Knowledge

Nihonium

Source 📝

3469: 3439:
suggesting that the initial and final states in 113 and its daughter Db were the same for all three events. The decay of Db to Lr and Md was previously known, firmly anchoring the decay chain of 113 to known regions of the chart of nuclides. The JWP considered that the JINR–LLNL collaborations of 2004 and 2007, producing element 113 as the daughter of element 115, did not meet the discovery criteria as they had not convincingly determined the atomic numbers of their nuclides through cross-bombardments, which were considered necessary since their decay chains were not anchored to previously known nuclides. They also considered that the previous JWP's concerns over their chemical identification of the dubnium daughter had not been adequately addressed. The JWP recognised the JINR–LLNL–ORNL–Vanderbilt collaboration of 2010 as having discovered elements 117 and 115, and accepted that element 113 had been produced as their daughter, but did not give this work shared credit.
4096:: +1 and +3. The former results from the involvement of only the single p electron in bonding, and the latter results in the involvement of all three valence electrons, two in the s-subshell and one in the p-subshell. Going down the group, bond energies decrease and the +3 state becomes less stable, as the energy released in forming two additional bonds and attaining the +3 state is not always enough to outweigh the energy needed to involve the s-electrons. Hence, for aluminium and gallium +3 is the most stable state, but +1 gains importance for indium and by thallium it becomes more stable than the +3 state. Nihonium is expected to continue this trend and have +1 as its most stable oxidation state. 2137: 3972: 3902: 2664:, and 112. They then made a new attempt on element 113, using the same Bi + Zn reaction that the GSI had attempted unsuccessfully in 1998. Despite the much lower yield expected than for the JINR's hot fusion technique with calcium-48, the Riken team chose to use cold fusion as the synthesised isotopes would alpha decay to known daughter nuclides and make the discovery much more certain, and would not require the use of radioactive targets. In particular, the isotope 113 expected to be produced in this reaction would decay to the known Bh, which had been synthesised in 2000 by a team at the 4248: 4223: 4757:, a leading scientist at JINR, and thus it was a "hobbyhorse" for the facility. In contrast, the LBL scientists believed fission information was not sufficient for a claim of synthesis of an element. They believed spontaneous fission had not been studied enough to use it for identification of a new element, since there was a difficulty of establishing that a compound nucleus had only ejected neutrons and not charged particles like protons or alpha particles. They thus preferred to link new isotopes to the already known ones by successive alpha decays. 1964: 1356: 4744:, the daughter nucleus would also receive a small velocity. The ratio of the two velocities, and accordingly the ratio of the kinetic energies, would thus be inverse to the ratio of the two masses. The decay energy equals the sum of the known kinetic energy of the alpha particle and that of the daughter nucleus (an exact fraction of the former). The calculations hold for an experiment as well, but the difference is that the nucleus does not move after the decay because it is tied to the detector. 2782: 3950:
the unconfirmed Nh and Nh, have also been reported to have half-lives of over a second. The isotopes Nh and Nh have half-lives of 0.90 and 0.12 seconds respectively. The remaining two isotopes have half-lives between 0.1 and 100 milliseconds: Nh has a half-life of 61 milliseconds, and Nh, the lightest known nihonium isotope, is also the shortest-lived, with a half-life of 1.4 milliseconds. This rapid increase in the half-lives near the closed neutron shell at
2037: 1724: 3422:
with the publication of the JWP reports, but IUPAC alone decided on an early release because the news of Riken being awarded credit for element 113 had been leaked to Japanese newspapers. For the first time in history, a team of Asian physicists would name a new element. The JINR considered the awarding of element 113 to Riken unexpected, citing their own 2003 production of elements 115 and 113, and pointing to the precedents of elements
7406:
Brand, H.; Carlsson, B. G.; Cox, D.; Derkx, X.; Eberhardt, K.; Even, J.; Fahlander, C.; Gerl, J.; JĂ€ger, E.; Kindler, B.; Krier, J.; Kojouharov, I.; Kurz, N.; Lommel, B.; Mistry, A.; Mokry, C.; Nitsche, H.; Omtvedt, J. P.; Papadakis, P.; Ragnarsson, I.; Runke, J.; Schaffner, H.; Schausten, B.; Thörle-Pospiech, P.; Torres, T.; Traut, T.; Trautmann, N.; TĂŒrler, A.; Ward, A.; Ward, D. E.; Wiehl, N. (2013).
4802:. These fusion reactions can be divided into "hot" and "cold" fusion, depending on the excitation energy of the compound nucleus produced. "Cold fusion" in the context of superheavy element synthesis is a distinct concept from the idea that nuclear fusion can be achieved under room temperature conditions. In hot fusion reactions, light, high-energy projectiles are accelerated towards heavy targets ( 3600:, Sweden, in June 2016 about the lack of openness involved in the process of approving new elements, and stated that she believed that the JWP's work was flawed and should be redone by a new JWP. A survey of physicists determined that many felt that the Lund–GSI 2016 criticisms of the JWP report were well-founded, but that the conclusions would hold up if the work was redone, and the new president, 2949:
but not necessarily exclusive", and with the small number of atoms produced with neither known daughters nor cross-reactions the JWP considered that their criteria had not been fulfilled. The JWP did not accept the Riken team's claim either due to inconsistencies in the decay data, the small number of atoms of element 113 produced, and the lack of unambiguous anchors to known isotopes.
4475:(and thus diffused away too quickly to be detected) or, more plausibly, that pure nihonium was not very volatile and thus could not efficiently pass through the PTFE capillaries. Formation of the hydroxide NhOH should ease the transport, as nihonium hydroxide is expected to be more volatile than elemental nihonium, and this reaction could be facilitated by adding more 2101:, which stops the nucleus. The exact location of the upcoming impact on the detector is marked; also marked are its energy and the time of the arrival. The transfer takes about 10 seconds; in order to be detected, the nucleus must survive this long. The nucleus is recorded again once its decay is registered, and the location, the 4782:. It was later shown that the identification was incorrect. The following year, RL was unable to reproduce the Swedish results and announced instead their synthesis of the element; that claim was also disproved later. JINR insisted that they were the first to create the element and suggested a name of their own for the new element, 4786:; the Soviet name was also not accepted (JINR later referred to the naming of the element 102 as "hasty"). This name was proposed to IUPAC in a written response to their ruling on priority of discovery claims of elements, signed 29 September 1992. The name "nobelium" remained unchanged on account of its widespread usage. 2190:
actinides and the predicted island are deformed, and gain additional stability from shell effects. Experiments on lighter superheavy nuclei, as well as those closer to the expected island, have shown greater than previously anticipated stability against spontaneous fission, showing the importance of shell effects on nuclei.
3409:, Sweden, and at the GSI announced that they had repeated the 2003 Am + Ca experiment, confirming the findings of the JINR–LLNL collaboration. The same year, the 2003 experiment had been repeated at the JINR, now also creating the isotope 115 that could serve as a cross-bombardment for confirming their discovery of the 2846:, China, investigated the Am + Mg reaction, producing four atoms of Bh. All four chains started with an alpha decay to Db; three chains ended there with spontaneous fission, as in the 113 chains observed at Riken, while the remaining one continued via another alpha decay to Lr, as in the Bh chains observed at LBNL. 3507:, until the discovery of the element is confirmed and a name is decided on. The recommendations were widely used in the chemical community on all levels, from chemistry classrooms to advanced textbooks, but were mostly ignored among scientists in the field, who called it "element 113", with the symbol of 7801:
Oganessian, Yuri Ts.; Abdullin, F. Sh.; Bailey, P. D.; Benker, D. E.; Bennett, M. E.; Dmitriev, S. N.; Ezold, J. G.; Hamilton, J. H.; Henderson, R. A.; Itkis, M. G.; Lobanov, Yuri V.; Mezentsev, A. N.; Moody, K. J.; Nelson, S. L.; Polyakov, A. N.; Porter, C. E.; Ramayya, A. V.; Riley, F. D.; Roberto,
7405:
Rudolph, D.; Forsberg, U.; Golubev, P.; Sarmiento, L. G.; Yakushev, A.; Andersson, L.-L.; Di Nitto, A.; DĂŒllmann, Ch. E.; Gates, J. M.; Gregorich, K. E.; Gross, C. J.; Heßberger, F. P.; Herzberg, R.-D.; Khuyagbaatar, J.; Kratz, J. V.; Rykaczewski, K.; SchĂ€del, M.; Åberg, S.; Ackermann, D.; Block, M.;
3905:
A chart of heavy nuclides with their known and predicted half-lives (known nuclides shown with borders). Nihonium (row 113) is expected to be within the "island of stability" (white circle) and thus its nuclei are slightly more stable than would otherwise be predicted; the known nihonium isotopes are
3459:
has never been observed to decay. This study found reason to doubt and criticise the IUPAC approval of the discoveries of elements 115 and 117, but the data from Riken for element 113 was found to be congruent, and the data from the JINR team for elements 115 and 113 to probably be so, thus endorsing
3438:
The full JWP reports were published on 21 January 2016. The JWP recognised the discovery of element 113, assigning priority to Riken. They noted that while the individual decay energies of each nuclide in the decay chain of 113 were inconsistent, their sum was now confirmed to be consistent, strongly
2952:
In early 2009, the Riken team synthesised the decay product Bh directly in the Cm + Na reaction to establish its link with 113 as a cross-bombardment. They also established the branched decay of Db, which sometimes underwent spontaneous fission and sometimes underwent the previously known alpha decay
2943:
The JWP published its report on elements 113–116 and 118 in 2011. It recognised the JINR–LLNL collaboration as having discovered elements 114 and 116, but did not accept either team's claim to element 113 and did not accept the JINR–LLNL claims to elements 115 and 118. The JINR–LLNL claim to elements
2772:
and naming rights for the elements. According to the JWP criteria, a discovery must demonstrate that the element has an atomic number different from all previously observed values. It should also preferably be repeated by other laboratories, although this requirement has been waived where the data is
7561:
Dmitriev, S. N.; Oganessyan, Yu. Ts.; Utyonkov, V. K.; Shishkin, S. V.; Yeremin, A. V.; Lobanov, Yu. V.; Tsyganov, Yu. S.; Chepygin, V. I.; Sokol, E. A.; Vostokin, G. K.; Aksenov, N. V.; Hussonnois, M.; Itkis, M. G.; GĂ€ggeler, H. W.; Schumann, D.; Bruchertseifer, H.; Eichler, R.; Shaughnessy, D. A.;
7472:
Morita, Kosuke; Morimoto, Kouji; Kaji, Daiya; Akiyama, Takahiro; Goto, Sin-ichi; Haba, Hiromitsu; Ideguchi, Eiji; Kanungo, Rituparna; Katori, Kenji; Koura, Hiroyuki; Kudo, Hisaaki; Ohnishi, Tetsuya; Ozawa, Akira; Suda, Toshimi; Sueki, Keisuke; Xu, HuShan; Yamaguchi, Takayuki; Yoneda, Akira; Yoshida,
4482:
A 2017 experiment at the JINR, producing Nh and Nh via the Am+Ca reaction as the daughters of Mc and Mc, avoided this problem by removing the quartz surface, using only PTFE. No nihonium atoms were observed after chemical separation, implying an unexpectedly large retention of nihonium atoms on PTFE
3872:
Nihonium has no stable or naturally occurring isotopes. Several radioactive isotopes have been synthesised in the laboratory, either by fusing two atoms or by observing the decay of heavier elements. Eight different isotopes of nihonium have been reported with atomic masses 278, 282–287, and 290 (Nh
2403:
to 113, while more neutrons were emitted in all other produced chains. This would have been the first report of a decay chain from an isotope of element 113, but it was not recognised at the time, and the assignment is still uncertain. A similar long-lived activity observed by the JINR team in March
2120:
provided by the strong interaction increases linearly with the number of nucleons, whereas electrostatic repulsion increases with the square of the atomic number, i.e. the latter grows faster and becomes increasingly important for heavy and superheavy nuclei. Superheavy nuclei are thus theoretically
4720:
It was already known by the 1960s that ground states of nuclei differed in energy and shape as well as that certain magic numbers of nucleons corresponded to greater stability of a nucleus. However, it was assumed that there was no nuclear structure in superheavy nuclei as they were too deformed to
4514:
has been suggested as a carrier gas for experiments on nihonium chemistry; this oxidises nihonium's lighter congener thallium to thallium(III), providing an avenue to investigate the oxidation states of nihonium, similar to earlier experiments done on the bromides of group 5 elements, including the
3949:
All nihonium isotopes are unstable and radioactive; the heavier nihonium isotopes are more stable than the lighter ones, as they are closer to the centre of the island. The most stable known nihonium isotope, Nh, is also the heaviest; it has a half-life of 8 seconds. The isotope Nh, as well as
2200:
The information available to physicists aiming to synthesize a superheavy element is thus the information collected at the detectors: location, energy, and time of arrival of a particle to the detector, and those of its decay. The physicists analyze this data and seek to conclude that it was indeed
2156:
Alpha particles are commonly produced in radioactive decays because mass of an alpha particle per nucleon is small enough to leave some energy for the alpha particle to be used as kinetic energy to leave the nucleus. Spontaneous fission is caused by electrostatic repulsion tearing the nucleus apart
7763:
Morimoto, Kouji; Morita, K.; Kaji, D.; Haba, H.; Ozeki, K.; Kudou, Y.; Sato, N.; Sumita, T.; Yoneda, A.; Ichikawa, T.; Fujimori, Y.; Goto, S.; Ideguchi, E.; Kasamatsu, Y.; Katori, K.; Komori, Y.; Koura, H.; Kudo, H.; Ooe, K.; Ozawa, A.; Tokanai, F.; Tsukada, K.; Yamaguchi, T.; Yoshida, A. (October
4179:
subshell effectively leads to a valence shell closing at the 7s 7p configuration rather than the expected 7s 7p configuration with its stable octet. As such, nihonium, like astatine, can be considered to be one p-electron short of a closed valence shell. Hence, even though nihonium is in
3442:
After the publication of the JWP reports, Sergey Dimitriev, the lab director of the Flerov lab at the JINR where the discoveries were made, remarked that he was happy with IUPAC's decision, mentioning the time Riken spent on their experiment and their good relations with Morita, who had learnt the
3421:
In December 2015, the conclusions of a new JWP report were published by IUPAC in a press release, in which element 113 was awarded to Riken; elements 115, 117, and 118 were awarded to the collaborations involving the JINR. A joint 2016 announcement by IUPAC and IUPAP had been scheduled to coincide
2948:
and group 5 elements by their chemical properties with enough confidence to allow this assignment. The decay properties of all the nuclei in the decay chain of element 115 had not been previously characterised before the JINR experiments, a situation which the JWP generally considers "troublesome,
2830:
compared to the more commonly used lead and bismuth targets, and it deteriorated significantly and became non-uniform in thickness. The reasons for this weakness are unknown, given that thallium has a higher melting point than bismuth. The Riken team then repeated the original Bi + Zn reaction and
2806:
of 115. This was valuable as none of the nuclides in this decay chain were previously known, so that their claim was not supported by any previous experimental data, and chemical experimentation would strengthen the case for their claim, since the chemistry of dubnium is known. Db was successfully
2269:, Soviet Union. Yields from cold fusion reactions were found to decrease significantly with increasing atomic number; the resulting nuclei were severely neutron-deficient and short-lived. The GSI team attempted to synthesise element 113 via cold fusion in 1998 and 2003, bombarding bismuth-209 with 2201:
caused by a new element and could not have been caused by a different nuclide than the one claimed. Often, provided data is insufficient for a conclusion that a new element was definitely created and there is no other explanation for the observed effects; errors in interpreting data have been made.
2193:
Alpha decays are registered by the emitted alpha particles, and the decay products are easy to determine before the actual decay; if such a decay or a series of consecutive decays produces a known nucleus, the original product of a reaction can be easily determined. (That all decays within a decay
2096:
The beam passes through the target and reaches the next chamber, the separator; if a new nucleus is produced, it is carried with this beam. In the separator, the newly produced nucleus is separated from other nuclides (that of the original beam and any other reaction products) and transferred to a
7709:
Morita, Kosuke; Morimoto, Kouji; Kaji, Daiya; Haba, Hiromitsu; Ozeki, Kazutaka; Kudou, Yuki; Sato, Nozomi; Sumita, Takayuki; Yoneda, Akira; Ichikawa, Takatoshi; Fujimori, Yasuyuki; Goto, Sin-ichi; Ideguchi, Eiji; Kasamatsu, Yoshitaka; Katori, Kenji; Komori, Yukiko; Koura, Hiroyuki; Kudo, Hisaaki;
4730:
Since mass of a nucleus is not measured directly but is rather calculated from that of another nucleus, such measurement is called indirect. Direct measurements are also possible, but for the most part they have remained unavailable for superheavy nuclei. The first direct measurement of mass of a
4572:
In 2009, a team at the JINR led by Oganessian published results of their attempt to create hassium in a symmetric Xe + Xe reaction. They failed to observe a single atom in such a reaction, putting the upper limit on the cross section, the measure of probability of a nuclear reaction, as
2930:
was not observed in the second chain even after four alpha decays. A fifth alpha decay in each chain could have been missed, since Db can theoretically undergo alpha decay, in which case the first decay chain would have ended at the known Lr or No and the second might have continued to the known
2015:
Coming close enough alone is not enough for two nuclei to fuse: when two nuclei approach each other, they usually remain together for about 10 seconds and then part ways (not necessarily in the same composition as before the reaction) rather than form a single nucleus. This happens because
9571:
Aksenov, Nikolay V.; Steinegger, Patrick; Abdullin, Farid Sh.; Albin, Yury V.; Bozhikov, Gospodin A.; Chepigin, Viktor I.; Eichler, Robert; Lebedev, Vyacheslav Ya.; Mamudarov, Alexander Sh.; Malyshev, Oleg N.; Petrushkin, Oleg V.; Polyakov, Alexander N.; Popov, Yury A.; Sabel'nikov, Alexey V.;
4689:
This separation is based on that the resulting nuclei move past the target more slowly then the unreacted beam nuclei. The separator contains electric and magnetic fields whose effects on a moving particle cancel out for a specific velocity of a particle. Such separation can also be aided by a
3454:
takes place along the decay chain, which is not likely for odd nuclei, and the uncertainty of the alpha decay energies measured in the 113 decay chain was not small enough to rule out this possibility. If this is the case, similarity in lifetimes of intermediate daughters becomes a meaningless
3120:, and Riken had ordered the shutdown of the accelerator programs to save money, Morita's team was permitted to continue with one experiment, and they chose their attempt to confirm their synthesis of element 113. In this case, a series of six alpha decays was observed, leading to an isotope of 2189:
in which nuclei will be more resistant to spontaneous fission and will primarily undergo alpha decay with longer half-lives. Subsequent discoveries suggested that the predicted island might be further than originally anticipated; they also showed that nuclei intermediate between the long-lived
7992:
Gates, J. M.; Gregorich, K. E.; Gothe, O. .R; Uribe, E. C.; Pang, G. K.; Bleuel, D. L.; Block, M.; Clark, R. M.; Campbell, C. M.; Crawford, H. L.; Cromaz, M.; Di Nitto, A.; DĂŒllmann, Ch. E.; Esker, N. E.; Fahlander, C.; Fallon, P.; Farjadi, R. M.; Forsberg, U.; Khuyagbaatar, J.; Loveland, W.;
4209:
of the metallic group 13 elements, even more electronegative than tennessine, the period 7 congener of the halogens: in the compound NhTs, the negative charge is expected to be on the nihonium atom rather than the tennessine atom. The −1 oxidation should be more stable for nihonium than for
4501:
disagrees significantly with previous theory, which expected a lower value of 14.00 kJ/mol. This suggests that the nihonium species involved in the previous experiment was likely not elemental nihonium but rather nihonium hydroxide, and that high-temperature techniques such as vacuum
3573:, one of the two Japanese pronunciations for the name of Japan. The discoverers also intended to reference the support of their research by the Japanese people (Riken being almost entirely government-funded), recover lost pride and trust in science among those who were affected by the 2777:
as parents or daughters of other nuclides produced by a different reaction) and anchoring decay chains to known daughter nuclides. For the JWP, priority in confirmation takes precedence over the date of the original claim. Both teams set out to confirm their results by these methods.
2394:
was observed which was thought to be the isotope 114: the results were published in January 1999. Despite numerous attempts to repeat this reaction, an isotope with these decay properties has never again been found, and the exact identity of this activity is unknown. A 2016 paper by
2921:
Two atoms of 113 were detected. The aim of this experiment had been to synthesise the isotopes 113 and 113 that would fill in the gap between isotopes produced via hot fusion (113 and 113) and cold fusion (113). After five alpha decays, these nuclides would reach known isotopes of
4321:) are trigonal planar due to the increased steric repulsion between the peripheral atoms; accordingly, they do not show significant 6d involvement in their bonding, though the large 7s–7p energy gap means that they show reduced sp hybridisation compared to their boron analogues. 4731:
superheavy nucleus was reported in 2018 at LBNL. Mass was determined from the location of a nucleus after the transfer (the location helps determine its trajectory, which is linked to the mass-to-charge ratio of the nucleus, since the transfer was done in presence of a magnet).
4054:
orbitals. Thus, nihonium is expected to be much denser than thallium, with a predicted density of about 16 to 18 g/cm compared to thallium's 11.85 g/cm, since nihonium atoms are heavier than thallium atoms but have the same volume. Bulk nihonium is expected to have a
2773:
of very high quality. Such a demonstration must establish properties, either physical or chemical, of the new element and establish that they are those of a previously unknown element. The main techniques used to demonstrate atomic number are cross-reactions (creating claimed
9572:
Sagaidak, Roman N.; Shirokovsky, Igor V.; Shumeiko, Maksim V.; Starodub, Gennadii Ya.; Tsyganov, Yuri S.; Utyonkov, Vladimir K.; Voinov, Alexey A.; Vostokin, Grigory K.; Yeremin, Alexander; Dmitriev, Sergey N. (July 2017). "On the volatility of nihonium (Nh, Z = 113)".
4462:
The chemical characteristics of nihonium have yet to be determined unambiguously. The isotopes Nh, Nh, and Nh have half-lives long enough for chemical investigation. From 2010 to 2012, some preliminary chemical experiments were performed at the JINR to determine the
4111:
orbital is relativistically contracted. This is unique among the 7p element monohydrides; all the others have relativistic expansion of the bond length instead of contraction. Another effect of the SO interaction is that the Nh–H bond is expected to have significant
4378:
Nihonium thus continues the trend down group 13 of reduced stability of the +3 oxidation state, as all five of these compounds have lower reaction energies than the unknown thallium(III) iodide. The +3 state is stabilised for thallium in anionic complexes such as
2020:—the probability that fusion will occur if two nuclei approach one another expressed in terms of the transverse area that the incident particle must hit in order for the fusion to occur. This fusion may occur as a result of the quantum effect in which nuclei can 2743:
team observed four alpha decays from 113, creating a decay chain passing through Rg, Mt, and Bh before terminating with the spontaneous fission of Db. The decay data they observed for the alpha decay of Bh matched the 2000 data, lending support for their claim.
7802:
J. B.; Ryabinin, M. A.; Rykaczewski, K. P.; Sagaidak, R. N.; Shaughnessy, D. A.; Shirokovsky, I. V.; Stoyer, M. A.; Subbotin, V. G.; Sudowe, R.; Sukhov, A. M.; Tsyganov, Yu. S.; Utyonkov, Vladimir K.; Voinov, A. A.; Vostokin, G. K.; Wilk, P. A. (9 April 2010).
2789:(element 101) or earlier. The two chains with bold-bordered nuclides were accepted by the JWP as evidence for the discoveries of element 113 and its parents, elements 115 and 117. Data is presented as known in 2015 (before the JWP's conclusions were published). 7858:
K. Morita; Morimoto, Kouji; Kaji, Daiya; Haba, Hiromitsu; Ozeki, Kazutaka; Kudou, Yuki; Sumita, Takayuki; Wakabayashi, Yasuo; Yoneda, Akira; Tanaka, Kengo; et al. (2012). "New Results in the Production and Decay of an Isotope, 113, of the 113th Element".
