Knowledge

Colloid

Source đź“ť

657: 1198: 1183: 1227: 2012: 2116:
consist of increasing temperature to accelerate destabilisation (below critical temperatures of phase inversion or chemical degradation). Temperature affects not only viscosity, but also interfacial tension in the case of non-ionic surfactants or more generally interactions forces inside the system. Storing a dispersion at high temperatures enables to simulate real life conditions for a product (e.g. tube of sunscreen cream in a car in the summer), but also to accelerate destabilisation processes up to 200 times. Mechanical acceleration including vibration,
1381:: This is due to interaction between two dipoles that are either permanent or induced. Even if the particles do not have a permanent dipole, fluctuations of the electron density gives rise to a temporary dipole in a particle. This temporary dipole induces a dipole in particles nearby. The temporary dipole and the induced dipoles are then attracted to each other. This is known as van der Waals force, and is always present (unless the refractive indexes of the dispersed and continuous phases are matched), is short-range, and is attractive. 1140: 1292:, personal care and industrial applications, they can provide stabilization, destabilization and separation, gelation, flow control, crystallization control and numerous other effects. Apart from uses of the soluble forms some of the hydrocolloids have additional useful functionality in a dry form if after solubilization they have the water removed - as in the formation of films for breath strips or sausage casings or indeed, wound dressing fibers, some being more compatible with 2100:, is based on measuring the fraction of light that, after being sent through the sample, it backscattered by the colloidal particles. The backscattering intensity is directly proportional to the average particle size and volume fraction of the dispersed phase. Therefore, local changes in concentration caused by sedimentation or creaming, and clumping together of particles caused by aggregation, are detected and monitored. These phenomena are associated with unstable colloids. 44: 20: 1159: 1171: 1250: 670: 4410: 1965:. While these terms are often used interchangeably, for some definitions they have slightly different meanings. For example, coagulation can be used to describe irreversible, permanent aggregation where the forces holding the particles together are stronger than any external forces caused by stirring or mixing. Flocculation can be used to describe reversible aggregation involving weaker attractive forces, and the aggregate is usually called a 1973: 1403: 1116: 1128: 2044:(the width of the electrical double layer) of the particles. It is also accomplished by changing the pH of a suspension to effectively neutralise the surface charge of the particles in suspension. This removes the repulsive forces that keep colloidal particles separate and allows for aggregation due to van der Waals forces. Minor changes in pH can manifest in significant alteration to the 1284:. Thus becoming effectively "soluble" they change the rheology of water by raising the viscosity and/or inducing gelation. They may provide other interactive effects with other chemicals, in some cases synergistic, in others antagonistic. Using these attributes hydrocolloids are very useful chemicals since in many areas of technology from 1969:. The term precipitation is normally reserved for describing a phase change from a colloid dispersion to a solid (precipitate) when it is subjected to a perturbation. Aggregation causes sedimentation or creaming, therefore the colloid is unstable: if either of these processes occur the colloid will no longer be a suspension. 2107:
the particles. If the apparent size of the particles increases due to them clumping together via aggregation, it will result in slower Brownian motion. This technique can confirm that aggregation has occurred if the apparent particle size is determined to be beyond the typical size range for colloidal particles.
1296:
than others. There are many different types of hydrocolloids each with differences in structure function and utility that generally are best suited to particular application areas in the control of rheology and the physical modification of form and texture. Some hydrocolloids like starch and casein
2063:
Unstable colloidal suspensions of low-volume fraction form clustered liquid suspensions, wherein individual clusters of particles sediment if they are more dense than the suspension medium, or cream if they are less dense. However, colloidal suspensions of higher-volume fraction form colloidal gels
2115:
The kinetic process of destabilisation can be rather long (up to several months or years for some products). Thus, it is often required for the formulator to use further accelerating methods to reach reasonable development time for new product design. Thermal methods are the most commonly used and
2106:
can be used to detect the size of a colloidal particle by measuring how fast they diffuse. This method involves directing laser light towards a colloid. The scattered light will form an interference pattern, and the fluctuation in light intensity in this pattern is caused by the Brownian motion of
1353:
dissolves, and the Na and Cl ions are surrounded by water molecules.  However, in a colloid such as milk, the colloidal particles are globules of fat, rather than individual fat molecules. Because colloid is multiple phases, it has very different properties compared to fully mixed, continuous
2019:
A method called gel network stabilization represents the principal way to produce colloids stable to both aggregation and sedimentation. The method consists in adding to the colloidal suspension a polymer able to form a gel network. Particle settling is hindered by the stiffness of the polymeric
2003:
Steric stabilization consists absorbing a layer of a polymer or surfactant on the particles to prevent them from getting close in the range of attractive forces. The polymer consists of chains that are attached to the particle surface, and the part of the chain that extends out is soluble in the
2316:
of these so-called "colloidal crystals" has emerged as a result of the relatively simple methods that have evolved in the last 20 years for preparing synthetic monodisperse colloids (both polymer and mineral) and, through various mechanisms, implementing and preserving their long-range order
2120:
and agitation are sometimes used. They subject the product to different forces that pushes the particles / droplets against one another, hence helping in the film drainage. Some emulsions would never coalesce in normal gravity, while they do under artificial gravity. Segregation of different
2085: 2051:
Addition of a charged polymer flocculant. Polymer flocculants can bridge individual colloidal particles by attractive electrostatic interactions. For example, negatively charged colloidal silica or clay particles can be flocculated by the addition of a positively charged
2141:. Many of the forces that govern the structure and behavior of matter, such as excluded volume interactions or electrostatic forces, govern the structure and behavior of colloidal suspensions. For example, the same techniques used to model ideal gases can be applied to 1197: 1988:, where the particles are charged on the surface, but then attract counterions (ions of opposite charge) which surround the particle. The electrostatic repulsion between suspended colloidal particles is most readily quantified in terms of the 833:: State of subdivision such that the molecules or polymolecular particles dispersed in a medium have at least one dimension between approximately 1 nm and 1 ÎĽm, or that in a system discontinuities are found at distances of that order. 1375:: Colloidal particles often carry an electrical charge and therefore attract or repel each other. The charge of both the continuous and the dispersed phase, as well as the mobility of the phases are factors affecting this interaction. 1182: 758:
is distinguished from colloids by larger particle size). A colloid has a dispersed phase (the suspended particles) and a continuous phase (the medium of suspension). The dispersed phase particles have a diameter of approximately 1
3265:
Slomkowski, Stanislaw; Alemán, José V.; Gilbert, Robert G.; Hess, Michael; Horie, Kazuyuki; Jones, Richard G.; Kubisa, Przemyslaw; Meisel, Ingrid; Mormann, Werner; Penczek, Stanisław; Stepto, Robert F. T. (10 September 2011).
