Knowledge

Dubnium

Source 📝

3088:. The precipitate was washed and dissolved in hydrochloric acid, where it converted to nitrate form and was then dried on a film and counted. Mostly containing a +5 species, which was immediately assigned to dubnium, it also had a +4 species; based on that result, the team decided that additional chemical separation was needed. In 2005, the experiment was repeated, with the final product being hydroxide rather than nitrate precipitate, which was processed further in both Livermore (based on reverse phase chromatography) and Dubna (based on anion exchange chromatography). The +5 species was effectively isolated; dubnium appeared three times in tantalum-only fractions and never in niobium-only fractions. It was noted that these experiments were insufficient to draw conclusions about the general chemical profile of dubnium. 2542: 3029:(2,6-dimethylheptan-4-ol), a specific extractant for protactinium, with subsequent elutions with the hydrogen chloride/hydrogen fluoride mix as well as hydrogen chloride, dubnium was found to be less prone to extraction than either protactinium or niobium. This was explained as an increasing tendency to form non‐extractable complexes of multiple negative charges. Further experiments in 1992 confirmed the stability of the +5 state: Db(V) was shown to be extractable from cation‐exchange columns with α‐hydroxyisobutyrate, like the group 5 elements and protactinium; Db(III) and Db(IV) were not. In 1998 and 1999, new predictions suggested that dubnium would extract nearly as well as niobium and better than tantalum from halide solutions, which was later confirmed. 2709: 2035: 2807: 2590:(IUPAP) formed a Transfermium Working Group (TWG) to assess discoveries and establish final names for the controversial elements. The party held meetings with delegates from the three competing institutes; in 1990, they established criteria on recognition of an element, and in 1991, they finished the work on assessing discoveries and disbanded. These results were published in 1993. According to the report, the first definitely successful experiment was the April 1970 LBL experiment, closely followed by the June 1970 JINR experiment, so credit for the discovery of the element should be shared between the two teams. 3384:, a leading scientist at JINR, and thus it was a "hobbyhorse" for the facility. In contrast, the LBL scientists believed fission information was not sufficient for a claim of synthesis of an element. They believed spontaneous fission had not been studied enough to use it for identification of a new element, since there was a difficulty of establishing that a compound nucleus had only ejected neutrons and not charged particles like protons or alpha particles. They thus preferred to link new isotopes to the already known ones by successive alpha decays. 1862: 2798:, which dramatically change physical properties on both atomic and macroscopic scales. These properties have remained challenging to measure for several reasons: the difficulties of production of superheavy atoms, the low rates of production, which only allows for microscopic scales, requirements for a radiochemistry laboratory to test the atoms, short half-lives of those atoms, and the presence of many unwanted activities apart from those of synthesis of superheavy atoms. So far, studies have only been performed on single atoms. 2897: 1327: 3371:, the daughter nucleus would also receive a small velocity. The ratio of the two velocities, and accordingly the ratio of the kinetic energies, would thus be inverse to the ratio of the two masses. The decay energy equals the sum of the known kinetic energy of the alpha particle and that of the daughter nucleus (an exact fraction of the former). The calculations hold for an experiment as well, but the difference is that the nucleus does not move after the decay because it is tied to the detector. 2409: 2846: 2881:
orbitals of dubnium are more destabilized than the 5d ones of tantalum, and Db is expected to have two 6d, rather than 7s, electrons remaining, the resulting +3 oxidation state is expected to be unstable and even rarer than that of tantalum. The ionization potential of dubnium in its maximum +5 oxidation state should be slightly lower than that of tantalum and the ionic radius of dubnium should increase compared to tantalum; this has a significant effect on dubnium's chemistry.
1935: 1712: 2276:. They assigned the former activity to Am and ascribed the latter activity to an isotope of element 105. They suggested that it was unlikely that this activity could come from a transfer reaction instead of element 105, because the yield ratio for this reaction was significantly lower than that of the Am-producing transfer reaction, in accordance with theoretical predictions. To establish that this activity was not from a (Ne, 2400: 2549: 2724:; like all elements with such high atomic numbers, it is very unstable. The longest-lasting known isotope of dubnium, Db, has a half-life of around a day. No stable isotopes have been seen, and a 2012 calculation by JINR suggested that the half-lives of all dubnium isotopes would not significantly exceed a day. Dubnium can only be obtained by artificial production. 1999:, which stops the nucleus. The exact location of the upcoming impact on the detector is marked; also marked are its energy and the time of the arrival. The transfer takes about 10 seconds; in order to be detected, the nucleus must survive this long. The nucleus is recorded again once its decay is registered, and the location, the 3409:. It was later shown that the identification was incorrect. The following year, RL was unable to reproduce the Swedish results and announced instead their synthesis of the element; that claim was also disproved later. JINR insisted that they were the first to create the element and suggested a name of their own for the new element, 3413:; the Soviet name was also not accepted (JINR later referred to the naming of the element 102 as "hasty"). This name was proposed to IUPAC in a written response to their ruling on priority of discovery claims of elements, signed 29 September 1992. The name "nobelium" remained unchanged on account of its widespread usage. 2088:
actinides and the predicted island are deformed, and gain additional stability from shell effects. Experiments on lighter superheavy nuclei, as well as those closer to the expected island, have shown greater than previously anticipated stability against spontaneous fission, showing the importance of shell effects on nuclei.
2995:; after mixing with lower concentrations of hydrogen chloride, small amounts of hydrogen fluoride were added to start selective re-extraction. Dubnium showed behavior different from that of tantalum but similar to that of niobium and its pseudohomolog protactinium at concentrations of hydrogen chloride below 12 2617:, originally suggested by Berkeley for elements 104 and 105, were respectively reassigned to elements 106 and 108. Secondly, elements 104 and 105 were given names favored by JINR, despite earlier recognition of LBL as an equal co-discoverer for both of them. Thirdly and most importantly, IUPAC rejected the name 3457:
The modern theory of the atomic nucleus does not suggest a long-lived isotope of dubnium, but claims were made in the past that unknown isotopes of superheavy elements existed primordially on the Earth: for example, such a claim was raised for 108 of a half-life of 400 to 500 million years in 1963 or
2475:
In the early 1970s, both teams reported synthesis of the next element, element 106, but did not suggest names. JINR suggested establishing an international committee to clarify the discovery criteria. This proposal was accepted in 1974 and a neutral joint group formed. Neither team showed interest in
2370:
JINR then attempted another experiment to create element 105, published in a report in May 1970. They claimed that they had synthesized more nuclei of element 105 and that the experiment confirmed their previous work. According to the paper, the isotope produced by JINR was probably 105, or possibly
2280:
n) reaction, the researchers bombarded a Am target with O ions; reactions producing 103 and 103 showed very little SF activity (matching the established data), and the reaction producing heavier 103 and 103 produced no SF activity at all, in line with theoretical data. The researchers concluded that
2018:
provided by the strong interaction increases linearly with the number of nucleons, whereas electrostatic repulsion increases with the square of the atomic number, i.e. the latter grows faster and becomes increasingly important for heavy and superheavy nuclei. Superheavy nuclei are thus theoretically
3347:
It was already known by the 1960s that ground states of nuclei differed in energy and shape as well as that certain magic numbers of nucleons corresponded to greater stability of a nucleus. However, it was assumed that there was no nuclear structure in superheavy nuclei as they were too deformed to
2744:
Only a few atoms of Db can be produced in each experiment, and thus the measured lifetimes vary significantly during the process. As of 2022, following additional experiments performed at the JINR's Superheavy Element Factory (which started operations in 2019), the half-life of Db is measured to be
2098:
The information available to physicists aiming to synthesize a superheavy element is thus the information collected at the detectors: location, energy, and time of arrival of a particle to the detector, and those of its decay. The physicists analyze this data and seek to conclude that it was indeed
2054:
Alpha particles are commonly produced in radioactive decays because mass of an alpha particle per nucleon is small enough to leave some energy for the alpha particle to be used as kinetic energy to leave the nucleus. Spontaneous fission is caused by electrostatic repulsion tearing the nucleus apart
3032:
The first isothermal gas chromatography experiments were performed in 1992 with Db (half-life 35 seconds). The volatilities for niobium and tantalum were similar within error limits, but dubnium appeared to be significantly less volatile. It was postulated that traces of oxygen in the system might
2973:
was then compared with that of the group 5 elements niobium and tantalum and the group 4 elements zirconium and hafnium produced under similar conditions. The group 5 elements are known to sorb on glass surfaces; the group 4 elements do not. Dubnium was confirmed as a group 5 member. Surprisingly,
2304:
ions, with an alpha activity of 9.1 MeV. To ensure this activity was not from a different reaction, the team attempted other reactions: bombarding Cf with N, Pb with N, and Hg with N. They stated no such activity was found in those reactions. The characteristics of the daughter nuclei matched
2099:
caused by a new element and could not have been caused by a different nuclide than the one claimed. Often, provided data is insufficient for a conclusion that a new element was definitely created and there is no other explanation for the observed effects; errors in interpreting data have been made.
2091:
Alpha decays are registered by the emitted alpha particles, and the decay products are easy to determine before the actual decay; if such a decay or a series of consecutive decays produces a known nucleus, the original product of a reaction can be easily determined. (That all decays within a decay
1994:
The beam passes through the target and reaches the next chamber, the separator; if a new nucleus is produced, it is carried with this beam. In the separator, the newly produced nucleus is separated from other nuclides (that of the original beam and any other reaction products) and transferred to a
3357:
Since mass of a nucleus is not measured directly but is rather calculated from that of another nucleus, such measurement is called indirect. Direct measurements are also possible, but for the most part they have remained unavailable for superheavy nuclei. The first direct measurement of mass of a
3199:
In 2009, a team at the JINR led by Oganessian published results of their attempt to create hassium in a symmetric Xe + Xe reaction. They failed to observe a single atom in such a reaction, putting the upper limit on the cross section, the measure of probability of a nuclear reaction, as
2952:
system and concluded that the volatility of dubnium bromide was less than that of niobium bromide and about the same as that of hafnium bromide. It is not certain that the detected fission products confirmed that the parent was indeed element 105. These results may imply that dubnium behaves more
2769:
beams. For its mass, Ca has by far the greatest neutron excess of all practically stable nuclei, both quantitative and relative, which correspondingly helps synthesize superheavy nuclei with more neutrons, but this gain is compensated by the decreased likelihood of fusion for high atomic numbers.
2880:
A singly ionized atom of dubnium (Db) should lose a 6d electron compared to a neutral atom; the doubly (Db) or triply (Db) ionized atoms of dubnium should eliminate 7s electrons, unlike its lighter homologs. Despite the changes, dubnium is still expected to have five valence electrons. As the 6d
1913:
Coming close enough alone is not enough for two nuclei to fuse: when two nuclei approach each other, they usually remain together for about 10 seconds and then part ways (not necessarily in the same composition as before the reaction) rather than form a single nucleus. This happens because
3316:
This separation is based on that the resulting nuclei move past the target more slowly then the unreacted beam nuclei. The separator contains electric and magnetic fields whose effects on a moving particle cancel out for a specific velocity of a particle. Such separation can also be aided by a
2087:
in which nuclei will be more resistant to spontaneous fission and will primarily undergo alpha decay with longer half-lives. Subsequent discoveries suggested that the predicted island might be further than originally anticipated; they also showed that nuclei intermediate between the long-lived
3069:. Later volatility studies of chlorides of dubnium and niobium as a function of controlled partial pressures of oxygen showed that formation of oxychlorides and general volatility are dependent on concentrations of oxygen. The oxychlorides were shown to be less volatile than the chlorides. 2841:
the charge of the nucleus more effectively, leaving less for the outer d and f electrons, which therefore move in larger orbitals. Dubnium is greatly affected by this: unlike the previous group 5 members, its 7s electrons are slightly more difficult to extract than its 6d electrons.
3358:
superheavy nucleus was reported in 2018 at LBNL. Mass was determined from the location of a nucleus after the transfer (the location helps determine its trajectory, which is linked to the mass-to-charge ratio of the nucleus, since the transfer was done in presence of a magnet).
2982:
differed between dubnium, tantalum, and niobium. Dubnium did not extract and its behavior resembled niobium more closely than tantalum, indicating that complexing behavior could not be predicted purely from simple extrapolations of trends within a group in the periodic table.
2756:
hours. The second most stable isotope, Db, has been produced in even smaller quantities: three atoms in total, with lifetimes of 33.4 h, 1.3 h, and 1.6 h. These two are the heaviest isotopes of dubnium to date, and both were produced as a result of decay of the heavier nuclei
2431:
JINR did not propose a name after their first report claiming synthesis of element 105, which would have been the usual practice. This led LBL to believe that JINR did not have enough experimental data to back their claim. After collecting more data, JINR proposed the name
2873:ℓ of a d shell is 2—into two subshells, with four of the ten orbitals having their ℓ lowered to 3/2 and six raised to 5/2. All ten energy levels are raised; four of them are lower than the other six. (The three 6d electrons normally occupy the lowest energy levels, 6d 2492:, and others—to try to resolve the conflict internally and render the neutral joint group unnecessary; after two hours of discussions, this failed. The joint neutral group never assembled to assess the claims, and the conflict remained unresolved. In 1979, IUPAC suggested 2916:, in which interactions between molecules may be ignored as negligible. Multiple authors have researched dubnium pentachloride; calculations show it to be consistent with the periodic laws by exhibiting the properties of a compound of a group 5 element. For example, the 1918:—the probability that fusion will occur if two nuclei approach one another expressed in terms of the transverse area that the incident particle must hit in order for the fusion to occur. This fusion may occur as a result of the quantum effect in which nuclei can 2092:
chain were indeed related to each other is established by the location of these decays, which must be in the same place.) The known nucleus can be recognized by the specific characteristics of decay it undergoes such as decay energy (or more specifically, the
2939:
of dubnium is expected to follow group 5 trends in its richness. Calculations for hydroxo-chlorido- complexes have shown a reversal in the trends of complex formation and extraction of group 5 elements, with dubnium being more prone to do so than tantalum.
2055:
and produces various nuclei in different instances of identical nuclei fissioning. As the atomic number increases, spontaneous fission rapidly becomes more important: spontaneous fission partial half-lives decrease by 23 orders of magnitude from
1791:
in 1970. Both teams proposed their names for the new element and used them without formal approval. The long-standing dispute was resolved in 1993 by an official investigation of the discovery claims by the Transfermium Working Group, formed by the
3448:, on which the determination of half-lives relies, cannot be directly applied due to a very limited number of experiments (decays). The range of uncertainty is an indication that the half-life period lies within this range with 95% probability. 2531:, West Germany, claimed synthesis of element 107; their report came out five years after the first report from JINR but with greater precision, making a more solid claim on discovery. GSI acknowledged JINR's efforts by suggesting the name 2662:
had been used for element 104 in the previous IUPAC recommendation. The American scientists "reluctantly" approved this decision. IUPAC pointed out that the Berkeley laboratory had already been recognized several times, in the naming of
3076:. This new isotope proved to be long-lived enough to allow further chemical experimentation, with a half-life of over a day. In the 2004 experiment, a thin layer with dubnium was removed from the surface of the target and dissolved in 2732:
than those with higher atomic number, meaning that the target and beam nuclei that could be employed to create the superheavy element have fewer neutrons than needed to form these most stable isotopes. (Different techniques based on
2371:
105. This report included an initial chemical examination: the thermal gradient version of the gas-chromatography method was applied to demonstrate that the chloride of what had formed from the SF activity nearly matched that of
2960:
The next studies on the chemistry of dubnium were conducted in 1988, in Berkeley. They examined whether the most stable oxidation state of dubnium in aqueous solution was +5. Dubnium was fumed twice and washed with concentrated
2727:
The short half-life of dubnium limits experimentation. This is exacerbated by the fact that the most stable isotopes are the hardest to synthesize. Elements with a lower atomic number have stable isotopes with a lower
2986:
This prompted further exploration of the chemical behavior of complexes of dubnium. Various labs jointly conducted thousands of repetitive chromatographic experiments between 1988 and 1993. All group 5 elements and
2593:
LBL said that the input from JINR was overrated in the review. They claimed JINR was only able to unambiguously demonstrate the synthesis of element 105 a year after they did. JINR and GSI endorsed the report.
3190:
series). Terms "heavy isotopes" (of a given element) and "heavy nuclei" mean what could be understood in the common language—isotopes of high mass (for the given element) and nuclei of high mass, respectively.
1905:
in order to make such repulsion insignificant compared to the velocity of the beam nucleus. The energy applied to the beam nuclei to accelerate them can cause them to reach speeds as high as one-tenth of the
6339: 2027:. Almost all alpha emitters have over 210 nucleons, and the lightest nuclide primarily undergoing spontaneous fission has 238. In both decay modes, nuclei are inhibited from decaying by corresponding 2640:
after Georgy Flerov, following the recognition by the 1993 report that that element had been first synthesized in Dubna. This was rejected by American scientists and the decision was retracted. The name
2386:
before the catcher. This time, they were able to find 9.1 MeV alpha activities with daughter isotopes identifiable as either 103 or 103, implying that the original isotope was either 105 or 105.
2141: 2794:. Several studies have investigated the properties of element 105 and found that they generally agreed with the predictions of the periodic law. Significant deviations may nevertheless occur, due to 4003: 2566: 2931:
chemistry indicate that the maximum oxidation state of dubnium, +5, will be more stable than those of niobium and tantalum and the +3 and +4 states will be less stable. The tendency towards
2268:(SF) of the element and study the resulting fission fragments. They published a paper in February 1970, reporting multiple examples of two such activities, with half-lives of 14 ms and 2621:
for element 106, having just approved a rule that an element could not be named after a living person, even though the 1993 report had given the LBL team the sole credit for its discovery.
2116:, element 92, is the heaviest element to occur in significant quantities in nature; heavier elements can only be practically produced by synthesis. The first synthesis of a new element— 6706:
Wuenschel, S.; Hagel, K.; Barbui, M.; et al. (2018). "An experimental survey of the production of alpha decaying heavy elements in the reactions of U +Th at 7.5-6.1 MeV/nucleon".