2194:
chain were indeed related to each other is established by the location of these decays, which must be in the same place.) The known nucleus can be recognized by the specific characteristics of decay it undergoes such as decay energy (or more specifically, the
4210:
tennessine. The electron affinity of nihonium is calculated to be around 0.68 eV, higher than thallium's at 0.4 eV; tennessine's is expected to be 1.8 eV, the lowest in its group. It is theoretically predicted that nihonium should have an
4184:
in group 17 has some group-13-like properties, as it has three valence electrons outside the 7s 7p closed shell.) Nihonium is expected to be able to gain an electron to attain this closed-shell configuration, forming the −1 oxidation state like the
4275:
character for nihonium. On the basis of the small energy gap between the 6d and 7s electrons, the higher oxidation states +3 and +5 have been suggested for nihonium. Some simple compounds with nihonium in the +3 oxidation state would be the trihydride
4471:(PTFE) capillaries at 70 Â°C by a carrier gas to the gold-covered detectors. About ten to twenty atoms of Nh were produced, but none of these atoms were registered by the detectors, suggesting either that nihonium was similar in volatility to the 2157:
and produces various nuclei in different instances of identical nuclei fissioning. As the atomic number increases, spontaneous fission rapidly becomes more important: spontaneous fission partial half-lives decrease by 23 orders of magnitude from
4015:. In relation to nihonium atoms, it lowers the 7s and the 7p electron energy levels (stabilising those electrons), but two of the 7p electron energy levels are stabilised more than the other four. The stabilisation of the 7s electrons is called the 3962:
Very few properties of nihonium or its compounds have been measured; this is due to its extremely limited and expensive production and the fact it decays very quickly. Properties of nihonium mostly remain unknown and only predictions are available.
4059:
crystal structure, like thallium. The melting and boiling points of nihonium have been predicted to be 430 Â°C and 1100 Â°C respectively, exceeding the values for indium and thallium, following periodic trends. Nihonium should have a
3585:, which he named "nipponium" with symbol Np after the other Japanese pronunciation of Japan's name. As Ogawa's claim had not been accepted, the name "nipponium" could not be reused for a new element, and its symbol Np had since been used for 9263:
Nash, Clinton S.; Bursten, Bruce E. (1999). "Spin−Orbit Effects, VSEPR Theory, and the Electronic Structures of Heavy and Superheavy Group IVA Hydrides and Group VIIIA Tetrafluorides. A Partial Role Reversal for Elements 114 and 118".
4826:, they emit only one or two neutrons. Hot fusion produces more neutron-rich products because actinides have the highest neutron-to-proton ratios of any elements, and is currently the only method to produce the superheavy elements from 4072:
The chemistry of nihonium is expected to be very different from that of thallium. This difference stems from the spin–orbit splitting of the 7p shell, which results in nihonium being between two relatively inert closed-shell elements
3608:
that June, and set a five-month term to collect comments, after which the name would be formally established at a conference. The name was officially approved on November 28, 2016. The naming ceremony for the new element was held in
3377:
This decay chain differed from the previous observations at Riken mainly in the decay mode of Db, which was previously observed to undergo spontaneous fission, but in this case instead alpha decayed; the alpha decay of Db to Lr is
2931:
long-lived Md, which has a half-life of 51.5 days, longer than the duration of the experiment: this would explain the lack of a spontaneous fission event in this chain. In the absence of direct detection of the long-lived
5297:
Hofmann, S.; Heinz, S.; Mann, R.; Maurer, J.; MĂŒnzenberg, G.; Antalic, S.; Barth, W.; et al. (2016). "Remarks on the Fission Barriers of SHN and Search for Element 120". In Peninozhkevich, Yu. E.; Sobolev, Yu. G. (eds.).
2831:
produced a second atom of 113 in April 2005, with a decay chain that again terminated with the spontaneous fission of Db. The decay data were slightly different from those of the first chain: this could have been because an
4026:, from 1 to 1/2 and 3/2 for the more and less stabilised parts of the 7p subshell, respectively. For theoretical purposes, the valence electron configuration may be represented to reflect the 7p subshell split as 7s 7p 1892:
Very little is known about nihonium, as it has only been made in very small amounts that decay within seconds. The anomalously long lives of some superheavy nuclides, including some nihonium isotopes, are explained by the
2926:, assuming that the decay chains were not terminated prematurely by spontaneous fission. The first decay chain ended in fission after four alpha decays, presumably originating from Db or its electron-capture daughter Rf. 2651:
had been studying cold fusion reactions. Morita had previously studied the synthesis of superheavy elements at the JINR before starting his own team at Riken. In 2001, his team confirmed the GSI's discoveries of elements
2412:
The now-confirmed discovery of element 114 was made in June 1999 when the JINR team repeated the first Pu + Ca reaction from 1998; following this, the JINR team used the same hot fusion technique to synthesize elements
4042:. Both these levels are raised to be close in energy to the 7s ones, high enough to possibly be chemically active. This would allow for the possibility of exotic nihonium compounds without lighter group 13 analogues. 3460:
the IUPAC approval of the discovery of element 113. Two members of the JINR team published a journal article rebutting these criticisms against the congruence of their data on elements 113, 115, and 117 in June 2017.
2292:
was suggested as an ideal projectile, because it is very neutron-rich for a light element (combined with the already neutron-rich actinides) and would minimise the neutron deficiencies of the nuclides produced. Being
3538:, after the institute. After the recognition, the Riken team gathered in February 2016 to decide on a name. Morita expressed his desire for the name to honour the fact that element 113 had been discovered in Japan. 2976:
target necessary to complete the JINR's calcium-48 campaign to synthesise the heaviest elements on the periodic table. Two isotopes of element 117 were synthesised, decaying to element 115 and then element 113:
8507: 4563:
series). Terms "heavy isotopes" (of a given element) and "heavy nuclei" mean what could be understood in the common language—isotopes of high mass (for the given element) and nuclei of high mass, respectively.
4049:
further down the periodic table, but calculations suggest nihonium has an atomic radius of about 170 pm, the same as that of thallium, due to the relativistic stabilisation and contraction of its 7s and
2007:
in order to make such repulsion insignificant compared to the velocity of the beam nucleus. The energy applied to the beam nuclei to accelerate them can cause them to reach speeds as high as one-tenth of the
4081:). Nihonium is expected to be less reactive than thallium, because of the greater stabilisation and resultant chemical inactivity of the 7s subshell in nihonium compared to the 6s subshell in thallium. The 8137: 2129:. Almost all alpha emitters have over 210 nucleons, and the lightest nuclide primarily undergoing spontaneous fission has 238. In both decay modes, nuclei are inhibited from decaying by corresponding 4882:
Among the stable group 13 elements, only boron forms monomeric halides at standard conditions; those of aluminium, gallium, indium, and thallium form ionic lattice structures or (in a few cases) dimerise.
4003:. All the group 13 elements except boron are metals, and nihonium is expected to follow suit. Nihonium is predicted to show many differences from its lighter homologues. The major reason for this is the 3434:
where IUPAC had awarded joint credit to the JINR and LBNL. They stated that they respected IUPAC's decision, but reserved determination of their position for the official publication of the JWP reports.
4271:
Significant 6d involvement is expected in the Nh–Au bond, although it is expected to be more unstable than the Tl–Au bond and entirely due to magnetic interactions. This raises the possibility of some
3110:
The new isotopes 113 and 113 produced did not overlap with the previously claimed 113, 113, and 113, so this reaction could not be used as a cross-bombardment to confirm the 2003 or 2006 claims.
4822:. The fused nuclei produced have a relatively low excitation energy (~10–20 MeV), which decreases the probability that they will undergo fission reactions. As the fused nuclei cool to the 5458: 3113:
In March 2010, the Riken team again attempted to synthesise Rg directly through the Tl + Zn reaction with upgraded equipment; they failed again and abandoned this cross-bombardment route.
4359:) with an additional Nh–X bond involving the 7p orbital of nihonium perpendicular to the other two ligands. These compounds are all expected to be highly unstable towards the loss of an X 3946:(including nihonium) confirms that the stabilising effect is real, and in general the known superheavy nuclides become longer-lived as they approach the predicted location of the island. 2935:, these interpretations remain unconfirmed, and there is still no known link between any superheavy nuclides produced by hot fusion and the well-known main body of the chart of nuclides. 2826:
rather than a bismuth target, in an effort to directly produce Rg in a cross-bombardment as it is the immediate daughter of 113. The reaction was unsuccessful, as the thallium target was
3446:
The sum argument advanced by the JWP in the approval of the discovery of element 113 was later criticised in a May 2016 study from Lund University and the GSI, as it is only valid if no
4467:
of nihonium. The isotope Nh was investigated, made as the daughter of Mc produced in the Am+Ca reaction. The nihonium atoms were synthesised in a recoil chamber and then carried along
7710:
Ooe, Kazuhiro; Ozawa, Akira; Tokanai, Fuyuki; Tsukada, Kazuaki; Yamaguchi, Takayuki; Yoshida, Atsushi (25 May 2009). "Decay Properties of Bh and Db Produced in the Cm + Na Reaction".
4205:, and astatine). This state should be more stable than it is for thallium as the SO splitting of the 7p subshell is greater than that for the 6p subshell. Nihonium should be the most 5205:
Keller, O. L. Jr.; Burnett, J. L.; Carlson, T. A.; Nestor, C. W. Jr. (1969). "Predicted Properties of the Super Heavy Elements. I. Elements 113 and 114, Eka-Thallium and Eka-Lead".
4479:
into the carrier gas. It seems likely that this formation is not kinetically favoured, so the longer-lived isotopes Nh and Nh were considered more desirable for future experiments.
3116:
After 450 more days of irradiation of bismuth with zinc projectiles, Riken produced and identified another 113 atom in August 2012. Although electricity prices had soared since the
3589:. In March 2016, Morita proposed the name "nihonium" to IUPAC, with the symbol Nh. The naming realised what had been a national dream in Japanese science ever since Ogawa's claim. 11190: 2016:
during the attempted formation of a single nucleus, electrostatic repulsion tears apart the nucleus that is being formed. Each pair of a target and a beam is characterized by its
5328:
Hofmann, S.; Heinz, S.; Mann, R.; Maurer, J.; MĂŒnzenberg, G.; Antalic, S.; Barth, W.; et al. (2016). "Review of even element super-heavy nuclei and search for element 120".
7667:
Oganessian, Yu. Ts.; Utyonkov, V.; Lobanov, Yu.; Abdullin, F.; Polyakov, A.; Sagaidak, R.; Shirokovsky, I.; Tsyganov, Yu.; Voinov, A.; Gulbekian, Gulbekian; et al. (2007).
7272:
Oganessian, Yu. Ts.; Utyonkoy, V.; Lobanov, Yu.; Abdullin, F.; Polyakov, A.; Shirokovsky, I.; Tsyganov, Yu.; Gulbekian, G.; Bogomolov, S.; Mezentsev, A. N.; et al. (2004).
1925:, and nihonium is expected to be a post-transition metal as well. It should also show several major differences from them; for example, nihonium should be more stable in the +1 3954: = 184 is seen in roentgenium, copernicium, and nihonium (elements 111 through 113), where each extra neutron so far multiplies the half-life by a factor of 5 to 20. 2024:
through electrostatic repulsion. If the two nuclei can stay close past that phase, multiple nuclear interactions result in redistribution of energy and an energy equilibrium.
4019:, and the separation of the 7p subshell into the more and less stabilised parts is called subshell splitting. Computational chemists see the split as a change of the second, 8163:
Forsberg, U.; Rudolph, D.; Fahlander, C.; Golubev, P.; Sarmiento, L. G.; Åberg, S.; Block, M.; DĂŒllmann, Ch. E.; Heßberger, F. P.; Kratz, J. V.; Yakushev, A. (9 July 2016).
1975:. Reactions that created new elements to this moment were similar, with the only possible difference that several singular neutrons sometimes were released, or none at all. 4671:
reaction, cross section changes smoothly from 370 mb at 12.3 MeV to 160 mb at 18.3 MeV, with a broad peak at 13.5 MeV with the maximum value of 380 mb.
7078: 7562:
Wilk, P. A.; Kenneally, J. M.; Stoyer, M. A.; Wild, J. F. (2005). "Chemical identification of dubnium as a decay product of element 115 produced in the reaction Ca+Am".
6680: 8518: 7597:
Oganessian, Yu. Ts.; Utyonkov, V.; Dmitriev, S.; Lobanov, Yu.; Itkis, M.; Polyakov, A.; Tsyganov, Yu.; Mezentsev, A.; Yeremin, A.; Voinov, A. A.; et al. (2005).
3468: 3455:
argument, as different isomers of the same nuclide can have different half-lives: for example, the ground state of Ta has a half-life of hours, but an excited state
2944:
115 and 113 had been founded on chemical identification of their daughter dubnium, but the JWP objected that current theory could not distinguish between superheavy
2798:
In June 2004 and again in December 2005, the JINR–LLNL collaboration strengthened their claim for the discovery of element 113 by conducting chemical experiments on
9137:
Han, Young-Kyu; Bae, Cheolbeom; Son, Sang-Kil; Lee, Yoon Sup (2000). "Spin–orbit effects on the transactinide p-block element monohydrides MH (M=element 113–118)".
8141: 2815:(dubnium is known to be in group 5). Both the half-life and decay mode were confirmed for the proposed Db which lends support to the assignment of the parent and 5581: 3413:
isotope 117, as well as its daughter 113 as part of its decay chain. Confirmation of 115 and its daughters was published by the team at the LBNL in August 2015.
3401:
The Bk + Ca experiment was repeated at the JINR in 2012 and 2013 with consistent results, and again at the GSI in 2014. In August 2013, a team of researchers at
2671:
The bombardment of Bi with Zn at Riken began in September 2003. The team detected a single atom of 113 in July 2004 and published their results that September:
7993:
MacChiavelli, A. O.; May, E. M.; Mudder, P. R.; Olive, D. T.; Rice, A. C.; Rissanen, J.; Rudolph, D.; Sarmiento, L. G.; Shusterman, J. A.; et al. (2015).
6711: 4778:. There were no earlier definitive claims of creation of this element, and the element was assigned a name by its Swedish, American, and British discoverers, 2198:
of the emitted particle). Spontaneous fission, however, produces various nuclei as products, so the original nuclide cannot be determined from its daughters.
9615:
Tereshatov, E. E.; Boltoeva, M. Yu.; Folden III, C. M. (2015). "Resin Ion Exchange and Liquid-Liquid Extraction of Indium and Thallium from Chloride Media".
4997:
Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.).
2399:
et al. considered that the most likely explanation of the 1998 result is that two neutrons were emitted by the produced compound nucleus, leading to 114 and
5235:
Atarah, Samuel A.; Egblewogbe, Martin N. H.; Hagoss, Gebreyesus G. (2020). "First principle study of the structural and electronic properties of Nihonium".
1819:
Nihonium was first reported to have been created in experiments carried out between 14 July and August 10, 2003, by a Russian–American collaboration at the
7765: 1897:" theory. Experiments to date have supported the theory, with the half-lives of the confirmed nihonium isotopes increasing from milliseconds to seconds as 8067: 1435: 5065: 2108:
Stability of a nucleus is provided by the strong interaction. However, its range is very short; as nuclei become larger, its influence on the outermost
7138:"Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions U, Pu, and Cm + Ca" 3942:" containing nuclides with half-lives reaching thousands or millions of years. The existence of the island is still unproven, but the existence of the 9765:
Zagrebaev, V.; Karpov, A.; Greiner, W. (2013). "Future of superheavy element research: Which nuclei could be synthesized within the next few years?".
5649: 4547:(element 82) is one example of such a heavy element. The term "superheavy elements" typically refers to elements with atomic number greater than 4391:, and the presence of a possible vacant coordination site on the lighter T-shaped nihonium trihalides is expected to allow a similar stabilisation of 2429:+ Ca reactions. They then turned their attention to the missing odd-numbered elements, as the odd protons and possibly neutrons would hinder decay by 9889: 2761: 5466: 2072:. This happens in about 10 seconds after the initial nuclear collision and results in creation of a more stable nucleus. The definition by the 4840: 2116:
and neutrons) weakens. At the same time, the nucleus is torn apart by electrostatic repulsion between protons, and its range is not limited. Total
6047: 5169:
Thayer, John S. (2010). "Relativistic Effects and the Chemistry of the Heavier Main Group Elements". In Barysz, Maria; Ishikawa, Yasuyuki (eds.).
8074: 4559:; sometimes, the term is presented an equivalent to the term "transactinide", which puts an upper limit before the beginning of the hypothetical 2765: 9426:
Bae, Ch.; Han, Y.-K.; Lee, Yo. S. (18 January 2003). "Spin−Orbit and Relativistic Effects on Structures and Stabilities of Group 17 Fluorides EF
7137: 1987:, the greater the possibility that the two react. The material made of the heavier nuclei is made into a target, which is then bombarded by the 1983:
is created in a nuclear reaction that combines two other nuclei of unequal size into one; roughly, the more unequal the two nuclei in terms of
9511:
DĂŒllmann, Christoph E. (2012). "Superheavy elements at GSI: a broad research program with element 114 in the focus of physics and chemistry".
8543: 7273: 3914:, element 96, whose half-life is over ten thousand times longer than that of any subsequent element. All isotopes with an atomic number above 1287: 1758: 2253:. This creates fused nuclei with low excitation energies due to the stability of the targets' nuclei, significantly increasing the yield of 6869: 3604:, ruled that the proposed names should be released in a joint IUPAP–IUPAC press release. Thus, IUPAC and IUPAP publicised the proposal of 2230: 8801: 5536:; Dmitriev, S. N.; Yeremin, A. V.; et al. (2009). "Attempt to produce the isotopes of element 108 in the fusion reaction Xe + Xe". 9843: 4810:) that may fission, or alternatively emit several (3 to 5) neutrons. Cold fusion reactions use heavier projectiles, typically from the 3651: 1749: 8427: 8106: 4595:
The amount of energy applied to the beam particle to accelerate it can also influence the value of cross section. For example, in the
8615: 4577:. In comparison, the reaction that resulted in hassium discovery, Pb + Fe, had a cross section of ~20 pb (more specifically, 19 2068:, which would carry away the excitation energy; if the latter is not sufficient for a neutron expulsion, the merger would produce a 6839:"Responses on the report 'Discovery of the Transfermium elements' followed by reply to the responses by Transfermium Working Group" 1399: 8037: 4891:
The opposite effect is expected for the superheavy member of group 17, tennessine, due to the relativistic stabilisation of the 7p
4034:, the highest among the metals of group 13. Similar subshell splitting should exist for the 6d electron levels, with four being 6d 2960:, which would decay to elements 115 and 113 and bolster their claims in a cross-reaction. They were now joined by scientists from 8556:
Japanese scientists who discovered the atomic element 113 plan to name it "Nihonium", sources close to the matter said Wednesday.
2835:
escaped from the detector without depositing its full energy, or because some of the intermediate decay products were formed in
8910:
Oganessian, Yu. Ts.; Sobiczewski, A.; Ter-Akopian, G. M. (9 January 2017). "Superheavy nuclei: from predictions to discovery".
7642: 7111: 5462: 2453: 2298: 2141: 1828: 1413: 9000: 9882: 9767: 9755: 9729: 9691: 9555: 9410: 9383: 9049: 8891: 5881: 5509: 5186: 5139: 5010: 2665: 4107:
of nihonium monohydride to be reduced by about 1 eV and the nihonium–hydrogen bond length to decrease as the bonding 7p
3117: 2849:
In June 2006, the JINR–LLNL collaboration claimed to have synthesised a new isotope of element 113 directly by bombarding a
8827:
Forsberg, Ulrika (September 2016). "Recoil-α-fission and recoil-α–α-fission events observed in the reaction 48Ca + 243Am".
8110: 5905: 5777:
Wakhle, A.; Simenel, C.; Hinde, D. J.; et al. (2015). Simenel, C.; Gomes, P. R. S.; Hinde, D. J.; et al. (eds.).
2449: 2281: 2262: 2211: 1820: 1409: 9852: 5488:
Eliav, E.; Kaldor, U.; Borschevsky, A. (2018). "Electronic Structure of the Transactinide Atoms". In Scott, R. A. (ed.).
4427: 4418:
The +5 oxidation state is unknown for all lighter group 13 elements: calculations predict that nihonium pentahydride (NhH
2404:
1999 in the Pu + Ca reaction may be due to the electron-capture daughter of 114, 113; this assignment is also tentative.
2140:
Scheme of an apparatus for creation of superheavy elements, based on the Dubna Gas-Filled Recoil Separator set up in the
5838: 7946: 7048: 5715: 4296: 3574: 1995:
into one if they approach each other closely enough; normally, nuclei (all positively charged) repel each other due to
1843:, Japan. The confirmation of their claims in the ensuing years involved independent teams of scientists working in the 1428: 8215: 5620: 9070:"Diatomic molecules between very heavy elements of group 13 and group 17: A study of relativistic effects on bonding" 7525:
Karol, Paul J.; Barber, Robert C.; Sherrill, Bradley M.; Vardaci, Emanuele; Yamazaki, Toshimitsu (22 December 2015).
7021: 6310:
Aksenov, N. V.; Steinegger, P.; Abdullin, F. Sh.; et al. (2017). "On the volatility of nihonium (Nh, Z = 113)".
5307: 3484: 2748:
of its daughter Db had not been previously known; the American team had observed only alpha decay from this nuclide.
1134: 97: 6428: 5431: 2768:(IUPAP) assembles to examine the claims according to their criteria for the discovery of a new element, and decides 9875: 9747: 9546:
Moody, Ken (30 November 2013). "Synthesis of Superheavy Elements". In SchÀdel, Matthias; Shaughnessy, Dawn (eds.).
6955:
Barber, Robert C.; GĂ€ggeler, Heinz W.; Karol, Paul J.; Nakahara, Hiromichi; Vardaci, Emanuele; Vogt, Erich (2009).
5002: 4691: 2639:
While the JINR–LLNL collaboration had been studying fusion reactions with Ca, a team of Japanese scientists at the
8593: 6179: 6137: 2121:
predicted and have so far been observed to predominantly decay via decay modes that are caused by such repulsion:
1901:
are added and the island is approached. Nihonium has been calculated to have similar properties to its homologues
9373: 4045:
Periodic trends would predict nihonium to have an atomic radius larger than that of thallium due to it being one
2819:
to elements 115 and 113 respectively. Further experiments at the JINR in 2005 confirmed the observed decay data.
2757: 2073: 1860: 7772: 8078: 6685: 4843:
in 1940, who did not get naming rights because they could not chemically separate and identify their discovery.
3644: 2044: 2003:
can overcome this repulsion but only within a very short distance from a nucleus; beam nuclei are thus greatly
1742: 1349: 9476:
Tebbe, K.-F.; Georgy, U. (December 1986). "Die Kristallstrukturen von Rubidiumtriiodid und Thalliumtriiodid".
8164: 4740:
If the decay occurred in a vacuum, then since total momentum of an isolated system before and after the decay
4434:
molecule and reduction to nihonium(III). Again, some stabilisation is expected for anionic complexes, such as
2057: 7970: 5783: 5742:
Kern, B. D.; Thompson, W. E.; Ferguson, J. M. (1959). "Cross sections for some (n, p) and (n, α) reactions".
2961: 2130: 9316:
Eichler, Robert (2013). "First foot prints of chemistry on the shore of the Island of Superheavy Elements".
9833: 4082: 3476: 9653:
Audi, G.; Kondev, F. G.; Wang, M.; et al. (2017). "The NUBASE2016 evaluation of nuclear properties".
5173:. Challenges and Advances in Computational Chemistry and Physics. Vol. 10. Springer. pp. 63–67. 3522:
Before the JWP recognition of their priority, the Japanese team had unofficially suggested various names:
2237:, Germany, from 1981 to 1996. These elements were made by cold fusion reactions, in which targets made of 11195: 6202:"Spontaneous fission modes and lifetimes of superheavy elements in the nuclear density functional theory" 4292: 3930:
for long. Calculations suggest that in the absence of other stabilising factors, elements with more than
3542:
was considered, making the connection to Japan easy to identify for non-Japanese, but it was rejected as
7187:
Oganessian, Yu. Ts.; et al. (2000). "Synthesis of superheavy nuclei in the Ca + Pu reaction: 114".
5032: 3918:
undergo radioactive decay with half-lives of less than 30 hours: this is because of the ever-increasing
2822:
In November and December 2004, the Riken team studied the Tl + Zn reaction, aiming the zinc beam onto a
11185: 8451:"The discoveries of uranium 237 and symmetric fission – From the archival papers of Nishina and Kimura" 7924: 6785: 5939: 5865: 5720: 4873:
The quantum number corresponds to the letter in the electron orbital name: 0 to s, 1 to p, 2 to d, etc.
4004: 1088: 5037: 4852:
Different sources give different values for half-lives; the most recently published values are listed.
4694:
and a recoil energy measurement; a combination of the two may allow to estimate the mass of a nucleus.