2854:
Slomkowski, Stanislaw; Alemán, José V.; Gilbert, Robert G.; Hess, Michael; Horie, Kazuyuki; Jones, Richard G.; Kubisa, Przemyslaw; Meisel, Ingrid; Mormann, Werner; Penczek, Stanisław; Stepto, Robert F. T. (2011).
2149:
in colloidal suspensions can be studied in real time using optical techniques, and are analogous to phase transitions in liquids. In many interesting cases optical fluidity is used to control colloid suspensions.
1312:
Hydrocolloids contain some type of gel-forming agent, such as sodium carboxymethylcellulose (NaCMC) and gelatin. They are normally combined with some type of sealant, i.e. polyurethane to 'stick' to the skin.
2379:
Colloidal particles can also serve as transport vector of diverse contaminants in the surface water (sea water, lakes, rivers, fresh water bodies) and in underground water circulating in fissured rocks (e.g.
2076:, flow like liquids under shear, but maintain their shape when shear is removed. It is for this reason that toothpaste can be squeezed from a toothpaste tube, but stays on the toothbrush after it is applied. 1857:
There is an upper size-limit for the diameter of colloidal particles because particles larger than 1 ÎĽm tend to sediment, and thus the substance would no longer be considered a colloidal suspension.
1923:
The stability of a colloidal system is defined by particles remaining suspended in solution and depends on the interaction forces between the particles. These include electrostatic interactions and
4299: 1852: 4113: 1674: 3807:
Greenfield, Elad; Rotschild, Carmel; Szameit, Alexander; Nemirovsky, Jonathan; El-Ganainy, Ramy; Christodoulides, Demetrios N; Saraf, Meirav; Lifshitz, Efrat; Segev, Mordechai (2011).
2285:-like correlations with interparticle separation distances, often being considerably greater than the individual particle diameter. In all of these cases in nature, the same brilliant 1746: 1949:
If the interaction energy is greater than kT, the attractive forces will prevail, and the colloidal particles will begin to clump together. This process is referred to generally as
4015:
Liu, Xuesong; Li, Zejing; Tang, Jianguo; Yu, Bing; Cong, Hailin (9 September 2013). "Current status and future developments in preparation and application of colloidal crystals".
1790: 1486: 2674:
Hatschek, Emil, The Foundations of Colloid Chemistry, A selection of early papers bearing on the subject, The British Association Committee on Colloid Chemistry, London, 1925
2020:
matrix where particles are trapped, and the long polymeric chains can provide a steric or electrosteric stabilization to dispersed particles. Examples of such substances are
1393:: An attractive entropic force arising from an osmotic pressure imbalance when colloids are suspended in a medium of much smaller particles or polymers called depletants. 1522: 1550: 2040:
Removal of the electrostatic barrier that prevents aggregation of the particles. This can be accomplished by the addition of salt to a suspension to reduce the
1700: 1606: 1578: 5162: 3523:
Lemarchand, Caroline; Couvreur, Patrick; Besnard, Madeleine; Costantini, Dominique; Gref, Ruxandra (2003). "Novel polyester-polysaccharide nanoparticles".
2442:
occurring in dense clay membrane. The question is less clear for small organic colloids often mixed in porewater with truly dissolved organic molecules.
3406:
Comba, Silvia; Sethi (August 2009). "Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum".
701: 4307: 1226: 2665:
Selmi, Francesco, Studio intorno alle pseudo-soluzioni degli azzurri di Prussia ed alla influenza dei sali nel guastarle, Bologna: Tipi Sassi, 1847
2048:. When the magnitude of the zeta potential lies below a certain threshold, typically around ± 5mV, rapid coagulation or aggregation tends to occur. 2092:
The most widely used technique to monitor the dispersion state of a product, and to identify and quantify destabilization phenomena, is multiple
4132: 3668:
Snabre, Patrick; Pouligny, Bernard (2008). "Size Segregation in a Fluid-like or Gel-like Suspension Settling under Gravity or in a Centrifuge".
4251: 1984:
Electrostatic stabilization is based on the mutual repulsion of like electrical charges. The charge of colloidal particles is structured in an
1946:. If this is the case, then the colloidal particles will repel or only weakly attract each other, and the substance will remain a suspension. 4157: 2891: 2837: 2168:
array of particles that can be formed over a very long range (typically on the order of a few millimeters to one centimeter) and that appear
1191:
are semi-solid emulsions of oil and water. Oil-in-water creams are used for cosmetic purpose while water-in-oil creams for medicinal purpose
4864: 4077:
Alonso, U.; T. Missana; A. Patelli; V. Rigato (2007). "Bentonite colloid diffusion through the host rock of a deep geological repository".
2683:
Selmi, Francesco - Sur le soufre pseudosoluble, sa pseudosolution e le soufre mou, Journal de Pharmacie et de Chimie, tome 21, 1852, Paris
3961:
Luck, Werner; Klier, Manfred; Wesslau, Hermann (1963). "Ăśber Bragg-Reflexe mit sichtbarem Licht an monodispersen Kunststofflatices. II".
4347: 3704: 2576: 3021:
McBride, Samantha A.; Skye, Rachael; Varanasi, Kripa K. (2020). "Differences between Colloidal and Crystalline Evaporative Deposits".