2128:, the priority of discoveries was contested between American and Soviet physicists. Their rivalry resulted in a race for new elements and credit for their discoveries, later named the 6903: 2379:. The team identified a 2.2-second SF activity in a volatile chloride portraying eka-tantalum properties, and inferred that the source of the SF activity must have been element 105. 3649:
Gyanchandani, Jyoti; Sikka, S. K. (May 10, 2011). "Physical properties of the 6 d -series elements from density functional theory: Close similarity to lighter transition metals".
1914:
during the attempted formation of a single nucleus, electrostatic repulsion tears apart the nucleus that is being formed. Each pair of a target and a beam is characterized by its
6798: 2814:
A direct relativistic effect is that as the atomic numbers of elements increase, the innermost electrons begin to revolve faster around the nucleus as a result of an increase of
1922:
through electrostatic repulsion. If the two nuclei can stay close past that phase, multiple nuclear interactions result in redistribution of energy and an energy equilibrium.
6567:
Marinov, A.; Rodushkin, I.; Kolb, D.; et al. (2010). "Evidence for a long-lived superheavy nucleus with atomic mass number A=292 and atomic number Z=~122 in natural Th".
2650:
In 1996, IUPAC held another meeting, reconsidered all names in hand, and accepted another set of recommendations; it was approved and published in 1997. Element 105 was named
2194:
followed by alpha activities similar to those of either 103 or 103. Based on prior theoretical predictions, the two activity lines were assigned to 105 and 105, respectively.
2605:, a contributor to the development of nuclear physics and chemistry; this name was originally proposed by the Soviet team for element 102, which by then had long been called 8612: 3057:. Later experiments in 1996 showed that group 5 chlorides were more volatile than the corresponding bromides, with the exception of tantalum, presumably due to formation of 1873:. Reactions that created new elements to this moment were similar, with the only possible difference that several singular neutrons sometimes were released, or none at all. 3298:
reaction, cross section changes smoothly from 370 mb at 12.3 MeV to 160 mb at 18.3 MeV, with a broad peak at 13.5 MeV with the maximum value of 380 mb.
5225: 6331: 2512:(meaning "one", "zero", and "five", respectively, the digits of the atomic number). Both teams ignored it as they did not wish to weaken their outstanding claims. 4126: 2541: 5510: 2367:
These results did not confirm the JINR findings regarding the 9.4 MeV or 9.7 MeV alpha decay of 105, leaving only 105 as a possibly produced isotope.
5256: 3405:. There were no earlier definitive claims of creation of this element, and the element was assigned a name by its Swedish, American, and British discoverers, 2096:
of the emitted particle). Spontaneous fission, however, produces various nuclei as products, so the original nuclide cannot be determined from its daughters.
3026: 2920:
levels indicate that dubnium uses three 6d electron levels as expected. Compared to its tantalum analog, dubnium pentachloride is expected to show increased
2120:, element 93—was achieved in 1940 by a team of researchers in the United States. In the following years, American scientists synthesized the elements up to 3467:
Relativistic effects arise when an object moves at velocities comparable to the speed of light; in heavy atoms, the quickly moving objects are electrons.
2690:
for element 105 in their own material, doing so as recently as 2014. However, the problem was resolved in the literature as Jens Volker Kratz, editor of
3091:
In 2009, at the JAEA tandem accelerator in Japan, dubnium was processed in nitric and hydrofluoric acid solution, at concentrations where niobium forms
2006:
Stability of a nucleus is provided by the strong interaction. However, its range is very short; as nuclei become larger, its influence on the outermost
1400: 7223:
Zagrebaev, V.; Karpov, A.; Greiner, W. (2013). "Future of superheavy element research: Which nuclei could be synthesized within the next few years?".
4194: 3174:(element 82) is one example of such a heavy element. The term "superheavy elements" typically refers to elements with atomic number greater than 2624:
In 1995, IUPAC abandoned the controversial rule and established a committee of national representatives aimed at finding a compromise. They suggested
2382:
In June 1970, JINR made improvements on their first experiment, using a purer target and reducing the intensity of transfer reactions by installing a
7301: 2583: 1793: 4011: 1970:. This happens in about 10 seconds after the initial nuclear collision and results in creation of a more stable nucleus. The definition by the 3127:. From the available information, it was concluded that dubnium often behaved like niobium, sometimes like protactinium, but rarely like tantalum. 2014:
and neutrons) weakens. At the same time, the nucleus is torn apart by electrostatic repulsion between protons, and its range is not limited. Total
6085: 4592: 3577:
Hoffman, D. C.; Lee, D. M.; Pershina, V. (2006). "Transactinides and the future elements". In Morss, L.R.; Edelstein, N. M.; Fuger, Jean (eds.).
3186:; sometimes, the term is presented an equivalent to the term "transactinide", which puts an upper limit before the beginning of the hypothetical 2587: 1797: 6055: 1885:, the greater the possibility that the two react. The material made of the heavier nuclei is made into a target, which is then bombarded by the 6151: 5768: 2924:
character: a decrease in the effective charge on an atom and an increase in the overlap population (between orbitals of dubnium and chlorine).
1881:
is created in a nuclear reaction that combines two other nuclei of unequal size into one; roughly, the more unequal the two nuclei in terms of
3072:
In 2004–05, researchers from Dubna and Livermore identified a new dubnium isotope, Db, as a fivefold alpha decay product of the newly created
3873:"First experiment at the Super Heavy Element Factory: High cross section of Mc in theAm+Ca reaction and identification of the new isotope Lr" 1746: 1252: 6892: 6424: 5931: 5414: 2741:
are being considered as of the 2010s, but those based on the collision of a large and small nucleus still dominate research in the area.)
2609:. This recommendation was criticized by the American scientists for several reasons. Firstly, their suggestions were scrambled: the names 6653:
Botvina, Al.; Mishustin, I.; Zagrebaev, V.; et al. (2010). "Possibility of synthesizing superheavy elements in nuclear explosions".
5841: 6449:
Karpov, A. V.; Zagrebaev, V. I.; Palenzuela, Y. M.; Greiner, W. (2013). "Superheavy Nuclei: Decay and Stability". In Greiner, W. (ed.).
6263: 4081:; Dmitriev, S. N.; Yeremin, A. V.; et al. (2009). "Attempt to produce the isotopes of element 108 in the fusion reaction Xe + Xe". 2535:
for the new element. JINR did not suggest a new name for element 105, stating it was more important to determine its discoverers first.
6874: 3222:
The amount of energy applied to the beam particle to accelerate it can also influence the value of cross section. For example, in the
5666: 1737: 3204:. In comparison, the reaction that resulted in hassium discovery, Pb + Fe, had a cross section of ~20 pb (more specifically, 19 1966:, which would carry away the excitation energy; if the latter is not sufficient for a neutron expulsion, the merger would produce a 5901:"Responses on the report 'Discovery of the Transfermium elements' followed by reply to the responses by Transfermium Working Group" 5384:"Responses on the report 'Discovery of the Transfermium elements' followed by reply to the responses by Transfermium Working Group" 2826:
ones, though in dubnium they are not occupied): for example, the 7s orbital contracts by 25% in size and is stabilized by 2.6 
1369: 2516: 5977: 2935:
of cations with the highest oxidation state should continue to decrease within group 5 but is still expected to be quite rapid.
4007: 3839:
Oganessian, Yu. Ts.; Utyonkov, V. K.; Kovrizhnykh, N. D.; et al. (2022). "New isotope Mc produced in the Am+Ca reaction".
2039: 7038: 2683:
for elements 104 and 106 should be offset by recognizing JINR's contributions to the discovery of elements 104, 105, and 106.
7294: 7225: 7213: 7187: 7149: 6637: 6551: 6466: 5835: 5486: 4426: 4054: 3716: 3590: 2285: 5746: 3134:(M = Nb, Ta, Db) were experimentally studied at the JAEA tandem accelerator. The trend in volatilities was found to be NbOCl 6979: 6486: 4450: 4322:
Wakhle, A.; Simenel, C.; Hinde, D. J.; et al. (2015). Simenel, C.; Gomes, P. R. S.; Hinde, D. J.; et al. (eds.).
2160: 1784: 1362: 4033:
Eliav, E.; Kaldor, U.; Borschevsky, A. (2018). "Electronic Structure of the Transactinide Atoms". In Scott, R. A. (ed.).
2038:
Scheme of an apparatus for creation of superheavy elements, based on the Dubna Gas-Filled Recoil Separator set up in the
5701: 4383: 5589: 4260: 3515: 2810:
Relativistic (solid line) and nonrelativistic (dashed line) radial distribution of the 7s valence electrons in dubnium.
2156: 1893:
into one if they approach each other closely enough; normally, nuclei (all positively charged) repel each other due to
4165: 2658:
in Russia, the location of the JINR; the American suggestions were used for elements 102, 103, 104, and 106. The name
5792: 5503: 4855:
Aksenov, N. V.; Steinegger, P.; Abdullin, F. Sh.; et al. (2017). "On the volatility of nihonium (Nh, Z = 113)".
1393: 1173: 141: 94: 6928:
Oganessian, Yu. Ts.; Sobiczewski, A.; Ter-Akopian, G. M. (2017). "Superheavy nuclei: from prediction to discovery".
4973: 3976: 7287: 7205: 3582: 3318: 1800:, resulting in credit for the discovery being officially shared between both teams. The element was formally named 6620:
Karpov, A. V.; Zagrebaev, V. I.; Palenzuela, Y. M.; et al. (2013). "Superheavy Nuclei: Decay and Stability".
4724: 4682: 3611:Östlin, A.; Vitos, L. (2011). "First-principles calculation of the structural stability of 6d transition metals". 2019:
predicted and have so far been observed to predominantly decay via decay modes that are caused by such repulsion:
2628:
for element 106 in exchange for the removal of all the other American proposals, except for the established name
1971: 6308: 5230: 1942: 1901:
can overcome this repulsion but only within a very short distance from a nucleus; beam nuclei are thus greatly
3367:
If the decay occurred in a vacuum, then since total momentum of an isolated system before and after the decay
1955: 4328: 4287:
Kern, B. D.; Thompson, W. E.; Ferguson, J. M. (1959). "Cross sections for some (n, p) and (n, α) reactions".
2028: 1730: 5782: 3115:. Dubnium's behavior was close to that of niobium but not tantalum; it was thus deduced that dubnium formed 1788: 1375: 7111:
Audi, G.; Kondev, F. G.; Wang, M.; et al. (2017). "The NUBASE2016 evaluation of nuclear properties".
2597:
In 1994, IUPAC published a recommendation on naming the disputed elements. For element 105, they proposed
8607: 5958:"An Attempt to Solve the Controversies Over Elements 104 and 105: A Meeting in Russia, 23 September 1975" 4747:"Spontaneous fission modes and lifetimes of superheavy elements in the nuclear density functional theory" 3739: 8602: 8597: 6081: 5330: 4484: 4410: 4265: 3823: 2888:
configuration, like the previous group 5 elements. The predicted density of dubnium is 21.6 g/cm.
2866: 2815: 2806: 2602: 2469: 2460:. When LBL first announced their synthesis of element 105, they proposed that the new element be named 1835:
and having a dominant +5 oxidation state, with the other group 5 elements, with a few anomalies due to
1133: 6366:"#16elements from Berkeley Lab: mendelevium, nobelium, lawrencium, rutherfordium, hahnium, seaborgium" 3321:
and a recoil energy measurement; a combination of the two may allow to estimate the mass of a nucleus.
2765:
rather than directly, because the experiments that yielded them were originally designed in Dubna for
2738: 1919: 6032: 4982: 3872: 2948:
Experimental results of the chemistry of dubnium date back to 1974 and 1976. JINR researchers used a
6120: 2949: 2712:
A chart of nuclide stability as used by JINR in 2012. Characterized isotopes are shown with borders.
1849: 1453: 5261: 2870: 2729: 2034: 1723: 5052:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
2496:
to be used as placeholders until permanent names were established; under it, element 105 would be
1982:
within 10 seconds. This value was chosen as an estimate of how long it takes a nucleus to acquire
5873:
Can one make gold? Swindlers, deceivers and scientists. From the history of the chemical elements
5696: 3526: 3393:
For instance, element 102 was mistakenly identified in 1957 at the Nobel Institute of Physics in
2493: 2075:
thus suggested that spontaneous fission would occur nearly instantly due to disappearance of the
2042:
in JINR. The trajectory within the detector and the beam focusing apparatus changes because of a
1915: 1113: 6121:"Names and symbols of the elements with atomic numbers 114 and 116 (IUPAC Recommendations 2012)" 5900: 5861:
Can one make gold? Swindlers, deceivers and scientists from the history of the chemical elements
5383: 4118: 1962:
without formation of a more stable nucleus. Alternatively, the compound nucleus may eject a few
6388: 5808: 5440: 4476: 4199: 3743: 2979: 2015: 1996: 1832: 1468: 1140: 1125: 1101: 5869:
Kann man Gold machen? Gauner, Gaukler und Gelehrte. Aus der Geschichte der chemischen Elemente
5825: 4477:"Criteria that must be satisfied for the discovery of a new chemical element to be recognized" 3912:"Ca+Bk Fusion Reaction Leading to Element Z=117: Long-Lived α-Decaying Db and Discovery of Lr" 1172: 6255: 4713: 4671: 3798:
MĂŒnzenberg, G.; Gupta, M. (2011). "Production and Identification of Transactinide Elements".
3307:
This figure also marks the generally accepted upper limit for lifetime of a compound nucleus.
2376: 6453:. FIAS Interdisciplinary Science Series. Springer International Publishing. pp. 69–79. 3871:
Oganessian, Yu. Ts.; Utyonkov, V. K.; Kovrizhnykh, N. D.; et al. (September 29, 2022).
7330: 7244: 7120: 7020: 6937: 6832: 6813: 6772: 6725: 6672: 6586: 6501: 6400: 6369: 5969: 5141: 5108: 5059: 4936: 4864: 4768: 4337: 4296: 4141: 4038: 3923: 3620: 3445: 2795: 2289: 1902: 1836: 1317: 5635: 5325: 2140: 8: 7256: 7167: 4949: 4924: 4597: 4531: 4190: 2996: 2913: 2885: 2703: 2372: 2265: 2084: 2080: 2024: 1773: 1496: 1386: 1335: 7248: 7132: 7124: 7024: 6941: 6836: 6776: 6729: 6676: 6590: 6505: 6404: 5973: 5145: 5112: 5063: 4940: 4868: 4772: 4341: 4300: 4145: 3927: 3624: 7268: 7234: 7085: 7056: 6973:
Chemical Identification of a Long-Lived Isotope of Dubnium, a Descendant of Element 115
6953: 6866: 6741: 6715: 6688: 6662: 6602: 6576: 6517: 6416: 6352:
Poor element 105 has had five different names—Berkeley partisans still call it hahnium.
6193: 6143: 5923: 5762: 5658: 5406: 5206: 5175: 4888: 4758: 4563: 4509: 4454: 4157: 4060: 3957: 3892: 3765: 3085: 2818:
between an electron and a nucleus. Similar effects have been found for the outermost s
2721: 2445: 1898: 6513: 6365: 5957: 3458:
122 of a half-life of over 100 million years in 2009; neither claim gained acceptance.
