Knowledge

Supporting electrolyte

Source 📝

601: 326:
anion. Its molecular orbital configuration likely also plays a role in its great inertness in aqueous solution, and as a rule of thumb, most oxyanions with a central atom in its highest oxidation state are weaker oxidizers than other oxyanions of the same series with a lower oxidation state.
77:
Supporting electrolytes are widely used in electrochemical measurements when control of electrode potentials is required. This is done to increase the conductivity of the solution (to practically eliminate the so-called IR drop, or ohmic potential drop
492:
Katsounaros, I.; Kyriacou, G. (2007). "Influence of the concentration and the nature of the supporting electrolyte on the electrochemical reduction of nitrate on tin cathode".
539:
Kowacz, M.; Putnis, A. (2008). "The effect of specific background electrolytes on water structure and solute hydration: Consequences for crystal dissolution and growth".
237:, thus it does not interfere in complexation studies. Quite surprisingly, it is also a redox-insensitive, or a redox-inactive, species, and does not interfere in 318:
hindering its redox reactivity. This can be partially explained by the shielding of the central chlorine (+7) atom by the four surrounding oxygen atoms. The
569:
Ujvari, M., & Lang, G. (2011). On the stability of perchlorate ions against reductive attacks in electrochemical systems and in the environment.
431: 62:
much larger than those due to the electroactive species added to the electrolyte. Supporting electrolyte is also sometimes referred to as
642: 17: 465: 222:) is often used as a background electrolyte because of its convenient properties to fulfil this function. It is a highly 585:
Urbansky, E. T. (1998). Perchlorate chemistry: Implications for analysis and remediation. Available in open access at:
486:
Cotton, F.A., G. Wilkinson, and P.L. Gaus. (1987). Basic Inorganic Chemistry, 2nd ed. Wiley, New York, NY. p. 219.
666: 635: 522:
Kok, W. (2000). The Background Electrolyte. In: Capillary Electrophoresis: Instrumentation and Operation.
481:
Cotton, F.A., and G. Wilkinson. (1988). Advanced Inorganic Chemistry, 5th ed. Wiley, New York, NY. p. 668.
586: 126: 59: 186:
reaction, so, it is not a redox-active species, or the redox reaction is kinetically strongly hindered,
628: 377: 387: 283: 616: 290:
at high temperature, it violently reacts to dissipate a large quantity of energy in a vigorous
113:
To properly fulfil its functions, a supporting electrolyte must meet the following criteria:
661: 231: 168: 148: 87: 8: 328: 51: 363:) are much stronger oxidizers in aqueous solution because of less kinetic limitations. 212: 122: 556: 509: 461: 315: 311: 295: 294:
reaction. The reason of its redox inertness when dissolved in water is due to severe
246: 505: 441: 608: 548: 501: 445: 436: 392: 372: 258: 118: 94: 47: 35: 407: 299: 242: 241:
reaction. Contra-intuitively, although perchlorate is well known to be a strong
612: 382: 227: 137: 98: 55: 552: 531: 655: 560: 513: 440:, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) " 157: 449: 397: 319: 81: 600: 460:
Joseph Wang, "Analytical Electrochemistry", 3rd edition, Wiley VCH. 2006,
578: 402: 43: 351:) anions although being able to accept less electrons than perchlorate ( 264:
Astonishingly, sodium perchlorate can be used with solutions containing
291: 223: 176: 133: 587:
https://clu-in.org/download/contaminantfocus/perchlorate/urbansky2.pdf
412: 272: 197: 336: 307: 303: 250: 530:. Vieweg+Teubner Verlag, Wiesbaden. Print ISBN 978-3-322-83135-4. 265: 161: 323: 276: 234: 172: 144: 140:
of the solution in the experimental conditions to be explored;
287: 254: 238: 183: 39: 27:
Inert electrolyte: non-redox active and non complexing ligand
101:, to maintain constant ionic strength, to maintain constant 322:
of the perchlorate anion is about the same as this of the
298:
limitations to abiotically accept electrons, even if the
268: 91: 314:, perchlorate is a non-labile species because of a high 245:
in propulsive powder at high temperature and is used in
207: 190: 102: 491: 571:Journal of Electrochemical Science and Engineering 226:salt (2096 g/L at 25 °C) allowing to increase the 653: 271:(Fe) although these ions are quite sensitive to 50:that are not electroactive (within the range of 636: 538: 261:, it does not exhibit any oxidizing power. 