2434:. They have been the subject of detailed studies for many years. However, the mobility of inorganic colloids is very low in compacted 2775:
Richard G. Jones; Edward S. Wilks; W. Val Metanomski; Jaroslav Kahovec; Michael Hess; Robert Stepto; Tatsuki Kitayama, eds. (2009).
3566:
Mengual, O (1999). "Characterisation of instability of concentrated dispersions by a new optical analyser: the TURBISCAN MA 1000".
3488:
Roland, I; Piel, G; Delattre, L; Evrard, B (2003). "Systematic characterisation of oil-in-water emulsions for formulation design".
2004:
suspension medium. This technique is used to stabilize colloidal particles in all types of solvents, including organic solvents.
1992:. The combined effect of van der Waals attraction and electrostatic repulsion on aggregation is described quantitatively by the 2976: 694: 1139: 4061: 3652: 3355: 3241: 2784: 2588: 2553: 1304:
designed to lock moisture in the skin and help the natural healing process of skin to reduce scarring, itching and soreness.
3759: 1297:
are useful foods as well as rheology modifiers, others have limited nutritive value, usually providing a source of fiber.
1414:
acts upon colloidal particles. Therefore, if the colloidal particles are denser than the medium of suspension, they will
3379:
Genz, Ulrike; D'Aguanno, Bruno; Mewis, Jan; Klein, Rudolf (1 July 1994). "Structure of Sterically Stabilized Colloids".
1980:
Electrostatic stabilization and steric stabilization are the two main mechanisms for stabilization against aggregation.
3449:
Bean, Elwood L.; Campbell, Sylvester J.; Anspach, Frederick R.; Ockershausen, Richard W.; Peterman, Charles J. (1964).
5238: 4909: 4227: 3328: 3198: 3083: 1801: 687: 674: 1934:
A colloid is stable if the interaction energy due to attractive forces between the colloidal particles is less than
4857: 2577:
International Union of Pure and Applied Chemistry. Subcommittee on Polymer Terminology; Jones, Richard G. (2009).
1617: 656: 4614: 4051: 3065: 2908:
de Swaan Arons, J.; Diepen, G. A. M. (2010). "Immiscibility of gases. The system He-Xe: (Short communication)".
2520:
by this difference, and much of the research related to this use of colloids is based on fraudulent research by
4999: 4684: 4609: 4340: 3758:
Greenfield, Elad; Nemirovsky, Jonathan; El-Ganainy, Ramy; Christodoulides, Demetri N; Segev, Mordechai (2013).
1705: 933: 449: 4796: 4624: 2231:
and gravitational forces. The periodic arrays of submicrometre spherical particles provide similar arrays of
1958: 790: 5233: 5152: 4806: 4679: 4424: 624: 104: 23: 2754:. Page 183: "As gelatine appears to be its type, it is proposed to designate substances of the class as 5082: 4850: 1755: 1443: 3757: 3268:"Terminology of polymers and polymerization processes in dispersed systems (IUPAC Recommendations 2011)" 1422:(float to the top). Larger particles also have a greater tendency to sediment because they have smaller 5228: 5137: 3214: 2866: 2812: 629: 254: 5029: 4333: 2396:
onto colloids suspended in water. Various types of colloids are recognised: inorganic colloids (e.g.
2290: 2137:. Micrometre-scale colloidal particles are large enough to be observed by optical techniques such as 1962: 1928: 1895: 1861: 519: 194: 3451:"Zeta Potential Measurements in the Control of Coagulation Chemical Doses [with Discussion]" 1387:: A repulsive steric force typically occurring due to adsorbed polymers coating a colloid's surface. 5014: 4949: 4831: 4730: 4360: 2856: 2804: 2497: 2431: 2103: 1525: 514: 509: 35: 4161: 1170: 599: 4969: 4725: 3806: 2368: 2364: 2352: 2339: 2165: 1985: 1067: 1016: 992: 802: 736:
throughout another substance. Some definitions specify that the particles must be dispersed in a
204: 2774: 609: 5067: 5062: 4919: 4750: 4740: 4490: 4485: 3111:
van Anders, Greg; Klotsa, Daphne; Ahmed, N. Khalid; Engel, Michael; Glotzer, Sharon C. (2014).
2693:
Tweney, Ryan D. (2006). "Discovering Discovery: How Faraday Found the First Metallic Colloid".
2224: 1876: 1322: 754: 733: 723: 594: 534: 504: 454: 174: 64: 5248: 5167: 5147: 3642: 1301: 1158: 634: 249: 234: 4183:
Wold, Susanna; Trygve Eriksen (2007). "Diffusion of humic colloids in compacted bentonite".
2011: 1792:
is the difference in mass density between the colloidal particle and the suspension medium.
1497: 1212:
it scatters blue light making it appear blue from the side, but orange light shines through.
5243: 4881: 4873: 4669: 4429: 4192: 4086: 3935: 3892: 3857: 3820: 3771: 3415: 3190: 3134: 2944: 2513: 2505: 2501: 2344: 2271: 2142: 1950: 1943: 1924: 1535: 1419: 1345:, whereas colloidal particles are bigger. For example, in a solution of salt in water, the 1326: 1039: 987: 224: 114: 8: 4994: 4964: 4644: 4536: 4526: 4439: 4394: 3760:"Shockwave based nonlinear optical manipulation in densely scattering opaque suspensions" 2509: 2485: 2239: 2232: 2138: 1434: 1411: 1378: 464: 274: 124: 4196: 4090: 3939: 3896: 3861: 3833: 3824: 3808: 3775: 3419: 3138: 2948: 2412:
substances). When heavy metals or radionuclides form their own pure colloids, the term "
2121:
populations of particles have been highlighted when using centrifugation and vibration.