2183:
ions, and reported 9.4 MeV (with a half-life of 0.1–3 seconds) and 9.7 MeV (
1958:—and thus it is very unstable. To reach a more stable state, the temporary merger may 8181: 7260: 7209: 7183: 7155: 7145: 7090: 6957: 6858: 6790: 6633: 6606: 6547: 6521: 6462: 6420: 6300: 6197: 5857:ĐœĐŸĐ¶ĐœĐŸ лО ŃĐŽĐ”Đ»Đ°Ń‚ŃŒ Đ·ĐŸĐ»ĐŸŃ‚ĐŸ? ĐœĐŸŃˆĐ”ĐœĐœĐžĐșĐž, ĐŸĐ±ĐŒĐ°ĐœŃ‰ĐžĐșĐž Đž ŃƒŃ‡Đ”ĐœŃ‹Đ” ĐČ ĐžŃŃ‚ĐŸŃ€ĐžĐž Ń…ĐžĐŒĐžŃ‡Đ”ŃĐșох ŃĐ»Đ”ĐŒĐ”ĐœŃ‚ĐŸĐČ 5831: 5788: 5662: 5482: 5311: 5210: 5179: 5167: 5159: 5085: 5077: 4954: 4892: 4880: 4786: 4555: 4501: 4422: 4365: 4308: 4161: 4100: 4083: 4064: 4050: 3949: 3896: 3712: 3692: 3586: 3487: 2992: 2975: 2917: 2129: 2072: 2047: 1979: 1758: 1644: 1590: 1433: 1424: 1311: 1304: 1234: 762: 7272: 6760: 6745: 6692: 6147: 5927: 5410: 5025: 4567: 4513: 4458: 4233: 1787:(JINR) claimed the first discovery of the element in 1968, followed by the American 8592: 8245: 7950: 7779: 7608: 7527: 7446: 7419: 7382: 7377: 7372: 7252: 7179: 7128: 7080: 7072: 7033: 7028: 7005: 6945: 6870: 6848: 6844: 6840: 6785: 6780: 6733: 6680: 6625: 6594: 6509: 6454: 6408: 6292: 6235: 6185: 6135: 6047: 6012: 5915: 5896: 5650: 5631: 5581: 5548: 5455: 5398: 5198: 5149: 5067: 5021: 4944: 4872: 4776: 4547: 4493: 4414: 4402: 4355: 4345: 4304: 4149: 4122: 4092: 4046: 4042: 3961: 3939: 3935: 3931: 3884: 3848: 3803: 3780: 3704: 3658: 3628: 3398: 3335: 3022: 2999:. This similarity to the two elements suggested that the formed complex was either 2928: 2838: 2441: 1975: 1894: 1816: 1783:
Dubnium does not occur naturally on Earth and is produced artificially. The Soviet
1716: 1550: 1194: 1118: 107: 60: 5007: 4981:. Dai 2 Kai Hadoron Tataikei no Simulation Symposium, Tokai-mura, Ibaraki, Japan. 4350: 4323: 2264:
After observing the alpha decays of element 105, the researchers aimed to observe
7367: 7362: 7357: 7352: 7347: 7342: 7337: 7006:"Chemical properties of rutherfordium (Rf) and dubnium (Db) in the aqueous phase" 6412: 5740: 5724: 5438: 5257:"The Transfermium Wars: Scientific Brawling and Name-Calling during the Cold War" 4876: 4588: 4472: 4078: 3981: 3888: 3807: 3492: 3163: 2896: 2575: 2489: 2297: 2076: 2043: 1959: 1812: 1762: 1283: 1214: 1106: 6972: 6629: 6525: 6458: 3852: 3368: 7310: 7171: 6949: 6737: 4781: 4746: 4593:"How to Make Superheavy Elements and Finish the Periodic Table [Video]" 4535: 4096: 3784: 3662: 3632: 3423: 3084:
carrier, from which various +3, +4, and +5 species were precipitated on adding
2819: 2477: 2476:
resolving the conflict through a third party, so the leading scientists of LBL—
2093: 1907: 1890: 1878: 1866: 1695: 1656: 1542: 1488: 1167: 167: 6684: 6598: 5585: 5553: 5536: 4551: 4324:"Comparing Experimental and Theoretical Quasifission Mass Angle Distributions" 2708: 1938: 8586: 8404: 7264: 6139: 5691: 5202: 5163: 5132: 5081: 5012: 4958: 4884: 4790: 4559: 4505: 4369: 4104: 3693:"Superheavy elements: a prediction of their chemical and physical properties" 3381: 3187: 3167: 2921: 2900:
Relativistic (rel) and nonrelativistic (nr) values of the effective charge (Q
2717: 2485: 2481: 2176: 2168: 2145: 1951: 1886: 1769: 1458: 1358: 1266: 1083: 1059: 932: 7159: 6240: 6223: 6051: 5919: 5654: 5569: 5459: 5402: 5308:
Popular library of chemical elements. Silver through nielsbohrium and beyond
4797: 4497: 4418: 8458: 8287: 7992: 7392: 7325: 7094: 7076: 6862: 6794: 5286:[Popular library of chemical elements. Seaborgium (eka-tungsten)]. 5089: 5072: 5047: 3953: 3530: 2988: 2936: 2827: 2779: 2172: 2000: 1910:. However, if too much energy is applied, the beam nucleus can fall apart. 1861: 974: 841: 615: 7055:
Chiera, Nadine M.; Sato, Tetsuya K.; Eichler, Robert; et al. (2021).
6759:
Oganessian, Yu. Ts.; Abdullin, F. Sh.; Bailey, P. D.; et al. (2010).
3178:(although there are other definitions, such as atomic number greater than 2845: 24: 8512: 8476: 8467: 8377: 8359: 8350: 7387: 7197: 6332:"Branding the Elements: Berkeley Stakes its Claims on the Periodic Table" 6224:"Names and symbols of transfermium elements (IUPAC Recommendations 1997)" 6033:"Names and symbols of transfermium elements (IUPAC Recommendations 1994)" 6017: 6000: 5441:"Names and symbols of transfermium elements (IUPAC Recommendations 1997)" 4721:
Introductory Nuclear, Atomic and Molecular Physics (Nuclear Physics Part)
4679:
Introductory Nuclear, Atomic and Molecular Physics (Nuclear Physics Part)
3183: 2962: 2668: 2301: 2191: 2121: 2020: 1780:
of about 16 hours. This greatly limits extended research on the element.
1479: 1016: 988: 981: 911: 897: 890: 157: 7202:
From Transuranic to Superheavy Elements: A Story of Dispute and Creation
5304:ĐŸĐŸĐżŃƒĐ»ŃŃ€ĐœĐ°Ń Đ±ĐžĐ±Đ»ĐžĐŸŃ‚Đ”ĐșĐ° Ń…ĐžĐŒĐžŃ‡Đ”ŃĐșох ŃĐ»Đ”ĐŒĐ”ĐœŃ‚ĐŸĐČ. ĐĄĐ”Ń€Đ”Đ±Ń€ĐŸ – ĐĐžĐ»ŃŒŃĐ±ĐŸŃ€ĐžĐč Đž ЎалДД 3330:
Not all decay modes are caused by electrostatic repulsion. For example,
8521: 8449: 8422: 8395: 8055: 8037: 8010: 7841: 7832: 7571: 6853: 6189: 4360: 4153: 3944: 3708: 3331: 3175: 3077: 2970: 2932: 2766: 2762: 2484:—traveled to Dubna in 1975 and met with the leading scientists of JINR— 2437: 2418: 2383: 2296:, United States, claimed to have synthesized element 105 by bombarding 2293: 2149: 1067: 1023: 967: 946: 925: 664: 650: 629: 501: 494: 295: 6812:
Khuyagbaatar, J.; Yakushev, A.; DĂŒllmann, Ch. E.; et al. (2014).
5504:
The Transuranium Elements: From Neptunium and Plutonium to Element 112
5382:
Ghiorso, A.; Seaborg, G. T.; Oganessian, Yu. Ts.; et al. (1993).
5326:"Nobelium - Element information, properties and uses | Periodic Table" 5171: 5154: 5127: 3911: 3910:
Khuyagbaatar, J.; Yakushev, A.; DĂŒllmann, Ch. E.; et al. (2014).
2869:, particularly spin–orbit splitting, which splits the 6d subshell—the 2144:
Apparatus at Dubna used for the chemical characterization of elements
1326: 8530: 8503: 8494: 8341: 8323: 8314: 8305: 8091: 8001: 7974: 7922: 7868: 7850: 7814: 7794: 7733: 7670: 7614: 7553: 7542: 7461: 7412: 7402: 7397: 6978:(Report). IX International Conference on Nucleus Nucleus Collisions. 6811: 6546:(New ed.). New York: Oxford University Press. pp. 215–217. 6304: 6286: 3870: 3394: 3081: 3073: 2758: 2734: 2672: 2664: 2643: 2524: 2465: 2422: 2117: 1967: 1777: 1438: 1272: 1030: 1009: 1002: 883: 869: 862: 855: 692: 622: 601: 564: 522: 508: 480: 462: 418: 369: 325: 281: 272: 212: 5377: 5375: 5284:"ĐŸĐŸĐżŃƒĐ»ŃŃ€ĐœĐ°Ń Đ±ĐžĐ±Đ»ĐžĐŸŃ‚Đ”ĐșĐ° Ń…ĐžĐŒĐžŃ‡Đ”ŃĐșох ŃĐ»Đ”ĐŒĐ”ĐœŃ‚ĐŸĐČ. ĐĄĐžĐ±ĐŸŃ€ĐłĐžĐč (эĐșĐ°ĐČĐŸĐ»ŃŒŃ„Ń€Đ°ĐŒ)" 5226:"Exploring the superheavy elements at the end of the periodic table" 4624: 4612: 2408: 8485: 8386: 8269: 8251: 8226: 8217: 8190: 8163: 8127: 8118: 8100: 8028: 8019: 7913: 7785: 7751: 7661: 7652: 7643: 7634: 7589: 7508: 7490: 7425: 6720: 6389:"An experimental paradigm opening the world of superheavy elements" 6296: 5478: 5250: 5248: 4665: 4663: 4636: 4195:"Making New Elements Doesn't Pay. Just Ask This Berkeley Scientist" 4117: 3764:
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021).
3201: 2966: 2884:
Atoms of dubnium in the solid state should arrange themselves in a
2791: 2783: 2606: 2125: 2060: 1983: 1839:. A limited investigation of dubnium chemistry has confirmed this. 1828: 1820: 1042: 995: 918: 827: 813: 797: 790: 769: 748: 720: 713: 699: 643: 636: 557: 455: 432: 362: 355: 348: 341: 309: 249: 235: 187: 7239: 6667: 6581: 5001: 4999: 4918: 4916: 4914: 4763: 4525: 4523: 4440: 4438: 2694:, refused to accept papers not using the 1997 IUPAC nomenclature. 8567: 8562: 8557: 8552: 8440: 8431: 8368: 8296: 8278: 8208: 8154: 8136: 8109: 8082: 8064: 8046: 7956: 7886: 7859: 7823: 7805: 7769: 7760: 7742: 7724: 7623: 7562: 7452: 7407: 7279: 6373: 5629: 5372: 4836: 4583: 4581: 4579: 4577: 4536:"A History and Analysis of the Discovery of Elements 104 and 105" 3179: 2954: 2861:
orbitals and their spin–orbit splitting for the group 5 elements.
2787: 2180: 2113: 2083:
suggested that nuclei with about 300 nucleons would form an
2068: 2064: 2056: 2007: 1963: 1870: 1824: 1188: 960: 953: 904: 848: 834: 783: 741: 727: 706: 685: 671: 657: 587: 536: 515: 487: 473: 446: 439: 425: 411: 332: 288: 205: 17: 7057:"Chemical Characterization of a Volatile Dubnium Compound, DbOCl 6971:
Stoyer, N. J.; Landrum, J. H.; Wilk, P. A.; et al. (2006).
6927: 6652: 6619: 6448: 5283: 5245: 4707: 4705: 4703: 4701: 4699: 4660: 4077: 1978:
can only be recognized as discovered if a nucleus of it has not
8332: 8260: 8145: 8073: 7983: 7965: 7931: 7895: 7877: 7706: 7697: 7688: 7580: 7533: 7499: 7481: 7436: 6288:
Properties of Group Five and Group Seven transactinium elements
5276: 4996: 4911: 4520: 4435: 3520: 3402: 2011: 1941:
of unsuccessful nuclear fusion, based on calculations from the
876: 820: 734: 678: 608: 594: 571: 543: 529: 397: 390: 383: 302: 265: 242: 228: 196: 6758: 4854: 4574: 8546: 8235: 7940: 7598: 7472: 5894: 5381: 4696: 3838: 2655: 2571: 2556: 2528: 2453: 2399: 2164: 1805: 1354: 1146: 804: 578: 316: 221: 69: 6705: 4925:"Nuclei in the "Island of Stability" of Superheavy Elements" 4183: 3909: 2063:(element 102), and by 30 orders of magnitude from 1831:. Dubnium should share most properties, such as its valence 8199: 8172: 7715: 7679: 7517: 6082:"Naming of element 106 disputed by international committee" 5217: 3171: 2305:
those of 103, implying that the parent nuclei were of 105.
1882: 776: 755: 404: 376: 256: 128: 125: 81: 78: 7054: 5439:
Commission on Nomenclature of Inorganic Chemistry (1997).
5432: 4321: 7904: 7319: 5350: 5348: 4899: 4227: 4225: 4223: 4221: 4219: 4217: 4111: 3678:
Nuclear and Radiochemistry: Fundamentals and Applications
550: 116: 6893:"Science Magazine Podcast. Transcript, 9 September 2011" 6566: 5107:. 50th Anniversary of Nuclear Fission, Leningrad, USSR. 4826: 4824: 4744: 4400: 3579:
The Chemistry of the Actinide and Transactinide Elements
3146:, so that dubnium behaves in line with periodic trends. 1811:
Theoretical research establishes dubnium as a member of
6485:
Audi, G.; Kondev, F. G.; Wang, M.; et al. (2012).
5726:
Symbolik und Fachausdruecke. Mathematik, Physik, Chemie
5472: 3380:
Spontaneous fission was discovered by Soviet physicist
7222: 6544:
Nature's Building Blocks: An A-Z Guide to the Elements
6484: 5729:(in German). Germany: Verlag EnzyklopĂ€die. p. 83. 5473:
Choppin, G. R.; Liljenzin, J.-O.; Rydberg, J. (2002).
5345: 5318: 4642: 4214: 4032: 3824:
Six New Isotopes of the Superheavy Elements Discovered
2468:, the "father of nuclear chemistry", thus creating an 7166: 6761:"Synthesis of a New Element with Atomic Number Z=117" 6624:. FIAS Interdisciplinary Science Series. p. 69. 6210: 6176:
Bera, J. K. (1999). "Names of the Heavier Elements".
6106: 5125: 4821: 4809: 4648: 4630: 4618: 3130:
In 2021, the volatile heavy group 5 oxychlorides MOCl
2833:
A more indirect effect is that the contracted s and p
2425:, both proposed as possible namesakes for element 105 2281:
the activities observed came from SF of element 105.
1772:
105. It is highly radioactive: the most stable known
142: 122: 95: 75: 8613:
Chemical elements with body-centered cubic structure
6818:= 117: Long-Lived α-Decaying Db and Discovery of Lr" 6386: 5193:
Grant, A. (2018). "Weighing the heaviest elements".