2021: 8829: 7371:"Discovery of the elements with atomic numbers greater than or equal to 113 (IUPAC Technical Report)" 6437: 3637: 1735: 8398: 8372: 6928:
Fleischmann, Martin; Pons, Stanley (1989). "Electrochemically induced nuclear fusion of deuterium".
5380: 1951: 1871:
in 2016, which was approved in the same year. The name comes from the common Japanese name for Japan
1488: 8551: 7916: 7304: 7226:"Measurements of cross sections for the fusion-evaporation reactions Pu(Ca,xn)114 and Cm(Ca,xn)116" 6716: 4483:
surfaces. This experimental result for the interaction limit of nihonium atoms with a PTFE surface
4446:. The structures of the nihonium trifluoride and pentafluoride molecules are the same as those for 4020: 3383: 2297:, it would confer benefits in stability to the fused nuclei. In collaboration with the team at the 2136: 1217: 9036:. Challenges and Advances in Computational Chemistry and Physics. Vol. 10. pp. 139–146. 8513:[From the Big Bang to the 113th element nihonium: element creation of 13.8 billion years] 8322: 7368: 6507:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
4099:
The simplest possible nihonium compound is the monohydride, NhH. The bonding is provided by the 7p
2316:
In 1998, the JINR–LLNL collaboration started their attempt on element 114, bombarding a target of
2084:
within 10 seconds. This value was chosen as an estimate of how long it takes a nucleus to acquire
9114:"Relativistic DFT and ab initio calculations on the seventh-row superheavy elements: E113 – E114" 7766:"Production and Decay Properties of Bh and its daughter nuclei by using the Cm(Na,5n)Bh Reaction" 7369:
Barber, Robert C.; Karol, Paul J; Nakahara, Hiromichi; Vardaci, Emanuele; Vogt, Erich W. (2011).
7334: 7170: 7086: 4766:
For instance, element 102 was mistakenly identified in 1957 at the Nobel Institute of Physics in
4468: 4211: 4046: 3500: 2177:
thus suggested that spontaneous fission would occur nearly instantly due to disappearance of the
2144:
in JINR. The trajectory within the detector and the beam focusing apparatus changes because of a
2017: 1068: 9840: 6838: 5573: 4214:
around 150 kJ/mol and an enthalpy of adsorption on a gold surface around −159 kJ/mol.
3559: 2811:(SF) activities and using chemical identification techniques to confirm that they behave like a 2064:
without formation of a more stable nucleus. Alternatively, the compound nucleus may eject a few
1882: 8568: 6895: 5931: 5654: 4464: 4451: 4056: 2956:
In late 2009, the JINR–LLNL collaboration studied the Bk + Ca reaction in an effort to produce
2310: 2117: 2098: 1938: 1867:
of the discovery and naming rights for the element to Riken. The Riken team suggested the name
1503: 1095: 1080: 1056: 8581:
which is derived from Latin or French, Morita group leader seems to stick to his own language.
8342: 7598: 5932:"Criteria that must be satisfied for the discovery of a new chemical element to be recognized" 1133: 8805: 8246:"Analysis of decay chains of superheavy nuclei produced in the Bk + Ca and Am + Ca reactions" 7527:"Discovery of the elements with atomic numbers Z = 113, 115 and 117 (IUPAC Technical Report)" 6168: 6126: 4795: 4680:
This figure also marks the generally accepted upper limit for lifetime of a compound nucleus.
4149: 4011:, because their electrons move much faster than in lighter atoms, at velocities close to the 3971: 3901: 2965: 2827: 2302: 1922: 1832: 1801: 9918: 9786: 9662: 9581: 9485: 9450: 9335: 9273: 9204: 9146: 9081: 8974: 8958: 8919: 8848: 8758: 8709: 8661: 8462: 8349: 8257: 8179: 8006: 7878: 7819: 7729: 7683: 7610: 7486: 7419: 7288: 7239: 7198: 7154: 7095: 6596: 6563: 6514: 6391: 6319: 6223: 5792: 5751: 5596: 5493: 4447: 4341: 4141: 3923: 3626: 3491:. In 1979, IUPAC published recommendations according to which the element was to be called 3456: 2004: 1421: 17: 8623: 6780: 1937:
than thallium. Preliminary experiments in 2017 showed that elemental nihonium is not very
8: 9798: 9709: 9347: 9193:"The chemistry of superheavy elements. III. Theoretical studies on element 113 compounds" 8327: 7787: 6404: 6379: 6052: 5986: 5645: 3939: 3935: 3927: 3890: 3451: 3379: 2927: 2808: 2769: 2745: 2624: 2430: 2246: 2186: 2182: 2126: 1894: 1864: 1634: 1368: 9790: 9674: 9666: 9585: 9489: 9454: 9339: 9277: 9208: 9150: 9085: 8978: 8923: 8852: 8770: 8762: 8713: 8673: 8665: 8466: 8261: 8183: 8010: 7882: 7823: 7733: 7687: 7614: 7490: 7423: 7292: 7243: 7202: 7158: 7099: 6600: 6567: 6518: 6395: 6323: 6227: 5796: 5755: 5600: 3597: 9810: 9776: 9632: 9597: 9528: 9351: 9325: 9242:"Quantum chemical modelling of electronic structure of nihonium and astatine compounds" 9222: 9162: 8935: 8864: 8838: 8782: 8727: 8646: 8483: 8450: 8165:"A new assessment of the alleged link between element 115 and element 117 decay chains" 7894: 7868: 7745: 7719: 7579: 7451: 6861: 6661: 6630: 6343: 6213: 6018: 5964: 5909: 5612: 5515: 5259: 4916: 4896: 4120:(head-on orbital overlap) in thallium monohydride (TlH). The analogous monofluoride (Nh 4008: 3943: 3938:
around 114 protons and 184 neutrons should counteract this instability, and create an "
2254: 2000: 1929:
than the +3 state, like thallium, but in the +1 state nihonium should behave more like
1206: 1200: 8428:"IUPAC Is Naming The Four New Elements Nihonium, Moscovium, Tennessine, And Oganesson" 2060:—and thus it is very unstable. To reach a more stable state, the temporary merger may 11180: 10769: 9802: 9751: 9725: 9697: 9687: 9601: 9551: 9532: 9406: 9379: 9289: 9045: 8939: 8887: 8774: 8746: 8731: 8488: 7898: 7837: 7668: 7443: 7435: 7230: 7189: 7145: 6941: 6766: 6665: 6634: 6622: 6614: 6540: 6532: 6409: 6347: 6335: 6241: 6010: 5956: 5877: 5820: 5763: 5616: 5555: 5538: 5519: 5505: 5303: 5182: 5135: 5115: 5006: 4228: 4206: 4133: 4016: 3886: 2380: 2174: 2149: 2081: 1770: 1728: 1468: 1459: 1343: 1336: 1260: 717: 9814: 9636: 9355: 9226: 8986: 8868: 8860: 8786: 7803: 7749: 7583: 7575: 6865: 6480: 6022: 5968: 5913: 5688: 5300:
Exotic Nuclei: EXON-2016 Proceedings of the International Symposium on Exotic Nuclei
4171:
surfaces in thermochromatographical experiments is expected to be closer to that of
4103:
electron of nihonium and the 1s electron of hydrogen. The SO interaction causes the
10833: 10538: 10367: 10196: 10115: 10034: 10007: 9970: 9965: 9960: 9794: 9721: 9670: 9624: 9589: 9520: 9493: 9458: 9369: 9343: 9281: 9212: 9166: 9154: 9113: 9089: 9037: 8982: 8927: 8856: 8766: 8717: 8669: 8478: 8470: 8298: 8265: 8229: 8224: 8192: 8187: 8014: 7886: 7832: 7827: 7737: 7691: 7618: 7571: 7538: 7494: 7455: 7431: 7427: 7382: 7296: 7247: 7206: 7162: 7103: 7062: 7057: 6968: 6937: 6910: 6853: 6653: 6604: 6522: 6476: 6399: 6327: 6231: 6002: 5948: 5869: 5857: 5810: 5800: 5759: 5604: 5577: 5547: 5501: 5497: 5337: 5274: 5240: 5214: 5174: 5127: 5077: 4811: 4771: 4708: 4511: 4272: 4145: 3919: 3910:
The stability of nuclei quickly decreases with the increase in atomic number after
3878: 3593: 3504: 3387: 2836: 2816: 2400: 2250: 2077: 1996: 1809: 1597: 1185: 1073: 57: 9857: 9628: 8399:"Naming 113th element 'nihonium' a tribute to Japanese public support: researcher" 8223:. Nobel Symposium NS160 – Chemistry and Physics of Heavy and Superheavy Elements. 7056:. Nobel Symposium NS160 – Chemistry and Physics of Heavy and Superheavy Elements. 6462: 6436:. Dai 2 Kai Hadoron Tataikei no Simulation Symposium, Tokai-mura, Ibaraki, Japan. 5805: 5778: 3472: 2648: 2644: 1840: 9955: 9950: 9945: 9940: 9935: 9930: 9925: 9847: 9593: 9400: 8954: 6988:
Armbruster, Peter; Munzenberg, Gottfried (1989). "Creating superheavy elements".
6893: 6712:"The Transfermium Wars: Scientific Brawling and Name-Calling during the Cold War" 6331: 6043: 5927: 5533: 5436: 5405: 5341: 4536: 4093: 3402: 3335: 3130: 2945: 2812: 2436:
The first report of element 113 was in August 2003, when it was identified as an
2284:
turned their renewed attention to the older hot fusion technique, in which heavy
2277: 2258: 2178: 2145: 2061: 1926: 1774: 1707: 1684: 1661: 1626: 1603: 1589: 1566: 1543: 1520: 1315: 1235: 9041: 9032:
StysziƄski, Jacek (2010). "Why do we Need Relativistic Computational Methods?".
8722: 8697: 8138:"Discovery and Assignment of Elements with Atomic Numbers 113, 115, 117 and 118" 7225: 7107: 5178: 4741: 4085:
for the Nh/Nh couple is predicted to be 0.6 V. Nihonium should be a rather
3975:
Atomic energy levels of outermost s, p, and d electrons of thallium and nihonium
9898: 9828: 9713: 8931: 8287:"Recommendations for the Naming of Elements of Atomic Numbers Greater than 100" 8270: 8245: 8019: 7994: 7695: 7622: 7300: 7252: 7210: 7166: 6236: 6201: 6048:"How to Make Superheavy Elements and Finish the Periodic Table [Video]" 5990: 5551: 5278: 4799: 4503: 4430:, but also that both would be highly thermodynamically unstable to loss of an X 4104: 4012: 3601: 3578: 3531: 3356: 3315: 3294: 3274: 3233: 3192: 3171: 3151: 2832: 2602: 2523: 2396: 2195: 2009: 1992: 1980: 1968: 1797: 1128: 122: 9497: 8804:. National Nuclear Data Center: Brookhaven National Laboratory. Archived from 8696:
Oganessian, Yu. Ts.; Utyonkov, V. K.; Kovrizhnykh, N. D.; et al. (2022).
8068:"President's report to the meeting of the IUPAP Council and Commission Chairs" 7330: 6006: 5779:"Comparing Experimental and Theoretical Quasifission Mass Angle Distributions" 2040: 11174: 10992: 9806: 7439: 7387: 7370: 6973: 6956: 6657: 6618: 6587: 6536: 6467: 6413: 6339: 6245: 6014: 5960: 5824: 5559: 5116:"Superheavy elements: a prediction of their chemical and physical properties" 4754: 4560: 4540: 3427: 3046: 2982: 2858: 2803: 2461: 2317: 2053: 1988: 1844: 1781: 1493: 1298: 1166: 1149: 1038: 887: 9701: 8455:
Proceedings of the Japan Academy, Series B: Physical and Biological Sciences
8303: 8286: 6914: 6857: 6763:
Popular library of chemical elements. Silver through nielsbohrium and beyond
6252: 5952: 5873: 11046: 10875: 10580: 9980: 9913: 9524: 9293: 8778: 8492: 8373:"Proposed name for 113th element a fulfilled wish for Japanese researchers" 8107:"Discovery of the new chemical elements with numbers 113, 115, 117 and 118" 7890: 7841: 7741: 7447: 6741:[Popular library of chemical elements. Seaborgium (eka-tungsten)]. 6544: 6527: 6502: 4823: 4807: 4476: 4061: 4031: 3979:
Nihonium is the first member of the 7p series of elements and the heaviest
3873:
and Nh are unconfirmed); they all decay through alpha decay to isotopes of
2785:
Summary of decay chains passing through isotopes of element 113, ending at
2781: 2657: 2294: 2102: 2012:. However, if too much energy is applied, the beam nucleus can fall apart. 1963: 929: 796: 570: 9112:
Zaitsevskii, A.; van WĂŒllen, C.; Rusakov, A.; Titov, A. (September 2007).
7596: 7543: 7526: 7274:"Experiments on the synthesis of element 115 in the reaction Am(Ca,xn)115" 7271: 6957:"Discovery of the element with atomic number 112 (IUPAC Technical Report)" 4551:(although there are other definitions, such as atomic number greater than 4160:
O, which would be soluble in aqueous ammonia and weakly soluble in water.
11100: 11064: 11055: 10965: 10947: 10938: 9975: 9739: 8508:"Bikkuban kara 113-ban genso nihoniumu made, genso sƍsei no 138 oku-nen" 7499: 7474: 6896:"Names and symbols of transfermium elements (IUPAC Recommendations 1997)" 6176:
Introductory Nuclear, Atomic and Molecular Physics (Nuclear Physics Part)
6134:
Introductory Nuclear, Atomic and Molecular Physics (Nuclear Physics Part)
5244: 4556: 4506:
would be necessary to further probe the behaviour of elemental nihonium.
4153: 4152:) in solution, the Nh cation should instead hydrolyse all the way to the 4086: 4074: 3980: 3915: 3882: 3874: 3549: 3447: 3395: 3394:, which underwent the seventh alpha decay in the chain to the long-lived 3253: 3212: 3121: 2932: 2786: 2676: 2661: 2437: 2426: 2414: 2226: 2122: 1813: 1785: 1514: 1355: 1061: 1014: 971: 943: 936: 866: 852: 845: 112: 9744:
From Transuranic to Superheavy Elements: A Story of Dispute and Creation
8474: 7475:"Experiment on the Synthesis of Element 113 in the Reaction Bi(Zn,n)113" 6759:ĐŸĐŸĐżŃƒĐ»ŃŃ€ĐœĐ°Ń Đ±ĐžĐ±Đ»ĐžĐŸŃ‚Đ”ĐșĐ° Ń…ĐžĐŒĐžŃ‡Đ”ŃĐșох ŃĐ»Đ”ĐŒĐ”ĐœŃ‚ĐŸĐČ. ĐĄĐ”Ń€Đ”Đ±Ń€ĐŸ – ĐĐžĐ»ŃŒŃĐ±ĐŸŃ€ĐžĐč Đž ЎалДД 5355: 5218: 5081: 4703:
Not all decay modes are caused by electrostatic repulsion. For example,
1171:
1430 K ​(1130 Â°C, ​2070 Â°F)
11109: 11037: 11010: 10983: 10643: 10625: 10598: 10429: 10420: 10159: 9862: 9550:(2nd ed.). Springer Science & Business Media. pp. 24–28. 9378:(2nd ed.). Butterworth-Heinemann. pp. 195, 233–235, 237–240. 6930:
Journal of Electroanalytical Chemistry and Interfacial Electrochemistry
5815: 5608: 5131: 4704: 4548: 4181: 4180:
group 13, it has several properties similar to the group 17 elements. (
4164: 4117: 4030:. The first ionisation energy of nihonium is expected to be 7.306  3931: 3423: 3410: 3067: 3003: 2957: 2923: 2879: 2482: 2289: 978: 922: 901: 880: 619: 605: 584: 456: 449: 250: 9462: 9285: 9094: 9069: 7407: 6837:
Ghiorso, A.; Seaborg, G. T.; Oganessian, Yu. Ts.; et al. (1993).
6781:"Nobelium - Element information, properties and uses | Periodic Table" 6626: 6609: 6582: 3386:
to be 10, or totally negligible. The resulting Md atom then underwent
1859:, as well as the original claimants in Russia and Japan. In 2015, the 11118: 11091: 11082: 10929: 10911: 10902: 10893: 10679: 10589: 10562: 10510: 10456: 10438: 10402: 10382: 10321: 10258: 10202: 10141: 10130: 10049: 10000: 9990: 9985: 9217: 9192: 9158: 4923: 4827: 4767: 4472: 4078: 3988: 3934:
should not exist. Researchers in the 1960s suggested that the closed
3586: 2973: 2969: 2850: 2445: 2441: 2418: 2306: 2234: 2069: 1906: 1793: 1473: 1304: 1022: 985: 964: 957: 838: 824: 817: 810: 647: 577: 556: 519: 477: 463: 435: 417: 373: 324: 280: 236: 227: 167: 6832: 6830: 6739:"ĐŸĐŸĐżŃƒĐ»ŃŃ€ĐœĐ°Ń Đ±ĐžĐ±Đ»ĐžĐŸŃ‚Đ”ĐșĐ° Ń…ĐžĐŒĐžŃ‡Đ”ŃĐșох ŃĐ»Đ”ĐŒĐ”ĐœŃ‚ĐŸĐČ. ĐĄĐžĐ±ĐŸŃ€ĐłĐžĐč (эĐșĐ°ĐČĐŸĐ»ŃŒŃ„Ń€Đ°ĐŒ)" 6681:"Exploring the superheavy elements at the end of the periodic table" 6079: 6067: 4247: 4222: 4128:(I) than thallium(I): the Nh ion is expected to more willingly bind 4124:) should also exist. Nihonium(I) is predicted to be more similar to 2972:, United States, who helped procure the rare and highly radioactive 10974: 10857: 10839: 10814: 10805: 10778: 10751: 10715: 10706: 10688: 10616: 10607: 10501: 10373: 10339: 10249: 10240: 10231: 10222: 10177: 10096: 10078: 10013: 9430:(E = I, At, and Element 117): Relativity Induced Stability for the 8843: 8645:
Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017).
6705: 6703: 6120: 6118: 6091: 5650:"Making New Elements Doesn't Pay. Just Ask This Berkeley Scientist" 5572: 5258:
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021).
4806:), creating compound nuclei at high excitation energy (~40–50  4803: 4574: 4285: 4194: 4190: 4172: 4121: 4000: 3614: 2823: 2285: 2162: 2085: 1934: 1918: 997: 873: 782: 768: 752: 745: 724: 703: 675: 668: 654: 598: 591: 512: 410: 387: 317: 310: 303: 296: 264: 204: 190: 142: 9781: 9330: 9241: 8594:"IUPAC Announces the Names of the Elements 113, 115, 117, and 118" 7873: 7724: 7560: 6456: 6454: 6373: 6371: 6369: 6218: 5980: 5978: 5895: 5893: 5356:"WebElements Periodic Table Â» Nihonium Â» the essentials" 3877:. There have been indications that nihonium-284 can also decay by 11155: 11150: 11145: 11140: 11028: 11019: 11001: 10956: 10884: 10866: 10796: 10742: 10724: 10697: 10670: 10652: 10634: 10544: 10474: 10447: 10411: 10393: 10357: 10348: 10330: 10312: 10211: 10150: 10040: 9995: 9867: 9111: 7666: 6827: 6291: 6038: 6036: 6034: 6032: 5991:"A History and Analysis of the Discovery of Elements 104 and 105" 5066:"Predicting the Properties of the 113–120 Transactinide Elements" 4819: 4552: 4516: 4507: 4308: 4198: 4186: 4137: 4113: 3992: 3582: 3534:, the "founding father of modern physics research in Japan"; and 3431: 3391: 3088: 3024: 2900: 2843: 2799: 2774: 2718: 2697: 2653: 2628: 2582: 2503: 2242: 2222: 2185:
suggested that nuclei with about 300 nucleons would form an
2170: 2166: 2158: 2109: 2065: 1972: 1910: 1898: 1848: 1805: 1789: 1179: 915: 908: 894: 859: 803: 789: 738: 696: 682: 661: 640: 626: 612: 542: 491: 470: 442: 428: 401: 394: 380: 366: 287: 243: 160: 24: 8909: 6738: 6700: 6162: 6160: 6158: 6156: 6154: 6115: 5532: 2080:
can only be recognized as discovered if a nucleus of it has not
10920: 10848: 10733: 10661: 10571: 10553: 10519: 10483: 10465: 10294: 10285: 10276: 10168: 10121: 10087: 10069: 10024: 8162: 7404: 6731: 6451: 6366: 5975: 5890: 4775: 4315: 4202: 4125: 3996: 3911: 2422: 2113: 2043:
of unsuccessful nuclear fusion, based on calculations from the
1930: 1914: 1852: 1155: 831: 775: 689: 633: 563: 549: 526: 498: 484: 352: 345: 338: 257: 220: 197: 183: 151: 9570: 7995:"Decay spectroscopy of element 115 daughters: Rg→Mt and Mt→Bh" 7800: 6309: 6029: 3596:, complained at the Nobel Symposium on Superheavy Elements in 3485:
Mendeleev's nomenclature for unnamed and undiscovered elements
11134: 10823: 10528: 10186: 10060: 8695: 8544:"Japan scientists plan to name atomic element 113 'Nihonium'" 7669:"Synthesis of the isotope 113 in the Np + Ca fusion reaction" 6836: 6151: 4307:
electrons on the bonding. The heavier nihonium tribromide (Nh
4300: 4129: 4064:
of 20.8 GPa, about half that of thallium (43 GPa).
3984: 3610: 2807:
identified by extracting the final decay products, measuring
2740: 2640: 2313:, closing a proton shell, and more stable than element 113). 2266: 1902: 1856: 1836: 1824: 1404: 1387: 1101: 759: 533: 271: 176: 9614: 6380:"Nuclei in the "Island of Stability" of Superheavy Elements" 5638: 4116:
character (side-on orbital overlap), unlike the almost pure
2165:(element 102), and by 30 orders of magnitude from 1835:, and on July 23, 2004, by a team of Japanese scientists at 10787: 10760: 10303: 10267: 10105: 9405:. Springer Science & Business Media. pp. 128–137. 8952: 7599:"Synthesis of elements 115 and 113 in the reaction Am + Ca" 6954: 6672: 4815: 4544: 4168: 3406: 2391: 2270: 2238: 1984: 1158: ​(430 Â°C, ​810 Â°F) 731: 710: 359: 331: 211: 81: 78: 72: 8214:
Forsberg, Ulrika; Fahlander, Claes; Rudolph, Dirk (2016).
7524: 6894:
Commission on Nomenclature of Inorganic Chemistry (1997).
6887: 5776: 5204: 4839:
Neptunium had been first reported at Riken by Nishina and
4092:
The metallic group 13 elements are typically found in two
2444:. Element 115 had been produced by bombarding a target of 10492: 9907: 9191:
Seth, Michael; Schwerdtfeger, Peter; FĂŠgri, Knut (1999).
7959:– via Texas A&M University Cyclotron Institute. 7857: 7471: 6805: 6803: 6354: 5682: 5680: 5678: 5676: 5674: 5672: 5566: 3544: 2623:
Four further alpha decays were observed, ending with the
505: 63: 8217:
Congruence of decay chains of elements 113, 115, and 117
8213: 8038:"Element 113: Ununtrium Reportedly Synthesised In Japan" 7991: 7079:"Synthesis of Superheavy Nuclei in the Ca + Pu Reaction" 6562:. 50th Anniversary of Nuclear Fission, Leningrad, USSR. 6281: 6279: 6199: 5855: 4999:
The Chemistry of the Actinide and Transactinide Elements
3556:
was chosen after an hour of deliberation: it comes from
3443:
basics of synthesising superheavy elements at the JINR.
11191:
Chemical elements with hexagonal close-packed structure
4753:
Spontaneous fission was discovered by Soviet physicist
9764: 9190: 7762: 7708: 7400: 7398: 6800: 6773: 6097: 5669: 5487: 5327: 5296: 5234: 2842:
In 2006, a team at the Heavy Ion Research Facility in
2456:
collaboration published its results in February 2004:
9708: 6580: 6276: 6264: 6103: 6085: 6073: 4303:
analogues are: this is due to the influence of the 6d
98: 75: 60: 9402:
Chemistry of Aluminium, Gallium, Indium and Thallium
6987: 6648:
Grant, A. (2018). "Weighing the heaviest elements".