16:
Mixture of an insoluble substance microscopically dispersed throughout another substance
4791: 4720: 4554: 4245: 3908: 3737: 3548: 3470: 3466: 3320: 3289: 3157: 3124: 3112: 3046: 2998: 2971: 2883: 2829: 2745: 2710: 2635: 2253: 1939: 1685: 1591: 1563: 604: 579: 327: 318: 3947: 3579: 3501: 5223: 5172: 5131: 5034: 4821: 4816: 4786: 4745: 4634: 4586: 4571: 4464: 4434: 4233: 4223: 4124: 4057: 4032: 3789: 3729: 3685: 3648: 3540: 3505: 3431: 3361: 3351: 3324: 3247: 3237: 3194: 3162: 3079: 3050: 3038: 3003: 2780: 2749: 2594: 2584: 2580:
Compendium of polymer terminology and nomenclature : IUPAC recommendations, 2008
2559: 2549: 2493: 2159: 1362:
The following forces play an important role in the interaction of colloid particles:
1218: 574: 419: 309: 229: 3988:
Hiltner, P.A.; Krieger, I.M. (1969). "Diffraction of light by ordered suspensions".
3552: 3293: 2887: 2833: 2714: 2639: 2524:. Another difference is that crystalloids generally are much cheaper than colloids. 2008:
A combination of the two mechanisms is also possible (electrosteric stabilization).
1907: 1864:
if the rate of sedimentation is equal to the rate of movement from Brownian motion.
1249: 5107: 5102: 4934: 4894: 4776: 4399: 4200: 4094: 4024: 3997: 3970: 3943: 3912: 3900: 3865: 3828: 3779: 3741: 3719: 3677: 3621: 3575: 3532: 3497: 3462: 3423: 3388: 3316: 3279: 3152: 3142: 3071: 3030: 2993: 2985: 2952: 2917: 2875: 2821: 2737: 2702: 2625: 2500:
in the blood, and therefore, they should theoretically preferentially increase the
2360: 2326: 2264: 2243: 2146: 2093: 1888: 1880: 1372: 1188: 783: 752:
refers unambiguously to the overall mixture (although a narrower sense of the word
279: 244: 239: 199: 169: 139: 99: 59: 19: 4123:. Nagra Technical Report 02-14. Institute of Terrestrial Ecology, ETH ZĂĽrich: 47. 1127: 5092: 5077: 5009: 4974: 4959: 4954: 4939: 4904: 4766: 4619: 4356: 3610:"Stability of colloidal systems - a review of the stability measurements methods" 3427: 3034: 2489: 2469: 2439: 2294: 2257: 2196: 2088:
Measurement principle of multiple light scattering coupled with vertical scanning
2056: 1996:. A common method of stabilising a colloid (converting it from a precipitate) is 1702:
is the volume of the colloidal particle, calculated using the volume of a sphere
1423: 1390: 1366: 1346: 1289: 1273: 1077: 1063: 798: 794: 589: 539: 409: 164: 76: 3609: 2430:. Colloids have been suspected for the long-range transport of plutonium on the 5142: 5097: 5087: 5004: 4899: 4889: 4564: 4559: 4516: 4449: 4444: 2859:
and polymerization processes in dispersed systems (IUPAC Recommendations 2011)"
2777:
Compendium of Polymer Terminology and Nomenclature (IUPAC Recommendations 2008)
2356: 2348: 2117: 2045: 1989: 1911: 1430: 1384: 1203: 1115: 964: 775: 661: 639: 619: 614: 569: 489: 424: 322: 209: 54: 4237: 4204: 4098: 3869: 3536: 3075: 2989: 2706: 5217: 5187: 5024: 4984: 4929: 4801: 4781: 4704: 4664: 4599: 4531: 4454: 4271: 4128: 4049: 3974: 3626: 3365: 3284: 3267: 3251: 2921: 2879: 2825: 2630: 2613: 2598: 2563: 2521: 2274: 2220: 1894:
Condensation of small dissolved molecules into larger colloidal particles by
1884: 1415: 1085:
Homogeneous mixtures with a dispersed phase in this size range may be called
1008: 998: 954: 950: 350: 331: 313: 214: 134: 3724: 3147: 2181: 544: 5044: 5039: 4826: 4699: 4694: 4689: 4654: 4604: 4521: 4036: 3793: 3733: 3689: 3544: 3509: 3435: 3166: 3042: 3007: 2972:"Hydrocolloids as thickening and gelling agents in food: a critical review" 2741: 2446: 2414: 2401: 2334: 2188: 2097: 2065: 2041: 1954: 1899: 1035: 1012: 903: 564: 554: 524: 484: 479: 459: 304: 284: 144: 4325: 3883:
Sanders, J.V.; Sanders, J. V.; Segnit, E. R. (1964). "Structure of Opal".
3345: 3231: 2578: 2329:
is an important organising principle for compartmentalisation of both the
5197: 5112: 4735: 4629: 4541: 3784: 2286: 2228: 2208: 1997: 1993: 1935: 1369:: This refers to the impossibility of any overlap between hard particles. 1150: 771: 584: 559: 529: 474: 469: 401: 43: 4001: 3641:
Salager, J-L (2000). Françoise Nielloud; Gilberte Marti-Mestres (eds.).
3474: 3450: 3392: 2472:
that vary depending on the chemical conditions of the soil sample, i.e.
5192: 5182: 5177: 5054: 4674: 4649: 4576: 4546: 4480: 4459: 4028: 3307:
Park, Soo-Jin; Seo, Min-Kang (1 January 2011). "Intermolecular Force".
2298: 2073: 1146: 978: 974: 915: 881: 779: 764: 494: 336: 129: 3681: 2956: 5202: 5157: 5072: 4842: 4300:"Millions of surgery patients at risk in drug research fraud scandal" 3904: 3089: 2435: 2385: 2381: 2330: 2313: 2267: 2216: 2212: 2192: 2169: 2069: 1972: 1553: 1269: 1240: 929: 760: 726: 549: 499: 372: 219: 119: 4409: 4050:
Frimmel, Fritz H.; Frank von der Kammer; Hans-Curt Flemming (2007).
2235: 5019: 4811: 4639: 4276: 4076: 3522: 2935:
de Swaan Arons, J.; Diepen, G. A. M. (1966). "Gas—Gas Equilibria".