4447:
Faculty of Nuclear Sciences and Physical Engineering
4286: 4261:"Something new and superheavy at the periodic table" 4035:
Encyclopedia of Inorganic and Bioinorganic Chemistry
3763: 119: 113: 72: 66: 5827:
The Lost Elements: The Periodic Table's Shadow Side
5360: 2686:Even after 1997, LBL still sometimes used the name 2124:, element 101, which was synthesized in 1955. From 2079:for nuclei with about 280 nucleons. The later 131: 110: 84: 63: 7003: 5509:(Report). Lawrence Livermore National Laboratory. 3903: 16:"Hahnium" redirects here. Not to be confused with 6970: 6487:"The NUBASE2012 evaluation of nuclear properties" 6387:Armbruster, Peter; MĂŒnzenberg, Gottfried (2012). 4745:Staszczak, A.; Baran, A.; Nazarewicz, W. (2013). 4529: 3866: 3864: 3862: 3766:"The NUBASE2020 evaluation of nuclear properties" 3648: 2974:the behavior on extraction from mixed nitric and 2584:International Union of Pure and Applied Chemistry 2031:for each mode, but they can be tunneled through. 1856: 1794:International Union of Pure and Applied Chemistry 8584: 5890: 5888: 5886: 5884: 5882: 5823: 5817: 5745:(in French). Switzerland. 1972. pp. 30–31. 5126:Oganessian, Yu. Ts.; Rykaczewski, K. P. (2015). 6444: 6442: 6262:. Lawrence Berkeley National Laboratory. 1999. 5722: 4587: 3797: 3697:Recent Impact of Physics on Inorganic Chemistry 3045:, which was predicted to be less volatile than 3021:. After extraction experiments of dubnium from 2588:International Union of Pure and Applied Physics 1869:reaction. Two nuclei fuse into one, emitting a 1798:International Union of Pure and Applied Physics 23:For the node.js release labeled "Dubnium", see 7004:Nagame, Y.; Kratz, J. V.; SchĂ€del, M. (2016). 5998: 5625: 5623: 5621: 5619: 5617: 5615: 5613: 5611: 5609: 5607: 3859: 3422:This notation signifies that the nucleus is a 2436:(Bo) in honor of the Danish nuclear physicist 7295: 5879: 4445:KrĂĄsa, A. (2010). "Neutron Sources for ADS". 4236:[Superheavy steps into the unknown]. 3826:. Berkeley Lab. News center. October 26, 2010 2632:for element 103. The equally entrenched name 1731: 1130: 6814:"Ca + Bk Fusion Reaction Leading to Element 6439: 5863:] (in Russian). Nauka. pp. 180–181. 5824:Fontani, M.; Costa, M.; Orna, M. V. (2014). 5742:Industries atomiques et spatiales, Volume 16 4329:European Physical Journal Web of Conferences 3819: 3817: 1378:and the Joint Institute for Nuclear Research 32:Chemical element with atomic number 105 (Db) 7110: 6890: 6363: 6291:(PhD). University of California, Berkeley. 6100: 5899:; Oganessian, Yu. Ts.; et al. (1993). 5604: 4975:Fission properties of the heaviest elements 4842: 4803: 4189: 3675: 3610: 3213: pb), as estimated by the discoverers. 7302: 7288: 6118: 6025: 5767:: CS1 maint: location missing publisher ( 5634:; Hrynkiewicz, A. Z.; et al. (1993). 5005: 4922: 2175:, in April 1968. The scientists bombarded 2003:, and the time of the decay are measured. 1986:and thus display its chemical properties. 1738: 1724: 1401: 1394: 1325: 7238: 7176:The Transuranium People: The Inside Story 7084: 7032: 6852: 6784: 6719: 6666: 6655:International Journal of Modern Physics E 6580: 6569:International Journal of Modern Physics E 6480: 6478: 6239: 6016: 5962:Bulletin of the American Physical Society 5552: 5153: 5071: 4971: 4948: 4780: 4762: 4359: 4349: 3943: 3834: 3832: 3814: 3757: 3684: 3644: 3642: 2943: 2782:, dubnium should belong to group 5, with 6169: 5955: 5866: 5854: 5830:. Oxford University Press. p. 386. 5723:StĂ€dtler, Ingrid; Niemann, Hans (1971). 5636:"Discovery of the Transfermium elements" 5254: 5128:"A beachhead on the island of stability" 3572: 3570: 3568: 3566: 3564: 3562: 3560: 3444: hours for Db, but the statistical 2895: 2844: 2805: 2707: 2139: 2033: 1860: 8402: 7065:Angewandte Chemie International Edition 6801:from the original on December 19, 2016. 6535: 6061:from the original on September 22, 2017 5980:from the original on September 22, 2017 5844:from the original on February 27, 2018. 5672:from the original on September 20, 2016 5501: 5045: 4471: 3558: 3556: 3554: 3552: 3550: 3548: 3546: 3544: 3542: 3540: 2912:Computational chemistry is simplest in 2853:s orbitals, the destabilization of the 2773: 2675:, and that the acceptance of the names 1889:of lighter nuclei. Two nuclei can only 8585: 8456: 8285: 7990: 7139: 6541: 6475: 6329: 6079: 5937:from the original on November 25, 2013 5749:from the original on December 23, 2022 5592:from the original on December 31, 2017 5420:from the original on November 25, 2013 5302:"Đ­ĐșĐ°ĐČĐŸĐ»ŃŒŃ„Ń€Đ°ĐŒ" [Eka-tungsten]. 5048:"Chemistry of the superheavy elements" 4905: 4830: 4815: 4654: 4231: 4008:Lawrence Livermore National Laboratory 3974: 3829: 3690: 3639: 2801: 2448:; they soon changed their proposal to 2040:Flerov Laboratory of Nuclear Reactions 1989: 8510: 8474: 8465: 8375: 8357: 8348: 7283: 7226:Journal of Physics: Conference Series 7196: 6985:from the original on January 31, 2017 6909:from the original on October 18, 2016 6880:from the original on August 17, 2017. 6427:from the original on December 6, 2022 6342:from the original on October 31, 2022 6311:from the original on October 31, 2022 5813:. Suomalaisten Kemistien Seura. 1971. 5567: 5561: 5534: 5366: 5354: 5223: 5192: 5102: 4929:Journal of Physics: Conference Series 4711: 4669: 4444: 4258: 3606: 3604: 3602: 3576: 2517:Gesellschaft fĂŒr Schwerionenforschung 2389: 1668: 1665: 1623: 1620: 1602: 1599: 1569: 1566: 1515: 1512: 1472: 1467: 8519: 8447: 8420: 8393: 8053: 8035: 8008: 7839: 7830: 7044:from the original on April 28, 2019. 6284: 6175: 5999:Öhrström, L.; Holden, N. E. (2016). 5787:. Royal Society of Chemistry. 1972. 5516:from the original on October 9, 2017 5475:Radiochemistry and Nuclear Chemistry 4643:Zagrebaev, Karpov & Greiner 2013 4451:Czech Technical University in Prague 3669: 3537: 3435:The current experimental value is 16 3426:that decays via spontaneous fission. 2904:) and overlap population (OP) in MCl 2161:Joint Institute for Nuclear Research 1785:Joint Institute for Nuclear Research 1363:Joint Institute for Nuclear Research 8528: 8501: 8492: 8339: 8321: 8312: 8303: 8089: 7999: 7972: 7920: 7866: 7848: 7812: 7792: 7731: 7668: 7569: 7551: 7540: 7459: 6266:from the original on April 21, 2021 6211:Hoffman, Ghiorso & Seaborg 2000 6157:from the original on August 3, 2017 6107:Hoffman, Ghiorso & Seaborg 2000 5704:from the original on March 25, 2018 4631:Hoffman, Ghiorso & Seaborg 2000 4619:Hoffman, Ghiorso & Seaborg 2000 4401:Loveland, W. D.; Morrissey, D. J.; 4127:"The identification of element 108" 4004:"Discovery of Elements 113 and 115" 13: 8483: 8384: 8267: 8249: 8224: 8215: 8188: 8161: 8116: 8098: 8026: 8017: 7911: 7783: 7749: 7659: 7641: 7632: 7612: 7587: 7309: 6622:Exciting Interdisciplinary Physics 6451:Exciting Interdisciplinary Physics 6001:"The Three-letter Element Symbols" 4125:; Folger, H.; et al. (1984). 3732: 3599: 2849:Relativistic stabilization of the 14: 8624: 8438: 8429: 8411: 8366: 8276: 8206: 8179: 8152: 8134: 8125: 8107: 8080: 8062: 8044: 7954: 7884: 7857: 7821: 7767: 7758: 7740: 7722: 7650: 7621: 7560: 7506: 7488: 7450: 7423: 6088:from the original on July 1, 2016 4806:, pp. 030001-129–030001-138. 4234:"ĐĄĐČĐ”Ń€Ń…Ń‚ŃĐ¶Đ”Đ»Ń‹Đ” шагО ĐČ ĐœĐ”ĐžĐ·ĐČĐ”ŃŃ‚ĐœĐŸĐ”" 2991:were extracted from concentrated 1850:Superheavy element § Introduction 8330: 8294: 8258: 8143: 8071: 7981: 7963: 7893: 7875: 7803: 7704: 7695: 7686: 7531: 7434: 7048: 6997: 6964: 6921: 6884: 6805: 6752: 6699: 6646: 6613: 6560: 6364:@BerkeleyLab (January 8, 2014). 6256:"Periodic Table of the Elements" 6119:Loss, R. D.; Corish, J. (2012). 3977:"Explainer: superheavy elements" 3461: 3451: 2647:was later used for element 114. 2636:for element 102 was replaced by 2601:(Jl) after the French physicist 2547: 2540: 2407: 2398: 2071:(element 100). The earlier 1933: 1848:This section is an excerpt from 1711: 1710: 1248:3rd: 2378 kJ/mol 1245:2nd: 1547 kJ/mol 106: 59: 8233: 7938: 7929: 7596: 7578: 7497: 7479: 7104: 6393:The European Physical Journal H 6380: 6357: 6323: 6278: 6248: 6216: 6204: 6112: 6073: 5992: 5949: 5848: 5801: 5775: 5733: 5716: 5684: 5541:Chemical & Engineering News 5528: 5495: 5466: 5231:Chemical & Engineering News 5186: 5119: 5096: 5039: 4972:Moller, P.; Nix, J. R. (1994). 4965: 4857:The European Physical Journal A 4848: 4738: 4465: 4376: 4315: 4280: 4252: 4071: 4026: 3996: 3968: 3791: 3583:Springer Science+Business Media 3429: 3416: 3387: 3374: 3361: 3351: 3341: 3324: 3310: 3301: 3216: 3193: 3156: 2440:, a founder of the theories of 1972:IUPAC/IUPAP Joint Working Party 1842: 1242:1st: 665 kJ/mol 8197: 8170: 7713: 7677: 7515: 7470: 7257:10.1088/1742-6596/420/1/012001 6891:Wills, S.; Berger, L. (2011). 6845:10.1103/PhysRevLett.112.172501 6786:10.1103/PhysRevLett.104.142502 4950:10.1088/1742-6596/337/1/012005 4047:10.1002/9781119951438.eibc2632 3936:10.1103/PhysRevLett.112.172501 3508: 3493:Merriam-Webster.com Dictionary 3480: 3170:if its atomic number is high; 2521:Society for Heavy Ion Research 2464:(Ha) after the German chemist 1943:Australian National University 1857:Synthesis of superheavy nuclei 1: 7902: 7144:(6th ed.). McGraw-Hill. 7133:10.1088/1674-1137/41/3/030001 5574:Chemical and Engineering News 4725:UniversitĂ© libre de Bruxelles 4683:UniversitĂ© libre de Bruxelles 4405:(2005). "Nuclear Reactions". 3800:Handbook of Nuclear Chemistry 3474: 2908:, where M = V, Nb, Ta, and Db 2548: 2452:(Ns) to avoid confusion with 2190: > 0.05 s) 2108: 7034:10.1051/epjconf/201613107007 5692:"Dubnium | chemical element" 5105:Biomodal spontaneous fission 5006:Oganessian, Yu. Ts. (2004). 4309:10.1016/0029-5582(59)90211-1 3889:10.1103/PhysRevC.106.L031301 3808:10.1007/978-1-4419-0720-2_19 3680:(3rd ed.). p. 631. 2456:. Another proposed name was 2286:Lawrence Berkeley Laboratory 2103: 1789:Lawrence Berkeley Laboratory 1376:Lawrence Berkeley Laboratory 7: 6630:10.1007/978-3-319-00047-3_6 6514:10.1088/1674-1137/36/12/001 6459:10.1007/978-3-319-00047-3_6 4411:John Wiley & Sons, Inc. 4351:10.1051/epjconf/20158600061 3853:10.1103/PhysRevC.106.064306 2891: 2697: 2421:and German nuclear chemist 1950:The resulting merger is an 10: 8629: 7801: 7630: 7549: 7468: 7432: 7334: 7142:Concepts of modern physics 6738:10.1103/PhysRevC.97.064602 6413:10.1140/epjh/e2012-20046-7 6338:. Cal Alumni Association. 6228:Pure and Applied Chemistry 6128:Pure and Applied Chemistry 6040:Pure and Applied Chemistry 5908:Pure and Applied Chemistry 5875:] (in German). Urania. 5643:Pure and Applied Chemistry 5448:Pure and Applied Chemistry 5391:Pure and Applied Chemistry 5331:Royal Society of Chemistry 4877:10.1140/epja/i2017-12348-8 4782:10.1103/physrevc.87.024320 4485:Pure and Applied Chemistry 4097:10.1103/PhysRevC.79.024608 3663:10.1103/PhysRevB.83.172101 3633:10.1103/PhysRevB.84.113104 3319:time-of-flight measurement 2816:electromagnetic attraction 2701: 2470:element naming controversy 2135: 1847: 1804:in 1997 after the town of 1759:synthetic chemical element 470: 338: 278: 218: 193: 22: 15: 8544: 8244: 7949: 7778: 7607: 7526: 7445: 7418: 7411: 7406: 7401: 7396: 7391: 7386: 7381: 7376: 7371: 7366: 7361: 7356: 7351: 7346: 7341: 7336: 7329: 7324: 7317: 7174:; Seaborg, G. T. (2000). 6685:10.1142/S0218301310016521 6599:10.1142/S0218301310014662 5586:10.1021/cen-v081n036.p182 5554:10.1021/cen-v072n044.p002 5026:10.1088/2058-7058/17/7/31 4983:University of North Texas 4552:10.1524/ract.1987.42.2.57 3802:. Springer. p. 877. 3699:. Structure and Bonding. 3691:Fricke, Burkhard (1975). 3033:have led to formation of 2417:Danish nuclear physicist 2284:In April 1970, a team at 1932: 1927: 1865:A graphic depiction of a 1709: 1705: 1662: 1617: 1596: 1563: 1509: 1464: 1423: 1420: 1416: 1412: 1385: 1368: 1349: 1344: 1334: 1310: 1300: 1295: 1282: 1271:empirical: 139  1265: 1257:(all but first estimated) 1233: 1213: 1208: 1187: 1166: 1161: 1153: 1139: 1124: 1112: 1100: 1081: 1058: 173: 165: 156: 51: 46: 6950:10.1088/1402-4896/aa53c1 6330:Buhler, Brendan (2014). 6140:10.1351/PAC-REC-11-12-03 5255:Robinson, A. E. (2019). 5203:10.1063/PT.6.1.20181113a 4935:(1): 012005-1–012005-6. 4923:Oganessian, Yu. (2012). 4534:; Keller, O. L. (1987). 4407:Modern Nuclear Chemistry 4134:Zeitschrift fĂŒr Physik A 3785:10.1088/1674-1137/abddae 3149: 2871:azimuthal quantum number 2494:systematic element names 2157:discovery of element 105 2155:The first report of the 1997:surface-barrier detector 1808:, the site of the JINR. 6825:Physical Review Letters 6765:Physical Review Letters 6241:10.1351/pac199769122471 6234:(12): 2471–2474. 1997. 6052:10.1351/pac199466122419 6046:(12): 2419–2421. 1994. 