5902:
Faculty of Nuclear Sciences and Physical Engineering
5741: 5716:"Something new and superheavy at the periodic table" 5490:
Encyclopedia of Inorganic and Bioinorganic Chemistry
5257: 5030: 4175:
than that of thallium. The destabilisation of the 7p
4144:
is not. In contrast to Tl, which forms the strongly
3382:. The team calculated the probability of accidental 2756:
When the discovery of a new element is claimed, the
9841:
Uut and Uup Add Their Atomic Mass to Periodic Table
8882:Considine, Douglas M.; Considine, Glenn D. (1994). 8644: 7395: 6815: 2181:for nuclei with about 280 nucleons. The later 84: 69: 66: 8953:Audi, Georges; Bersillon, Olivier; Blachot, Jean; 8881: 8422: 8420: 8250:Journal of Physics G: Nuclear and Particle Physics 3398:, which has a half-life of around thirteen years. 9368: 8886:(8th ed.). Wiley-Interscience. p. 623. 8647:"The NUBASE2016 evaluation of nuclear properties" 8616:"Naming ceremony held for new element 'nihonium'" 8032: 8030: 6200:Staszczak, A.; Baran, A.; Nazarewicz, W. (2013). 5984: 5260:"The NUBASE2020 evaluation of nuclear properties" 4132:, so that NhCl should be quite soluble in excess 3617:, then the Crown Prince of Japan, in attendance. 2762:International Union of Pure and Applied Chemistry 2133:for each mode, but they can be tunneled through. 1958: 11172: 8561: 8244:Zlokazov, V. B.; Utyonkov, V. K. (8 June 2017). 8243: 6581:Oganessian, Yu. Ts.; Rykaczewski, K. P. (2015). 5410:American Elements: The Materials Science Company 5164: 5162: 5160: 5158: 4328:molecules can be considered as that of a linear 3697: 2853:-237 target with accelerated calcium-48 nuclei: 2643:Nishina Center for Accelerator-Based Science in 2249:of 82 protons, are bombarded with heavy ions of 9107: 9105: 8799: 8698:"New isotope Mc produced in the Am+Ca reaction" 8417: 8075:International Union of Pure and Applied Physics 7804:"Synthesis of a New Element with Atomic Number 7648:. 26th International Nuclear Physics Conference 7636: 7634: 7632: 6927: 6042: 5120:Recent Impact of Physics on Inorganic Chemistry 5063: 3893:branch of nihonium-285 has also been reported. 3739: 3718: 3557: 2766:International Union of Pure and Applied Physics 1971:reaction. Two nuclei fuse into one, emitting a 1880: 9027: 9025: 9023: 9021: 8586: 8132: 8130: 8128: 8027: 5323: 5321: 5319: 3760: 3566: 1874: 9883: 9067: 8992: 8793: 7333:. The Foreign Correspondents' Club of Japan. 5900:KrĂĄsa, A. (2010). "Neutron Sources for ADS". 5691:[Superheavy steps into the unknown]. 5155: 3823: 3802: 3781: 3645: 1743: 1085: 9419: 9136: 9102: 8536: 7853: 7851: 7629: 5784:European Physical Journal Web of Conferences 5109: 5107: 5105: 5103: 5101: 5099: 5097: 5095: 5093: 5091: 5064:Bonchev, Danail; Kamenska, Verginia (1981). 5001:(3rd ed.). Dordrecht, The Netherlands: 3848: 3479:, celebrating the naming on 1 December 2016. 1941:; its chemistry remains largely unexplored. 1827:, Russia, working in collaboration with the 32:Chemical element with atomic number 113 (Nh) 9652: 9475: 9311: 9309: 9307: 9305: 9303: 9262: 9018: 8963:evaluation of nuclear and decay properties" 8738: 8638: 8125: 8101: 8099: 8061: 8059: 6430:Fission properties of the heaviest elements 6297: 6258: 5644: 5316: 4586: pb), as estimated by the discoverers. 3896: 2231:GSI Helmholtz Centre for Heavy Ion Research 9890: 9876: 9392: 9063: 9061: 9031: 8744: 8691: 8689: 8687: 8685: 8683: 8321:Noorden, Richard Van (27 September 2012). 7910: 7908: 7408:"Spectroscopy of Element 115 Decay Chains" 7223: 7186: 7135: 7129: 7076: 7015: 7013: 7011: 7009: 7007: 7005: 7003: 6460: 6377: 3889:for this branch vary strongly by model. A 3652: 3638: 3416: 2407: 2288:targets were bombarded with lighter ions. 2105:, and the time of the decay are measured. 2088:and thus display its chemical properties. 1750: 1736: 1436: 1429: 1354: 16:"Uut" redirects here. For other uses, see 9780: 9718:The Transuranium People: The Inside Story 9504: 9425: 9329: 9216: 9093: 8905: 8903: 8842: 8721: 8505: 8482: 8302: 8284: 8269: 8228: 8191: 8140:. IUPAC. 30 December 2015. Archived from 8018: 7872: 7848: 7831: 7723: 7542: 7498: 7467: 7465: 7386: 7267: 7265: 7263: 7251: 7224:Oganessian, Yu. Ts.; et al. (2004). 7136:Oganessian, Yu. Ts.; et al. (2004). 7077:Oganessian, Yu. Ts.; et al. (1999). 7061: 6972: 6608: 6526: 6426: 6403: 6235: 6217: 5814: 5804: 5251: 5088: 5059: 5057: 5055: 5033:"transuranium element (chemical element)" 4457: 3926:cannot hold the nucleus together against 3906:too neutron-poor to be within the island. 2305:, United States, they made an attempt on 9510: 9300: 9244:. Flerov Laboratory of Nuclear Reactions 9186: 9184: 9182: 9180: 9178: 9176: 9130: 8826: 8096: 8065: 8056: 7861:Journal of the Physical Society of Japan 7756: 7712:Journal of the Physical Society of Japan 7640: 7520: 7518: 7516: 7514: 7512: 7510: 7479:Journal of the Physical Society of Japan 6709: 6583:"A beachhead on the island of stability" 4992: 4990: 4988: 4986: 4984: 4982: 4980: 4978: 4976: 4974: 4922:is a thallium(I) compound involving the 3970: 3900: 3467: 2780: 2135: 1962: 1863:recognized the element and assigned the 10990: 9315: 9239: 9058: 8998: 8680: 8320: 8316: 8314: 7914: 7905: 7643:"The discovery of element 113 at RIKEN" 7556: 7554: 7046: 7019: 7000: 6500: 5926: 4972: 4970: 4968: 4966: 4964: 4962: 4960: 4958: 4956: 4954: 4363:molecule and reduction to nihonium(I): 4291:). These molecules are predicted to be 3957: 2751: 1991:of lighter nuclei. Two nuclei can only 11173: 11044: 10873: 10578: 9681: 9539: 8900: 8884:Van Nostrand's Scientific Encyclopedia 8571:[Nihonium the most probable]. 8442: 8278: 8066:McKellar, Bruce (22–23 October 2016). 7944: 7660: 7462: 7364: 7362: 7360: 7358: 7356: 7354: 7352: 7328: 7260: 7217: 7180: 7070: 6948: 6757:"Đ­ĐșĐ°ĐČĐŸĐ»ŃŒŃ„Ń€Đ°ĐŒ" [Eka-tungsten]. 6503:"Chemistry of the superheavy elements" 6360: 6285: 6270: 6109: 5686: 5463:Lawrence Livermore National Laboratory 5429: 5292: 5290: 5288: 5200: 5198: 5168: 5113: 5052: 4860: 4858: 3966: 2448:-243 with calcium-48 projectiles. The 2421:in 2000 and 2002 respectively via the 2299:Lawrence Livermore National Laboratory 2273:-70; both attempts were unsuccessful. 2142:Flerov Laboratory of Nuclear Reactions 2091: 1829:Lawrence Livermore National Laboratory 11098: 11062: 11053: 10963: 10945: 10936: 9871: 9768:Journal of Physics: Conference Series 9738: 9545: 9398: 9318:Journal of Physics: Conference Series 9173: 9068:FĂŠgri Jr., Knut; Saue, Trond (2001). 9001:"What it takes to make a new element" 8946: 8499: 8448: 7507: 7337:from the original on 14 November 2021 7022:"What it takes to make a new element" 6875:from the original on 25 November 2013 6821: 6809: 6678: 6647: 6557: 6384:Journal of Physics: Conference Series 6166: 6124: 5899: 5713: 5406:"Nihonium (Nh) | AMERICAN ELEMENTS Âź" 5230: 5228: 4996: 4007:, which is especially strong for the 3983:element on the periodic table, below 2666:Lawrence Berkeley National Laboratory 1696: 1693: 1673: 1670: 1650: 1647: 1615: 1612: 1578: 1575: 1555: 1552: 1532: 1529: 1507: 1502: 11107: 11035: 11008: 10981: 10641: 10623: 10596: 10427: 10418: 9548:The Chemistry of Superheavy Elements 9240:Demidov, Yu. A. (15 February 2017). 8311: 8111:Joint Institute for Nuclear Research 7971:"Existence of new element confirmed" 7794: 7551: 7050:The discovery of elements 107 to 112 6981: 6098:Zagrebaev, Karpov & Greiner 2013 5906:Czech Technical University in Prague 5026: 5024: 5022: 4951: 4798:, such as nihonium, are produced by 2263:Joint Institute for Nuclear Research 2216: 2212:Discoveries of the chemical elements 1821:Joint Institute for Nuclear Research 1407:(Japan, first undisputed claim 2004) 11116: 11089: 11080: 10927: 10909: 10900: 10891: 10677: 10587: 10560: 10508: 10454: 10436: 10400: 10380: 10319: 10256: 10157: 10139: 10128: 10047: 9617:Solvent Extraction and Ion Exchange 9443:The Journal of Physical Chemistry A 7349: 6086:Hoffman, Ghiorso & Seaborg 2000 6074:Hoffman, Ghiorso & Seaborg 2000 5856:Loveland, W. D.; Morrissey, D. J.; 5582:"The identification of element 108" 5459:"Discovery of Elements 113 and 115" 5381:"Nihonium | Nh (Element) - PubChem" 5302:. Exotic Nuclei. pp. 155–164. 5285: 5195: 4855: 4499:(Nh) > 45 kJ/mol) 4428:square pyramidal molecular geometry 2433:and result in longer decay chains. 13: 11071: 10972: 10855: 10837: 10812: 10803: 10776: 10749: 10704: 10686: 10614: 10605: 10499: 10371: 10337: 10247: 10229: 10220: 10200: 10175: 9897: 7329:Morita, Kƍsuke (5 February 2016). 5580:; Folger, H.; et al. (1984). 5225: 4906:is expected to be trigonal planar. 3575:Fukushima Daiichi nuclear disaster 3495:(with the corresponding symbol of 3118:2011 Tƍhoku earthquake and tsunami 14: 11207: 11026: 11017: 10999: 10954: 10864: 10794: 10767: 10740: 10722: 10713: 10695: 10668: 10650: 10632: 10542: 10472: 10445: 10409: 10355: 10346: 10328: 10310: 10238: 10209: 10148: 10094: 10076: 10038: 10011: 9853:Discovery of Elements 113 and 115 9822: 9034:Relativistic Methods for Chemists 8999:Chapman, Kit (30 November 2016). 7973:. Lund University. 27 August 2013 7020:Chapman, Kit (30 November 2016). 6261:, pp. 030001-129–030001-138. 5689:"ĐĄĐČĐ”Ń€Ń…Ń‚ŃĐ¶Đ”Đ»Ń‹Đ” шагО ĐČ ĐœĐ”ĐžĐ·ĐČĐ”ŃŃ‚ĐœĐŸĐ”" 5207:The Journal of Physical Chemistry 5171:Relativistic Methods for Chemists 5019: 3613:, Japan, on March 14, 2017, with 1952:Superheavy element § Introduction 1268:1st: 704.9 kJ/mol 10918: 10882: 10846: 10731: 10659: 10569: 10551: 10481: 10463: 10391: 10292: 10283: 10274: 10119: 10022: 9608: 9564: 9469: 9362: 9256: 9233: 8875: 8820: 8608: 8510:ビックバンから ç•Șć…ƒçŽ ăƒ‹ăƒ›ăƒ‹ă‚Šăƒ ăŸă§ă€ć…ƒçŽ ć‰”æˆăźïŒ‘ïŒ“ïŒ˜ć„„ćčŽ 8391: 8365: 8353:(in Japanese). 27 September 2012 8335: 8237: 8207: 8156: 7915:Chapman, Kit (8 February 2018). 5432:"Explainer: superheavy elements" 4915:The compound with stoichiometry 4909: 4885: 4876: 4867: 4846: 4833: 4246: 4221: 2173:(element 100). The earlier 2035: 1950:This section is an excerpt from 1723: 1722: 1280:3rd: 3020 kJ/mol 1274:2nd: 2240 kJ/mol 56: 10821: 10526: 10517: 10184: 10166: 10085: 10067: 9646: 9574:The European Physical Journal A 9074:The Journal of Chemical Physics 8987:10.1016/j.nuclphysa.2003.11.001 8861:10.1016/j.nuclphysa.2016.04.025 8802:"Interactive Chart of Nuclides" 8622:. 15 March 2017. Archived from 8577:Rather than initially proposed 8569:"ăƒ‹ăƒ›ăƒ‹ă‚Šăƒ ă€æœ‰ćŠ› æ—„æœŹćˆăźæ–°ć…ƒçŽ ćç§°æĄˆă€ć›œéš›æ©Ÿé–ąăŒïŒ™æ—„ć…ŹèĄš" 7985: 7963: 7938: 7702: 7590: 7576:10.1070/MC2005v015n01ABEH002077 7473:Atsushi; Zhao, YuLiang (2004). 7322: 7040: 6921: 6686:Chemical & Engineering News 6641: 6574: 6551: 6494: 6427:Moller, P.; Nix, J. R. (1994). 6420: 6312:The European Physical Journal A 6303: 6193: 5920: 5831: 5770: 5735: 5707: 5526: 5481: 5451: 5423: 5398: 5373: 5348: 5003:Springer Science+Business Media 4814:, and lighter targets, usually 4789: 4760: 4747: 4734: 4724: 4714: 4697: 4683: 4674: 4589: 4566: 4529: 3592:The former president of IUPAP, 2257:. Cold fusion was pioneered by 2074:IUPAC/IUPAP Joint Working Party 1944: 1861:IUPAC/IUPAP Joint Working Party 10785: 10758: 10301: 10265: 10103: 10058: 9799:10.1088/1742-6596/420/1/012001 9348:10.1088/1742-6596/420/1/012003 8751:Reports on Progress in Physics 8747:"Super-heavy element research" 8193:10.1016/j.physletb.2016.07.008 7833:10.1103/PhysRevLett.104.142502 7432:10.1103/PhysRevLett.111.112502 6405:10.1088/1742-6596/337/1/012005 5502:10.1002/9781119951438.eibc2632 5330:The European Physics Journal A 4543:if its atomic number is high; 4324:The bonding in the lighter NhX 3885:-284, though estimates of the 3577:, and honour Japanese chemist 2045:Australian National University 1959:Synthesis of superheavy nuclei 1: 10490: 9686:(6th ed.). McGraw-Hill. 9675:10.1088/1674-1137/41/3/030001 9629:10.1080/07366299.2015.1080529 8771:10.1088/0034-4885/78/3/036301 8674:10.1088/1674-1137/41/3/030001 8550:. 8 June 2016. Archived from 8517:(in Japanese). Archived from 8506:En'yo, Hideto (26 May 2017). 8449:Ikeda, Nagao (25 July 2011). 7947:"SHE Research at RIKEN/GARIS" 6180:UniversitĂ© libre de Bruxelles 6138:UniversitĂ© libre de Bruxelles 5860:(2005). "Nuclear Reactions". 5070:Journal of Physical Chemistry 5031:Seaborg, Glenn T. (c. 2006). 4945: 3487:, nihonium would be known as 2962:Oak Ridge National Laboratory 2309:(which was predicted to be a 1416:(US, first announcement 2003) 9834:The Periodic Table of Videos 8575:(in Japanese). 6 June 2016. 8230:10.1051/epjconf/201613102003 7063:10.1051/epjconf/201613106001 7028:. Royal Society of Chemistry 6942:10.1016/0022-0728(89)80006-3 6560:Biomodal spontaneous fission 6461:Oganessian, Yu. Ts. (2004). 5764:10.1016/0029-5582(59)90211-1 4264:is predicted to be T-shaped. 4083:standard electrode potential 3526:, after their home country; 2938: 2793: 2627:of isotopes of element 105, 2261:and his team in 1974 at the 1796:of about 10 seconds. In the 7: 9399:Downs, A.J. (31 May 1993). 9197:Journal of Chemical Physics 9139:Journal of Chemical Physics 9042:10.1007/978-1-4020-9975-5_3 8723:10.1103/PhysRevC.106.064306 7108:10.1103/PhysRevLett.83.3154 5866:John Wiley & Sons, Inc. 5806:10.1051/epjconf/20158600061 5179:10.1007/978-1-4020-9975-5_2 4864:This isotope is unconfirmed 4067: 4005:spin–orbit (SO) interaction 3620: 3558: 3530:, after Japanese physicist 2052:The resulting merger is an 1881: 1350:hexagonal close-packed 1320:172–180 pm 1062:group 13 (boron group) 10: 11212: 10389: 10218: 10137: 10056: 10020: 9922: 9837:(University of Nottingham) 9684:Concepts of modern physics 9594:10.1140/epja/i2017-12348-8 8020:10.1103/PhysRevC.92.021301 7925:Royal Society of Chemistry 7696:10.1103/PhysRevC.76.011601 7623:10.1103/PhysRevC.72.034611 7301:10.1103/PhysRevC.69.021601 7253:10.1103/PhysRevC.69.054607 7211:10.1103/PhysRevC.62.041604 7167:10.1103/PhysRevC.70.064609 6961:Pure and Applied Chemistry 6903:Pure and Applied Chemistry 6846:Pure and Applied Chemistry 6786:Royal Society of Chemistry 6332:10.1140/epja/i2017-12348-8 6237:10.1103/physrevc.87.024320 5940:Pure and Applied Chemistry 5552:10.1103/PhysRevC.79.024608 5342:10.1140/epja/i2016-16180-4 4692:time-of-flight measurement 3633:List of nihonium isotopes 3624: 2837:metastable isomeric states 2221:The syntheses of elements 2209: 2205: 1949: 1771:synthetic chemical element 425: 293: 233: 173: 148: 22: 15: 11132: 10832: 10537: 10366: 10195: 10114: 10033: 10006: 9999: 9994: 9989: 9984: 9979: 9974: 9969: 9964: 9959: 9954: 9949: 9944: 9939: 9934: 9929: 9924: 9917: 9912: 9905: 9863:WebElements.com: Nihonium 9716:; Seaborg, G. T. (2000). 9498:10.1107/S0108270186090972 9375:Chemistry of the Elements 8745:Oganessian, Y.T. (2015). 8596:. IUPAC. 30 November 2016 6481:10.1088/2058-7058/17/7/31 6438:University of North Texas 6007:10.1524/ract.1987.42.2.57 5122:. Structure and Bonding. 5114:Fricke, Burkhard (1975). 4241:has a trigonal structure. 4167:behaviour of nihonium on 3678: 3673: 3668: 3665: 3662: 3567: 3463: 2320:with ions of calcium-48: 2276:Faced with this problem, 2034: 2029: 1967:A graphic depiction of a 1875: 1721: 1717: 1690: 1667: 1644: 1609: 1572: 1549: 1526: 1499: 1458: 1455: 1451: 1447: 1420: 1398: 1382: 1377: 1367: 1342: 1332: 1327: 1314: 1303:empirical: 170  1297: 1259: 1234: 1229: 1216: 1199: 1178: 1165: 1148: 1127: 1122: 1111: 1094: 1079: 1067: 1055: 1036: 1013: 128: 120: 111: 51: 46: 9846:7 September 2006 at the 9478:Acta Crystallographica C 8955:Wapstra, Aaldert Hendrik 8932:10.1088/1402-4896/aa53c1 8509: 8344:æ–°ć…ƒçŽ 113ç•Șă€æ—„æœŹăźç™ș芋çąșćźŸă« ćˆæˆă«ïŒ“ć›žæˆćŠŸ 8343: 8271:10.1088/1361-6471/aa7293 7641:Morimoto, Kouji (2016). 7564:Mendeleev Communications 7414:(Submitted manuscript). 7388:10.1351/PAC-REP-10-05-01 7047:Hofmann, Sigurd (2016). 6974:10.1351/PAC-REP-08-03-05 6710:Robinson, A. E. (2019). 6658:10.1063/PT.6.1.20181113a 6390:(1): 012005-1–012005-6. 6378:Oganessian, Yu. (2012). 5989:; Keller, O. L. (1987). 5862:Modern Nuclear Chemistry 5589:Zeitschrift fĂŒr Physik A 5385:pubchem.ncbi.nlm.nih.gov 5279:10.1088/1674-1137/abddae 4522: 4422:) and pentafluoride (NhF 4021:azimuthal quantum number 3922:of protons, so that the 3897:Stability and half-lives 2634: 2099:surface-barrier detector 1788:: its most stable known 1115:2, 8, 18, 32, 32, 18, 3 23:Not to be confused with 9372:; Earnshaw, A. (1998). 8304:10.1351/pac197951020381 7945:Morita, Kosuke (2015). 7812:Physical Review Letters 7412:Physical Review Letters 7087:Physical Review Letters 6915:10.1351/pac199769122471 6858:10.1351/pac199365081815 5953:10.1351/pac199163060879 5874:10.1002/0471768626.ch10 5038:EncyclopĂŠdia Britannica 4539:, an element is called 4469:polytetrafluoroethylene 4212:enthalpy of sublimation 3501:systematic element name 3417:Approval of discoveries 2408:JINR–LLNL collaboration 2245:, which are around the 1997:electrostatic repulsion 1104:] 5f 6d 7s 7p 9525:10.1524/ract.2011.1842 8323:"Element 113 at Last?" 7891:10.1143/JPSJ.81.103201 7742:10.1143/JPSJ.78.064201 6528:10.1098/rsta.2014.0191 5655:Bloomberg Businessweek 4830:(element 114) onwards. 