2517: 2465: 2461: 2393: 2219:
and elsewhere, and form these highly ordered arrays after years of
2025: 1906:
reactions. Such processes are used in the preparation of colloidal
1338: 1277: 1236: 960: 729: 109: 3129: 2516:. However, there is still controversy to the actual difference in 1402: 5122: 4914: 4771: 4659: 4594: 4511: 3614:
Annales Universitatis Mariae Curie-Sklodowska, sectio AA – Chemia
2473: 2389: 2343:—similar in importance to compartmentalisation via lipid bilayer 2309: 2282: 2278: 2173: 2130: 2110: 2021: 1350: 1337:
constitute only one phase. A solute in a solution are individual
1334: 1207: 1059: 1031: 889: 741: 719: 429: 377: 368: 363: 3568:
Colloids and Surfaces A: Physicochemical and Engineering Aspects
2652:
Selmi, Francesco "Studi sulla dimulsione di cloruro d'argento".
1429:
The sedimentation or creaming velocity is found by equating the
740:, while others extend the definition to include substances like 4380: 3448: 2409: 2200: 1581: 1406:
Brownian motion of 350 nm diameter polymer colloidal particles.
1330: 1043: 737: 382: 358: 89: 2367:
strongly enhances colloidal phase separation and formation of
2176:
examples of this ordering phenomenon can be found in precious
1879:
of large particles or droplets to the colloidal dimensions by
4944: 4389: 4375: 2458: 2405: 2302: 2289:(or play of colors) can be attributed to the diffraction and 2246: 2184: 2172:
to their atomic or molecular counterparts. One of the finest
1976:
Examples of a stable and of an unstable colloidal dispersion.
1903: 1285: 1281: 982: 925: 911: 899: 813: 387: 84: 2805:"Dispersity in polymer science (IUPAC Recommendations 2009)" 2758:, and to speak of their peculiar form of aggregation as the 2614:"Dispersity in polymer science (IUPAC Recommendations 2009)" 2252:, particularly when the interstitial spacing is of the same 782:
of light by particles in the colloid. Other colloids may be
3593:
Bru, P.; et al. (2004). T. Provder; J. Texter (eds.).
3378: 3347:
Colloid stability : the role of surface forces. Part I
3264: 2853: 2454: 2450: 2397: 2249: 2177: 2134: 2084: 1795:
By rearranging, the sedimentation or creaming velocity is:
1418:(fall to the bottom), or if they are less dense, they will 1293: 1232: 1214: 1055: 970: 944: 907: 3987: 3882: 3753: 3751: 3110: 2036:
Destabilization can be accomplished by different methods:
4385: 3113:"Understanding shape entropy through local dense packing" 2970:
Saha, Dipjyoti; Bhattacharya, Suvendu (6 November 2010).
2730:
Philosophical Transactions of the Royal Society of London
1342: 1049: 1004: 895: 745: 94: 3963:
Berichte der Bunsengesellschaft fĂĽr Physikalische Chemie
3487: 2928: 2901: 4217: 3748: 3608:
Matusiak, Jakub; GrzÄ…dka, ElĹĽbieta (8 December 2017).
2438:
and in deep clay formations because of the process of
2096:
coupled with vertical scanning. This method, known as
4114:"Stability and mobility of colloids in Opalinus Clay" 3187:
Colloid Science: Principles, Methods and Applications
2418:" is used to designate pure phases, i.e., pure Tc(OH) 1887:, or application of shear (e.g., shaking, mixing, or 1804: 1758: 1708: 1688: 1620: 1594: 1566: 1538: 1500: 1446: 722:
in which one substance consisting of microscopically
5163:
List of boiling and freezing information of solvents
3399: 2934: 2907: 2654:
Nuovi Annali delle Scienze Naturali di Bologna, 1845
2539: 2537: 2263:
Thus, it has been known for many years that, due to
2145:
the behavior of a hard sphere colloidal suspension.
4111: 3800: 3063: 3020: 2000:, a process where it is shaken with an electrolyte. 1611:The mass of the colloidal particle is found using: 797:, who called them pseudosolutions, and expanded by 4182: 3705:"Colloidal matter: Packing, geometry, and entropy" 3343: 1872:There are two principal ways to prepare colloids: 1846: 1784: 1740: 1694: 1668: 1600: 1572: 1544: 1516: 1480: 3104: 2534: 2504:, whereas other types of volume expanders called 2068:properties. Viscoelastic colloidal gels, such as 5215: 3960: 3809:"Light-induced self-synchronizing flow patterns" 3064:Lekkerkerker, Henk N.W.; Tuinier, Remco (2011). 2969: 2548:(4rd ed.). Burlington, MA: Academic Press. 1357: 4185:Physics and Chemistry of the Earth, Parts A/B/C 4112:Voegelin, A.; Kretzschmar, R. (December 2002). 4079:Physics and Chemistry of the Earth, Parts A/B/C 3607: 3225: 3223: 3180: 3178: 3176: 2133:, colloids are an interesting model system for 2059:that cause aggregation due to entropic effects. 1847:{\displaystyle v={\frac {m_{A}g}{6\pi \eta r}}} 1217:is a gel in which water is dispersed in silica 4220:Elements of the nature and properties of soils 4158:"Diffusion of colloids in compacted bentonite" 3667: 2308:The large number of experiments exploring the 2124: 2111:Accelerating methods for shelf life prediction 1927:, because they both contribute to the overall 4858: 4341: 4218:Weil, Ray; Brady, Nyle C. (11 October 2018). 