6005:Chemistry International 5920:10.1351/pac199365081815 5697:Encyclopedia Britannica 5655:10.1351/pac199365081757 5537:"The Transfermium Wars" 5502:Hoffman, D. C. (1996). 5460:10.1351/pac199769122471 5403:10.1351/pac199365081815 4498:10.1351/pac199163060879 4419:10.1002/0471768626.ch10 3916:Physical Review Letters 3527:Oxford University Press 3166:, an element is called 2500:, from the Latin roots 1895:electrostatic repulsion 1157:2, 8, 18, 32, 32, 11, 2 25:node.js § Releases 7077:10.1002/anie.202102808 7013:EPJ Web of Conferences 5073:10.1098/rsta.2014.0191 4200:Bloomberg Businessweek 3744:Royal Chemical Society 3676:Kratz; Lieser (2013). 3585:. pp. 1652–1752. 2980:methyl isobutyl ketone 2944:Experimental chemistry 2909: 2867:spin–orbit interaction 2865:Another effect is the 2862: 2811: 2713: 2152: 2051: 1874: 1833:electron configuration 1141:Electron configuration 5956:Robinson, A. (2017). 5867:Hoffmann, K. (1979). 5855:Hoffmann, K. (1987). 5568:Zvara, I. J. (2003). 5103:Hulet, E. K. (1989). 5008:"Superheavy elements" 4845:, p. 030001-125. 4039:John Wiley & Sons 4014:on September 11, 2015 3533:on December 18, 2019. 3523:UK English Dictionary 2950:thermochromatographic 2899: 2848: 2809: 2735:rapid neutron capture 2711: 2603:FrĂ©dĂ©ric Joliot-Curie 2377:hafnium tetrachloride 2373:niobium pentachloride 2143: 2067:(element 90) to 2059:(element 92) to 2037: 1864: 1776:, dubnium-268, has a 1374:independently by the 6285:Wilk, P. A. (2001). 6018:10.1515/ci-2016-0204 5310:] (in Russian). 5046:SchĂ€del, M. (2015). 3446:law of large numbers 2969:of dubnium on glass 2796:relativistic effects 2774:Predicted properties 2730:neutron–proton ratio 2567:class=notpageimage| 1974:(JWP) states that a 1837:relativistic effects 1815:in the 6d series of 1201:21.6 g/cm 7249:2013JPhCS.420a2001Z 7140:Beiser, A. (2003). 7125:2017ChPhC..41c0001A 7071:(33): 17871–17874. 7025:2016EPJWC.13107007N 6942:2017PhyS...92b3003O 6837:2014PhRvL.112q2501K 6777:2010PhRvL.104n2502O 6730:2018PhRvC..97f4602W 6677:2010IJMPE..19.2063B 6591:2010IJMPE..19..131M 6542:Emsley, J. (2011). 6506:2012ChPhC..36....1A 6405:2012EPJH...37..237A 6336:alumni.berkeley.edu 6080:Yarris, L. (1994). 5974:2017APS..APRB10003R 5810:Suomen kemistilehti 5146:2015PhT....68h..32O 5113:1989nufi.rept...16H 5064:2015RSPTA.37340191S 4941:2012JPhCS.337a2005O 4869:2017EPJA...53..158A 4773:2013PhRvC..87b4320S 4598:Scientific American 4384:"Nuclear Reactions" 4342:2015EPJWC..8600061W 4301:1959NucPh..10..226K 4232:Ivanov, D. (2019). 4193:(August 28, 2019). 4146:1984ZPhyA.317..235M 4079:Oganessian, Yu. Ts. 3975:KrĂ€mer, K. (2016). 3928:2014PhRvL.112q2501K 3625:2011PhRvB..84k3104O 3103:and tantalum forms 3080:with tracers and a 3027:diisobutyl carbinol 2914:gas-phase chemistry 2886:body-centered cubic 2802:Atomic and physical 2716:Dubnium, having an 2704:Isotopes of dubnium 2508:and the Greek root 2266:spontaneous fission 2085:island of stability 2081:nuclear shell model 2025:spontaneous fission 1990:Decay and detection 1819:, placing it under 1387:Isotopes of dubnium 1318:body-centered cubic 1235:Ionization energies 1162:Physical properties 1154:Electrons per shell 43: 8608:Synthetic elements 6213:, pp. 369–399 6190:10.1007/BF02838724 6109:, pp. 389–394 5535:Karol, P. (1994). 5224:Howes, L. (2019). 5058:(2037): 20140191. 4908:, p. 432–433. 4712:Pauli, N. (2019). 4670:Pauli, N. (2019). 4413:pp. 249–297. 4259:Hinde, D. (2017). 4154:10.1007/BF01421260 3709:10.1007/BFb0116498 3086:ammonium hydroxide 2910: 2863: 2812: 2739:transfer reactions 2722:superheavy element 2714: 2390:Naming controversy 2153: 2052: 2048:quadrupole magnets 2046:in the former and 1899:strong interaction 1875: 1361:, Russia, site of 1301:Natural occurrence 1065: 1050: 35: 8603:Transition metals 8598:Chemical elements 8580: 8579: 8573: 8572: 8539: 8538: 7215:978-3-319-75813-8 7189:978-1-78-326244-1 7151:978-0-07-244848-1 7113:Chinese Physics C 6708:Physical Review C 6661:(10): 2063–2075. 6639:978-3-319-00046-6 6553:978-0-19-960563-7 6500:(12): 1157–1286. 6494:Chinese Physics C 6468:978-3-319-00046-6 5865:Translation from 5837:978-0-19-938335-1 5488:978-0-7506-7463-8 5454:(12): 2471–2474. 5357:, pp. 38–39. 5155:10.1063/PT.3.2880 4751:Physical Review C 4714:"Nuclear fission" 4540:Radiochimica Acta 4428:978-0-471-76862-3 4084:Physical Review C 4056:978-1-119-95143-8 4041:. pp. 1–16. 3877:Physical Review C 3841:Physical Review C 3773:Chinese Physics C 3718:978-3-540-07109-9 3651:Physical Review B 3613:Physical Review B 3592:978-1-4020-3555-5 3496:. Merriam-Webster 3369:must be preserved 3334:is caused by the 2993:hydrochloric acid 2976:hydrofluoric acid 2918:molecular orbital 2778:According to the 2692:Radiochimica Acta 2130:Transfermium Wars 2073:liquid drop model 1948: 1947: 1817:transition metals 1752: 1751: 1717:Category: Dubnium 1701: 1700: 1312:Crystal structure 1288:149 pm 1209:Atomic properties 1077: 1076: 1073: 1072: 1063: 1048: 1038: 1037: 764:Mercury (element) 8620: 8549: 8548: 8535: 8533: 8526: 8524: 8517: 8515: 8508: 8506: 8499: 8497: 8490: 8488: 8481: 8479: 8472: 8470: 8463: 8461: 8454: 8452: 8445: 8443: 8436: 8434: 8427: 8425: 8418: 8416: 8409: 8407: 8400: 8398: 8391: 8389: 8382: 8380: 8373: 8371: 8364: 8362: 8355: 8353: 8346: 8344: 8337: 8335: 8328: 8326: 8319: 8317: 8310: 8308: 8301: 8299: 8292: 8290: 8283: 8281: 8274: 8272: 8265: 8263: 8256: 8254: 8240: 8238: 8231: 8229: 8222: 8220: 8213: 8211: 8204: 8202: 8195: 8193: 8186: 8184: 8177: 8175: 8168: 8166: 8159: 8157: 8150: 8148: 8141: 8139: 8132: 8130: 8123: 8121: 8114: 8112: 8105: 8103: 8096: 8094: 8087: 8085: 8078: 8076: 8069: 8067: 8060: 8058: 8051: 8049: 8042: 8040: 8033: 8031: 8024: 8022: 8015: 8013: 8006: 8004: 7997: 7995: 7988: 7986: 7979: 7977: 7970: 7968: 7961: 7959: 7945: 7943: 7936: 7934: 7927: 7925: 7918: 7916: 7909: 7907: 7900: 7898: 7891: 7889: 7882: 7880: 7873: 7871: 7864: 7862: 7855: 7853: 7846: 7844: 7837: 7835: 7828: 7826: 7819: 7817: 7810: 7808: 7799: 7797: 7790: 7788: 7774: 7772: 7765: 7763: 7756: 7754: 7747: 7745: 7738: 7736: 7729: 7727: 7720: 7718: 7711: 7709: 7702: 7700: 7693: 7691: 7684: 7682: 7675: 7673: 7666: 7664: 7657: 7655: 7648: 7646: 7639: 7637: 7628: 7626: 7619: 7617: 7603: 7601: 7594: 7592: 7585: 7583: 7576: 7574: 7567: 7565: 7558: 7556: 7547: 7545: 7538: 7536: 7522: 7520: 7513: 7511: 7504: 7502: 7495: 7493: 7486: 7484: 7477: 7475: 7466: 7464: 7457: 7455: 7441: 7439: 7430: 7428: 7320: 7304: 7297: 7290: 7281: 7280: 7276: 7242: 7219: 7193: 7180:World Scientific 7163: 7136: 7099: 7098: 7088: 7052: 7046: 7045: 7043: 7036: 7010: 7001: 6995: 6994: 6992: 6990: 6984: 6977: 6968: 6962: 6961: 6925: 6919: 6918: 6916: 6914: 6908: 6897: 6888: 6882: 6881: 6879: 6856: 6822: 6809: 6803: 6802: 6788: 6756: 6750: 6749: 6723: 6703: 6697: 6696: 6670: 6650: 6644: 6643: 6617: 6611: 6610: 6584: 6564: 6558: 6557: 6539: 6533: 6532: 6531:on July 6, 2016. 6530: 6524:. Archived from 6491: 6482: 6473: 6472: 6446: 6437: 6436: 6434: 6432: 6384: 6378: 6377: 6361: 6355: 6354: 6349: 6347: 6327: 6321: 6320: 6318: 6316: 6282: 6276: 6275: 6273: 6271: 6252: 6246: 6245: 6243: 6220: 6214: 6208: 6202: 6201: 6173: 6167: 6166: 6164: 6162: 6156: 6134:(7): 1669–1672. 6125: 6116: 6110: 6104: 6098: 6097: 6095: 6093: 6077: 6071: 6070: 6068: 6066: 6060: 6037: 6029: 6023: 6022: 6020: 5996: 5990: 5989: 5987: 5985: 5953: 5947: 5946: 5944: 5942: 5936: 5914:(8): 1815–1824. 5905: 5892: 5877: 5876: 5864: 5852: 5846: 5845: 5821: 5815: 5814: 5805: 5799: 5798: 5779: 5773: 5772: 5766: 5758: 5756: 5754: 5737: 5731: 5730: 5720: 5714: 5713: 5711: 5709: 5688: 5682: 5681: 5679: 5677: 5671: 5640: 5632:Greenwood, N. N. 5627: 5602: 5601: 5599: 5597: 5565: 5559: 5558: 5556: 5532: 5526: 5525: 5523: 5521: 5515: 5508: 5499: 5493: 5492: 5470: 5464: 5463: 5445: 5436: 5430: 5429: 5427: 5425: 5419: 5397:(8): 1815–1824. 5388: 5379: 5370: 5364: 5358: 5352: 5343: 5342: 5340: 5338: 5322: 5316: 5315: 5299: 5297: 5295: 5280: 5274: 5273: 5271: 5269: 5252: 5243: 5242: 5240: 5238: 5221: 5215: 5214: 5190: 5184: 5183: 5157: 5123: 5117: 5116: 5100: 5094: 5093: 5075: 5043: 5037: 5036: 5034: 5032: 5003: 4994: 4993: 4991: 4989: 4980: 4969: 4963: 4962: 4952: 4920: 4909: 4903: 4897: 4896: 4852: 4846: 4843:Audi et al. 2017 4840: 4834: 4828: 4819: 4813: 4807: 4804:Audi et al. 2017 4801: 4795: 4794: 4784: 4766: 4742: 4736: 4735: 4733: 4731: 4718: 4709: 4694: 4693: 4691: 4689: 4676: 4667: 4658: 4652: 4646: 4640: 4634: 4628: 4622: 4616: 4610: 4609: 4607: 4605: 4585: 4572: 4571: 4527: 4518: 4517: 4481: 4469: 4463: 4462: 4442: 4433: 4432: 4398: 4396: 4394: 4388: 4380: 4374: 4373: 4363: 4353: 4319: 4313: 4312: 4284: 4278: 4277: 4275: 4273: 4266:The Conversation 4256: 4250: 4249: 4247: 4245: 4229: 4212: 4211: 4209: 4207: 4187: 4181: 4180: 4178: 4176: 4170: 4164:. Archived from 4131: 4115: 4109: 4108: 4075: 4069: 4068: 4030: 4024: 4023: 4021: 4019: 4010:. Archived from 4000: 3994: 3993: 3991: 3989: 3972: 3966: 3965: 3947: 3907: 3901: 3900: 3868: 3857: 3856: 3836: 3827: 3821: 3812: 3811: 3795: 3789: 3788: 3770: 3761: 3755: 3754: 3752: 3750: 3736: 3730: 3729: 3727: 3725: 3688: 3682: 3681: 3673: 3667: 3666: 3646: 3637: 3636: 3608: 3597: 3596: 3581:(3rd ed.). 3574: 3535: 3534: 3529:. Archived from 3512: 3506: 3505: 3503: 3501: 3484: 3468: 3465: 3459: 3455: 3449: 3443: 3442: 3433: 3427: 3420: 3414: 3399:Stockholm County 3391: 3385: 3378: 3372: 3365: 3359: 3355: 3349: 3345: 3339: 3336:weak interaction 3328: 3322: 3314: 3308: 3305: 3299: 3297: 3296: 3295: 3288: 3287: 3278: 3277: 3276: 3269: 3268: 3259: 3258: 3257: 3250: 3249: 3240: 3239: 3238: 3231: 3230: 3220: 3214: 3212: 3211: 3197: 3191: 3160: 3126: 3125: 3124: 3114: 3113: 3112: 3102: 3101: 3100: 3068: 3067: 3066: 3056: 3055: 3054: 3044: 3043: 3042: 3023:hydrogen bromide 3020: 3019: 3018: 3010: 3009: 3008: 2927:Calculations of 2860: 2755: 2754: 2753: 2586:(IUPAC) and the 2551: 2550: 2544: 2442:atomic structure 2411: 2402: 2363: 2362: 2361: 2354: 2353: 2345: 2344: 2343: 2336: 2335: 2326: 2325: 2324: 2317: 2316: 2275: 2273: 2255: 2254: 2253: 2246: 2245: 2234: 2233: 2232: 2225: 2224: 2215: 2214: 2213: 2206: 2205: 2192:alpha activities 1976:chemical element 1956:compound nucleus 1937: 1936: 1925: 1924: 1740: 1733: 1726: 1714: 1713: 1692: 1689: 1679: 1676: 1671: 1653: 1641: 1631: 1626: 1610: 1605: 1587: 1577: 1572: 1556: 1553: 1539: 1536: 1526: 1523: 1518: 1502: 1499: 1485: 1482: 1475: 1450: 1418: 1417: 1408: 1403: 1396: 1381: 1340:53850-35-4 1329: 1296:Other properties 1225:(parenthesized: 1224: 1215:Oxidation states 1198: 1177: 1176: 1132: 1093: 1092: 1033: 1026: 1019: 1012: 1005: 998: 991: 984: 977: 970: 963: 956: 949: 942: 935: 928: 921: 914: 907: 900: 893: 886: 879: 872: 865: 858: 851: 844: 837: 830: 823: 816: 807: 800: 793: 786: 779: 772: 765: 758: 751: 744: 737: 730: 723: 716: 709: 702: 695: 688: 681: 674: 667: 660: 653: 646: 639: 632: 625: 618: 611: 604: 597: 590: 581: 574: 567: 560: 553: 546: 539: 532: 525: 518: 511: 504: 497: 490: 483: 476: 465: 458: 449: 442: 435: 428: 421: 414: 407: 400: 393: 386: 379: 372: 365: 358: 351: 344: 335: 328: 319: 312: 305: 298: 291: 284: 275: 268: 259: 252: 245: 238: 231: 224: 215: 208: 199: 190: 184: 183: 179: 178: 175: 174: 145: 138: 137: 134: 133: 130: 127: 124: 121: 118: 115: 112: 98: 91: 90: 87: 86: 83: 80: 77: 74: 71: 68: 65: 44: 42: 34: 8628: 8627: 8623: 8622: 8621: 8619: 8618: 8617: 8583: 8582: 8581: 8576: 8575: 8574: 8540: 8531: 8529: 8522: 8520: 8513: 8511: 8504: 8502: 8495: 8493: 8486: 8484: 8477: 8475: 8468: 8466: 8459: 8457: 8450: 8448: 8441: 8439: 8432: 8430: 8423: 8421: 8414: 8412: 8405: 8403: 8396: 8394: 8387: 8385: 8378: 8376: 8369: 8367: 8360: 8358: 8351: 8349: 8342: 8340: 8333: 8331: 8324: 8322: 8315: 8313: 8306: 8304: 8297: 8295: 8288: 8286: 8279: 8277: 8270: 8268: 8261: 8259: 8252: 8250: 8236: 8234: 8227: 8225: 8218: 8216: 8209: 8207: 8200: 8198: 8191: 8189: 8182: 8180: 8173: 8171: 8164: 8162: 8155: 8153: 8146: 8144: 8137: 8135: 8128: 8126: 8119: 8117: 8110: 8108: 8101: 8099: 8092: 8090: 8083: 8081: 8074: 8072: 8065: 8063: 8056: 8054: 8047: 8045: 8038: 8036: 8029: 8027: 8020: 8018: 8011: 8009: 8002: 8000: 7993: 7991: 7984: 7982: 7975: 7973: 7966: 7964: 7957: 7955: 7941: 7939: 7932: 7930: 7923: 7921: 7914: 7912: 7905: 7903: 7896: 7894: 7887: 7885: 7878: 7876: 7869: 7867: 7860: 7858: 7851: 7849: 7842: 7840: 7833: 7831: 7824: 7822: 7815: 7813: 7806: 7804: 7795: 7793: 7786: 7784: 7770: 7768: 7761: 7759: 7752: 7750: 7743: 7741: 7734: 7732: 7725: 7723: 7716: 7714: 7707: 7705: 7698: 7696: 7689: 7687: 7680: 7678: 7671: 7669: 7662: 7660: 7653: 7651: 7644: 7642: 7635: 7633: 7624: 7622: 7615: 7613: 7599: 7597: 7590: 7588: 7581: 7579: 7572: 7570: 7563: 7561: 7554: 7552: 7543: 7541: 7534: 7532: 7518: 7516: 7509: 7507: 7500: 7498: 7491: 7489: 7482: 7480: 7473: 7471: 7462: 7460: 7453: 7451: 7437: 7435: 7426: 7424: 7313: 7308: 7216: 7190: 7152: 7107: 7102: 7060: 7053: 7049: 7041: 7008: 7002: 6998: 6988: 6986: 6982: 6975: 6969: 6965: 6930:Physica Scripta 6926: 6922: 6912: 6910: 6906: 6895: 6889: 6885: 6877: 6820: 6810: 6806: 6757: 6753: 6704: 6700: 6651: 6647: 6640: 6618: 6614: 6565: 6561: 6554: 6540: 6536: 6528: 6489: 6483: 6476: 6469: 6447: 6440: 6430: 6428: 6385: 6381: 6362: 6358: 6345: 6343: 6328: 6324: 6314: 6312: 6283: 6279: 6269: 6267: 6254: 6253: 6249: 6222: 6221: 6217: 6209: 6205: 6174: 6170: 6160: 6158: 6154: 6123: 6117: 6113: 6105: 6101: 6091: 6089: 6078: 6074: 6064: 6062: 6058: 6035: 6031: 6030: 6026: 5997: 5993: 5983: 5981: 5954: 5950: 5940: 5938: 5934: 5903: 5893: 5880: 5853: 5849: 5838: 5822: 5818: 5807: 5806: 5802: 5795: 5781: 5780: 5776: 5760: 5759: 5752: 5750: 5739: 5738: 5734: 5721: 5717: 5707: 5705: 5690: 5689: 5685: 5675: 5673: 5669: 5638: 5630:Barber, R. C.; 5628: 5605: 5595: 5593: 5566: 5562: 5533: 5529: 5519: 5517: 5513: 5506: 5500: 5496: 5489: 5481:. p. 416. 