532:https://doi.org/10.1007/978-3-322-83133-0_7 143:It must be chemically inert with the other 643: 629: 286:stability because when in contact with a 577:(1), 1–26. Available in open access at: 282:The reason is not to be searched in its 279:if the solution is exposed to the air. 14: 654: 579:https://doi.org/10.5599/jese.2011.0003 108: 230:of a solution up to 8 M. It is not a 208:Commonly used background electrolytes 189:– no undesirable modification of the 117:It must be completely dissociated in 595: 136:in order to be able to increase the 24: 475: 437:Compendium of Chemical Terminology 88:transport of electroactive species 25: 678: 454: 599: 541:Geochimica et Cosmochimica Acta 506:10.1016/j.electacta.2007.04.050 425: 13: 1: 418: 615:. You can help Knowledge by 7: 366: 10: 683: 594: 160:reaction, or formation of 553:10.1016/j.gca.2008.07.005 524:Chromatographia CE-Series 378:Capillary electrophoresis 306:atom in this tetrahedral 193:of the studied solution, 132:It must be sufficiently 450:10.1351/goldbook.S06149 253:, when the perchlorate 54:used) and which has an 667:Electrochemistry stubs 611:-related article is a 442:supporting electrolyte 64:background electrolyte 32:supporting electrolyte 18:Background electrolyte 86:), to eliminate the 72:inactive electrolyte 494:Electrochimica Acta 171:, so, it is a poor 109:Required properties 310:is +7. In term of 213:Sodium perchlorate 167:– no formation of 123:strong electrolyte 42:definition, is an 38:, according to an 624: 623: 547:(18): 4476–4487. 500:(23): 6412–6420. 466:978-0-471-67879-3 316:activation energy 312:chemical kinetics 247:rocket propellant 196:– no loss in the 182:– no undesirable 68:inert electrolyte 16:(Redirected from 674: 645: 638: 631: 609:electrochemistry 603: 596: 564: 517: 469: 458: 452: 429: 393:Electrochemistry 373:Aqueous solution 362: 361: 360: 357: 350: 349: 348: 345: 334: 259:aqueous solution 257:is dissolved in 221: 119:aqueous solution 85: 48:chemical species 36:electrochemistry 21: 682: 681: 677: 676: 675: 673: 672: 671: 652: 651: 650: 649: 592: 478: 476:Further reading 473: 472: 459: 455: 430: 426: 421: 408:Electrophoresis 369: 358: 355: 354: 352: 346: 343: 342: 340: 332: 302:of the central 300:oxidation state 220: 216: 210: 111: 79: 28: 23: 22: 15: 12: 11: 5: 680: 670: 669: 664: 648: 647: 640: 633: 625: 622: 621: 604: 590: 589: 582: 581: 566: 565: 535: 534: 519: 518: 488: 487: 483: 482: 477: 474: 471: 470: 453: 423: 422: 420: 417: 416: 415: 410: 405: 400: 395: 390: 385: 383:Crystal growth 380: 375: 368: 365: 228:ionic strength 218: 209: 206: 205: 204: 201: 194: 187: 180: 165: 153: 152: 141: 138:ionic strength 130: 110: 107: 99:electric field 56:ionic strength 26: 9: 6: 4: 3: 2: 679: 668: 665: 663: 660: 659: 657: 646: 641: 639: 634: 632: 627: 626: 620: 618: 614: 610: 605: 602: 598: 597: 593: 588: 584: 583: 580: 576: 572: 568: 567: 562: 558: 554: 550: 546: 542: 537: 536: 533: 529: 525: 521: 520: 515: 511: 507: 503: 499: 495: 490: 489: 485: 484: 480: 479: 467: 463: 457: 451: 447: 443: 439: 438: 433: 428: 424: 414: 411: 409: 406: 404: 401: 399: 396: 394: 391: 389: 386: 384: 381: 379: 376: 374: 371: 370: 364: 338: 330: 325: 321: 317: 313: 309: 305: 301: 297: 293: 289: 285: 284:thermodynamic 280: 278: 275:by dissolved 274: 270: 267: 262: 260: 256: 252: 248: 244: 240: 236: 233: 229: 225: 214: 202: 199: 195: 192: 188: 185: 181: 178: 174: 170: 166: 163: 159: 158:precipitation 155: 154: 150: 146: 142: 139: 135: 131: 128: 124: 121:, so it is a 120: 116: 115: 114: 106: 104: 100: 96: 93: 89: 83: 75: 73: 69: 65: 61: 57: 53: 49: 45: 41: 37: 33: 19: 662:Electrolytes 617:expanding it 606: 591: 574: 570: 544: 540: 527: 523: 497: 493: 456: 435: 427: 398:Electrolysis 320:ionic radius 281: 263: 211: 127:conductivity 125:with a good 112: 76: 71: 67: 63: 60:conductivity 31: 29: 403:Electrolyte 388:Dissolution 329:Hypochorite 175:and a weak 164:suspension, 147:present in 46:containing 44:electrolyte 656:Categories 419:References 292:exothermic 232:complexing 177:Lewis base 52:potentials 561:0016-7037 514:0013-4686 468:, p. 118. 413:Solvation 273:oxidation 251:fireworks 198:gas phase 162:colloidal 95:migration 82:Ohm's law 367:See also 337:chlorate 308:oxyanion 304:chlorine 243:oxidizer 149:solution 84:: V = IR 296:kinetic 288:reducer 266:ferrous 224:soluble 169:complex 145:solutes 134:soluble 105:, etc. 97:in the 559:  512:  464:  335:) and 324:iodide 277:oxygen 235:ligand 173:ligand 607:This 528:Vol 4 432:IUPAC 255:anion 239:redox 217:NaClO 203:– … . 184:redox 156:– no 80:from 70:, or 40:IUPAC 34:, in 613:stub 557:ISSN 510:ISSN 462:ISBN 269:ions 249:and 58:and 549:doi 502:doi 446:doi 444:". 353:ClO 341:ClO 333:ClO 92:ion 90:by 658:: 573:, 555:. 545:72 543:. 526:, 508:. 498:52 496:. 434:, 191:pH 103:pH 74:. 66:, 30:A 644:e 637:t 630:v 619:. 575:1 563:. 551:: 516:. 504:: 448:: 359:4 356:− 347:3 344:− 339:( 331:( 219:4 215:( 200:, 179:, 151:: 129:; 20:)

Index

Background electrolyte
electrochemistry
IUPAC
electrolyte
chemical species
potentials
ionic strength
conductivity
Ohm's law
transport of electroactive species
ion
migration
electric field
pH
aqueous solution
strong electrolyte
conductivity
soluble
ionic strength
solutes
solution
precipitation
colloidal
complex
ligand
Lewis base
redox
pH
gas phase
Sodium perchlorate

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.