4796:Transactinide elements 4458:Experimental chemistry 4284:), and trichloride (Nh 4057:hexagonal close-packed 3976: 3907: 3480: 2790: 2229:were conducted at the 2153: 1976: 1923:post-transition metals 1792:, nihonium-286, has a 1096:Electron configuration 8800:Sonzogni, Alejandro. 7544:10.1515/pac-2015-0502 6558:Hulet, E. K. (1989). 6463:"Superheavy elements" 6300:, p. 030001-125. 5494:John Wiley & Sons 3974: 3904: 3581:'s 1908 discovery of 3471: 2966:Vanderbilt University 2784: 2303:Livermore, California 2169:(element 90) to 2161:(element 92) to 2139: 1966: 1833:Livermore, California 1802:transactinide element 1784:113. It is extremely 1222:130 kJ/mol 8430:. IUPAC. 8 June 2016 8350:Nihon Keizai Shimbun 7778:on 21 September 2017 7500:10.1143/JPSJ.73.2593 7345:– via YouTube. 6765:] (in Russian). 6501:SchĂ€del, M. (2015). 5469:on 11 September 2015 5245:10.1557/adv.2020.159 4902:is T-shaped, but TsF 4448:chlorine trifluoride 4340:species (similar to 3958:Predicted properties 3924:strong nuclear force 3627:Isotopes of nihonium 2752:Road to confirmation 2668:(LBNL) in Berkeley. 2280:and his team at the 2247:stable configuration 2076:(JWP) states that a 1921:. All but boron are 1808:. It is a member of 1422:Isotopes of nihonium 1218:Heat of vaporisation 18:Uut (disambiguation) 9858:Superheavy elements 9791:2013JPhCS.420a2001Z 9682:Beiser, A. (2003). 9667:2017ChPhC..41c0001A 9586:2017EPJA...53..158A 9490:1986AcCrC..42.1675T 9455:2003JPCA..107..852B 9437:Structure of (117)F 9340:2013JPhCS.420a2003E 9278:1999JPCA..103..402N 9209:1999JChPh.111.6422S 9151:2000JChPh.112.2684H 9086:2001JChPh.115.2456F 8979:2003NuPhA.729....3A 8924:2017PhyS...92b3003O 8853:2016NuPhA.953..117F 8763:2015RPPh...78c6301O 8714:2022PhRvC.106f4306O 8666:2017ChPhC..41c0001A 8475:10.2183/pjab.87.371 8467:2011PJAB...87..371I 8328:Scientific American 8262:2017JPhG...44g5107Z 8184:2016PhLB..760..293F 8144:on 31 December 2015 8011:2015PhRvC..92b1301G 7883:2012JPSJ...81j3201M 7824:2010PhRvL.104n2502O 7788:University of Mainz 7734:2009JPSJ...78f4201M 7688:2007PhRvC..76a1601O 7615:2005PhRvC..72c4611O 7491:2004JPSJ...73.2593M 7424:2013PhRvL.111k2502R 7331:"Q & A session" 7293:2004PhRvC..69b1601O 7244:2004PhRvC..69e4607O 7203:2000PhRvC..62d1604O 7159:2004PhRvC..70f4609O 7100:1999PhRvL..83.3154O 6990:Scientific American 6601:2015PhT....68h..32O 6568:1989nufi.rept...16H 6519:2015RSPTA.37340191S 6396:2012JPhCS.337a2005O 6324:2017EPJA...53..158A 6228:2013PhRvC..87b4320S 6053:Scientific American 5839:"Nuclear Reactions" 5797:2015EPJWC..8600061W 5756:1959NucPh..10..226K 5687:Ivanov, D. (2019). 5601:1984ZPhyA.317..235M 5534:Oganessian, Yu. Ts. 5430:KrĂ€mer, K. (2016). 5360:www.webelements.com 5219:10.1021/j100700a029 5082:10.1021/j150609a021 4314:) and triiodide (Nh 4280:), trifluoride (NhF 4009:superheavy elements 3967:Physical and atomic 3944:superheavy elements 3940:island of stability 3928:spontaneous fission 3891:spontaneous fission 3659: 3452:internal conversion 3106:→ 115 + α → 113 + α 3042:→ 115 + α → 113 + α 2928:Spontaneous fission 2809:spontaneous fission 2770:scientific priority 2758:Joint Working Party 2746:Spontaneous fission 2625:spontaneous fission 2431:spontaneous fission 2255:superheavy elements 2187:island of stability 2183:nuclear shell model 2127:spontaneous fission 2092:Decay and detection 1895:island of stability 1261:Ionisation energies 1123:Physical properties 1112:Electrons per shell 43: 11196:Synthetic elements 8918:(2): 023003–1–21. 8626:on 28 January 2018 8573:The Sankei Shimbun 8524:on 29 January 2018 8285:Chatt, J. (1979). 8084:on 2 November 2020 6679:Howes, L. (2019). 6513:(2037): 20140191. 6363:, p. 432–433. 6167:Pauli, N. (2019). 6125:Pauli, N. (2019). 5868:pp. 249–297. 5714:Hinde, D. (2017). 5648:(28 August 2019). 5609:10.1007/BF01421260 5132:10.1007/BFb0116498 3977: 3908: 3632: 3481: 2791: 2154: 2150:quadrupole magnets 2148:in the former and 2001:strong interaction 1977: 1729:Category: Nihonium 1333:Natural occurrence 1192:16 g/cm 1020: 1005: 35: 11186:Chemical elements 11168: 11167: 11161: 11160: 11127: 11126: 9757:978-3-319-75813-8 9731:978-1-78-326244-1 9693:978-0-07-244848-1 9655:Chinese Physics C 9557:978-3-642-37466-1 9513:Radiochimica Acta 9484:(12): 1675–1678. 9463:10.1021/jp026531m 9412:978-0-7514-0103-5 9385:978-0-7506-3365-9 9286:10.1021/jp982735k 9203:(14): 6422–6433. 9095:10.1063/1.1385366 9051:978-1-4020-9974-8 8967:Nuclear Physics A 8962: 8893:978-1-4757-6918-0 8830:Nuclear Physics A 8708:(64306): 064306. 8702:Physical Review C 8654:Chinese Physics C 8256:(75107): 075107. 8178:(2016): 293–296. 8172:Physics Letters B 7999:Physical Review C 7718:(6): 064201–1–6. 7676:Physical Review C 7603:Physical Review C 7485:(10): 2593–2596. 7281:Physical Review C 7231:Physical Review C 7190:Physical Review C 7146:Physical Review C 6909:(12): 2471–2474. 6812:, pp. 38–39. 6610:10.1063/PT.3.2880 6206:Physical Review C 6169:"Nuclear fission" 5995:Radiochimica Acta 5883:978-0-471-76862-3 5539:Physical Review C 5511:978-1-119-95143-8 5496:. pp. 1–16. 5267:Chinese Physics C 5188:978-1-4020-9974-8 5141:978-3-540-07109-9 5012:978-1-4020-3555-5 4742:must be preserved 4707:is caused by the 4134:hydrochloric acid 4017:inert pair effect 3920:Coulomb repulsion 3887:partial half-life 3869: 3868: 3548:is considered an 3515:, or even simply 3477:Hiroshi Matsumoto 3086:→ 117* → 117 + 4 3022:→ 117* → 117 + 3 2898:→ 113* → 113 + 3 2580:→ 115* → 115 + 4 2501:→ 115* → 115 + 3 2361:→ 114* → 114 + 2 2251:period 4 elements 2217:Early indications 2175:liquid drop model 2050: 2049: 1764: 1763: 1713: 1712: 1344:Crystal structure 1230:Atomic properties 1032: 1031: 1028: 1027: 1018: 1003: 993: 992: 719:Mercury (element) 11203: 11137: 11136: 11123: 11121: 11114: 11112: 11105: 11103: 11096: 11094: 11087: 11085: 11078: 11076: 11069: 11067: 11060: 11058: 11051: 11049: 11042: 11040: 11033: 11031: 11024: 11022: 11015: 11013: 11006: 11004: 10997: 10995: 10988: 10986: 10979: 10977: 10970: 10968: 10961: 10959: 10952: 10950: 10943: 10941: 10934: 10932: 10925: 10923: 10916: 10914: 10907: 10905: 10898: 10896: 10889: 10887: 10880: 10878: 10871: 10869: 10862: 10860: 10853: 10851: 10844: 10842: 10828: 10826: 10819: 10817: 10810: 10808: 10801: 10799: 10792: 10790: 10783: 10781: 10774: 10772: 10765: 10763: 10756: 10754: 10747: 10745: 10738: 10736: 10729: 10727: 10720: 10718: 10711: 10709: 10702: 10700: 10693: 10691: 10684: 10682: 10675: 10673: 10666: 10664: 10657: 10655: 10648: 10646: 10639: 10637: 10630: 10628: 10621: 10619: 10612: 10610: 10603: 10601: 10594: 10592: 10585: 10583: 10576: 10574: 10567: 10565: 10558: 10556: 10549: 10547: 10533: 10531: 10524: 10522: 10515: 10513: 10506: 10504: 10497: 10495: 10488: 10486: 10479: 10477: 10470: 10468: 10461: 10459: 10452: 10450: 10443: 10441: 10434: 10432: 10425: 10423: 10416: 10414: 10407: 10405: 10398: 10396: 10387: 10385: 10378: 10376: 10362: 10360: 10353: 10351: 10344: 10342: 10335: 10333: 10326: 10324: 10317: 10315: 10308: 10306: 10299: 10297: 10290: 10288: 10281: 10279: 10272: 10270: 10263: 10261: 10254: 10252: 10245: 10243: 10236: 10234: 10227: 10225: 10216: 10214: 10207: 10205: 10191: 10189: 10182: 10180: 10173: 10171: 10164: 10162: 10155: 10153: 10146: 10144: 10135: 10133: 10126: 10124: 10110: 10108: 10101: 10099: 10092: 10090: 10083: 10081: 10074: 10072: 10065: 10063: 10054: 10052: 10045: 10043: 10029: 10027: 10018: 10016: 9908: 9892: 9885: 9878: 9869: 9868: 9818: 9784: 9761: 9735: 9722:World Scientific 9705: 9678: 9641: 9640: 9612: 9606: 9605: 9568: 9562: 9561: 9543: 9537: 9536: 9508: 9502: 9501: 9473: 9467: 9466: 9423: 9417: 9416: 9396: 9390: 9389: 9370:Greenwood, N. N. 9366: 9360: 9359: 9333: 9313: 9298: 9297: 9266:J. Phys. Chem. A 9260: 9254: 9253: 9251: 9249: 9237: 9231: 9230: 9220: 9218:10.1063/1.480168 9188: 9171: 9170: 9159:10.1063/1.480842 9134: 9128: 9127: 9125: 9123: 9118: 9109: 9100: 9099: 9097: 9065: 9056: 9055: 9029: 9016: 9015: 9013: 9011: 8996: 8990: 8989: 8960: 8950: 8944: 8943: 8907: 8898: 8897: 8879: 8873: 8872: 8846: 8824: 8818: 8817: 8815: 8813: 8808:on 7 August 2007 8797: 8791: 8790: 8742: 8736: 8735: 8725: 8693: 8678: 8677: 8651: 8642: 8636: 8635: 8633: 8631: 8612: 8606: 8605: 8603: 8601: 8590: 8584: 8583: 8565: 8559: 8558: 8554:on 9 June 2016. 8548:Mainichi Shimbun 8540: 8534: 8533: 8531: 8529: 8523: 8516: 8503: 8497: 8496: 8486: 8446: 8440: 8439: 8437: 8435: 8424: 8415: 8414: 8412: 8410: 8395: 8389: 8388: 8386: 8384: 8369: 8363: 8362: 8360: 8358: 8339: 8333: 8332: 8318: 8309: 8308: 8306: 8282: 8276: 8275: 8273: 8241: 8235: 8234: 8232: 8222: 8211: 8205: 8204: 8202: 8200: 8195: 8169: 8160: 8154: 8153: 8151: 8149: 8134: 8123: 8122: 8120: 8118: 8113:. 6 January 2016 8103: 8094: 8093: 8091: 8089: 8083: 8077:. Archived from 8072: 8063: 8054: 8053: 8051: 8049: 8044:. September 2012 8034: 8025: 8024: 8022: 7989: 7983: 7982: 7980: 7978: 7967: 7961: 7960: 7958: 7956: 7951: 7942: 7936: 7935: 7933: 7931: 7912: 7903: 7902: 7876: 7855: 7846: 7845: 7835: 7798: 7792: 7791: 7785: 7783: 7777: 7771:. Archived from 7770: 7760: 7754: 7753: 7727: 7706: 7700: 7699: 7682:(1): 011601(R). 7673: 7664: 7658: 7657: 7655: 7653: 7647: 7638: 7627: 7626: 7594: 7588: 7587: 7558: 7549: 7548: 7546: 7537:(1–2): 139–153. 7522: 7505: 7504: 7502: 7469: 7460: 7459: 7402: 7393: 7392: 7390: 7366: 7347: 7346: 7344: 7342: 7326: 7320: 7319: 7317: 7315: 7309: 7303:. Archived from 7278: 7269: 7258: 7257: 7255: 7221: 7215: 7214: 7184: 7178: 7177: 7175: 7169:. Archived from 7142: 7133: 7127: 7126: 7124: 7122: 7116: 7110:. Archived from 7083: 7074: 7068: 7067: 7065: 7055: 7044: 7038: 7037: 7035: 7033: 7017: 6998: 6997: 6985: 6979: 6978: 6976: 6952: 6946: 6945: 6925: 6919: 6918: 6900: 6891: 6885: 6884: 6882: 6880: 6874: 6852:(8): 1815–1824. 6843: 6834: 6825: 6819: 6813: 6807: 6798: 6797: 6795: 6793: 6777: 6771: 6770: 6754: 6752: 6750: 6735: 6729: 6728: 6726: 6724: 6707: 6698: 6697: 6695: 6693: 6676: 6670: 6669: 6645: 6639: 6638: 6612: 6578: 6572: 6571: 6555: 6549: 6548: 6530: 6498: 6492: 6491: 6489: 6487: 6458: 6449: 6448: 6446: 6444: 6435: 6424: 6418: 6417: 6407: 6375: 6364: 6358: 6352: 6351: 6307: 6301: 6298:Audi et al. 2017 6295: 6289: 6283: 6274: 6268: 6262: 6259:Audi et al. 2017 6256: 6250: 6249: 6239: 6221: 6197: 6191: 6190: 6188: 6186: 6173: 6164: 6149: 6148: 6146: 6144: 6131: 6122: 6113: 6107: 6101: 6095: 6089: 6083: 6077: 6071: 6065: 6064: 6062: 6060: 6040: 6027: 6026: 5982: 5973: 5972: 5936: 5924: 5918: 5917: 5897: 5888: 5887: 5853: 5851: 5849: 5843: 5835: 5829: 5828: 5818: 5808: 5774: 5768: 5767: 5739: 5733: 5732: 5730: 5728: 5721:The Conversation 5711: 5705: 5704: 5702: 5700: 5684: 5667: 5666: 5664: 5662: 5642: 5636: 5635: 5633: 5631: 5625: 5619:. Archived from 5586: 5570: 5564: 5563: 5530: 5524: 5523: 5485: 5479: 5478: 5476: 5474: 5465:. Archived from 5455: 5449: 5448: 5446: 5444: 5427: 5421: 5420: 5418: 5416: 5402: 5396: 5395: 5393: 5391: 5377: 5371: 5370: 5368: 5366: 5352: 5346: 5345: 5325: 5314: 5313: 5294: 5283: 5282: 5264: 5255: 5249: 5248: 5232: 5223: 5222: 5213:(5): 1127−1134. 5202: 5193: 5192: 5166: 5153: 5152: 5150: 5148: 5111: 5086: 5085: 5076:(9): 1177–1186. 5061: 5050: 5049: 5047: 5045: 5028: 5017: 5016: 4994: 4939: 4937: 4936: 4935: 4913: 4907: 4889: 4883: 4880: 4874: 4871: 4865: 4862: 4853: 4850: 4844: 4837: 4831: 4793: 4787: 4772:Stockholm County 4764: 4758: 4751: 4745: 4738: 4732: 4728: 4722: 4718: 4712: 4709:weak interaction 4701: 4695: 4687: 4681: 4678: 4672: 4670: 4669: 4668: 4661: 4660: 4651: 4650: 4649: 4642: 4641: 4632: 4631: 4630: 4623: 4622: 4613: 4612: 4611: 4604: 4603: 4593: 4587: 4585: 4584: 4570: 4564: 4533: 4512:boron tribromide 4500: 4498: 4497: 4445: 4444: 4443: 4426:) should have a 4414: 4413: 4412: 4402: 4401: 4400: 4390: 4389: 4388: 4358: 4357: 4356: 4339: 4338: 4337: 4273:transition metal 4263: 4262: 4261: 4250: 4239: 4238: 4237: 4225: 4094:oxidation states 4038:and six being 6d 3879:electron capture 3850: 3825: 3804: 3783: 3762: 3741: 3720: 3699: 3660: 3654: 3647: 3640: 3631: 3598:BĂ€ckaskog Castle 3594:Cecilia Jarlskog 3572: 3570: 3569: 3563: 3388:electron capture 3373: 3371: 3370: 3363: 3362: 3353: 3351: 3350: 3343: 3342: 3332: 3330: 3329: 3322: 3321: 3312: 3310: 3309: 3302: 3301: 3291: 3289: 3288: 3281: 3280: 3271: 3269: 3268: 3261: 3260: 3250: 3248: 3247: 3240: 3239: 3230: 3228: 3227: 3220: 3219: 3209: 3207: 3206: 3199: 3198: 3189: 3187: 3186: 3179: 3178: 3168: 3166: 3165: 3158: 3157: 3148: 3146: 3145: 3138: 3137: 3105: 3103: 3102: 3095: 3094: 3085: 3083: 3082: 3075: 3074: 3064: 3062: 3061: 3054: 3053: 3041: 3039: 3038: 3031: 3030: 3021: 3019: 3018: 3011: 3010: 3000: 2998: 2997: 2990: 2989: 2917: 2915: 2914: 2907: 2906: 2897: 2895: 2894: 2887: 2886: 2876: 2874: 2873: 2866: 2865: 2764:(IUPAC) and the 2735: 2733: 2732: 2725: 2724: 2715: 2713: 2712: 2705: 2704: 2694: 2692: 2691: 2684: 2683: 2647:, Japan, led by 2619: 2617: 2616: 2609: 2608: 2599: 2597: 2596: 2589: 2588: 2579: 2578: 2577: 2570: 2569: 2560: 2559: 2558: 2551: 2550: 2540: 2538: 2537: 2530: 2529: 2520: 2518: 2517: 2510: 2509: 2500: 2498: 2497: 2490: 2489: 2479: 2477: 2476: 2469: 2468: 2401:electron capture 2378: 2377: 2376: 2369: 2368: 2360: 2359: 2358: 2351: 2350: 2341: 2340: 2339: 2332: 2331: 2078:chemical element 2058:compound nucleus 2039: 2038: 2027: 2026: 1888: 1886: 1878: 1877: 1800:, nihonium is a 1752: 1745: 1738: 1726: 1725: 1704: 1699: 1681: 1676: 1658: 1653: 1637: 1623: 1618: 1600: 1586: 1581: 1563: 1558: 1540: 1535: 1517: 1510: 1485: 1453: 1452: 1443: 1438: 1431: 1373:54084-70-7 1358: 1328:Other properties 1251: 1245: 1236:Oxidation states 1189: 1138: 1137: 1087: 1048: 1047: 988: 981: 974: 967: 960: 953: 946: 939: 932: 925: 918: 911: 904: 897: 890: 883: 876: 869: 862: 855: 848: 841: 834: 827: 820: 813: 806: 799: 792: 785: 778: 771: 762: 755: 748: 741: 734: 727: 720: 713: 706: 699: 692: 685: 678: 671: 664: 657: 650: 643: 636: 629: 622: 615: 608: 601: 594: 587: 580: 573: 566: 559: 552: 545: 536: 529: 522: 515: 508: 501: 494: 487: 480: 473: 466: 459: 452: 445: 438: 431: 420: 413: 404: 397: 390: 383: 376: 369: 362: 355: 348: 341: 334: 327: 320: 313: 306: 299: 290: 283: 274: 267: 260: 253: 246: 239: 230: 223: 214: 207: 200: 193: 186: 179: 170: 163: 154: 145: 139: 138: 134: 133: 130: 129: 121:Nihonium in the 107: 102: 93: 91: 90: 87: 86: 83: 80: 77: 74: 71: 68: 65: 62: 44: 42: 34: 11211: 11210: 11206: 11205: 11204: 11202: 11201: 11200: 11171: 11170: 11169: 11164: 11163: 11162: 11128: 11119: 11117: 11110: 11108: 11101: 11099: 11092: 11090: 11083: 11081: 11074: 11072: 11065: 11063: 11056: 11054: 11047: 11045: 11038: 11036: 11029: 11027: 11020: 11018: 11011: 11009: 11002: 11000: 10993: 10991: 10984: 10982: 10975: 10973: 10966: 10964: 10957: 10955: 10948: 10946: 10939: 10937: 10930: 10928: 10921: 10919: 10912: 10910: 10903: 10901: 10894: 10892: 10885: 10883: 10876: 10874: 10867: 10865: 10858: 10856: 10849: 10847: 10840: 10838: 10824: 10822: 10815: 10813: 10806: 10804: 10797: 10795: 10788: 10786: 10779: 10777: 10770: 10768: 10761: 10759: 10752: 10750: 10743: 10741: 10734: 10732: 10725: 10723: 10716: 10714: 10707: 10705: 10698: 10696: 10689: 10687: 10680: 10678: 10671: 10669: 10662: 10660: 10653: 10651: 10644: 10642: 10635: 10633: 10626: 10624: 10617: 10615: 10608: 10606: 10599: 10597: 10590: 10588: 10581: 10579: 10572: 10570: 10563: 10561: 10554: 10552: 10545: 10543: 10529: 10527: 10520: 10518: 10511: 10509: 10502: 10500: 10493: 10491: 10484: 10482: 10475: 10473: 10466: 10464: 10457: 10455: 10448: 10446: 10439: 10437: 10430: 10428: 10421: 10419: 10412: 10410: 10403: 10401: 10394: 10392: 10383: 10381: 10374: 10372: 10358: 10356: 10349: 10347: 10340: 10338: 10331: 10329: 10322: 10320: 10313: 10311: 10304: 10302: 10295: 10293: 10286: 10284: 10277: 10275: 10268: 10266: 10259: 10257: 10250: 10248: 10241: 10239: 10232: 10230: 10223: 10221: 10212: 10210: 10203: 10201: 10187: 10185: 10178: 10176: 10169: 10167: 10160: 10158: 10151: 10149: 10142: 10140: 10131: 10129: 10122: 10120: 10106: 10104: 10097: 10095: 10088: 10086: 10079: 10077: 10070: 10068: 10061: 10059: 10050: 10048: 10041: 10039: 10025: 10023: 10014: 10012: 9901: 9896: 9848:Wayback Machine 9825: 9758: 9732: 9694: 9649: 9644: 9613: 9609: 9569: 9565: 9558: 9544: 9540: 9509: 9505: 9474: 9470: 9440: 9435: 9429: 9424: 9420: 9413: 9397: 9393: 9386: 9367: 9363: 9314: 9301: 9261: 9257: 9247: 9245: 9238: 9234: 9189: 9174: 9135: 9131: 9121: 9119: 9116: 9110: 9103: 9066: 9059: 9052: 9030: 9019: 9009: 9007: 9005:Chemistry World 8997: 8993: 8951: 8947: 8912:Physica Scripta 8908: 8901: 8894: 8880: 8876: 8825: 8821: 8811: 8809: 8798: 8794: 8743: 8739: 8694: 8681: 8649: 8643: 8639: 8629: 8627: 8614: 8613: 8609: 8599: 8597: 8592: 8591: 8587: 8567: 8566: 8562: 8542: 8541: 8537: 8527: 8525: 8521: 8514: 8511: 8504: 8500: 8447: 8443: 8433: 8431: 8426: 8425: 8418: 8408: 8406: 8397: 8396: 8392: 8382: 8380: 8371: 8370: 8366: 8356: 8354: 8345: 8341: 8340: 8336: 8319: 8312: 8291:Pure Appl. Chem 8283: 8279: 8242: 8238: 8220: 8212: 8208: 8198: 8196: 8167: 8161: 8157: 8147: 8145: 8136: 8135: 8126: 8116: 8114: 8105: 8104: 8097: 8087: 8085: 8081: 8070: 8064: 8057: 8047: 8045: 8042:Huffington Post 8036: 8035: 8028: 7990: 7986: 7976: 7974: 7969: 7968: 7964: 7954: 7952: 7949: 7943: 7939: 7929: 7927: 7921:Chemistry World 7913: 7906: 7856: 7849: 7799: 7795: 7781: 7779: 7775: 7768: 7761: 7757: 7707: 7703: 7671: 7665: 7661: 7651: 7649: 7645: 7639: 7630: 7595: 7591: 7559: 7552: 7531:Pure Appl. Chem 7523: 7508: 7470: 7463: 7403: 7396: 7375:Pure Appl. Chem 7367: 7350: 7340: 7338: 7327: 7323: 7313: 7311: 7310:on 7 March 2020 7307: 7276: 7270: 7261: 7222: 7218: 7185: 7181: 7176:on 28 May 2008. 