5471: 5467: 5443: 5437: 5433: 5423: 5421: 5417: 5386: 5380: 5373: 5365: 5361: 5353: 5346: 5336: 5334: 5324: 5323: 5319: 5301: 5300:Reprinted from 5293: 5291: 5282: 5281: 5277: 5267: 5265: 5253: 5246: 5236: 5234: 5222: 5218: 5191: 5187: 5124: 5120: 5101: 5097: 5044: 5040: 5030: 5028: 5004: 4997: 4987: 4985: 4978: 4970: 4966: 4921: 4912: 4904: 4900: 4853: 4849: 4841: 4837: 4829: 4822: 4814: 4810: 4802: 4798: 4757:(2): 024320–1. 4743: 4739: 4729: 4727: 4716: 4710: 4697: 4687: 4685: 4674: 4668: 4661: 4653: 4649: 4641: 4637: 4629: 4625: 4617: 4613: 4603: 4601: 4589:Chemistry World 4586: 4575: 4528: 4521: 4479: 4470: 4466: 4443: 4436: 4429: 4392: 4390: 4386: 4382: 4381: 4377: 4320: 4316: 4289:Nuclear Physics 4285: 4281: 4271: 4269: 4257: 4253: 4243: 4241: 4230: 4215: 4205: 4203: 4191:Subramanian, S. 4188: 4184: 4174: 4172: 4171:on June 7, 2015 4168: 4129: 4116: 4112: 4076: 4072: 4057: 4031: 4027: 4017: 4015: 4002: 4001: 3997: 3987: 3985: 3982:Chemistry World 3973: 3969: 3908: 3904: 3869: 3860: 3837: 3830: 3822: 3815: 3796: 3792: 3768: 3762: 3758: 3748: 3746: 3738: 3737: 3733: 3723: 3721: 3719: 3689: 3685: 3674: 3670: 3647: 3640: 3609: 3600: 3593: 3575: 3538: 3514: 3513: 3509: 3499: 3497: 3486: 3485: 3481: 3477: 3472: 3471: 3466: 3462: 3456: 3452: 3441: 3438: 3437: 3436: 3434: 3430: 3421: 3417: 3392: 3388: 3379: 3375: 3366: 3362: 3356: 3352: 3346: 3342: 3329: 3325: 3315: 3311: 3306: 3302: 3294: 3292: 3291: 3290: 3286: 3283: 3282: 3281: 3280: 3275: 3273: 3272: 3271: 3267: 3264: 3263: 3262: 3261: 3256: 3254: 3253: 3252: 3248: 3245: 3244: 3243: 3242: 3237: 3235: 3234: 3233: 3229: 3226: 3225: 3224: 3223: 3221: 3217: 3210: 3207: 3206: 3205: 3198: 3194: 3164:nuclear physics 3161: 3157: 3152: 3145: 3141: 3137: 3133: 3123: 3120: 3119: 3118: 3116: 3111: 3108: 3107: 3106: 3104: 3099: 3096: 3095: 3094: 3092: 3065: 3062: 3061: 3060: 3058: 3053: 3050: 3049: 3048: 3046: 3041: 3038: 3037: 3036: 3034: 3017: 3015: 3014: 3013: 3012: 3007: 3004: 3003: 3002: 3000: 2997:moles per liter 2946: 2907: 2903: 2894: 2876: 2854: 2836: 2825: 2804: 2776: 2751: 2749: 2748: 2746: 2706: 2700: 2580: 2579: 2578: 2576:European Russia 2569: 2563: 2562: 2561: 2560: 2552: 2490:Yuri Oganessian 2429: 2428: 2427: 2426: 2414: 2413: 2412: 2404: 2403: 2392: 2360: 2358: 2357: 2356: 2352: 2350: 2349: 2348: 2347: 2342: 2340: 2339: 2338: 2334: 2331: 2330: 2329: 2328: 2323: 2321: 2320: 2319: 2315: 2312: 2311: 2310: 2309: 2298:californium-249 2271: 2269: 2252: 2250: 2249: 2248: 2244: 2242: 2241: 2240: 2239: 2231: 2229: 2228: 2227: 2223: 2220: 2219: 2218: 2217: 2212: 2210: 2209: 2208: 2204: 2201: 2200: 2199: 2198: 2189: 2179:with a beam of 2138: 2111: 2106: 2101: 2100: 2077:fission barrier 2029:energy barriers 1992: 1934: 1928:External videos 1859: 1853: 1845: 1744: 1719: 1690: 1687: 1677: 1674: 1669: 1651: 1639: 1629: 1624: 1608: 1603: 1585: 1575: 1570: 1554: 1549: 1537: 1534: 1524: 1521: 1516: 1500: 1495: 1483: 1478: 1473: 1448: 1441: 1434:abun­dance 1407: 1389: 1379: 1330: 1284:Covalent radius 1261: 1220: 1192: 1170: 1086: 1082: 1053: 1051: 1047: 1045: 1039: 1031: 1024: 1017: 1010: 1003: 996: 989: 982: 975: 968: 961: 954: 947: 940: 933: 926: 919: 912: 905: 898: 891: 884: 877: 870: 863: 856: 849: 842: 835: 828: 821: 814: 805: 798: 791: 784: 777: 770: 763: 756: 749: 742: 735: 728: 721: 714: 707: 700: 693: 686: 679: 672: 665: 658: 651: 644: 637: 630: 623: 616: 609: 602: 595: 588: 579: 572: 565: 558: 551: 544: 537: 530: 523: 516: 509: 502: 495: 488: 481: 474: 463: 456: 447: 440: 433: 426: 419: 412: 405: 398: 391: 384: 377: 370: 363: 356: 349: 342: 333: 326: 317: 310: 303: 296: 289: 282: 273: 266: 257: 250: 243: 236: 229: 222: 213: 206: 197: 188: 166:Dubnium in the 152: 143: 139: 109: 105: 96: 92: 62: 58: 40: 36: 33: 28: 21: 12: 11: 5: 8626: 8616: 8615: 8610: 8605: 8600: 8595: 8578: 8577: 8571: 8570: 8565: 8560: 8555: 8547: 8545: 8542: 8541: 8537: 8536: 8527: 8518: 8509: 8500: 8491: 8482: 8473: 8464: 8455: 8446: 8437: 8428: 8419: 8410: 8401: 8392: 8383: 8374: 8365: 8356: 8347: 8338: 8329: 8320: 8311: 8302: 8293: 8284: 8275: 8266: 8257: 8248: 8242: 8241: 8232: 8223: 8214: 8205: 8196: 8187: 8178: 8169: 8160: 8151: 8142: 8133: 8124: 8115: 8106: 8097: 8088: 8079: 8070: 8061: 8052: 8043: 8034: 8025: 8016: 8007: 7998: 7989: 7980: 7971: 7962: 7953: 7947: 7946: 7937: 7928: 7919: 7910: 7901: 7892: 7883: 7874: 7865: 7856: 7847: 7838: 7829: 7820: 7811: 7802: 7800: 7791: 7782: 7776: 7775: 7766: 7757: 7748: 7739: 7730: 7721: 7712: 7703: 7694: 7685: 7676: 7667: 7658: 7649: 7640: 7631: 7629: 7620: 7611: 7605: 7604: 7595: 7586: 7577: 7568: 7559: 7550: 7548: 7539: 7530: 7524: 7523: 7514: 7505: 7496: 7487: 7478: 7469: 7467: 7458: 7449: 7443: 7442: 7433: 7431: 7422: 7416: 7415: 7410: 7405: 7400: 7395: 7390: 7385: 7380: 7375: 7370: 7365: 7360: 7355: 7350: 7345: 7340: 7335: 7333: 7328: 7323: 7318: 7315: 7314: 7311:Periodic table 7307: 7306: 7299: 7292: 7284: 7278: 7277: 7220: 7214: 7194: 7188: 7168:Hoffman, D. C. 7164: 7150: 7137: 7106: 7103: 7101: 7100: 7058: 7047: 6996: 6963: 6920: 6883: 6831:(17): 172501. 6804: 6771:(14): 142502. 6751: 6698: 6645: 6638: 6612: 6575:(1): 131–140. 6559: 6552: 6534: 6474: 6467: 6438: 6399:(2): 237–309. 6379: 6372:) – via 6356: 6322: 6297:10.2172/785268 6277: 6247: 6215: 6203: 6168: 6111: 6099: 6072: 6024: 5991: 5968:(1): B10.003. 5948: 5897:Seaborg, G. T. 5878: 5847: 5836: 5816: 5800: 5793: 5784:Radiochemistry 5774: 5732: 5715: 5683: 5603: 5560: 5527: 5494: 5487: 5465: 5431: 5371: 5359: 5344: 5317: 5275: 5244: 5216: 5185: 5118: 5095: 5038: 4995: 4964: 4910: 4898: 4847: 4835: 4833:, p. 433. 4820: 4818:, p. 439. 4808: 4796: 4737: 4695: 4659: 4657:, p. 432. 4647: 4635: 4633:, p. 335. 4623: 4621:, p. 334. 4611: 4573: 4532:Hoffman, D. C. 4519: 4473:Wapstra, A. H. 4464: 4434: 4427: 4403:Seaborg, G. T. 4389:. pp. 7–8 4375: 4314: 4279: 4251: 4213: 4182: 4140:(2): 235–236. 4123:Armbruster, P. 4119:MĂŒnzenberg, G. 4110: 4070: 4055: 4025: 3995: 3967: 3922:(17): 172501. 3902: 3883:(3): L031301. 3858: 3828: 3813: 3790: 3756: 3731: 3717: 3683: 3668: 3657:(17): 172101. 3638: 3598: 3591: 3536: 3507: 3478: 3476: 3473: 3470: 3469: 3460: 3450: 3439: 3428: 3424:nuclear isomer 3415: 3386: 3373: 3360: 3350: 3340: 3323: 3309: 3300: 3293: 3284: 3274: 3265: 3255: 3246: 3236: 3227: 3215: 3208: 3192: 3154: 3153: 3151: 3148: 3143: 3139: 3135: 3131: 3121: 3109: 3097: 3063: 3051: 3039: 3016: 3005: 2978:solution into 2957:than niobium. 2945: 2942: 2905: 2901: 2893: 2890: 2874: 2834: 2823: 2803: 2800: 2775: 2772: 2702:Main article: 2699: 2696: 2565: 2564: 2554: 2553: 2546: 2545: 2539: 2538: 2537: 2478:Albert Ghiorso 2446:quantum theory 2416: 2415: 2406: 2405: 2397: 2396: 2395: 2394: 2393: 2391: 2388: 2375:, rather than 2365: 2364: 2359: 2351: 2341: 2332: 2322: 2313: 2262: 2261: 2251: 2243: 2230: 2221: 2211: 2202: 2187: 2159:came from the 2137: 2134: 2110: 2107: 2105: 2102: 2094:kinetic energy 2050:in the latter. 2016:binding energy 1991: 1988: 1946: 1945: 1930: 1929: 1908:speed of light 1879:atomic nucleus 1867:nuclear fusion 1858: 1855: 1854: 1846: 1844: 1841: 1750: 1749: 1743: 1742: 1735: 1728: 1720: 1707: 1706: 1703: 1702: 1699: 1698: 1693: 1684: 1683: 1680: 1672: 1667: 1664: 1660: 1659: 1654: 1648: 1647: 1642: 1636: 1635: 1632: 1627: 1622: 1619: 1615: 1614: 1611: 1606: 1601: 1598: 1594: 1593: 1588: 1582: 1581: 1578: 1573: 1568: 1565: 1561: 1560: 1557: 1546: 1545: 1540: 1531: 1530: 1527: 1519: 1514: 1511: 1507: 1506: 1503: 1492: 1491: 1486: 1476: 1471: 1466: 1462: 1461: 1456: 1451: 1446: 1436: 1431: 1428: 1427: 1422: 1421:Main isotopes 1414: 1413: 1410: 1409: 1406: 1405: 1398: 1390: 1383: 1382: 1372: 1366: 1365: 1351: 1347: 1346: 1342: 1341: 1338: 1332: 1331: 1324: 1316: ​ 1314: 1308: 1307: 1302: 1298: 1297: 1293: 1292: 1286: 1280: 1279: 1269: 1263: 1262: 1260: 1259: 1249: 1246: 1243: 1239: 1237: 1231: 1230: 1217: 1211: 1210: 1206: 1205: 1199: 1185: 1184: 1178: 1164: 1163: 1159: 1158: 1155: 1151: 1150: 1149:] 5f 6d 7s 1143: 1137: 1136: 1128: 1122: 1121: 1116: 1110: 1109: 1104: 1098: 1097: 1094: 1079: 1078: 1075: 1074: 1071: 1070: 1056: 1055: 1040: 1036: 1035: 1028: 1021: 1014: 1007: 1000: 993: 986: 979: 972: 965: 958: 951: 944: 937: 930: 923: 916: 909: 902: 895: 888: 881: 874: 867: 860: 853: 846: 839: 832: 825: 818: 810: 809: 802: 795: 788: 781: 774: 767: 760: 753: 746: 739: 732: 725: 718: 711: 704: 697: 690: 683: 676: 669: 662: 655: 648: 641: 634: 627: 620: 613: 606: 599: 592: 584: 583: 576: 569: 562: 555: 548: 541: 534: 527: 520: 513: 506: 499: 492: 485: 478: 471: 469: 467: 460: 452: 451: 444: 437: 430: 423: 416: 409: 402: 395: 388: 381: 374: 367: 360: 353: 346: 339: 337: 330: 322: 321: 314: 307: 300: 293: 286: 279: 277: 270: 262: 261: 254: 247: 240: 233: 226: 219: 217: 210: 202: 201: 194: 192: 182: 171: 170: 168:periodic table 163: 162: 160: 154: 153: 151: 150: 103: 55: 53: 49: 48: 38: 37:Dubnium,  31: 9: 6: 4: 3: 2: 8625: 8614: 8611: 8609: 8606: 8604: 8601: 8599: 8596: 8594: 8591: 8590: 8588: 8569: 8566: 8564: 8561: 8559: 8556: 8554: 8551: 8550: 8543: 8534: 8525: 8516: 8507: 8498: 8489: 8480: 8471: 8462: 8453: 8444: 8435: 8426: 8417: 8408: 8399: 8390: 8381: 8372: 8363: 8354: 8345: 8336: 8327: 8318: 8309: 8300: 8291: 8282: 8273: 8264: 8255: 8247: 8243: 8239: 8230: 8221: 8212: 8203: 8194: 8185: 8176: 8167: 8158: 8149: 8140: 8131: 8122: 8113: 8104: 8095: 8086: 8077: 8068: 8059: 8050: 8041: 8032: 8023: 8014: 8005: 7996: 7987: 7978: 7969: 7960: 7952: 7948: 7944: 7935: 7926: 7917: 7908: 7899: 7890: 7881: 7872: 7863: 7854: 7845: 7836: 7827: 7818: 7809: 7798: 7789: 7781: 7777: 7773: 7764: 7755: 7746: 7737: 7728: 7719: 7710: 7701: 7692: 7683: 7674: 7665: 7656: 7647: 7638: 7627: 7618: 7610: 7606: 7602: 7593: 7584: 7575: 7566: 7557: 7546: 7537: 7529: 7525: 7521: 7512: 7503: 7494: 7485: 7476: 7465: 7456: 7448: 7444: 7440: 7429: 7421: 7417: 7414: 7409: 7404: 7399: 7394: 7389: 7384: 7379: 7374: 7369: 7364: 7359: 7354: 7349: 7344: 7339: 7332: 7327: 7322: 7321: 7316: 7312: 7305: 7300: 7298: 7293: 7291: 7286: 7285: 7282: 7274: 7270: 7266: 7262: 7258: 7254: 7250: 7246: 7241: 7236: 7233:(1): 012001. 7232: 7228: 7227: 7221: 7217: 7211: 7207: 7203: 7199: 7195: 7191: 7185: 7181: 7177: 7173: 7169: 7165: 7161: 7157: 7153: 7147: 7143: 7138: 7134: 7130: 7126: 7122: 7119:(3): 030001. 7118: 7114: 7109: 7108: 7096: 7092: 7087: 7082: 7078: 7074: 7070: 7066: 7062: 7051: 7040: 7035: 7030: 7026: 7022: 7018: 7014: 7007: 7000: 6981: 6974: 6967: 6959: 6955: 6951: 6947: 6943: 6939: 6936:(2): 023003. 6935: 6931: 6924: 6905: 6901: 6894: 6887: 6876: 6872: 6868: 6864: 6860: 6855: 6850: 6846: 6842: 6838: 6834: 6830: 6826: 6819: 6817: 6808: 6800: 6796: 6792: 6787: 6782: 6778: 6774: 6770: 6766: 6762: 6755: 6747: 6743: 6739: 6735: 6731: 6727: 6722: 6717: 6714:(6): 064602. 6713: 6709: 6702: 6694: 6690: 6686: 6682: 6678: 6674: 6669: 6664: 6660: 6656: 6649: 6641: 6635: 6631: 6627: 6623: 6616: 6608: 6604: 6600: 6596: 6592: 6588: 6583: 6578: 6574: 6570: 6563: 6555: 6549: 6545: 6538: 6527: 6523: 6519: 6515: 6511: 6507: 6503: 6499: 6495: 6488: 6481: 6479: 6470: 6464: 6460: 6456: 6452: 6445: 6443: 6426: 6422: 6418: 6414: 6410: 6406: 6402: 6398: 6394: 6390: 6383: 6375: 6371: 6367: 6360: 6353: 6341: 6337: 6333: 6326: 6310: 6306: 6302: 6298: 6294: 6290: 6289: 6281: 6265: 6261: 6257: 6251: 6242: 6237: 6233: 6229: 6225: 6219: 6212: 6207: 6199: 6195: 6191: 6187: 6183: 6179: 6172: 6153: 6149: 6145: 6141: 6137: 6133: 6129: 6122: 6115: 6108: 6103: 6087: 6083: 6076: 6057: 6053: 6049: 6045: 6041: 6034: 6028: 6019: 6014: 6010: 6006: 6002: 5995: 5979: 5975: 5971: 5967: 5963: 5959: 5952: 5933: 5929: 5925: 5921: 5917: 5913: 5909: 5902: 5898: 5895:Ghiorso, A.; 5891: 5889: 5887: 5885: 5883: 5874: 5870: 5862: 5858: 5851: 5843: 5839: 5833: 5829: 5828: 5820: 5812: 5811: 5804: 5796: 5794:9780851862545 5790: 5786: 5785: 5778: 5770: 5764: 5748: 5744: 5743: 5736: 5728: 5727: 5719: 5703: 5699: 5698: 5693: 5687: 5668: 5664: 5660: 5656: 5652: 5648: 5644: 5637: 5633: 5626: 5624: 5622: 5620: 5618: 5616: 5614: 5612: 5610: 5608: 5591: 5587: 5583: 5579: 5575: 5571: 5564: 5555: 5550: 5546: 5542: 5538: 5531: 5512: 5505: 5498: 5490: 5484: 5480: 5476: 5469: 5461: 5457: 5453: 5449: 5442: 5435: 5416: 5412: 5408: 5404: 5400: 5396: 5392: 5385: 5378: 5376: 5369:, p. 40. 