3925: 3847: 2543: 2359:that arise via liquid-liquid or liquid-solid 695: 3926:Darragh, P.J.; et al. (1976). "Opals". 3848:Pieranski, P. (1983). "Colloidal Crystals". 3640: 3220: 3173: 3057: 1669:{\displaystyle m_{A}=V(\rho _{1}-\rho _{2})} 4355: 4014: 2728:"X. Liquid diffusion applied to analysis". 1608:is the sedimentation or creaming velocity. 4865: 4851: 4348: 4334: 4265: 4263: 4261: 4250:: CS1 maint: location missing publisher ( 3455:Journal (American Water Works Association) 3405: 2910:Recueil des Travaux Chimiques des Pays-Bas 2468:and carry either positive and/or negative 1860:The colloidal particles are said to be in 702: 688: 42: 3832: 3783: 3723: 3702: 3625: 3283: 3156: 3146: 3128: 2997: 2798: 2796: 2770: 2768: 2629: 2583:. Cambridge: Royal Society of Chemistry. 2392:). Radionuclides and heavy metals easily 2055:Addition of non-adsorbed polymers called 1741:{\displaystyle V={\frac {4}{3}}\pi r^{3}} 1397: 1316: 789:Colloidal suspensions are the subject of 3644:Pharmaceutical emulsions and suspensions 3184: 2083: 2010: 1971: 1401: 18: 4258: 3592: 3565: 3306: 3229: 2779:(2nd ed.). RSC Publ. p. 464. 2612:Stepto, Robert F. T. (1 January 2009). 2079: 843:Colloids can be classified as follows: 793:. This field of study began in 1845 by 5216: 4872: 4269: 3490:International Journal of Pharmaceutics 3236:. London: Royal Society of Chemistry. 3067:Colloids and the Depletion Interaction 2977:Journal of Food Science and Technology 2802: 2793: 2765: 2692: 2611: 2479: 2355:has been used to refer to clusters of 1300:The term hydrocolloids also refers to 1280:) that are colloidally dispersible in 4846: 4329: 4297: 4056:(1 ed.). Springer. p. 292. 2374: 2180:, in which brilliant regions of pure 2015:Steric and gel network stabilization. 1325:and a continuous phase, whereas in a 848: 4270:Martin, Gregory S. (19 April 2005). 3595:Particle sizing and characterisation 2897:from the original on 9 October 2022. 2843:from the original on 9 October 2022. 4053:Colloidal transport in porous media 3233:Basic principles of colloid science 2293:of visible lightwaves that satisfy 2281:environment can exhibit long-range 1785:{\displaystyle \rho _{1}-\rho _{2}} 1481:{\displaystyle m_{A}g=6\pi \eta rv} 13: 3467:10.1002/j.1551-8833.1964.tb01202.x 3321:10.1016/B978-0-12-375049-5.00001-3 2492:, and can be used for intravenous 2031: 14: 5260: 4272:"An Update on Intravenous Fluids" 4222:(Fourth ed.). New York, NY. 3948:10.1038/scientificamerican0476-84 2546:Intermolecular and surface forces 880:Helium and xenon are known to be 838: 4408: 3309:Interface Science and Technology 2544:Israelachvili, Jacob N. (2011). 2164:A colloidal crystal is a highly 1918: 1260: 1248: 1225: 1196: 1181: 1169: 1157: 1138: 1126: 1114: 875: 669: 668: 655: 4291: 4211: 4176: 4150: 4105: 4070: 4043: 4008: 3981: 3954: 3919: 3876: 3841: 3703:Manoharan, Vinothan N. (2015). 3696: 3661: 3634: 3601: 3586: 3559: 3516: 3481: 3442: 3372: 3337: 3300: 3258: 3207: 3014: 2963: 2847: 2297:, in a matter analogous to the 2721: 2686: 2677: 2668: 2659: 2646: 2605: 2570: 1867: 1663: 1637: 934:atmospheric particulate matter 1: 4797:Macroscopic quantum phenomena 4298:Blake, Heidi (3 March 2011). 3834:10.1088/1367-2630/13/5/053021 3580:10.1016/S0927-7757(98)00680-3 3502:10.1016/S0378-5173(03)00364-8 2803:Stepto, Robert F. T. (2009). 2760:colloidal condition of matter 2527: 2320: 2207:). These spherical particles 1953:, but is also referred to as 1426:to counteract this movement. 1358:Interaction between particles 1307: 791:interface and colloid science 5153:Inorganic nonaqueous solvent 4807:Order and disorder (physics) 3428:10.1016/j.watres.2009.05.046 3035:10.1021/acs.langmuir.0c01139 2449:, the colloidal fraction in 7: 3344:Tadros, Tharwat F. (2007). 2496:. Colloids preserve a high 2488:belong to a major group of 2153: 2125:As a model system for atoms 1528:of the colloidal particles, 1243:globules dispersed in water 877:No such colloids are known. 10: 5265: 5138:Acid dissociation constant 3272:Pure and Applied Chemistry 3185:Cosgrove, Terence (2010). 2867:Pure and Applied Chemistry 2813:Pure and Applied Chemistry 2618:Pure and Applied Chemistry 2484:Colloid solutions used in 2464:that are less than 1ÎĽm in 2157: 1584:of the colloidal particle, 884:under certain conditions. 255:Spin gapless semiconductor 5121: 5053: 4983: 4880: 4759: 4713: 4585: 4499: 4473: 4417: 4406: 4368: 4205:10.1016/j.pce.2006.05.002 4121:Technischer Bericht / NTB 4099:10.1016/j.pce.2006.04.021 3870:10.1080/00107518308227471 3647:. CRC press. p. 89. 