7173: 7140: 7134: 7130: 7120: 7118: 7117:on 30 July 2020 7114: 7081: 7075: 7071: 7053: 7045: 7041: 7031: 7029: 7026:Chemistry World 7018: 7001: 6986: 6982: 6953: 6949: 6926: 6922: 6898: 6892: 6888: 6878: 6876: 6872: 6841: 6835: 6828: 6820: 6816: 6808: 6801: 6791: 6789: 6779: 6778: 6774: 6756: 6755:Reprinted from 6748: 6746: 6737: 6736: 6732: 6722: 6720: 6708: 6701: 6691: 6689: 6677: 6673: 6646: 6642: 6579: 6575: 6556: 6552: 6499: 6495: 6485: 6483: 6459: 6452: 6442: 6440: 6433: 6425: 6421: 6376: 6367: 6359: 6355: 6308: 6304: 6296: 6292: 6284: 6277: 6269: 6265: 6257: 6253: 6212:(2): 024320–1. 6198: 6194: 6184: 6182: 6171: 6165: 6152: 6142: 6140: 6129: 6123: 6116: 6108: 6104: 6096: 6092: 6084: 6080: 6072: 6068: 6058: 6056: 6044:Chemistry World 6041: 6030: 5983: 5976: 5934: 5925: 5921: 5898: 5891: 5884: 5847: 5845: 5841: 5837: 5836: 5832: 5775: 5771: 5744:Nuclear Physics 5740: 5736: 5726: 5724: 5712: 5708: 5698: 5696: 5685: 5670: 5660: 5658: 5646:Subramanian, S. 5643: 5639: 5629: 5627: 5623: 5584: 5571: 5567: 5531: 5527: 5512: 5486: 5482: 5472: 5470: 5457: 5456: 5452: 5442: 5440: 5437:Chemistry World 5428: 5424: 5414: 5412: 5404: 5403: 5399: 5389: 5387: 5379: 5378: 5374: 5364: 5362: 5354: 5353: 5349: 5326: 5317: 5310: 5295: 5286: 5262: 5256: 5252: 5233: 5226: 5203: 5196: 5189: 5167: 5156: 5146: 5144: 5142: 5112: 5089: 5062: 5053: 5043: 5041: 5029: 5020: 5013: 4995: 4952: 4948: 4943: 4942: 4934: 4931: 4930: 4929: 4927: 4920: 4914: 4910: 4905: 4900: 4894: 4890: 4886: 4881: 4877: 4872: 4868: 4863: 4856: 4851: 4847: 4838: 4834: 4794: 4790: 4765: 4761: 4752: 4748: 4739: 4735: 4729: 4725: 4719: 4715: 4702: 4698: 4688: 4684: 4679: 4675: 4667: 4665: 4664: 4663: 4659: 4656: 4655: 4654: 4653: 4648: 4646: 4645: 4644: 4640: 4637: 4636: 4635: 4634: 4629: 4627: 4626: 4625: 4621: 4618: 4617: 4616: 4615: 4610: 4608: 4607: 4606: 4602: 4599: 4598: 4597: 4596: 4594: 4590: 4583: 4580: 4579: 4578: 4571: 4567: 4537:nuclear physics 4534: 4530: 4525: 4510:saturated with 4496: 4491: 4490: 4489: 4484: 4460: 4442: 4439: 4438: 4437: 4435: 4433: 4425: 4421: 4411: 4408: 4407: 4406: 4404: 4399: 4396: 4395: 4394: 4392: 4387: 4384: 4383: 4382: 4380: 4374: 4370: 4362: 4355: 4352: 4351: 4350: 4348: 4345: 4336: 4333: 4332: 4331: 4329: 4327: 4320: 4313: 4306: 4297:trigonal planar 4290: 4283: 4279: 4269: 4268: 4267: 4266: 4265: 4260: 4257: 4256: 4255: 4253: 4251: 4243: 4242: 4236: 4233: 4232: 4231: 4229: 4226: 4207:electronegative 4178: 4159: 4110: 4102: 4070: 4053: 4041: 4037: 4029: 3969: 3960: 3899: 3870: 3864: 3839: 3680: 3675: 3670: 3658: 3629: 3623: 3564: 3466: 3419: 3403:Lund University 3369: 3367: 3366: 3365: 3361: 3359: 3358: 3357: 3355: 3349: 3347: 3346: 3345: 3341: 3338: 3337: 3336: 3334: 3328: 3326: 3325: 3324: 3320: 3318: 3317: 3316: 3314: 3308: 3306: 3305: 3304: 3300: 3297: 3296: 3295: 3293: 3287: 3285: 3284: 3283: 3279: 3277: 3276: 3275: 3273: 3267: 3265: 3264: 3263: 3259: 3256: 3255: 3254: 3252: 3246: 3244: 3243: 3242: 3238: 3236: 3235: 3234: 3232: 3226: 3224: 3223: 3222: 3218: 3215: 3214: 3213: 3211: 3205: 3203: 3202: 3201: 3197: 3195: 3194: 3193: 3191: 3185: 3183: 3182: 3181: 3177: 3174: 3173: 3172: 3170: 3164: 3162: 3161: 3160: 3156: 3154: 3153: 3152: 3150: 3144: 3142: 3141: 3140: 3136: 3133: 3132: 3131: 3129: 3101: 3099: 3098: 3097: 3093: 3091: 3090: 3089: 3087: 3081: 3079: 3078: 3077: 3073: 3070: 3069: 3068: 3066: 3060: 3058: 3057: 3056: 3052: 3049: 3048: 3047: 3045: 3037: 3035: 3034: 3033: 3029: 3027: 3026: 3025: 3023: 3017: 3015: 3014: 3013: 3009: 3006: 3005: 3004: 3002: 2996: 2994: 2993: 2992: 2988: 2985: 2984: 2983: 2981: 2941: 2913: 2911: 2910: 2909: 2905: 2903: 2902: 2901: 2899: 2893: 2891: 2890: 2889: 2885: 2882: 2881: 2880: 2878: 2872: 2870: 2869: 2868: 2864: 2861: 2860: 2859: 2857: 2828:physically weak 2817:daughter nuclei 2813:group 5 element 2796: 2754: 2731: 2729: 2728: 2727: 2723: 2721: 2720: 2719: 2717: 2716:→ 113* → 113 + 2711: 2709: 2708: 2707: 2703: 2700: 2699: 2698: 2696: 2690: 2688: 2687: 2686: 2682: 2679: 2678: 2677: 2675: 2637: 2615: 2613: 2612: 2611: 2607: 2605: 2604: 2603: 2601: 2595: 2593: 2592: 2591: 2587: 2585: 2584: 2583: 2581: 2576: 2574: 2573: 2572: 2568: 2565: 2564: 2563: 2562: 2557: 2555: 2554: 2553: 2549: 2546: 2545: 2544: 2543: 2536: 2534: 2533: 2532: 2528: 2526: 2525: 2524: 2522: 2516: 2514: 2513: 2512: 2508: 2506: 2505: 2504: 2502: 2496: 2494: 2493: 2492: 2488: 2485: 2484: 2483: 2481: 2475: 2473: 2472: 2471: 2467: 2464: 2463: 2462: 2460: 2410: 2384: 2375: 2373: 2372: 2371: 2367: 2365: 2364: 2363: 2362: 2357: 2355: 2354: 2353: 2349: 2346: 2345: 2344: 2343: 2338: 2336: 2335: 2334: 2330: 2327: 2326: 2325: 2324: 2259:Yuri Oganessian 2219: 2214: 2208: 2203: 2202: 2179:fission barrier 2131:energy barriers 2094: 2036: 2030:External videos 1961: 1955: 1947: 1927:oxidation state 1872: 1756: 1731: 1702: 1697: 1679: 1674: 1656: 1651: 1633: 1621: 1616: 1596: 1584: 1579: 1561: 1556: 1538: 1533: 1513: 1508: 1483: 1476: 1469:abun­dance 1442: 1424: 1408: 1360: 1359: 1316:Covalent radius 1293: 1247: 1241: 1183: 1131: 1041: 1037: 1008: 1006: 1002: 1000: 994: 986: 979: 972: 965: 958: 951: 944: 937: 930: 923: 916: 909: 902: 895: 888: 881: 874: 867: 860: 853: 846: 839: 832: 825: 818: 811: 804: 797: 790: 783: 776: 769: 760: 753: 746: 739: 732: 725: 718: 711: 704: 697: 690: 683: 676: 669: 662: 655: 648: 641: 634: 627: 620: 613: 606: 599: 592: 585: 578: 571: 564: 557: 550: 543: 534: 527: 520: 513: 506: 499: 492: 485: 478: 471: 464: 457: 450: 443: 436: 429: 418: 411: 402: 395: 388: 381: 374: 367: 360: 353: 346: 339: 332: 325: 318: 311: 304: 297: 288: 281: 272: 265: 258: 251: 244: 237: 228: 221: 212: 205: 198: 191: 184: 177: 168: 161: 152: 143: 100: 95: 59: 55: 40: 37:Nihonium,  36: 33: 28: 21: 12: 11: 5: 11209: 11199: 11198: 11193: 11188: 11183: 11166: 11165: 11159: 11158: 11153: 11148: 11143: 11135: 11133: 11130: 11129: 11125: 11124: 11115: 11106: 11097: 11088: 11079: 11070: 11061: 11052: 11043: 11034: 11025: 11016: 11007: 10998: 10989: 10980: 10971: 10962: 10953: 10944: 10935: 10926: 10917: 10908: 10899: 10890: 10881: 10872: 10863: 10854: 10845: 10836: 10830: 10829: 10820: 10811: 10802: 10793: 10784: 10775: 10766: 10757: 10748: 10739: 10730: 10721: 10712: 10703: 10694: 10685: 10676: 10667: 10658: 10649: 10640: 10631: 10622: 10613: 10604: 10595: 10586: 10577: 10568: 10559: 10550: 10541: 10535: 10534: 10525: 10516: 10507: 10498: 10489: 10480: 10471: 10462: 10453: 10444: 10435: 10426: 10417: 10408: 10399: 10390: 10388: 10379: 10370: 10364: 10363: 10354: 10345: 10336: 10327: 10318: 10309: 10300: 10291: 10282: 10273: 10264: 10255: 10246: 10237: 10228: 10219: 10217: 10208: 10199: 10193: 10192: 10183: 10174: 10165: 10156: 10147: 10138: 10136: 10127: 10118: 10112: 10111: 10102: 10093: 10084: 10075: 10066: 10057: 10055: 10046: 10037: 10031: 10030: 10021: 10019: 10010: 10004: 10003: 9998: 9993: 9988: 9983: 9978: 9973: 9968: 9963: 9958: 9953: 9948: 9943: 9938: 9933: 9928: 9923: 9921: 9916: 9911: 9906: 9903: 9902: 9899:Periodic table 9895: 9894: 9887: 9880: 9872: 9866: 9865: 9860: 9855: 9850: 9838: 9824: 9823:External links 9821: 9820: 9819: 9762: 9756: 9736: 9730: 9710:Hoffman, D. C. 9706: 9692: 9679: 9648: 9645: 9643: 9642: 9607: 9563: 9556: 9538: 9503: 9468: 9449:(6): 852–858. 9438: 9433: 9427: 9418: 9411: 9391: 9384: 9361: 9299: 9272:(3): 402–410. 9255: 9232: 9172: 9129: 9101: 9057: 9050: 9017: 8991: 8945: 8899: 8892: 8874: 8819: 8792: 8737: 8679: 8637: 8607: 8585: 8560: 8535: 8498: 8461:(7): 371–376. 8441: 8416: 8390: 8364: 8334: 8310: 8297:(2): 381–384. 8277: 8236: 8206: 8155: 8124: 8095: 8055: 8026: 7984: 7962: 7937: 7904: 7867:(10): 103201. 7847: 7818:(14): 142502. 7793: 7755: 7701: 7659: 7628: 7589: 7550: 7506: 7461: 7418:(11): 112502. 7394: 7348: 7321: 7259: 7216: 7179: 7128: 7069: 7039: 6999: 6980: 6947: 6936:(2): 301–308. 6920: 6886: 6826: 6814: 6799: 6772: 6730: 6699: 6671: 6640: 6573: 6550: 6493: 6450: 6419: 6365: 6353: 6302: 6290: 6288:, p. 433. 6275: 6273:, p. 439. 6263: 6251: 6192: 6150: 6114: 6112:, p. 432. 6102: 6090: 6088:, p. 335. 6078: 6076:, p. 334. 6066: 6028: 5987:Hoffman, D. C. 5974: 5928:Wapstra, A. H. 5919: 5889: 5882: 5858:Seaborg, G. T. 5844:. pp. 7–8 5830: 5769: 5734: 5706: 5668: 5637: 5626:on 7 June 2015 5595:(2): 235–236. 5578:Armbruster, P. 5574:MĂŒnzenberg, G. 5565: 5525: 5510: 5480: 5450: 5422: 5397: 5372: 5347: 5315: 5308: 5284: 5250: 5224: 5194: 5187: 5154: 5140: 5087: 5051: 5018: 5011: 4949: 4947: 4944: 4941: 4940: 4932: 4918: 4908: 4903: 4898: 4895:orbital: thus 4892: 4884: 4875: 4866: 4854: 4845: 4841:Kenjiro Kimura 4832: 4800:nuclear fusion 4788: 4759: 4746: 4733: 4723: 4713: 4696: 4682: 4673: 4666: 4657: 4647: 4638: 4628: 4619: 4609: 4600: 4588: 4581: 4565: 4527: 4526: 4524: 4521: 4504:chromatography 4492: 4459: 4456: 4440: 4431: 4423: 4419: 4409: 4397: 4385: 4376: 4375: 4372: 4368: 4360: 4353: 4343: 4334: 4325: 4318: 4311: 4304: 4288: 4281: 4277: 4258: 4252: 4245: 4244: 4234: 4227: 4220: 4219: 4218: 4217: 4216: 4176: 4157: 4108: 4105:binding energy 4100: 4069: 4066: 4051: 4039: 4035: 4027: 4013:speed of light 3968: 3965: 3959: 3956: 3936:nuclear shells 3898: 3895: 3867: 3866: 3862: 3859: 3856: 3853: 3851: 3846: 3842: 3841: 3837: 3834: 3831: 3828: 3826: 3821: 3817: 3816: 3813: 3810: 3807: 3805: 3800: 3796: 3795: 3792: 3789: 3786: 3784: 3779: 3775: 3774: 3771: 3768: 3765: 3763: 3758: 3754: 3753: 3750: 3747: 3744: 3742: 3737: 3733: 3732: 3729: 3726: 3723: 3721: 3716: 3712: 3711: 3708: 3705: 3702: 3700: 3695: 3691: 3690: 3687: 3683: 3682: 3677: 3672: 3667: 3664: 3657: 3656: 3649: 3642: 3634: 3630: 3625:Main article: 3622: 3619: 3602:Bruce McKellar 3579:Masataka Ogawa 3532:Yoshio Nishina 3465: 3462: 3418: 3415: 3375: 3374: 3368: 3360: 3348: 3339: 3327: 3319: 3307: 3298: 3286: 3278: 3266: 3257: 3245: 3237: 3225: 3216: 3204: 3196: 3184: 3175: 3163: 3155: 3143: 3134: 3108: 3107: 3100: 3092: 3080: 3071: 3059: 3050: 3043: 3036: 3028: 3016: 3007: 2995: 2986: 2940: 2937: 2919: 2918: 2912: 2904: 2892: 2883: 2871: 2862: 2833:alpha particle 2795: 2792: 2753: 2750: 2737: 2736: 2730: 2722: 2710: 2701: 2689: 2680: 2636: 2633: 2621: 2620: 2614: 2606: 2594: 2586: 2575: 2566: 2556: 2547: 2541: 2535: 2527: 2515: 2507: 2495: 2486: 2474: 2465: 2409: 2406: 2397:Sigurd Hofmann 2388: 2387: 2382: 2374: 2366: 2356: 2347: 2337: 2328: 2218: 2215: 2207: 2204: 2196:kinetic energy 2152:in the latter. 2118:binding energy 2093: 2090: 2048: 2047: 2032: 2031: 2010:speed of light 1981:atomic nucleus 1969:nuclear fusion 1960: 1957: 1956: 1948: 1946: 1943: 1798:periodic table 1773:; it has the 1762: 1761: 1755: 1754: 1747: 1740: 1732: 1719: 1718: 1715: 1714: 1711: 1710: 1705: 1700: 1695: 1692: 1688: 1687: 1682: 1677: 1672: 1669: 1665: 1664: 1659: 1654: 1649: 1646: 1642: 1641: 1638: 1630: 1629: 1624: 1619: 1614: 1611: 1607: 1606: 1601: 1593: 1592: 1587: 1582: 1577: 1574: 1570: 1569: 1564: 1559: 1554: 1551: 1547: 1546: 1541: 1536: 1531: 1528: 1524: 1523: 1518: 1511: 1506: 1501: 1497: 1496: 1491: 1486: 1481: 1471: 1466: 1463: 1462: 1457: 1456:Main isotopes 1449: 1448: 1445: 1444: 1441: 1440: 1433: 1425: 1418: 1417: 1402: 1396: 1395: 1384: 1380: 1379: 1375: 1374: 1371: 1365: 1364: 1353: 1348: ​ 1346: 1340: 1339: 1334: 1330: 1329: 1325: 1324: 1322:(extrapolated) 1318: 1312: 1311: 1301: 1295: 1294: 1292: 1291: 1284: 1278: 1272: 1265: 1263: 1257: 1256: 1238: 1232: 1231: 1227: 1226: 1220: 1214: 1213: 1211:(extrapolated) 1203: 1201:Heat of fusion 1197: 1196: 1190: 1176: 1175: 1169: 1163: 1162: 1152: 1146: 1145: 1139: 1125: 1124: 1120: 1119: 1113: 1109: 1108: 1098: 1092: 1091: 1083: 1077: 1076: 1071: 1065: 1064: 1059: 1053: 1052: 1049: 1034: 1033: 1030: 1029: 1026: 1025: 1011: 1010: 995: 991: 990: 983: 976: 969: 962: 955: 948: 941: 934: 927: 920: 913: 906: 899: 892: 885: 878: 871: 864: 857: 850: 843: 836: 829: 822: 815: 808: 801: 794: 787: 780: 773: 765: 764: 757: 750: 743: 736: 729: 722: 715: 708: 701: 694: 687: 680: 673: 666: 659: 652: 645: 638: 631: 624: 617: 610: 603: 596: 589: 582: 575: 568: 561: 554: 547: 539: 538: 531: 524: 517: 510: 503: 496: 489: 482: 475: 468: 461: 454: 447: 440: 433: 426: 424: 422: 415: 407: 406: 399: 392: 385: 378: 371: 364: 357: 350: 343: 336: 329: 322: 315: 308: 301: 294: 292: 285: 277: 276: 269: 262: 255: 248: 241: 234: 232: 225: 217: 216: 209: 202: 195: 188: 181: 174: 172: 165: 157: 156: 149: 147: 137: 126: 125: 123:periodic table 118: 117: 115: 109: 108: 53: 49: 48: 38: 31: 9: 6: 4: 3: 2: 11208: 11197: 11194: 11192: 11189: 11187: 11184: 11182: 11179: 11178: 11176: 11157: 11154: 11152: 11149: 11147: 11144: 11142: 11139: 11138: 11131: 11122: 11113: 11104: 11095: 11086: 11077: 11068: 11059: 11050: 11041: 11032: 11023: 11014: 11005: 10996: 10987: 10978: 10969: 10960: 10951: 10942: 10933: 10924: 10915: 10906: 10897: 10888: 10879: 10870: 10861: 10852: 10843: 10835: 10831: 10827: 10818: 10809: 10800: 10791: 10782: 10773: 10764: 10755: 10746: 10737: 10728: 10719: 10710: 10701: 10692: 10683: 10674: 10665: 10656: 10647: 10638: 10629: 10620: 10611: 10602: 10593: 10584: 10575: 10566: 10557: 10548: 10540: 10536: 10532: 10523: 10514: 10505: 10496: 10487: 10478: 10469: 10460: 10451: 10442: 10433: 10424: 10415: 10406: 10397: 10386: 10377: 10369: 10365: 10361: 10352: 10343: 10334: 10325: 10316: 10307: 10298: 10289: 10280: 10271: 10262: 10253: 10244: 10235: 10226: 10215: 10206: 10198: 10194: 10190: 10181: 10172: 10163: 10154: 10145: 10134: 10125: 10117: 10113: 10109: 10100: 10091: 10082: 10073: 10064: 10053: 10044: 10036: 10032: 10028: 10017: 10009: 10005: 10002: 9997: 9992: 9987: 9982: 9977: 9972: 9967: 9962: 9957: 9952: 9947: 9942: 9937: 9932: 9927: 9920: 9915: 9910: 9909: 9904: 9900: 9893: 9888: 9886: 9881: 9879: 9874: 9873: 9870: 9864: 9861: 9859: 9856: 9854: 9851: 9849: 9845: 9842: 9839: 9836: 9835: 9830: 9827: 9826: 9816: 9812: 9808: 9804: 9800: 9796: 9792: 9788: 9783: 9778: 9775:(1): 012001. 9774: 9770: 9769: 9763: 9759: 9753: 9749: 9745: 9741: 9737: 9733: 9727: 9723: 9719: 9715: 9711: 9707: 9703: 9699: 9695: 9689: 9685: 9680: 9676: 9672: 9668: 9664: 9661:(3): 030001. 9660: 9656: 9651: 9650: 9638: 9634: 9630: 9626: 9622: 9618: 9611: 9603: 9599: 9595: 9591: 9587: 9583: 9579: 9575: 9567: 9559: 9553: 9549: 9542: 9534: 9530: 9526: 9522: 9518: 9514: 9507: 9499: 9495: 9491: 9487: 9483: 9479: 9472: 9464: 9460: 9456: 9452: 9448: 9444: 9436: 9422: 9414: 9408: 9404: 9403: 9395: 9387: 9381: 9377: 9376: 9371: 9365: 9357: 9353: 9349: 9345: 9341: 9337: 9332: 9327: 9324:(1): 012003. 9323: 9319: 9312: 9310: 9308: 9306: 9304: 9295: 9291: 9287: 9283: 9279: 9275: 9271: 9267: 9259: 9243: 9236: 9228: 9224: 9219: 9214: 9210: 9206: 9202: 9198: 9194: 9187: 9185: 9183: 9181: 9179: 9177: 9168: 9164: 9160: 9156: 9152: 9148: 9144: 9140: 9133: 9115: 9108: 9106: 9096: 9091: 9087: 9083: 9079: 9075: 9071: 9064: 9062: 9053: 9047: 9043: 9039: 9035: 9028: 9026: 9024: 9022: 9006: 9002: 8995: 8988: 8984: 8980: 8976: 8972: 8968: 8964: 8956: 8949: 8941: 8937: 8933: 8929: 8925: 8921: 8917: 8913: 8906: 8904: 8895: 8889: 8885: 8878: 8870: 8866: 8862: 8858: 8854: 8850: 8845: 8840: 8836: 8832: 8831: 8823: 8807: 8803: 8796: 8788: 8784: 8780: 8776: 8772: 8768: 8764: 8760: 8757:(3): 036301. 8756: 8752: 8748: 8741: 8733: 8729: 8724: 8719: 8715: 8711: 8707: 8703: 8699: 8692: 8690: 8688: 8686: 8684: 8675: 8671: 8667: 8663: 8660:(3): 030001. 