5368: 5363: 5356: 5351: 5349: 5333: 5332: 5327: 5321: 5313: 5309: 5305: 5289: 5285: 5279: 5264: 5263: 5262:Distillations 5258: 5251: 5249: 5233: 5232: 5227: 5220: 5212: 5208: 5204: 5200: 5196: 5195:Physics Today 5189: 5181: 5177: 5173: 5169: 5165: 5161: 5156: 5151: 5147: 5143: 5139: 5135: 5134: 5133:Physics Today 5129: 5122: 5114: 5110: 5106: 5099: 5091: 5087: 5083: 5079: 5074: 5069: 5065: 5061: 5057: 5053: 5049: 5042: 5027: 5023: 5019: 5015: 5014: 5013:Physics World 5009: 5002: 5000: 4984: 4977: 4976: 4968: 4960: 4956: 4951: 4946: 4942: 4938: 4934: 4930: 4926: 4919: 4917: 4915: 4907: 4902: 4894: 4890: 4886: 4882: 4878: 4874: 4870: 4866: 4862: 4858: 4851: 4844: 4839: 4832: 4827: 4825: 4817: 4812: 4805: 4800: 4792: 4788: 4783: 4778: 4774: 4770: 4765: 4760: 4756: 4752: 4748: 4741: 4726: 4722: 4715: 4708: 4706: 4704: 4702: 4700: 4684: 4680: 4673: 4672:"Alpha decay" 4666: 4664: 4656: 4651: 4644: 4639: 4632: 4627: 4620: 4615: 4600: 4599: 4594: 4590: 4584: 4582: 4580: 4578: 4569: 4565: 4561: 4557: 4553: 4549: 4545: 4541: 4537: 4533: 4530:Hyde, E. K.; 4526: 4524: 4515: 4511: 4507: 4503: 4499: 4495: 4491: 4487: 4486: 4478: 4474: 4468: 4460: 4456: 4452: 4448: 4441: 4439: 4430: 4424: 4420: 4416: 4412: 4408: 4404: 4399:Published as 4385: 4379: 4371: 4367: 4362: 4357: 4352: 4347: 4343: 4339: 4335: 4331: 4330: 4325: 4318: 4310: 4306: 4302: 4298: 4294: 4290: 4283: 4268: 4267: 4262: 4255: 4239: 4235: 4228: 4226: 4224: 4222: 4220: 4218: 4202: 4201: 4196: 4192: 4186: 4167: 4163: 4159: 4155: 4151: 4147: 4143: 4139: 4135: 4128: 4124: 4120: 4114: 4106: 4102: 4098: 4094: 4091:(2): 024608. 4090: 4086: 4085: 4080: 4074: 4066: 4062: 4058: 4052: 4048: 4044: 4040: 4036: 4029: 4013: 4009: 4005: 3999: 3984: 3983: 3978: 3971: 3963: 3959: 3955: 3951: 3946: 3941: 3937: 3933: 3929: 3925: 3921: 3917: 3913: 3906: 3898: 3894: 3890: 3886: 3882: 3878: 3874: 3867: 3865: 3863: 3854: 3850: 3846: 3842: 3835: 3833: 3825: 3820: 3818: 3809: 3805: 3801: 3794: 3786: 3782: 3779:(3): 030001. 3778: 3774: 3767: 3760: 3745: 3741: 3735: 3720: 3714: 3710: 3706: 3702: 3698: 3694: 3687: 3679: 3672: 3664: 3660: 3656: 3652: 3645: 3643: 3634: 3630: 3626: 3622: 3618: 3614: 3607: 3605: 3603: 3594: 3588: 3584: 3580: 3573: 3571: 3569: 3567: 3565: 3563: 3561: 3559: 3557: 3555: 3553: 3551: 3549: 3547: 3545: 3543: 3541: 3532: 3528: 3524: 3522: 3517: 3511: 3495: 3494: 3489: 3483: 3479: 3464: 3454: 3447: 3432: 3425: 3419: 3412: 3408: 3404: 3400: 3396: 3390: 3383: 3382:Georgy Flerov 3377: 3370: 3364: 3354: 3344: 3337: 3333: 3327: 3320: 3313: 3304: 3219: 3203: 3196: 3189: 3188:superactinide 3185: 3181: 3177: 3173: 3169: 3165: 3159: 3155: 3147: 3128: 3089: 3087: 3083: 3079: 3075: 3070: 3030: 3028: 3024: 2998: 2994: 2990: 2984: 2981: 2977: 2972: 2968: 2964: 2958: 2956: 2951: 2941: 2938: 2934: 2930: 2925: 2923: 2919: 2915: 2898: 2889: 2887: 2882: 2878: 2872: 2868: 2858: 2852: 2847: 2843: 2840: 2831: 2829: 2821: 2817: 2808: 2799: 2797: 2793: 2789: 2785: 2781: 2771: 2768: 2764: 2760: 2742: 2740: 2736: 2731: 2725: 2723: 2720:of 105, is a 2719: 2718:atomic number 2710: 2705: 2695: 2693: 2689: 2684: 2682: 2678: 2677:rutherfordium 2674: 2670: 2666: 2661: 2657: 2653: 2648: 2646: 2645: 2639: 2635: 2631: 2627: 2622: 2620: 2616: 2612: 2611:rutherfordium 2608: 2604: 2600: 2595: 2591: 2589: 2585: 2582:In 1985, the 2577: 2573: 2568: 2559: 2558: 2543: 2536: 2534: 2530: 2526: 2522: 2518: 2515:In 1981, the 2513: 2511: 2507: 2503: 2499: 2495: 2491: 2487: 2486:Georgy Flerov 2483: 2482:Glenn Seaborg 2479: 2473: 2471: 2467: 2463: 2459: 2455: 2451: 2447: 2443: 2439: 2435: 2424: 2420: 2410: 2401: 2387: 2385: 2380: 2378: 2374: 2368: 2308: 2307: 2306: 2303: 2299: 2295: 2291: 2287: 2282: 2279: 2267: 2259: 2238: 2197: 2196: 2195: 2193: 2186: 2182: 2178: 2174: 2170: 2169:Moscow Oblast 2166: 2162: 2158: 2151: 2147: 2142: 2133: 2131: 2127: 2123: 2119: 2115: 2097: 2095: 2089: 2086: 2082: 2078: 2074: 2070: 2066: 2062: 2058: 2049: 2045: 2044:dipole magnet 2041: 2036: 2032: 2030: 2026: 2022: 2017: 2013: 2009: 2004: 2002: 1998: 1987: 1985: 1981: 1977: 1973: 1969: 1965: 1961: 1957: 1953: 1952:excited state 1944: 1940: 1939:Visualization 1931: 1926: 1923: 1921: 1917: 1916:cross section 1911: 1909: 1904: 1900: 1896: 1892: 1888: 1884: 1880: 1877:A superheavy 1872: 1868: 1863: 1851: 1840: 1838: 1834: 1830: 1826: 1822: 1818: 1814: 1809: 1807: 1803: 1799: 1795: 1790: 1786: 1781: 1779: 1775: 1771: 1770:atomic number 1767: 1764: 1760: 1756: 1748: 1745: | 1741: 1736: 1734: 1729: 1727: 1722: 1721: 1718: 1708: 1704: 1697: 1694: 1686: 1685: 1681: 1673: 1661: 1658: 1655: 1650: 1649: 1646: 1643: 1638: 1637: 1633: 1628: 1616: 1612: 1607: 1595: 1592: 1589: 1584: 1583: 1579: 1574: 1562: 1558: 1552: 1548: 1547: 1544: 1541: 1533: 1532: 1528: 1520: 1508: 1504: 1498: 1494: 1493: 1490: 1487: 1481: 1477: 1470: 1463: 1460: 1459:pro­duct 1457: 1455: 1452: 1445: 1440: 1437: 1435: 1432: 1430: 1429: 1426: 1419: 1415: 1411: 1404: 1399: 1397: 1392: 1391: 1388: 1384: 1377: 1373: 1371: 1367: 1364: 1360: 1359:Moscow Oblast 1356: 1352: 1348: 1343: 1339: 1337: 1333: 1328: 1323: 1319: 1315: 1313: 1309: 1306: 1303: 1299: 1294: 1291: 1287: 1285: 1281: 1278: 1274: 1270: 1268: 1267:Atomic radius 1264: 1258: 1254: 1250: 1247: 1244: 1241: 1240: 1238: 1236: 1232: 1228: 1223: 1218: 1216: 1212: 1207: 1204: 1200: 1196: 1190: 1186: 1183: 1179: 1175: 1169: 1165: 1160: 1156: 1152: 1148: 1144: 1142: 1138: 1135: 1129: 1127: 1123: 1120: 1119:period 7 1117: 1115: 1111: 1108: 1105: 1103: 1099: 1095: 1090: 1085: 1084:Atomic number 1080: 1069: 1061: 1060:rutherfordium 1057: 1044: 1041: 1034: 1029: 1027: 1022: 1020: 1015: 1013: 1008: 1006: 1001: 999: 994: 992: 987: 985: 980: 978: 973: 971: 966: 964: 959: 957: 952: 950: 945: 943: 938: 936: 934:Rutherfordium 931: 929: 924: 922: 917: 915: 910: 908: 903: 901: 896: 894: 889: 887: 882: 880: 875: 873: 868: 866: 861: 859: 854: 852: 847: 845: 840: 838: 833: 831: 826: 824: 819: 817: 812: 811: 808: 803: 801: 796: 794: 789: 787: 782: 780: 775: 773: 768: 766: 761: 759: 754: 752: 747: 745: 740: 738: 733: 731: 726: 724: 719: 717: 712: 710: 705: 703: 698: 696: 691: 689: 684: 682: 677: 675: 670: 668: 663: 661: 656: 654: 649: 647: 642: 640: 635: 633: 628: 626: 621: 619: 614: 612: 607: 605: 600: 598: 593: 591: 586: 585: 582: 577: 575: 570: 568: 563: 561: 556: 554: 549: 547: 542: 540: 535: 533: 528: 526: 521: 519: 514: 512: 507: 505: 500: 498: 493: 491: 486: 484: 479: 477: 472: 468: 466: 461: 459: 454: 453: 450: 445: 443: 438: 436: 431: 429: 424: 422: 417: 415: 410: 408: 403: 401: 396: 394: 389: 387: 382: 380: 375: 373: 368: 366: 361: 359: 354: 352: 347: 345: 340: 336: 331: 329: 324: 323: 320: 315: 313: 308: 306: 301: 299: 294: 292: 287: 285: 280: 276: 271: 269: 264: 263: 260: 255: 253: 248: 246: 241: 239: 234: 232: 227: 225: 220: 216: 211: 209: 204: 203: 200: 195: 191: 186: 185: 181: 180: 177: 176: 172: 169: 164: 161: 159: 155: 148: 147: 136: 104: 101: 100: 89: 57: 56: 54: 52:Pronunciation 50: 45: 30: 26: 19: 8413: 7230: 7224: 7201: 7175: 7141: 7116: 7112: 7105:Bibliography 7068: 7064: 7050: 7016: 7012: 6999: 6987:. Retrieved 6966: 6933: 6929: 6923: 6911:. Retrieved 6899: 6886: 6828: 6824: 6815: 6807: 6768: 6764: 6754: 6711: 6707: 6701: 6658: 6654: 6648: 6621: 6615: 6572: 6568: 6562: 6543: 6537: 6526:the original 6497: 6493: 6450: 6429:. Retrieved 6396: 6392: 6382: 6359: 6351: 6344:. Retrieved 6335: 6325: 6313:. Retrieved 6287: 6280: 6268:. Retrieved 6259: 6250: 6231: 6227: 6218: 6206: 6184:(3): 53–61. 6181: 6177: 6171: 6159:. Retrieved 6131: 6127: 6114: 6102: 6092:September 7, 6090:. Retrieved 6075: 6065:September 7, 6063:. Retrieved 6043: 6039: 6027: 6008: 6004: 5994: 5982:. Retrieved 5965: 5961: 5951: 5941:September 7, 5939:. Retrieved 5911: 5907: 5872: 5868: 5860: 5856: 5850: 5826: 5819: 5809: 5803: 5783: 5777: 5753:September 8, 5751:. Retrieved 5741: 5735: 5725: 5718: 5706:. Retrieved 5695: 5686: 5676:September 7, 5674:. Retrieved 5646: 5642: 5594:. Retrieved 5577: 5573: 5563: 5544: 5540: 5530: 5518:. Retrieved 5497: 5474: 5468: 5451: 5447: 5434: 5424:September 7, 5422:. Retrieved 5394: 5390: 5362: 5335:. Retrieved 5329: 5320: 5307: 5303: 5292:. Retrieved 5290:(in Russian) 5287: 5278: 5268:February 22, 5266:. Retrieved 5260: 5235:. Retrieved 5229: 5219: 5194: 5188: 5140:(8): 32–38. 5137: 5131: 5121: 5104: 5098: 5055: 5051: 5041: 5031:February 16, 5029:. Retrieved 5020:(7): 25–29. 5017: 5011: 4988:February 16, 4986:. Retrieved 4974: 4967: 4932: 4928: 4901: 4860: 4856: 4850: 4838: 4811: 4799: 4754: 4750: 4740: 4730:February 16, 4728:. Retrieved 4720: 4688:February 16, 4686:. Retrieved 4678: 4650: 4645:, p. 3. 4638: 4626: 4614: 4602:. Retrieved 4596: 4546:(2): 67–68. 4543: 4539: 4489: 4483: 4467: 4446: 4406: 4391:. Retrieved 4378: 4333: 4327: 4317: 4292: 4288: 4282: 4270:. Retrieved 4264: 4254: 4242:. Retrieved 4240:(in Russian) 4237: 4204:. Retrieved 4198: 4185: 4173:. Retrieved 4166:the original 4137: 4133: 4113: 4088: 4082: 4073: 4034: 4028: 4016:. Retrieved 4012:the original 3998: 3986:. Retrieved 3980: 3970: 3919: 3915: 3905: 3880: 3876: 3844: 3840: 3799: 3793: 3776: 3772: 3759: 3747:. Retrieved 3734: 3722:. Retrieved 3700: 3696: 3686: 3677: 3671: 3654: 3650: 3616: 3612: 3578: 3531:the original 3519: 3510: 3498:. Retrieved 3491: 3482: 3463: 3453: 3431: 3418: 3410: 3406: 3389: 3376: 3363: 3353: 3343: 3326: 3312: 3303: 3218: 3195: 3158: 3129: 3090: 3071: 3031: 2989:protactinium 2985: 2959: 2947: 2937:Complexation 2926: 2911: 2883: 2879: 2864: 2856: 2850: 2832: 2813: 2780:periodic law 2777: 2743: 2726: 2715: 2691: 2687: 2685: 2680: 2676: 2659: 2654:(Db), after 2651: 2649: 2642: 2637: 2633: 2629: 2625: 2623: 2618: 2614: 2610: 2598: 2596: 2592: 2581: 2570:Location of 2555: 2533:nielsbohrium 2532: 2520: 2514: 2509: 2505: 2501: 2498:unnilpentium 2497: 2474: 2461: 2457: 2450:nielsbohrium 2449: 2433: 2430: 2381: 2369: 2366: 2283: 2277: 2263: 2257: 2236: 2184: 2173:Soviet Union 2154: 2112: 2090: 2053: 2005: 1993: 1949: 1912: 1876: 1843:Introduction 1810: 1801: 1782: 1765: 1754: 1753: 1443: 1380: (1970) 1321: 1289: 1276: 1256: 1226: 1221: 1219:(+3), (+4), 1202: 1181: 1107:group 5 1088: 976:Darmstadtium 939: 843:Protactinium 617:Praseodymium 29: 7172:Ghiorso, A. 6913:October 12, 6854:1885/148814 6431:December 6, 6346:December 6, 6315:December 6, 6270:December 6, 5984:October 14, 5649:(8): 1757. 5580:(36): 182. 5547:(22): 2–3. 5520:October 10, 5237:January 27, 4906:Beiser 2003 4831:Beiser 2003 4816:Beiser 2003 4655:Beiser 2003 4604:January 27, 4393:January 27, 4361:1885/148847 4295:: 226–234. 4272:January 30, 4244:February 2, 4206:January 18, 4175:October 20, 3945:1885/148814 3074:element 115 2971:cover slips 2963:nitric acid 2669:californium 2302:nitrogen-15 2148:, 105, and 2126:element 102 2122:mendelevium 2021:alpha decay 1903:accelerated 1571:11 min 1322:(predicted) 1320:(bcc) 1290:(estimated) 1277:(estimated) 1203:(predicted) 1193:(near  1182:(predicted) 1018:Livermorium 990:Copernicium 983:Roentgenium 913:Mendelevium 899:Einsteinium 892:Californium 158:Mass number 8587:Categories 6989:October 9, 6721:1802.03091 5596:October 9, 5367:Kragh 2018 5355:Kragh 2018 5294:January 7, 4863:(7): 158. 4492:(6): 883. 3847:(064306). 3749:October 9, 3724:October 4, 3703:: 89–144. 3475:References 3332:beta decay 3138:> TaOCl 3078:aqua regia 2933:hydrolysis 2681:seaborgium 2630:lawrencium 2626:seaborgium 2619:seaborgium 2438:Niels Bohr 2419:Niels Bohr 2384:collimator 2346:→ 105 + 4 2294:California 2288:(LBL), in 2274:0.5 s 2163:(JINR) in 2109:Background 1954:—termed a 1747:references 1604:1.4 h 1336:CAS Number 1227:prediction 1068:seaborgium 1025:Tennessine 969:Meitnerium 948:Seaborgium 927:Lawrencium 666:Dysprosium 652:Gadolinium 631:Promethium 503:Technetium 496:Molybdenum 297:Phosphorus 7265:1742-6588 7240:1207.5700 7198:Kragh, H. 7019:: 07007. 6958:125713877 6668:1006.4738 6607:117956340 6582:0804.3869 6522:123457161 6421:123446987 6198:121862853 6178:Resonance 6161:April 21, 5763:cite book 5708:March 25, 5663:195819585 5570:"Dubnium" 5211:239775403 5180:119531411 5164:0031-9228 5082:1364-503X 4959:1742-6596 4893:125849923 4885:1434-6001 4791:0556-2813 4764:1208.1215 4560:2193-3405 4506:1365-3075 4370:2100-014X 4336:: 00061. 