:: 8655:. 8643:: 8635:: 8608:. 8602:: 8594:: 8571:. 8551:: 8512:. 8500:: 8494:1 8477:. 8457:: 8449:: 8413:. 8409:: 8386:. 8382:: 8359:. 8347:: 8339:: 8333:5 8316:. 8312:: 8304:: 8281:. 8277:: 8254:. 8250:: 8227:. 8202:. 8176:. 8156:: 8129:. 8107:: 8101:5 8080:. 8068:: 8045:. 8025:: 8002:. 7980:: 7953:. 7939:: 7912:. 7888:: 7880:: 7853:. 7831:: 7825:9 7804:. 7782:: 7755:. 7735:: 7727:: 7704:. 7700:: 7692:: 7669:. 7642:. 7608:. 7604:: 7581:. 7556:. 7552:: 7529:. 7507:: 7501:9 7480:. 7466:: 7458:: 7450:: 7444:6 7427:. 7405:: 7399:5 7375:. 7371:: 7348:. 7344:: 7336:: 7313:. 7299:: 7291:: 7261:. 7241:: 7233:: 7206:. 7194:: 7171:. 7167:: 7144:. 7132:: 7126:8 7109:. 7097:: 7070:. 7046:: 7038:: 7032:9 7011:. 6997:: 6989:: 6959:. 6939:: 6931:: 6908:. 6896:: 6888:: 6865:. 6843:: 6835:: 6829:7 6808:. 6796:: 6773:. 6761:: 6735:. 6729:: 6721:: 6689:. 6675:: 6667:: 6640:. 6616:: 6608:: 6602:6 6581:. 6567:: 6559:: 6551:: 6521:. 6515:: 6507:: 6501:1 6477:. 6465:: 6457:: 6434:. 6422:: 6414:: 6386:. 6382:: 6374:: 6344:. 6324:: 6316:: 6289:. 6277:: 6247:. 6235:: 6208:. 6196:: 6188:: 6165:. 6145:: 6115:. 6101:: 6093:: 6042:: 6034:: 6015:. 6011:: 6003:: 5980:. 5968:: 5960:: 5954:8 5937:. 5913:: 5905:: 5899:6 5878:. 5845:. 5841:: 5818:. 5796:: 5790:9 5769:. 5744:. 5732:: 5705:. 5701:: 5678:. 5656:: 5629:. 5615:: 5607:: 5572:. 5552:: 5542:: 5536:2 5519:. 5505:: 5497:: 5470:. 5458:: 5431:. 5419:: 5395:. 5391:: 5367:. 5363:: 5340:. 5328:: 5305:. 5301:: 5274:. 5270:: 5246:. 5242:: 5217:: 5190:. 5184:: 5178:2 5157:. 5145:: 5121:. 5117:: 5093:. 5089:: 5047:. 5043:: 5020:. 5008:: 4981:. 4961:: 4938:. 4916:: 4908:: 4902:8 4878:. 4866:: 4843:. 4837:: 4810:. 4790:: 4767:. 4747:: 4739:: 4712:. 4708:: 4700:: 4677:. 4665:: 4659:9 4642:. 4630:: 4624:7 4607:. 4595:: 4587:: 4539:. 4535:: 4527:: 4501:. 4487:: 4479:: 4452:. 4446:: 4438:: 4411:. 4405:: 4397:: 4370:. 4343:. 4314:. 4289:. 4275:: 4256:. 4242:: 4234:: 4207:. 4183:: 4175:: 4169:5 4148:. 4142:: 4134:: 4128:9 4104:. 4070:. 4043:. 4017:. 4003:: 3976:. 3951:. 3939:: 3931:: 3905:. 3875:: 3869:2 3841:. 3816:. 3804:: 3796:: 3773:. 3767:: 3740:. 3734:: 3726:: 3699:. 3679:: 3671:: 3648:. 3627:: 3606:. 3592:: 3562:. 3558:: 3550:: 3527:. 3523:: 3497:. 3465:: 3438:. 3410:: 3402:: 3375:. 3361:: 3328:. 2268:2 2196:2 1907:( 1895:( 1887:( 1859:( 803:2 799:( 361:) 323:e 316:t 309:v 20:)

Index

Nanoparticles

TEM
SEM
Nanomaterials

Carbon nanotubes
Synthesis
Chemistry
Mechanical properties
Optical properties
Applications
Timeline
Fullerenes
Buckminsterfullerene
C70 fullerene
Chemistry
Health impact
Carbon allotropes
nanoparticles
Carbon quantum dots
Quantum dots
Aluminium oxide
Cellulose
Ceramic
Cobalt oxide
Copper
Gold
Iron
Iron oxide

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