8659: 8655: 8648: 8641: 8625: 8621: 8620:News on Japan 8617: 8611: 8595: 8589: 8582: 8580: 8574: 8570: 8564: 8557: 8553: 8549: 8545: 8539: 8520: 8512: 8502: 8494: 8490: 8485: 8480: 8476: 8472: 8468: 8464: 8460: 8456: 8452: 8445: 8429: 8423: 8421: 8405:. 9 June 2016 8404: 8400: 8394: 8379:. 9 June 2016 8378: 8374: 8368: 8352: 8351: 8346: 8338: 8330: 8329: 8324: 8317: 8315: 8305: 8300: 8296: 8292: 8288: 8281: 8272: 8267: 8263: 8259: 8255: 8251: 8247: 8240: 8231: 8226: 8219: 8218: 8210: 8194: 8189: 8185: 8181: 8177: 8173: 8166: 8159: 8143: 8139: 8133: 8131: 8129: 8112: 8108: 8102: 8100: 8080: 8076: 8069: 8062: 8060: 8043: 8039: 8033: 8031: 8021: 8016: 8012: 8008: 8005:(2): 021301. 8004: 8000: 7996: 7988: 7972: 7966: 7948: 7941: 7926: 7922: 7918: 7911: 7909: 7900: 7896: 7892: 7888: 7884: 7880: 7875: 7870: 7866: 7862: 7854: 7852: 7843: 7839: 7834: 7829: 7825: 7821: 7817: 7813: 7809: 7807: 7797: 7789: 7774: 7767: 7759: 7751: 7747: 7743: 7739: 7735: 7731: 7726: 7721: 7717: 7713: 7705: 7697: 7693: 7689: 7685: 7681: 7677: 7670: 7663: 7644: 7637: 7635: 7633: 7624: 7620: 7616: 7612: 7609:(3): 034611. 7608: 7604: 7600: 7593: 7585: 7581: 7577: 7573: 7569: 7565: 7557: 7555: 7545: 7540: 7536: 7532: 7528: 7521: 7519: 7517: 7515: 7513: 7511: 7501: 7496: 7492: 7488: 7484: 7480: 7476: 7468: 7466: 7457: 7453: 7449: 7445: 7441: 7437: 7433: 7429: 7425: 7421: 7417: 7413: 7409: 7401: 7399: 7389: 7384: 7380: 7376: 7372: 7365: 7363: 7361: 7359: 7357: 7355: 7353: 7336: 7332: 7325: 7306: 7302: 7298: 7294: 7290: 7287:(2): 021601. 7286: 7282: 7275: 7268: 7266: 7264: 7254: 7249: 7245: 7241: 7238:(5): 054607. 7237: 7233: 7232: 7227: 7220: 7212: 7208: 7204: 7200: 7197:(4): 041604. 7196: 7192: 7191: 7183: 7172: 7168: 7164: 7160: 7156: 7153:(6): 064609. 7152: 7148: 7147: 7139: 7132: 7113: 7109: 7105: 7101: 7097: 7093: 7089: 7088: 7080: 7073: 7064: 7059: 7052: 7051: 7043: 7027: 7023: 7016: 7014: 7012: 7010: 7008: 7006: 7004: 6995: 6991: 6984: 6975: 6970: 6966: 6962: 6958: 6951: 6943: 6939: 6935: 6931: 6924: 6916: 6912: 6908: 6904: 6897: 6890: 6871: 6867: 6863: 6859: 6855: 6851: 6847: 6840: 6833: 6831: 6824:, p. 40. 6823: 6818: 6811: 6806: 6804: 6788: 6787: 6782: 6776: 6768: 6764: 6760: 6744: 6740: 6734: 6719: 6718: 6717:Distillations 6713: 6706: 6704: 6688: 6687: 6682: 6675: 6667: 6663: 6659: 6655: 6651: 6650:Physics Today 6644: 6636: 6632: 6628: 6624: 6620: 6616: 6611: 6606: 6602: 6598: 6594: 6590: 6589: 6588:Physics Today 6584: 6577: 6569: 6565: 6561: 6554: 6546: 6542: 6538: 6534: 6529: 6524: 6520: 6516: 6512: 6508: 6504: 6497: 6482: 6478: 6474: 6470: 6469: 6468:Physics World 6464: 6457: 6455: 6439: 6432: 6431: 6423: 6415: 6411: 6406: 6401: 6397: 6393: 6389: 6385: 6381: 6374: 6372: 6370: 6362: 6357: 6349: 6345: 6341: 6337: 6333: 6329: 6325: 6321: 6317: 6313: 6306: 6299: 6294: 6287: 6282: 6280: 6272: 6267: 6260: 6255: 6247: 6243: 6238: 6233: 6229: 6225: 6220: 6215: 6211: 6207: 6203: 6196: 6181: 6177: 6170: 6163: 6161: 6159: 6157: 6155: 6139: 6135: 6128: 6127:"Alpha decay" 6121: 6119: 6111: 6106: 6099: 6094: 6087: 6082: 6075: 6070: 6055: 6054: 6049: 6045: 6039: 6037: 6035: 6033: 6024: 6020: 6016: 6012: 6008: 6004: 6000: 5996: 5992: 5988: 5985:Hyde, E. K.; 5981: 5979: 5970: 5966: 5962: 5958: 5954: 5950: 5946: 5942: 5941: 5933: 5929: 5923: 5915: 5911: 5907: 5903: 5896: 5894: 5885: 5879: 5875: 5871: 5867: 5863: 5859: 5854:Published as 5840: 5834: 5826: 5822: 5817: 5812: 5807: 5802: 5798: 5794: 5790: 5786: 5785: 5780: 5773: 5765: 5761: 5757: 5753: 5749: 5745: 5738: 5723: 5722: 5717: 5710: 5694: 5690: 5683: 5681: 5679: 5677: 5675: 5673: 5657: 5656: 5651: 5647: 5641: 5622: 5618: 5614: 5610: 5606: 5602: 5598: 5594: 5590: 5583: 5579: 5575: 5569: 5561: 5557: 5553: 5549: 5546:(2): 024608. 5545: 5541: 5540: 5535: 5529: 5521: 5517: 5513: 5507: 5503: 5499: 5495: 5491: 5484: 5468: 5464: 5460: 5454: 5439: 5438: 5433: 5426: 5411: 5407: 5401: 5386: 5382: 5376: 5361: 5357: 5351: 5343: 5339: 5335: 5331: 5324: 5322: 5320: 5311: 5309:9789813226555 5305: 5301: 5293: 5291: 5289: 5280: 5276: 5273:(3): 030001. 5272: 5268: 5261: 5254: 5246: 5242: 5238: 5231: 5229: 5220: 5216: 5212: 5208: 5201: 5199: 5190: 5184: 5180: 5176: 5172: 5165: 5163: 5161: 5159: 5143: 5137: 5133: 5129: 5125: 5121: 5117: 5110: 5108: 5106: 5104: 5102: 5100: 5098: 5096: 5094: 5092: 5083: 5079: 5075: 5071: 5067: 5060: 5058: 5056: 5040: 5039: 5034: 5027: 5025: 5023: 5014: 5008: 5004: 5000: 4993: 4991: 4989: 4987: 4985: 4983: 4981: 4979: 4977: 4975: 4973: 4971: 4969: 4967: 4965: 4963: 4961: 4959: 4957: 4955: 4950: 4925: 4921: 4912: 4901: 4888: 4879: 4870: 4861: 4859: 4849: 4842: 4836: 4829: 4825: 4821: 4817: 4813: 4812:fourth period 4809: 4805: 4801: 4797: 4792: 4785: 4781: 4777: 4773: 4769: 4763: 4756: 4755:Georgy Flerov 4750: 4743: 4737: 4727: 4717: 4710: 4706: 4700: 4693: 4686: 4677: 4592: 4576: 4569: 4562: 4561:superactinide 4558: 4554: 4550: 4546: 4542: 4538: 4532: 4528: 4520: 4518: 4513: 4509: 4505: 4495: 4488: 4480: 4478: 4474: 4470: 4466: 4455: 4453: 4452:pentafluoride 4449: 4429: 4416: 4366: 4365: 4364: 4346: 4322: 4317: 4310: 4302: 4298: 4294: 4287: 4274: 4249: 4240: 4224: 4215: 4213: 4208: 4204: 4200: 4196: 4192: 4188: 4183: 4174: 4170: 4166: 4161: 4155: 4151: 4147: 4143: 4139: 4135: 4131: 4127: 4123: 4119: 4118:sigma bonding 4115: 4106: 4097: 4095: 4090: 4088: 4084: 4080: 4076: 4065: 4063: 4058: 4048: 4043: 4033: 4025: 4022: 4018: 4014: 4010: 4006: 4002: 3998: 3994: 3990: 3986: 3982: 3973: 3964: 3955: 3953: 3947: 3945: 3941: 3937: 3933: 3929: 3925: 3921: 3917: 3913: 3903: 3894: 3892: 3888: 3884: 3880: 3876: 3860: 3857: 3854: 3852: 3847: 3844: 3843: 3835: 3832: 3829: 3827: 3822: 3819: 3818: 3814: 3811: 3808: 3806: 3801: 3798: 3797: 3793: 3790: 3787: 3785: 3780: 3777: 3776: 3772: 3769: 3766: 3764: 3759: 3756: 3755: 3751: 3748: 3745: 3743: 3738: 3735: 3734: 3730: 3727: 3724: 3722: 3717: 3714: 3713: 3709: 3706: 3703: 3701: 3696: 3693: 3692: 3688: 3685: 3684: 3661: 3655: 3650: 3648: 3643: 3641: 3636: 3635: 3628: 3618: 3616: 3612: 3607: 3603: 3599: 3595: 3590: 3588: 3584: 3580: 3576: 3562: 3561: 3555: 3551: 3547: 3546: 3541: 3537: 3533: 3529: 3525: 3520: 3518: 3514: 3510: 3506: 3502: 3498: 3494: 3490: 3486: 3478: 3474: 3473:Kƍsuke Morita 3470: 3461: 3458: 3453: 3449: 3444: 3440: 3436: 3433: 3429: 3425: 3414: 3412: 3408: 3404: 3399: 3397: 3393: 3389: 3385: 3381: 3372: 3352: 3331: 3311: 3290: 3270: 3249: 3229: 3208: 3188: 3167: 3147: 3127: 3126: 3125: 3123: 3119: 3114: 3111: 3104: 3084: 3063: 3044: 3040: 3020: 2999: 2980: 2979: 2978: 2975: 2971: 2967: 2963: 2959: 2954: 2950: 2947: 2936: 2934: 2929: 2925: 2916: 2896: 2875: 2856: 2855: 2854: 2852: 2847: 2845: 2840: 2838: 2834: 2829: 2825: 2820: 2818: 2814: 2810: 2805: 2804:decay product 2801: 2788: 2783: 2779: 2776: 2771: 2767: 2763: 2760:(JWP) of the 2759: 2749: 2747: 2742: 2734: 2714: 2693: 2674: 2673: 2672: 2669: 2667: 2663: 2659: 2655: 2650: 2649:Kƍsuke Morita 2646: 2642: 2632: 2630: 2626: 2618: 2598: 2542: 2539: 2519: 2499: 2478: 2459: 2458: 2457: 2455: 2451: 2447: 2443: 2439: 2434: 2432: 2428: 2424: 2420: 2416: 2405: 2402: 2398: 2393: 2385: 2323: 2322: 2321: 2319: 2318:plutonium-244 2314: 2312: 2308: 2304: 2300: 2296: 2291: 2287: 2283: 2279: 2274: 2272: 2268: 2264: 2260: 2256: 2252: 2248: 2244: 2240: 2236: 2232: 2228: 2224: 2213: 2199: 2197: 2191: 2188: 2184: 2180: 2176: 2172: 2168: 2164: 2160: 2151: 2147: 2146:dipole magnet 2143: 2138: 2134: 2132: 2128: 2124: 2119: 2115: 2111: 2106: 2104: 2100: 2089: 2087: 2083: 2079: 2075: 2071: 2067: 2063: 2059: 2055: 2054:excited state 2046: 2042: 2041:Visualization 2033: 2028: 2025: 2023: 2019: 2018:cross section 2013: 2011: 2006: 2002: 1998: 1994: 1990: 1986: 1982: 1979:A superheavy 1974: 1970: 1965: 1953: 1942: 1940: 1936: 1932: 1928: 1924: 1920: 1916: 1912: 1908: 1904: 1900: 1896: 1890: 1885: 1884: 1870: 1866: 1862: 1858: 1854: 1850: 1846: 1845:United States 1842: 1838: 1834: 1830: 1826: 1822: 1817: 1815: 1811: 1807: 1803: 1799: 1795: 1791: 1787: 1783: 1782:atomic number 1779: 1776: 1772: 1768: 1760: 1757: | 1753: 1748: 1746: 1741: 1739: 1734: 1733: 1730: 1720: 1716: 1709: 1706: 1701: 1689: 1686: 1683: 1678: 1666: 1663: 1660: 1655: 1643: 1639: 1636: 1632: 1631: 1628: 1625: 1620: 1608: 1605: 1602: 1599: 1595: 1594: 1591: 1588: 1583: 1571: 1568: 1565: 1560: 1548: 1545: 1542: 1537: 1525: 1522: 1519: 1516: 1512: 1505: 1498: 1495: 1494:pro­duct 1492: 1490: 1487: 1480: 1475: 1472: 1470: 1467: 1465: 1464: 1461: 1454: 1450: 1446: 1439: 1434: 1432: 1427: 1426: 1423: 1419: 1415: 1412:(Russia) and 1411: 1406: 1403: 1401: 1397: 1393: 1389: 1385: 1381: 1376: 1372: 1370: 1366: 1363: 1357: 1351: 1347: 1345: 1341: 1338: 1335: 1331: 1326: 1323: 1319: 1317: 1313: 1310: 1306: 1302: 1300: 1299:Atomic radius 1296: 1289: 1285: 1283: 1279: 1277: 1273: 1271: 1267: 1266: 1264: 1262: 1258: 1255: 1252:), (+5) 1250: 1244: 1239: 1237: 1233: 1228: 1225: 1221: 1219: 1215: 1212: 1208: 1204: 1202: 1198: 1195: 1191: 1187: 1181: 1177: 1174: 1170: 1168: 1167:Boiling point 1164: 1161: 1157: 1153: 1151: 1150:Melting point 1147: 1144: 1140: 1136: 1130: 1126: 1121: 1118: 1114: 1110: 1107: 1103: 1099: 1097: 1093: 1090: 1084: 1082: 1078: 1075: 1074:period 7 1072: 1070: 1066: 1063: 1060: 1058: 1054: 1050: 1045: 1040: 1039:Atomic number 1035: 1024: 1016: 1012: 999: 996: 989: 984: 982: 977: 975: 970: 968: 963: 961: 956: 954: 949: 947: 942: 940: 935: 933: 928: 926: 921: 919: 914: 912: 907: 905: 900: 898: 893: 891: 889:Rutherfordium 886: 884: 879: 877: 872: 870: 865: 863: 858: 856: 851: 849: 844: 842: 837: 835: 830: 828: 823: 821: 816: 814: 809: 807: 802: 800: 795: 793: 788: 786: 781: 779: 774: 772: 767: 766: 763: 758: 756: 751: 749: 744: 742: 737: 735: 730: 728: 723: 721: 716: 714: 709: 707: 702: 700: 695: 693: 688: 686: 681: 679: 674: 672: 667: 665: 660: 658: 653: 651: 646: 644: 639: 637: 632: 630: 625: 623: 618: 616: 611: 609: 604: 602: 597: 595: 590: 588: 583: 581: 576: 574: 569: 567: 562: 560: 555: 553: 548: 546: 541: 540: 537: 532: 530: 525: 523: 518: 516: 511: 509: 504: 502: 497: 495: 490: 488: 483: 481: 476: 474: 469: 467: 462: 460: 455: 453: 448: 446: 441: 439: 434: 432: 427: 423: 421: 416: 414: 409: 408: 405: 400: 398: 393: 391: 386: 384: 379: 377: 372: 370: 365: 363: 358: 356: 351: 349: 344: 342: 337: 335: 330: 328: 323: 321: 316: 314: 309: 307: 302: 300: 295: 291: 286: 284: 279: 278: 275: 270: 268: 263: 261: 256: 254: 249: 247: 242: 240: 235: 231: 226: 224: 219: 218: 215: 210: 208: 203: 201: 196: 194: 189: 187: 182: 180: 175: 171: 166: 164: 159: 158: 155: 150: 146: 141: 140: 136: 135: 132: 131: 127: 124: 119: 116: 114: 110: 105: 104: 89: 54: 52:Pronunciation 50: 45: 30: 26: 19: 11073: 9832: 9772: 9766: 9743: 9717: 9683: 9658: 9654: 9647:Bibliography 9620: 9616: 9610: 9580:(158): 158. 9577: 9573: 9566: 9547: 9541: 9519:(2): 67–74. 9516: 9512: 9506: 9481: 9477: 9471: 9446: 9442: 9431: 9421: 9401: 9394: 9374: 9364: 9321: 9317: 9269: 9265: 9258: 9246:. Retrieved 9235: 9200: 9196: 9142: 9138: 9132: 9120:. Retrieved 9077: 9073: 9033: 9008:. Retrieved 9004: 8994: 8970: 8966: 8948: 8915: 8911: 8883: 8877: 8834: 8828: 8822: 8810:. Retrieved 8806:the original 8795: 8754: 8750: 8740: 8705: 8701: 8657: 8653: 8640: 8628:. Retrieved 8624:the original 8619: 8610: 8598:. Retrieved 8588: 8578: 8576: 8572: 8563: 8555: 8552:the original 8547: 8538: 8526:. Retrieved 8519:the original 8501: 8458: 8454: 8444: 8432:. Retrieved 8407:. Retrieved 8403:The Mainichi 8402: 8393: 8381:. Retrieved 8377:The Mainichi 8376: 8367: 8355:. Retrieved 8348: 8337: 8326: 8294: 8290: 8280: 8253: 8249: 8239: 8216: 8209: 8197:. Retrieved 8175: 8171: 8158: 8146:. Retrieved 8142:the original 8115:. Retrieved 8086:. Retrieved 8079:the original 8046:. Retrieved 8041: 8002: 7998: 7987: 7975:. Retrieved 7965: 7953:. Retrieved 7940: 7928:. Retrieved 7920: 7864: 7860: 7815: 7811: 7805: 7796: 7786:– via 7780:. Retrieved 7773:the original 7758: 7715: 7711: 7704: 7679: 7675: 7662: 7650:. Retrieved 7606: 7602: 7592: 7567: 7563: 7534: 7530: 7482: 7478: 7415: 7411: 7378: 7374: 7339:. Retrieved 7324: 7312:. Retrieved 7305:the original 7284: 7280: 7235: 7229: 7219: 7194: 7188: 7182: 7171:the original 7150: 7144: 7131: 7119:. Retrieved 7112:the original 7094:(16): 3154. 7091: 7085: 7072: 7049: 7042: 7030:. Retrieved 7025: 6993: 6989: 6983: 6964: 6960: 6950: 6933: 6929: 6923: 6906: 6902: 6889: 6877:. Retrieved 6849: 6845: 6817: 6790:. Retrieved 6784: 6775: 6762: 6758: 6747:. Retrieved 6745:(in Russian) 6742: 6733: 6721:. Retrieved 6715: 6690:. Retrieved 6684: 6674: 6649: 6643: 6595:(8): 32–38. 6592: 6586: 6576: 6559: 6553: 6510: 6506: 6496: 6484:. Retrieved 6475:(7): 25–29. 6472: 6466: 6441:. Retrieved 6429: 6422: 6387: 6383: 6356: 6315: 6311: 6305: 6293: 6266: 6254: 6209: 6205: 6195: 6183:. Retrieved 6175: 6141:. Retrieved 6133: 6105: 6100:, p. 3. 6093: 6081: 6069: 6057:. Retrieved 6051: 6001:(2): 67–68. 5998: 5994: 5944: 5938: 5922: 5901: 5861: 5846:. Retrieved 5833: 5788: 5782: 5772: 5747: 5743: 5737: 5725:. Retrieved 5719: 5709: 5697:. Retrieved 5695:(in Russian) 5692: 5659:. Retrieved 5653: 5640: 5628:. Retrieved 5621:the original 5592: 5588: 5568: 5543: 5537: 5528: 5489: 5483: 5471:. Retrieved 5467:the original 5453: 5441:. Retrieved 5435: 5425: 5413:. Retrieved 5409: 5400: 5388:. Retrieved 5384: 5375: 5363:. Retrieved 5359: 5350: 5333: 5329: 5299: 5270: 5266: 5253: 5237:MRS Advances 5236: 5210: 5206: 5170: 5145:. Retrieved 5123: 5119: 5073: 5069: 5042:. Retrieved 5036: 4998: 4911: 4887: 4878: 4869: 4848: 4835: 4824:ground state 4791: 4783: 4779: 4762: 4749: 4736: 4726: 4716: 4699: 4685: 4676: 4591: 4568: 4531: 4493: 4486: 4481: 4477:water vapour 4461: 4417: 4403:and perhaps 4377: 4323: 4270: 4162: 4098: 4091: 4071: 4062:bulk modulus 4044: 4023: 3978: 3961: 3951: 3948: 3909: 3871: 3605: 3591: 3553: 3543: 3539: 3535: 3527: 3523: 3521: 3516: 3512: 3508: 3496: 3492: 3489:eka-thallium 3488: 3482: 3445: 3441: 3437: 3420: 3400: 3376: 3115: 3112: 3109: 2955: 2951: 2942: 2933:alpha decays 2920: 2848: 2841: 2821: 2802:, the final 2797: 2755: 2738: 2670: 2638: 2622: 2435: 2411: 2389: 2379:+ e → 113 + 2315: 2311:magic number 2295:doubly magic 2275: 2220: 2192: 2155: 2107: 2095: 2051: 2014: 1978: 1945:Introduction 1891: 1868: 1818: 1777: 1766: 1765: 1478: 1394:in Japanese) 1391: 1361: 1321: 1308: 1281: 1275: 1269: 1253: 1248: 1242: 1223: 1210: 1193: 1172: 1159: 1142: 1116: 1105: 1043: 950: 931:Darmstadtium 798:Protactinium 572:Praseodymium 29: 9714:Ghiorso, A. 9145:(6): 2684. 9122:17 February 9080:(6): 2456. 8837:: 117–138. 8600:30 November 8148:8 September 7955:4 September 7381:(7): 1485. 7314:13 December 6967:(7): 1331. 6879:7 September 6723:22 February 6486:16 February 6443:16 February 6361:Beiser 2003 6286:Beiser 2003 6271:Beiser 2003 6185:16 February 6143:16 February 6110:Beiser 2003 5816:1885/148847 5750:: 226–234. 4515:superheavy 4473:noble gases 4148:hydroxide ( 4087:noble metal 4075:copernicium 3932:103 protons 3883:copernicium 3875:roentgenium 3552:. The name 3550:ethnic slur 3528:nishinanium 3505:placeholder 3448:gamma decay 3411:element 117 3384:coincidence 3122:mendelevium 2964:(ORNL) and 2958:element 117 2787:mendelevium 2442:element 115 2440:product of 2438:alpha decay 2307:element 114 2123:alpha decay 2005:accelerated 1786:radioactive 1675:5.5 s? 1580:0.90 s 1557:123 ms 1509:2.0 ms 1362:(predicted) 1309:(predicted) 1282:(predicted) 1276:(predicted) 1270:(predicted) 1254:(predicted) 1224:(predicted) 1194:(predicted) 1184:(near  1173:(predicted) 1160:(predicted) 1143:(predicted) 1117:(predicted) 1106:(predicted) 1015:copernicium 973:Livermorium 945:Copernicium 938:Roentgenium 868:Mendelevium 854:Einsteinium 847:Californium 113:Mass number 11175:Categories 9623:(6): 607. 8844:1502.03030 8630:28 January 8528:28 January 8357:13 October 8117:14 January 8088:14 January 7917:"Nihonium" 7570:(1): 1–4. 7032:3 December 6822:Kragh 2018 6810:Kragh 2018 6692:27 January 6318:(7): 158. 6059:27 January 5947:(6): 883. 5848:27 January 5727:30 January 5699:2 February 5661:18 January 5630:20 October 5126:: 89–144. 4946:References 4705:beta decay 4465:volatility 4182:Tennessine 4165:adsorption 4154:amphoteric 4114:pi bonding 3731:Np(Ca,3n) 3666:Half-life 3380:well-known 2968:, both in 2924:lawrencium 2301:(LLNL) in 2290:Calcium-48 2278:Oganessian 2265:(JINR) in 2210:See also: 2056:—termed a 1823:(JINR) in 1759:references 1652:9.5 s 1617:2.1 s 1534:61 ms 1369:CAS Number 1205:7.61  980:Tennessine 924:Meitnerium 903:Seaborgium 882:Lawrencium 621:Dysprosium 607:Gadolinium 586:Promethium 458:Technetium 451:Molybdenum 252:Phosphorus 9807:1742-6588 9782:1207.5700 9740:Kragh, H. 9602:125849923 9533:100778491 9331:1212.4292 8973:: 3–128, 8940:125713877 8732:254435744 7899:119217928 7874:1209.6431 7725:0904.1093 7440:0031-9007 6749:7 January 6666:239775403 6635:119531411 6619:0031-9228 6537:1364-503X 6414:1742-6596 6348:125849923 6340:1434-6001 6246:0556-2813 6219:1208.1215 6015:2193-3405 5961:1365-3075 5825:2100-014X 5791:: 00061. 