4238:nplus1.ru 4162:123288075 4105:0556-2813 4065:127060181 4018:March 15, 3988:March 15, 3897:252628992 3740:"Dubnium" 3516:"dubnium" 3500:March 24, 3488:"dubnium" 3411:joliotium 3395:Stockholm 3348:form one. 3200:2.5  3082:lanthanum 2837:orbitals 2673:americium 2665:berkelium 2644:flerovium 2638:flerovium 2599:joliotium 2525:Darmstadt 2466:Otto Hahn 2423:Otto Hahn 2118:neptunium 2104:Discovery 1984:electrons 1968:gamma ray 1778:half-life 1761:; it has 1625:16 h 1517:27 s 1474:34 s 1439:half-life 1370:Discovery 1305:synthetic 1032:Oganesson 1011:Moscovium 1004:Flerovium 885:Berkelium 871:Americium 864:Plutonium 857:Neptunium 694:Ytterbium 624:Neodymium 603:Lanthanum 566:Tellurium 524:Palladium 510:Ruthenium 482:Zirconium 464:Strontium 420:Germanium 371:Manganese 327:Potassium 283:Aluminium 274:Magnesium 214:Beryllium 7273:55434734 7206:Springer 7200:(2018). 7160:48965418 7095:33978998 7039:Archived 6980:Archived 6904:Archived 6875:Archived 6863:24836239 6799:Archived 6795:20481935 6746:67767157 6693:55807186 6425:Archived 6340:Archived 6309:Archived 6264:Archived 6152:Archived 6148:96830750 6086:Archived 6056:Archived 5978:Archived 5932:Archived 5928:95069384 5842:Archived 5747:Archived 5702:Archived 5667:Archived 5590:Archived 5511:Archived 5479:Elsevier 5415:Archived 5411:95069384 5337:March 1, 5090:25666065 4591:(2016). 4568:99193729 4514:95737691 4475:(1991). 4459:28796927 3954:24836239 3407:nobelium 2967:sorption 2929:solution 2922:covalent 2892:Chemical 2820:orbitals 2792:tantalum 2784:vanadium 2698:Isotopes 2634:nobelium 2607:nobelium 2290:Berkeley 2235:→ 105 + 2061:nobelium 2008:nucleons 1964:neutrons 1829:tantalum 1821:vanadium 1796:and the 1670:1 h 1171:at  997:Nihonium 920:Nobelium 829:Actinium 815:Francium 799:Astatine 792:Polonium 771:Thallium 750:Platinum 722:Tungsten 715:Tantalum 701:Lutetium 645:Europium 638:Samarium 559:Antimony 457:Rubidium 434:Selenium 364:Chromium 357:Vanadium 350:Titanium 343:Scandium 311:Chlorine 251:Fluorine 237:Nitrogen 189:Hydrogen 8593:Dubnium 8568:p-block 8563:d-block 8558:f-block 8553:s-block 7245:Bibcode 7121:Bibcode 7086:8456785 7021:Bibcode 6938:Bibcode 6900:Science 6871:5949620 6833:Bibcode 6773:Bibcode 6726:Bibcode 6673:Bibcode 6587:Bibcode 6502:Bibcode 6401:Bibcode 6374:Twitter 6260:lbl.gov 5970:Bibcode 5314:. 1977. 5172:1337838 5142:Bibcode 5109:Bibcode 5060:Bibcode 4937:Bibcode 4865:Bibcode 4769:Bibcode 4453:: 4–8. 4338:Bibcode 4297:Bibcode 4142:Bibcode 3962:5949620 3924:Bibcode 3621:Bibcode 3142:≄ DbOCl 2955:hafnium 2788:niobium 2688:hahnium 2660:dubnium 2652:dubnium 2615:hahnium 2574:within 2462:hahnium 2458:dubnium 2434:bohrium 2260:= 4, 5) 2136:Reports 2114:Uranium 2069:fermium 2065:thorium 2057:uranium 2012:protons 1980:decayed 1960:fission 1871:neutron 1825:niobium 1813:group 5 1802:dubnium 1774:isotope 1755:Dubnium 1345:History 1255:) 1189:Density 1134:d-block 1064:dubnium 962:Hassium 955:Bohrium 941:Dubnium 906:Fermium 850:Uranium 836:Thorium 785:Bismuth 743:Iridium 729:Rhenium 708:Hafnium 687:Thulium 673:Holmium 659:Terbium 589:Caesium 538:Cadmium 517:Rhodium 489:Niobium 475:Yttrium 448:Krypton 441:Bromine 427:Arsenic 413:Gallium 334:Calcium 290:Silicon 207:Lithium 146:-nee-əm 99:-nee-əm 47:Dubnium 18:Hafnium 7271:  7263:  7212:  7186:  7158:  7148:  7093:  7083:  6956:  6869:  6861:  6793:  6744:  6691:  6636:  6605:  6550:  6520:  6465:  6419:  6305:785268 6303:  6196:  6146:  5926:  5834:  5791:  5661:  5485:  5409:  5288:n-t.ru 5209:  5178:  5170:  5162:  5088:  5080:  4957:  4891:  4883:  4789:  4566:  4558:  4512:  4504:  4457:  4425:  4368:  4160:  4103:  4063:  4053:  3960:  3952:  3895:  3715:  3619:(11). 3589:  3521:Lexico 3403:Sweden 2839:shield 2822:(and p 2790:, and 2671:, and 2519:(GSI; 2001:energy 1920:tunnel 1897:. The 1827:, and 1763:symbol 1715:  1666:synth 1621:synth 1600:synth 1567:synth 1513:synth 1353:after 1350:Naming 1275: 1191: 1180:solid 1131:  1114:Period 878:Curium 822:Radium 736:Osmium 680:Erbium 610:Cerium 596:Barium 573:Iodine 545:Indium 531:Silver 399:Copper 392:Nickel 385:Cobalt 304:Sulfur 267:Sodium 244:Oxygen 230:Carbon 198:Helium 7269:S2CID 7235:arXiv 7042:(PDF) 7009:(PDF) 6983:(PDF) 6976:(PDF) 6954:S2CID 6907:(PDF) 6896:(PDF) 6878:(PDF) 6867:S2CID 6821:(PDF) 6742:S2CID 6716:arXiv 6689:S2CID 6663:arXiv 6603:S2CID 6577:arXiv 6529:(PDF) 6518:S2CID 6490:(PDF) 6417:S2CID 6370:Tweet 6194:S2CID 6155:(PDF) 6144:S2CID 6124:(PDF) 6059:(PDF) 6036:(PDF) 6011:(2). 5935:(PDF) 5924:S2CID 5904:(PDF) 5871:[ 5859:[ 5670:(PDF) 5659:S2CID 5639:(PDF) 5514:(PDF) 5507:(PDF) 5444:(PDF) 5418:(PDF) 5407:S2CID 5387:(PDF) 5312:Nauka 5306:[ 5207:S2CID 5176:S2CID 4979:(PDF) 4889:S2CID 4759:arXiv 4717:(PDF) 4675:(PDF) 4564:S2CID 4510:S2CID 4480:(PDF) 4455:S2CID 4387:(PDF) 4169:(PDF) 4158:S2CID 4130:(PDF) 4061:S2CID 3958:S2CID 3893:S2CID 3769:(PDF) 3168:heavy 3150:Notes 3059:TaOCl 3035:DbOBr 3025:into 2953:like 2656:Dubna 2572:Dubna 2557:Dubna 2529:Hesse 2523:) in 2510:pent- 2454:boron 2300:with 2165:Dubna 1806:Dubna 1757:is a 1469:synth 1425:Decay 1355:Dubna 1168:Phase 1145:[ 1126:Block 1102:Group 806:Radon 580:Xenon 318:Argon 223:Boron 7261:ISSN 7210:ISBN 7184:ISBN 7156:OCLC 7146:ISBN 7091:PMID 6991:2017 6915:2016 6859:PMID 6791:PMID 6634:ISBN 6548:ISBN 6463:ISBN 6433:2022 6348:2022 6317:2022 6301:OSTI 6272:2022 6163:2018 6094:2016 6067:2016 5986:2017 5943:2016 5832:ISBN 5789:ISBN 5769:link 5755:2022 5710:2018 5678:2016 5598:2017 5522:2017 5483:ISBN 5426:2016 5339:2020 5296:2020 5270:2020 5239:2020 5168:OSTI 5160:ISSN 5086:PMID 5078:ISSN 5033:2020 4990:2020 4955:ISSN 4881:ISSN 4787:ISSN 4732:2020 4690:2020 4606:2020 4556:ISSN 4502:ISSN 4423:ISBN 4395:2020 4366:ISSN 4274:2020 4246:2020 4208:2020 4177:2012 4101:ISSN 4051:ISBN 4020:2020 3990:2020 3950:PMID 3751:2017 3726:2013 3713:ISBN 3587:ISBN 3502:2018 3172:lead 3117:DbOF 3093:NbOF 3047:DbBr 3001:DbOX 2859:-1)d 2761:and 2737:and 2679:and 2613:and 2506:nil- 2504:and 2480:and 2444:and 2023:and 1891:fuse 1887:beam 1883:mass 1768:and 1739:edit 1732:talk 1725:view 1454:mode 1253:more 1195:r.t. 778:Lead 757:Gold 406:Zinc 378:Iron 258:Neon 97:DOOB 7253:doi 7231:420 7129:doi 7081:PMC 7073:doi 7029:doi 7017:131 6946:doi 6849:hdl 6841:doi 6829:112 6781:doi 6769:104 6734:doi 6681:doi 6626:doi 6595:doi 6510:doi 6455:doi 6409:doi 6293:doi 6236:doi 6186:doi 6136:doi 6048:doi 6013:doi 5916:doi 5651:doi 5582:doi 5549:doi 5456:doi 5399:doi 5199:doi 5150:doi 5068:doi 5056:373 5022:doi 4945:doi 4933:337 4873:doi 4777:doi 4548:doi 4494:doi 4415:doi 4356:hdl 4346:doi 4305:doi 4150:doi 4138:317 4093:doi 4043:doi 3940:hdl 3932:doi 3920:112 3885:doi 3881:106 3849:doi 3845:106 3804:doi 3781:doi 3705:doi 3659:doi 3629:doi 3209:-11 3184:112 3182:or 3180:100 3176:103 3162:In 3105:TaF 3011:or 2877:.) 2875:3/2 2835:1/2 2824:1/2 2502:un- 2270:2.2 2188:1/2 2150:106 2146:104 1691:83% 1678:17% 1663:Db 1618:Db 1597:Db 1564:Db 1559:Rf 1538:41% 1525:56% 1510:Db 1501:33% 1484:67% 1465:Db 1447:1/2 1174:STP 1096:105 552:Tin 144:DUB 39:105 8589:: 8532:Og 8523:Ts 8514:Lv 8505:Mc 8496:Fl 8487:Nh 8478:Cn 8469:Rg 8460:Ds 8451:Mt 8442:Hs 8433:Bh 8424:Sg 8415:Db 8406:Rf 8397:Lr 8388:No 8379:Md 8370:Fm 8361:Es 8352:Cf 8343:Bk 8334:Cm 8325:Am 8316:Pu 8307:Np 8289:Pa 8280:Th 8271:Ac 8262:Ra 8253:Fr 8237:Rn 8228:At 8219:Po 8210:Bi 8201:Pb 8192:Tl 8183:Hg 8174:Au 8165:Pt 8156:Ir 8147:Os 8138:Re 8120:Ta 8111:Hf 8102:Lu 8093:Yb 8084:Tm 8075:Er 8066:Ho 8057:Dy 8048:Tb 8039:Gd 8030:Eu 8021:Sm 8012:Pm 8003:Nd 7994:Pr 7985:Ce 7976:La 7967:Ba 7958:Cs 7942:Xe 7924:Te 7915:Sb 7906:Sn 7897:In 7888:Cd 7879:Ag 7870:Pd 7861:Rh 7852:Ru 7843:Tc 7834:Mo 7825:Nb 7816:Zr 7796:Sr 7787:Rb 7771:Kr 7762:Br 7753:Se 7744:As 7735:Ge 7726:Ga 7717:Zn 7708:Cu 7699:Ni 7690:Co 7681:Fe 7672:Mn 7663:Cr 7645:Ti 7636:Sc 7625:Ca 7600:Ar 7591:Cl 7564:Si 7555:Al 7544:Mg 7535:Na 7519:Ne 7463:Be 7454:Li 7438:He 7413:18 7408:17 7403:16 7398:15 7393:14 7388:13 7383:12 7378:11 7373:10 7267:. 7259:. 7251:. 7243:. 7229:. 7208:. 7204:. 7182:. 7178:. 7170:; 7154:. 7127:. 7117:41 7115:. 7089:. 7079:. 7069:60 7067:. 7063:. 7037:. 7027:. 7015:. 7011:. 6952:. 6944:. 6934:92 6932:. 6902:. 6898:. 6873:. 6865:. 6857:. 6847:. 6839:. 6827:. 6823:. 6797:. 6789:. 6779:. 6767:. 6763:. 6740:. 6732:. 6724:. 6712:97 6710:. 6687:. 6679:. 6671:. 6659:19 6657:. 6632:. 6601:. 6593:. 6585:. 6573:19 6571:. 6516:. 6508:. 6498:36 6496:. 6492:. 6477:^ 6461:. 6441:^ 6423:. 6415:. 6407:. 6397:37 6395:. 6391:. 6350:. 6334:. 6307:. 6299:. 6258:. 6232:69 6230:. 6226:. 6192:. 6180:. 6150:. 6142:. 6132:84 6130:. 6126:. 6084:. 6054:. 6044:66 6042:. 6038:. 6009:38 6007:. 6003:. 5976:. 5966:62 5964:. 5960:. 5930:. 5922:. 5912:65 5910:. 5906:. 5881:^ 5840:. 5765:}} 5761:{{ 5700:. 5694:. 5665:. 5657:. 5647:65 5645:. 5641:. 5606:^ 5588:. 5578:81 5576:. 5572:. 5545:74 5543:. 5539:. 5477:. 5452:69 5450:. 5446:. 5413:. 5405:. 5395:65 5393:. 5389:. 5374:^ 5347:^ 5328:. 5259:. 5247:^ 5228:. 5205:. 5197:. 5174:. 5166:. 5158:. 5148:. 5138:68 5136:. 5130:. 5084:. 5076:. 5066:. 5054:. 5050:. 5018:17 5016:. 5010:. 4998:^ 4953:. 4943:. 4931:. 4927:. 4913:^ 4887:. 4879:. 4871:. 4861:53 4859:. 4823:^ 4785:. 4775:. 4767:. 4755:87 4753:. 4749:. 4723:. 4719:. 4698:^ 4681:. 4677:. 4662:^ 4595:. 4576:^ 4562:. 4554:. 4544:42 4542:. 4538:. 4522:^ 4508:. 4500:. 4490:63 4488:. 4482:. 4449:. 4437:^ 4421:. 4409:. 4364:. 4354:. 4344:. 4334:86 4332:. 4326:. 4303:. 4293:10 4291:. 4263:. 4216:^ 4197:. 4156:. 4148:. 4136:. 4132:. 4121:; 4099:. 4089:79 4087:. 4059:. 4049:. 4037:. 4006:. 3979:. 3956:. 3948:. 3938:. 3930:. 3918:. 3914:. 3891:. 3879:. 3875:. 3861:^ 3843:. 3831:^ 3816:^ 3777:45 3775:. 3771:. 3742:. 3711:. 3701:21 3695:. 3655:83 3653:. 3641:^ 3627:. 3617:84 3615:. 3601:^ 3539:^ 3525:. 3518:. 3490:. 3440:−4 3401:, 3397:, 3279:+ 3270:Al 3266:13 3260:→ 3241:+ 3232:Si 3228:14 3202:pb 2965:; 2830:. 2828:eV 2786:, 2767:Ca 2763:Ts 2759:Mc 2752:−4 2750:+6 2747:16 2667:, 2527:, 2488:, 2472:. 2327:+ 2318:Cf 2314:98 2292:, 2226:Ne 2222:10 2216:+ 2207:Am 2203:95 2181:Ne 2177:Am 2171:, 2167:, 2132:. 1823:, 1766:Db 1696:Lr 1682:– 1675:SF 1657:Lr 1645:Rf 1634:– 1630:SF 1613:– 1609:SF 1591:Rf 1580:– 1576:SF 1555:3% 1543:Lr 1529:– 1522:SF 1505:– 1497:SF 1489:Lr 1357:, 1273:pm 1222:+5 1147:Rn 1066:→ 1062:← 1054:— 1049:Db 1043:Ta 70:uː 41:Db 8298:U 8246:7 8129:W 7951:6 7933:I 7807:Y 7780:5 7654:V 7616:K 7609:4 7582:S 7573:P 7528:3 7510:F 7501:O 7492:N 7483:C 7474:B 7447:2 7427:H 7420:1 7368:9 7363:8 7358:7 7353:6 7348:5 7343:4 7338:3 7331:2 7326:1 7303:e 7296:t 7289:v 7275:. 7255:: 7247:: 7237:: 7218:. 7192:. 7162:. 7135:. 7131:: 7123:: 7097:. 7075:: 7061:" 7059:3 7031:: 7023:: 6993:. 6960:. 6948:: 6940:: 6917:. 6851:: 6843:: 6835:: 6816:Z 6783:: 6775:: 6748:. 6736:: 6728:: 6718:: 6695:. 6683:: 6675:: 6665:: 6642:. 6628:: 6609:. 6597:: 6589:: 6579:: 6556:. 6512:: 6504:: 6471:. 6457:: 6435:. 6411:: 6403:: 6376:. 6368:( 6319:. 6295:: 6274:. 6244:. 6238:: 6200:. 6188:: 6182:4 6165:. 6138:: 6096:. 6069:. 6050:: 6021:. 6015:: 5988:. 5972:: 5945:. 5918:: 5797:. 5771:) 5757:. 5712:. 5680:. 5653:: 5600:. 5584:: 5557:. 5551:: 5524:. 5491:. 5462:. 5458:: 5428:. 5401:: 5341:. 5298:. 5272:. 5241:. 5213:. 5201:: 5182:. 5152:: 5144:: 5115:. 5111:: 5092:. 5070:: 5062:: 5035:. 5024:: 4992:. 4961:. 4947:: 4939:: 4895:. 4875:: 4867:: 4793:. 4779:: 4771:: 4761:: 4734:. 4692:. 4608:. 4570:. 4550:: 4516:. 4496:: 4461:. 4431:. 4417:: 4397:. 4372:. 4358:: 4348:: 4340:: 4311:. 4307:: 4299:: 4276:. 4248:. 4210:. 4179:. 4152:: 4144:: 4107:. 4095:: 4067:. 4045:: 4022:. 3992:. 3964:. 3942:: 3934:: 3926:: 3899:. 3887:: 3855:. 3851:: 3810:. 3806:: 3787:. 3783:: 3753:. 3728:. 3707:: 3665:. 3661:: 3635:. 3631:: 3623:: 3595:. 3504:. 3338:. 3289:p 3285:1 3251:n 3247:0 3144:3 3140:3 3136:3 3132:3 3122:4 3110:6 3098:4 3064:3 3052:5 3040:3 3006:4 2906:5 2902:M 2857:n 2855:( 2851:n 2355:n 2337:N 2333:7 2278:x 2272:± 2258:x 2256:( 2247:n 2237:x 2185:t 2010:( 1852:. 1688:α 1652:α 1640:Δ 1586:Δ 1551:Δ 1535:α 1480:α 1449:) 1444:t 1442:( 1402:e 1395:v 1251:( 1229:) 1197:) 1091:) 1089:Z 1087:( 1052:↓ 1046:↑ 149:) 140:( 135:/ 132:m 129:ə 126:i 123:n 120:b 117:ʌ 114:d 111:ˈ 108:/ 102:) 93:( 88:/ 85:m 82:ə 79:i 76:n 73:b 67:d 64:ˈ 61:/ 27:. 20:.

Index

Hafnium
node.js § Releases
/ˈduːbniəm/
DOOB-nee-əm
/ˈdʌbniəm/
DUB-nee-əm
Mass number
periodic table
Hydrogen
Helium
Lithium
Beryllium
Boron
Carbon
Nitrogen
Oxygen
Fluorine
Neon
Sodium
Magnesium
Aluminium
Silicon
Phosphorus
Sulfur
Chlorine
Argon
Potassium
Calcium
Scandium
Titanium

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