3076:10.1007/978-94-007-1223-2 2990:10.1007/s13197-010-0162-6 2707:10.1162/posc.2006.14.1.97 2291:constructive interference 2238:, which act as a natural 1862:sedimentation equilibrium 1556:of the suspension medium, 1373:Electrostatic interaction 1367:Excluded volume repulsion 867: 851: 195:Electronic band structure 5239:Condensed matter physics 4832:Thermo-dielectric effect 4731:Enthalpy of vaporization 4425:Bose–Einstein condensate 4017:Chemical Society Reviews 3975:10.1002/bbpc.19630670114 3627:10.17951/aa.2017.72.1.33 3285:10.1351/PAC-REC-10-06-03 3070:. Heidelberg: Springer. 2922:10.1002/recl.19630820810 2880:10.1351/PAC-REC-10-06-03 2857:"Terminology of polymers 2826:10.1351/PAC-REC-08-05-02 2631:10.1351/PAC-REC-08-05-02 2498:colloid osmotic pressure 2432:Nevada Nuclear Test Site 2369:biomolecular condensates 2340:biomolecular condensates 2104:Dynamic light scattering 786:or have a slight color. 105:Bose–Einstein condensate 36:Condensed matter physics 5103:Solubility table (data) 4970:Apparent molar property 4726:Enthalpy of sublimation 3725:10.1126/science.1253751 3537:10.1023/A:1025017502379 3525:Pharmaceutical Research 3350:. Weinheim: Wiley-VCH. 3230:Everett, D. H. (1988). 3215:Preparation of colloids 3148:10.1073/pnas.1418159111 2695:Perspectives on Science 2365:Macromolecular crowding 2353:biomolecular condensate 2305:in crystalline solids. 1986:electrical double layer 1068:biomolecular condensate 1017:biomolecular condensate 993:biomolecular condensate 5068:Total dissolved solids 5063:Solubility equilibrium 4988:and related quantities 4741:Latent internal energy 4491:Color-glass condensate 3813:New Journal of Physics 3213:Kopeliovich, Dmitri. 3117:Proc Natl Acad Sci USA 2742:10.1098/rstl.1861.0011 2400:particles, silicates, 2089: 2042:Debye screening length 2016: 1977: 1848: 1786: 1742: 1696: 1670: 1602: 1574: 1546: 1518: 1517:{\displaystyle m_{A}g} 1482: 1407: 1398:Sedimentation velocity 1317:Compared with solution 835: 805:, who coined the term 27: 5168:Partition coefficient 5148:Polar aprotic solvent 4551:Magnetically ordered 3191:John Wiley & Sons 2470:electrostatic charges 2404:), organic colloids ( 2195:colloidal spheres of 2087: 2014: 1975: 1849: 1787: 1743: 1697: 1671: 1603: 1575: 1547: 1545:{\displaystyle \eta } 1519: 1483: 1405: 1103:colloidal dispersions 1095:colloidal suspensions 818: 250:Topological insulator 22: 5083:Enthalpy of solution 5010:Volume concentration 5005:Number concentration 4430:Fermionic condensate 4306:. UK. Archived from 3850:Contemporary Physics 3785:10.1364/OE.21.023785 2514:intracellular volume 2502:intravascular volume 2272:electrically charged 2080:Monitoring stability 1944:absolute temperature 1925:van der Waals forces 1802: 1756: 1706: 1686: 1618: 1592: 1564: 1536: 1498: 1444: 1379:van der Waals forces 1176:A dollop of hair gel 988:biological membranes 823:: Short synonym for 750:colloidal suspension 268:Electronic phenomena 115:Fermionic condensate 5234:Colloidal chemistry 4995:Molar concentration 4965:Dilution (equation) 4645:Chemical ionization 4537:Programmable matter 4527:Quantum spin liquid 4395:Supercritical fluid 4197:2007PCE....32..477W 4091:2007PCE....32..469A 4002:10.1021/j100727a049 3940:1976SciAm.234d..84D 3928:Scientific American 3897:1964Natur.204..990J 3862:1983ConPh..24...25P 3825:2011NJPh...13e3021G 3776:2013OExpr..2123785G 3770:(20): 23785–23802. 3420:2009WatRe..43.3717C 3393:10.1021/la00019a029 3139:2014PNAS..111E4812V 3123:(45): E4812–E4821. 3029:(40): 11732–11741. 2949:1966JChPh..44.2322D 2510:interstitial volume 2486:intravenous therapy 2480:Intravenous therapy 2402:iron oxy-hydroxides 2240:diffraction grating 2139:confocal microscopy 1435:gravitational force 1412:gravitational field 1091:colloidal emulsions 275:Quantum Hall effect 26:image of a colloid. 5035:Isotopic abundance 5000:Mass concentration 4874:Chemical solutions 4792:Leidenfrost effect 4721:Enthalpy of fusion 4486:Quark–gluon plasma 4310:on 4 November 2011 4029:10.1039/C3CS60078E 2508:also increase the 2375:In the environment 2254:order of magnitude 2090: 2017: 1978: 1940:Boltzmann constant 1844: 1782: 1738: 1692: 1666: 1598: 1570: 1542: 1526:Archimedean weight 1514: 1478: 1408: 1302:a type of dressing 1087:colloidal aerosols 770:Some colloids are 662:Physics portal 28: 5229:Chemical mixtures 5211: 5210: 4840: 4839: 4822:Superheated vapor 4817:Superconductivity 4787:Equation of state 4635:Flash evaporation 4587:Phase transitions 4572:String-net liquid 4465:Photonic molecule 4435:Degenerate matter 4063:978-3-540-71338-8 4023:(19): 7774–7800. 3718:(6251): 1253751. 3682:10.1021/la802459u 3654:978-0-8247-0304-2 3414:(15): 3717–3726. 