5693:nplus1.ru 5617:123288075 5560:0556-2813 5520:127060181 5147:4 October 4924:triiodide 4828:flerovium 4804:actinides 4784:joliotium 4768:Stockholm 4721:form one. 4573:2.5  4371:→ NhX + X 4299:as their 4079:flerovium 3989:aluminium 3710:Bi(Zn,n) 3681:reaction 3679:Discovery 3674:Discovery 3587:neptunium 3493:ununtrium 2974:berkelium 2970:Tennessee 2939:2009–2015 2851:neptunium 2794:2004–2008 2446:americium 2425:+ Ca and 2390:A single 2235:Darmstadt 2086:electrons 2070:gamma ray 1907:aluminium 1794:half-life 1698:2 s? 1474:half-life 1414:Livermore 1400:Discovery 1337:synthetic 1154:700  1023:flerovium 987:Oganesson 966:Moscovium 959:Flerovium 840:Berkelium 826:Americium 819:Plutonium 812:Neptunium 649:Ytterbium 579:Neodymium 558:Lanthanum 521:Tellurium 479:Palladium 465:Ruthenium 437:Zirconium 419:Strontium 375:Germanium 326:Manganese 282:Potassium 238:Aluminium 229:Magnesium 169:Beryllium 11181:Nihonium 9844:Archived 9829:Nihonium 9815:55434734 9748:Springer 9742:(2018). 9702:48965418 9637:94078206 9356:55653705 9294:27676357 9227:41854842 8957:(2003), 8869:55598355 8787:37779526 8779:25746203 8579:Japanium 8493:21785255 8409:29 April 8383:29 April 8048:22 April 7977:10 April 7930:20 March 7842:20481935 7782:28 April 7750:16415500 7584:98386272 7448:24074079 7341:28 April 7335:Archived 6996:: 36–42. 6870:Archived 6866:95069384 6545:25666065 6046:(2016). 6023:99193729 5969:95737691 5930:(1991). 5914:28796927 5473:15 March 5443:15 March 5415:24 April 5044:16 March 4780:nobelium 4295:and not 4293:T-shaped 4195:chlorine 4191:fluorine 4187:halogens 4173:astatine 4156:oxide Nh 4068:Chemical 4001:thallium 3981:group 13 3815:Mc(—,α) 3794:Mc(—,α) 3773:Mc(—,α) 3752:Mc(—,α) 3663:Isotope 3621:Isotopes 3615:Naruhito 3606:nihonium 3554:nihonium 3540:Japonium 3536:rikenium 3524:japonium 2824:thallium 2775:nuclides 2600:→ 113 + 2521:→ 113 + 2286:actinide 2163:nobelium 2110:nucleons 2066:neutrons 1939:volatile 1935:astatine 1919:thallium 1899:neutrons 1869:nihonium 1865:priority 1814:group 13 1810:period 7 1767:Nihonium 1640:– 1132:at  1019:nihonium 952:Nihonium 875:Nobelium 784:Actinium 770:Francium 754:Astatine 747:Polonium 726:Thallium 705:Platinum 677:Tungsten 670:Tantalum 656:Lutetium 600:Europium 593:Samarium 514:Antimony 412:Rubidium 389:Selenium 319:Chromium 312:Vanadium 305:Titanium 298:Scandium 266:Chlorine 206:Fluorine 192:Nitrogen 144:Hydrogen 47:Nihonium 11156:p-block 11151:d-block 11146:f-block 11141:s-block 9787:Bibcode 9663:Bibcode 9582:Bibcode 9486:Bibcode 9451:Bibcode 9336:Bibcode 9274:Bibcode 9248:12 June 9205:Bibcode 9167:9959620 9147:Bibcode 9082:Bibcode 9010:26 June 8975:Bibcode 8920:Bibcode 8849:Bibcode 8759:Bibcode 8710:Bibcode 8662:Bibcode 8484:3171289 8463:Bibcode 8258:Bibcode 8199:2 April 8180:Bibcode 8007:Bibcode 7879:Bibcode 7820:Bibcode 7764:2009). 7730:Bibcode 7684:Bibcode 7611:Bibcode 7487:Bibcode 7456:3838065 7420:Bibcode 7289:Bibcode 7240:Bibcode 7199:Bibcode 7155:Bibcode 7121:5 April 7096:Bibcode 6792:1 March 6769:. 1977. 6627:1337838 6597:Bibcode 6564:Bibcode 6515:Bibcode 6392:Bibcode 6320:Bibcode 6224:Bibcode 5908:: 4–8. 5793:Bibcode 5752:Bibcode 5597:Bibcode 5239:: 1–9. 4926:anion, 4820:bismuth 4517:dubnium 4508:Bromine 4199:bromine 4138:ammonia 3993:gallium 3583:rhenium 2953:to Lr. 2946:group 4 2844:Lanzhou 2629:dubnium 2386: ? 2243:bismuth 2206:History 2171:fermium 2167:thorium 2159:uranium 2114:protons 2082:decayed 2062:fission 1973:neutron 1911:gallium 1849:Germany 1806:p-block 1804:in the 1790:isotope 1378:History 1290:) 1240:(−1), ( 1180:Density 1089:p-block 917:Hassium 910:Bohrium 896:Dubnium 861:Fermium 805:Uranium 791:Thorium 740:Bismuth 698:Iridium 684:Rhenium 663:Hafnium 642:Thulium 628:Holmium 614:Terbium 544:Caesium 493:Cadmium 472:Rhodium 444:Niobium 430:Yttrium 403:Krypton 396:Bromine 382:Arsenic 368:Gallium 289:Calcium 245:Silicon 162:Lithium 103:-nee-əm 94:​ 25:niobium 9813:  9805:  9754:  9728:  9700:  9690:  9635:  9600:  9554:  9531:  9409:  9382:  9354:  9292:  9225:  9165:  9048:  8959:"The N 8938:  8890:  8867:  8812:6 June 8785:  8777:  8730:  8491:  8481:  8434:8 June 7897:  7840:  7748:  7652:14 May 7582:  7454:  7446:  7438:  6864:  6743:n-t.ru 6664:  6633:  6625:  6617:  6543:  6535:  6412:  6346:  6338:  6244:  6021:  6013:  5967:  5959:  5912:  5880:  5823:  5615:  5558:  5518:  5508:  5390:8 June 5365:8 June 5336:(52). 5306:  5185:  5138:  5009:  4776:Sweden 4203:iodine 4130:anions 4126:silver 4047:period 3999:, and 3997:indium 3912:curium 3861:Fl(e,Îœ 3836:Fl(e,Îœ 3788:α, SF 3767:α, EC 3761:0.90 s 3740:123 ms 3698:2.3 ms 3686:Value 3483:Using 3464:Naming 3430:, and 3364:α 3323:α 3282:α 3241:α 3200:α 3159:α 3128:113 → 2610:α 2531:α 2103:energy 2022:tunnel 1999:. The 1931:silver 1917:, and 1915:indium 1855:, and 1853:Sweden 1775:symbol 1727:  1694:synth 1671:synth 1648:synth 1613:synth 1576:synth 1553:synth 1530:synth 1386:After 1383:Naming 1307: 1209: 1207:kJ/mol 1182: 1141:solid 1086:  1069:Period 833:Curium 777:Radium 691:Osmium 635:Erbium 565:Cerium 551:Barium 528:Iodine 500:Indium 486:Silver 354:Copper 347:Nickel 340:Cobalt 259:Sulfur 222:Sodium 199:Oxygen 185:Carbon 153:Helium 92: 9811:S2CID 9777:arXiv 9633:S2CID 9598:S2CID 9529:S2CID 9352:S2CID 9326:arXiv 9223:S2CID 9163:S2CID 9117:(PDF) 8961:UBASE 8936:S2CID 8865:S2CID 8839:arXiv 8783:S2CID 8728:S2CID 8650:(PDF) 8522:(PDF) 8515:(PDF) 8221:(PDF) 8168:(PDF) 8082:(PDF) 8071:(PDF) 7950:(PDF) 7895:S2CID 7869:arXiv 7808:=117" 7776:(PDF) 7769:(PDF) 7746:S2CID 7720:arXiv 7672:(PDF) 7646:(PDF) 7580:S2CID 7452:S2CID 7308:(PDF) 7277:(PDF) 7174:(PDF) 7141:(PDF) 7115:(PDF) 7082:(PDF) 7054:(PDF) 6899:(PDF) 6873:(PDF) 6862:S2CID 6842:(PDF) 6767:Nauka 6761:[ 6662:S2CID 6631:S2CID 6434:(PDF) 6344:S2CID 6214:arXiv 6172:(PDF) 6130:(PDF) 6019:S2CID 5965:S2CID 5935:(PDF) 5910:S2CID 5842:(PDF) 5624:(PDF) 5613:S2CID 5585:(PDF) 5516:S2CID 5263:(PDF) 4541:heavy 4523:Notes 4301:boron 4146:basic 3985:boron 3858:1998 3833:1999 3824:5.5 s 3812:2010 3803:9.5 s 3791:2010 3782:2.1 s 3770:2004 3749:2004 3728:2006 3719:61 ms 3707:2004 3676:year 3671:mode 3669:Decay 3611:Tokyo 3560:nihon 3513:(113) 3503:as a 3499:), a 2741:Riken 2641:Riken 2635:Riken 2267:Dubna 1903:boron 1883:nihon 1857:China 1837:Riken 1825:Dubna 1769:is a 1504:synth 1460:Decay 1405:Riken 1392:Nihon 1388:Japan 1352:(hcp) 1129:Phase 1100:[ 1081:Block 1057:Group 761:Radon 535:Xenon 273:Argon 178:Boron 9803:ISSN 9752:ISBN 9726:ISBN 9698:OCLC 9688:ISBN 9552:ISBN 9407:ISBN 9380:ISBN 9290:PMID 9250:2017 9124:2018 9046:ISBN 9012:2024 8888:ISBN 8814:2008 8775:PMID 8632:2018 8602:2016 8530:2018 8489:PMID 8436:2016 8411:2018 8385:2018 8359:2012 8201:2016 8150:2018 8119:2018 8090:2018 8050:2013 7979:2016 7957:2018 7932:2018 7838:PMID 7784:2017 7654:2017 7444:PMID 7436:ISSN 7343:2017 7316:2019 7123:2017 7034:2016 6881:2016 6794:2020 6751:2020 6725:2020 6694:2020 6623:OSTI 6615:ISSN 6541:PMID 6533:ISSN 6488:2020 6445:2020 6410:ISSN 6336:ISSN 6242:ISSN 6187:2020 6145:2020 6061:2020 6011:ISSN 5957:ISSN 5878:ISBN 5850:2020 5821:ISSN 5729:2020 5701:2020 5663:2020 5632:2012 5556:ISSN 5506:ISBN 5475:2020 5445:2020 5417:2024 5392:2024 5367:2024 5334:2016 5304:ISBN 5183:ISBN 5149:2013 5136:ISBN 5046:2010 5007:ISBN 4818:and 4816:lead 4545:lead 4450:and 4405:NhCl 4276:(NhH 4254:NhCl 4169:gold 4163:The 4150:TlOH 4142:TlCl 4077:and 3689:ref 3509:E113 3475:and 3407:Lund 2739:The 2645:Wakƍ 2454:LLNL 2450:JINR 2417:and 2392:atom 2282:JINR 2271:zinc 2241:and 2239:lead 2125:and 1993:fuse 1989:beam 1985:mass 1933:and 1841:Wakƍ 1812:and 1780:and 1751:edit 1744:talk 1737:view 1489:mode 1410:JINR 1288:more 1246:), ( 1186:r.t. 733:Lead 712:Gold 361:Zinc 333:Iron 213:Neon 99:nih- 9831:at 9795:doi 9773:420 9671:doi 9625:doi 9590:doi 9521:doi 9517:100 9494:doi 9482:C42 9459:doi 9447:107 9441:". 9344:doi 9322:420 9282:doi 9270:103 9213:doi 9201:111 9155:doi 9143:112 9090:doi 9078:115 9038:doi 8983:doi 8971:729 8928:doi 8857:doi 8835:953 8767:doi 8718:doi 8706:106 8670:doi 8479:PMC 8471:doi 8299:doi 8266:doi 8225:doi 8188:doi 8176:760 8015:doi 7887:doi 7828:doi 7816:104 7738:doi 7692:doi 7619:doi 7572:doi 7539:doi 7495:doi 7428:doi 7416:111 7383:doi 7297:doi 7248:doi 7207:doi 7163:doi 7104:doi 7058:doi 6969:doi 6938:doi 6934:261 6911:doi 6854:doi 6654:doi 6605:doi 6523:doi 6511:373 6477:doi 6400:doi 6388:337 6328:doi 6232:doi 6003:doi 5949:doi 5870:doi 5811:hdl 5801:doi 5760:doi 5605:doi 5593:317 5548:doi 5498:doi 5338:doi 5275:doi 5241:doi 5215:doi 5175:doi 5128:doi 5078:doi 4917:TlI 4893:1/2 4808:MeV 4582:-11 4557:112 4555:or 4553:100 4549:103 4535:In 4494:ads 4485:(−Δ 4436:NhF 4393:NhF 4381:TlI 4367:NhX 4349:AuF 4347:or 4342:HgF 4330:NhX 4305:5/2 4230:BCl 4177:3/2 4136:or 4109:1/2 4101:1/2 4052:1/2 4040:5/2 4036:3/2 4028:1/2 3916:101 3881:to 3849:2 s 3845:Nh 3820:Nh 3799:Nh 3778:Nh 3757:Nh 3736:Nh 3715:Nh 3694:Nh 3545:Jap 3517:113 3497:Uut 3450:or 3432:105 3428:104 3424:103 3405:in 3390:to 3340:101 3299:103 3258:105 3217:107 3176:109 3135:111 2662:111 2658:110 2654:108 2419:118 2415:116 2233:in 2227:112 2225:to 2223:107 1839:in 1831:in 1691:Nh 1668:Nh 1645:Nh 1610:Nh 1573:Nh 1550:Nh 1527:Nh 1500:Nh 1482:1/2 1135:STP 1051:113 507:Tin 101:HOH 39:113 11177:: 11120:Og 11111:Ts 11102:Lv 11093:Mc 11084:Fl 11075:Nh 11066:Cn 11057:Rg 11048:Ds 11039:Mt 11030:Hs 11021:Bh 11012:Sg 11003:Db 10994:Rf 10985:Lr 10976:No 10967:Md 10958:Fm 10949:Es 10940:Cf 10931:Bk 10922:Cm 10913:Am 10904:Pu 10895:Np 10877:Pa 10868:Th 10859:Ac 10850:Ra 10841:Fr 10825:Rn 10816:At 10807:Po 10798:Bi 10789:Pb 10780:Tl 10771:Hg 10762:Au 10753:Pt 10744:Ir 10735:Os 10726:Re 10708:Ta 10699:Hf 10690:Lu 10681:Yb 10672:Tm 10663:Er 10654:Ho 10645:Dy 10636:Tb 10627:Gd 10618:Eu 10609:Sm 10600:Pm 10591:Nd 10582:Pr 10573:Ce 10564:La 10555:Ba 10546:Cs 10530:Xe 10512:Te 10503:Sb 10494:Sn 10485:In 10476:Cd 10467:Ag 10458:Pd 10449:Rh 10440:Ru 10431:Tc 10422:Mo 10413:Nb 10404:Zr 10384:Sr 10375:Rb 10359:Kr 10350:Br 10341:Se 10332:As 10323:Ge 10314:Ga 10305:Zn 10296:Cu 10287:Ni 10278:Co 10269:Fe 10260:Mn 10251:Cr 10233:Ti 10224:Sc 10213:Ca 10188:Ar 10179:Cl 10152:Si 10143:Al 10132:Mg 10123:Na 10107:Ne 10051:Be 10042:Li 10026:He 10001:18 9996:17 9991:16 9986:15 9981:14 9976:13 9971:12 9966:11 9961:10 9809:. 9801:. 9793:. 9785:. 9771:. 9750:. 9746:. 9724:. 9720:. 9712:; 9696:. 9669:. 9659:41 9657:. 9631:. 9621:33 9619:. 9596:. 9588:. 9578:53 9576:. 9527:. 9515:. 9492:. 9480:. 9457:. 9445:. 9434:3h 9350:. 9342:. 9334:. 9320:. 9302:^ 9288:. 9280:. 9268:. 9221:. 9211:. 9199:. 9195:. 9175:^ 9161:. 9153:. 9141:. 9104:^ 9088:. 9076:. 9072:. 9060:^ 9044:. 9020:^ 9003:. 8981:, 8969:, 8965:, 8934:. 8926:. 8916:92 8914:. 8902:^ 8863:. 8855:. 8847:. 8833:. 8781:. 8773:. 8765:. 8755:78 8753:. 8749:. 8726:. 8716:. 8704:. 8700:. 8682:^ 8668:. 8658:41 8656:. 8652:. 8618:. 8546:. 8487:. 8477:. 8469:. 8459:87 8457:. 8453:. 8419:^ 8401:. 8375:. 8347:. 8325:. 8313:^ 8295:51 8293:. 8289:. 8264:. 8254:44 8252:. 8248:. 8186:. 8174:. 8170:. 8127:^ 8109:. 8098:^ 8073:. 8058:^ 8040:. 8029:^ 8013:. 8003:92 8001:. 7997:. 7923:. 7919:. 7907:^ 7893:. 7885:. 7877:. 7865:81 7863:. 7850:^ 7836:. 7826:. 7814:. 7810:. 7744:. 7736:. 7728:. 7716:78 7714:. 7690:. 7680:76 7678:. 7674:. 7631:^ 7617:. 7607:72 7605:. 7601:. 7578:. 7568:15 7566:. 7553:^ 7535:88 7533:. 7529:. 7509:^ 7493:. 7483:73 7481:. 7477:. 7464:^ 7450:. 7442:. 7434:. 7426:. 7410:. 7397:^ 7379:83 7377:. 7373:. 7351:^ 7295:. 7285:69 7283:. 7279:. 7262:^ 7246:. 7236:69 7234:. 7228:. 7205:. 7195:62 7193:. 7161:. 7151:70 7149:. 7143:. 7102:. 7092:83 7090:. 7084:. 7024:. 7002:^ 6994:34 6992:. 6965:81 6963:. 6959:. 6932:. 6907:69 6905:. 6901:. 6868:. 6860:. 6850:65 6848:. 6844:. 6829:^ 6802:^ 6783:. 6714:. 6702:^ 6683:. 6660:. 6652:. 6629:. 6621:. 6613:. 6603:. 6593:68 6591:. 6585:. 6539:. 6531:. 6521:. 6509:. 6505:. 6473:17 6471:. 6465:. 6453:^ 6408:. 6398:. 6386:. 6382:. 6368:^ 6342:. 6334:. 6326:. 6316:53 6314:. 6278:^ 6240:. 6230:. 6222:. 6210:87 6208:. 6204:. 6178:. 6174:. 6153:^ 6136:. 6132:. 6117:^ 6050:. 6031:^ 6017:. 6009:. 5999:42 5997:. 5993:. 5977:^ 5963:. 5955:. 5945:63 5943:. 5937:. 5904:. 5892:^ 5876:. 5864:. 5819:. 5809:. 5799:. 5789:86 5787:. 5781:. 5758:. 5748:10 5746:. 5718:. 5671:^ 5652:. 5611:. 5603:. 5591:. 5587:. 5576:; 5554:. 5544:79 5542:. 5514:. 5504:. 5492:. 5461:. 5434:. 5408:. 5383:. 5358:. 5332:. 5318:^ 5287:^ 5271:45 5269:. 5265:. 5227:^ 5211:74 5209:. 5197:^ 5181:. 5157:^ 5134:. 5124:21 5118:. 5090:^ 5074:85 5072:. 5068:. 5054:^ 5035:. 5021:^ 5005:. 4953:^ 4897:IF 4857:^ 4774:, 4770:, 4652:+ 4643:Al 4639:13 4633:→ 4614:+ 4605:Si 4601:14 4575:pb 4519:. 4454:. 4415:. 4309:Br 4286:Cl 4201:, 4197:, 4193:, 4140:; 4089:. 4050:7p 4032:eV 3995:, 3991:, 3987:, 3865:) 3855:α 3840:) 3830:α 3809:α 3746:α 3725:α 3704:α 3568:æ—„æœŹ 3519:. 3511:, 3457:Ta 3426:, 3396:Cf 3392:Fm 3354:+ 3344:Md 3333:→ 3313:+ 3303:Lr 3292:→ 3272:+ 3262:Db 3251:→ 3231:+ 3221:Bh 3210:→ 3190:+ 3180:Mt 3169:→ 3149:+ 3139:Rg 3124:: 3076:Ca 3072:20 3065:+ 3055:Bk 3051:97 3012:Ca 3008:20 3001:+ 2991:Bk 2987:97 2888:Ca 2884:20 2877:+ 2867:Np 2863:93 2839:. 2800:Db 2706:Zn 2702:30 2695:+ 2685:Bi 2681:83 2660:, 2656:, 2631:. 2571:Ca 2567:20 2561:+ 2552:Am 2548:95 2491:Ca 2487:20 2480:+ 2470:Am 2466:95 2427:Cf 2423:Cm 2352:Ca 2348:20 2342:+ 2333:Pu 2329:94 1913:, 1909:, 1905:, 1889:. 1879:, 1876:æ—„æœŹ 1851:, 1847:, 1816:. 1778:Nh 1708:Rg 1685:Rg 1662:Rg 1635:SF 1627:Rg 1604:Cn 1590:Rg 1567:Rg 1544:Rg 1521:Rg 1305:pm 1249:+3 1243:+1 1102:Rn 1021:→ 1017:← 1009:— 1004:Nh 998:Tl 73:oʊ 41:Nh 10886:U 10834:7 10717:W 10539:6 10521:I 10395:Y 10368:5 10242:V 10204:K 10197:4 10170:S 10161:P 10116:3 10098:F 10089:O 10080:N 10071:C 10062:B 10035:2 10015:H 10008:1 9956:9 9951:8 9946:7 9941:6 9936:5 9931:4 9926:3 9919:2 9914:1 9891:e 9884:t 9877:v 9817:. 9797:: 9789:: 9779:: 9760:. 9734:. 9704:. 9677:. 9673:: 9665:: 9639:. 9627:: 9604:. 9592:: 9584:: 9560:. 9535:. 9523:: 9500:. 9496:: 9488:: 9465:. 9461:: 9453:: 9439:3 9432:D 9428:3 9415:. 9388:. 9358:. 9346:: 9338:: 9328:: 9296:. 9284:: 9276:: 9252:. 9229:. 9215:: 9207:: 9169:. 9157:: 9149:: 9126:. 9098:. 9092:: 9084:: 9054:. 9040:: 9014:. 8985:: 8977:: 8942:. 8930:: 8922:: 8896:. 8871:. 8859:: 8851:: 8841:: 8816:. 8789:. 8769:: 8761:: 8734:. 8720:: 8712:: 8676:. 8672:: 8664:: 8634:. 8604:. 8532:. 8495:. 8473:: 8465:: 8438:. 8413:. 8387:. 8361:. 8331:. 8307:. 8301:: 8274:. 8268:: 8260:: 8233:. 8227:: 8203:. 8190:: 8182:: 8152:. 8121:. 8092:. 8052:. 8023:. 8017:: 8009:: 7981:. 7934:. 7901:. 7889:: 7881:: 7871:: 7844:. 7830:: 7822:: 7806:Z 7790:. 7752:. 7740:: 7732:: 7722:: 7698:. 7694:: 7686:: 7656:. 7625:. 7621:: 7613:: 7586:. 7574:: 7547:. 7541:: 7503:. 7497:: 7489:: 7458:. 7430:: 7422:: 7391:. 7385:: 7318:. 7299:: 7291:: 7256:. 7250:: 7242:: 7213:. 7209:: 7201:: 7165:: 7157:: 7125:. 7106:: 7098:: 7066:. 7060:: 7036:. 6977:. 6971:: 6944:. 6940:: 6917:. 6913:: 6883:. 6856:: 6796:. 6753:. 6727:. 6696:. 6668:. 6656:: 6637:. 6607:: 6599:: 6570:. 6566:: 6547:. 6525:: 6517:: 6490:. 6479:: 6447:. 6416:. 6402:: 6394:: 6350:. 6330:: 6322:: 6248:. 6234:: 6226:: 6216:: 6189:. 6147:. 6063:. 6025:. 6005:: 5971:. 5951:: 5916:. 5886:. 5872:: 5852:. 5827:. 5813:: 5803:: 5795:: 5766:. 5762:: 5754:: 5731:. 5703:. 5665:. 5634:. 5607:: 5599:: 5562:. 5550:: 5522:. 5500:: 5477:. 5447:. 5419:. 5394:. 5369:. 5344:. 5340:: 5312:. 5281:. 5277:: 5247:. 5243:: 5221:. 5217:: 5191:. 5177:: 5151:. 5130:: 5084:. 5080:: 5048:. 5015:. 4938:. 4933:3 4928:I 4919:3 4904:3 4899:3 4711:. 4662:p 4658:1 4624:n 4620:0 4487:H 4441:6 4432:2 4424:5 4420:5 4410:4 4398:4 4386:4 4373:2 4369:3 4361:2 4354:2 4344:2 4335:2 4326:3 4319:3 4316:I 4312:3 4289:3 4282:3 4278:3 4259:3 4235:3 4189:( 4158:2 4122:F 4073:( 4024:l 3952:N 3863:e 3838:e 3653:e 3646:t 3639:v 3571:) 3565:( 3096:n 3032:n 2908:n 2726:n 2590:n 2511:n 2452:– 2383:e 2381:Îœ 2370:n 2112:( 1954:. 1893:" 1887:) 1873:( 1703:α 1680:α 1657:α 1622:α 1598:Δ 1585:α 1562:α 1539:α 1515:α 1484:) 1479:t 1477:( 1437:e 1430:v 1390:( 1286:( 1188:) 1156:K 1046:) 1044:Z 1042:( 1007:↓ 1001:↑ 106:) 96:( 88:/ 85:m 82:ə 79:i 76:n 70:h 67:ˈ 64:ÉȘ 61:n 58:/ 27:. 20:.

Index

Uut (disambiguation)
niobium
/nÉȘˈhoʊniəm/
nih-HOH-nee-əm
Mass number
periodic table
Hydrogen
Helium
Lithium
Beryllium
Boron
Carbon
Nitrogen
Oxygen
Fluorine
Neon
Sodium
Magnesium
Aluminium
Silicon
Phosphorus
Sulfur
Chlorine
Argon
Potassium
Calcium
Scandium
Titanium
Vanadium
Chromium

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