3357:978-3-527-63107-0 3278:(12): 2229–2259. 3243:978-1-84755-020-0 2957:10.1063/1.1727043 2874:(12): 2229–2259. 2786:978-0-85404-491-7 2736:: 183–224. 1861. 2590:978-1-84755-942-5 2555:978-0-08-092363-5 2494:fluid replacement 2453:consists of tiny 2160:Colloidal crystal 2147:Phase transitions 1938:, where k is the 1889:high shear mixing 1842: 1723: 1695:{\displaystyle V} 1601:{\displaystyle v} 1573:{\displaystyle r} 1431:Stokes drag force 1268:describe certain 1083: 1082: 712: 711: 420:Granular material 188:Electronic phases 5256: 5108:Solubility chart 4935:Phase separation 4895:Aqueous solution 4867: 4860: 4853: 4844: 4843: 4777:Compressed fluid 4412: 4357:States of matter 4350: 4343: 4336: 4327: 4326: 4320: 4319: 4317: 4315: 4295: 4289: 4288: 4286: 4284: 4267: 4256: 4255: 4249: 4241: 4215: 4209: 4208: 4191:(1–7): 477–484. 4180: 4174: 4173: 4171: 4169: 4160:. Archived from 4154: 4148: 4147: 4145: 4143: 4137: 4131:. Archived from 4118: 4109: 4103: 4102: 4085:(1–7): 469–476. 4074: 4068: 4067: 4047: 4041: 4040: 4012: 4006: 4005: 3985: 3979: 3978: 3958: 3952: 3951: 3923: 3917: 3916: 3905:10.1038/204990a0 3880: 3874: 3873: 3845: 3839: 3838: 3836: 3804: 3798: 3797: 3787: 3755: 3746: 3745: 3727: 3709: 3700: 3694: 3693: 3676:(23): 13338–47. 3665: 3659: 3658: 3638: 3632: 3631: 3629: 3605: 3599: 3598: 3590: 3584: 3583: 3574:(1–2): 111–123. 3563: 3557: 3556: 3520: 3514: 3513: 3485: 3479: 3478: 3446: 3440: 3439: 3403: 3397: 3396: 3387:(7): 2206–2212. 3376: 3370: 3369: 3341: 3335: 3334: 3304: 3298: 3297: 3287: 3262: 3256: 3255: 3227: 3218: 3211: 3205: 3204: 3182: 3171: 3170: 3160: 3150: 3132: 3108: 3102: 3101: 3099: 3097: 3092:on 14 April 2019 3088:. Archived from 3061: 3055: 3054: 3018: 3012: 3011: 3001: 2967: 2961: 2960: 2932: 2926: 2925: 2905: 2899: 2898: 2896: 2863: 2851: 2845: 2844: 2842: 2809: 2800: 2791: 2790: 2772: 2763: 2753: 2725: 2719: 2718: 2690: 2684: 2681: 2675: 2672: 2666: 2663: 2657: 2650: 2644: 2643: 2633: 2609: 2603: 2602: 2574: 2568: 2567: 2541: 2490:volume expanders 2361:phase separation 2327:phase separation 2094:light scattering 1853: 1851: 1850: 1845: 1843: 1841: 1827: 1823: 1822: 1812: 1791: 1789: 1788: 1783: 1781: 1780: 1768: 1767: 1747: 1745: 1744: 1739: 1737: 1736: 1724: 1716: 1701: 1699: 1698: 1693: 1675: 1673: 1672: 1667: 1662: 1661: 1649: 1648: 1630: 1629: 1607: 1605: 1604: 1599: 1579: 1577: 1576: 1571: 1551: 1549: 1548: 1543: 1523: 1521: 1520: 1515: 1510: 1509: 1487: 1485: 1484: 1479: 1456: 1455: 1391:Depletion forces 1321:A colloid has a 1252: 1229: 1200: 1185: 1173: 1161: 1142: 1130: 1118: 990: 852:Dispersed phase 846: 845: 704: 697: 690: 677: 672: 671: 664: 660: 659: 280:Spin Hall effect 170:Phase transition 140:Luttinger liquid 77:States of matter 60:Phase transition 46: 32: 31: 5264: 5263: 5259: 5258: 5257: 5255: 5254: 5253: 5214: 5213: 5212: 5207: 5117: 5078:Solvation shell 5049: 4987: 4979: 4975:Miscibility gap 4960:Serial dilution 4955:Supersaturation 4905:Buffer solution 4876: 4871: 4841: 4836: 4767:Baryonic matter 4755: 4709: 4680:Saturated fluid 4620:Crystallization 4581: 4555:Antiferromagnet 4495: 4469: 4413: 4404: 4364: 4354: 4324: 4323: 4313: 4311: 4296: 4292: 4282: 4280: 4268: 4259: 4243: 4242: 4230: 4216: 4212: 4181: 4177: 4167: 4165: 4164:on 4 March 2009 4156: 4155: 4151: 4141: 4139: 4138:on 9 March 2009 4135: 4116: 4110: 4106: 4075: 4071: 4064: 4048: 4044: 4013: 4009: 3986: 3982: 3959: 3955: 3924: 3920: 3881: 3877: 3846: 3842: 3805: 3801: 3756: 3749: 3707: 3701: 3697: 3666: 3662: 3655: 3639: 3635: 3606: 3602: 3591: 3587: 3564: 3560: 3521: 3517: 3486: 3482: 3447: 3443: 3404: 3400: 3377: 3373: 3358: 3342: 3338: 3331: 3305: 3301: 3263: 3259: 3244: 3228: 3221: 3212: 3208: 3201: 3183: 3174: 3109: 3105: 3095: 3093: 3086: 3062: 3058: 3019: 3015: 2968: 2964: 2933: 2929: 2906: 2902: 2894: 2861: 2858: 2852: 2848: 2840: 2807: 2801: 2794: 2787: 2773: 2766: 2727: 2726: 2722: 2691: 2687: 2682: 2678: 2673: 2669: 2664: 2660: 2651: 2647: 2610: 2606: 2591: 2575: 2571: 2556: 2542: 2535: 2530: 2482: 2440:ultrafiltration 2429: 2425: 2421: 2377: 2323: 2206: 2197:silicon dioxide 2162: 2156: 2127: 2113: 2082: 2034: 2032:Destabilization 1931:of the system. 1921: 1870: 1828: 1818: 1814: 1813: 1811: 1803: 1800: 1799: 1776: 1772: 1763: 1759: 1757: 1754: 1753: 1732: 1728: 1715: 1707: 1704: 1703: 1687: 1684: 1683: 1657: 1653: 1644: 1640: 1625: 1621: 1619: 1616: 1615: 1593: 1590: 1589: 1565: 1562: 1561: 1537: 1534: 1533: 1505: 1501: 1499: 1496: 1495: 1451: 1447: 1445: 1442: 1441: 1424:Brownian motion 1400: 1360: 1347:sodium chloride 1323:dispersed phase 1319: 1310: 1290:pharmaceuticals 1274:polysaccharides 1263: 1256: 1253: 1244: 1230: 1221: 1213: 1211: 1201: 1192: 1186: 1177: 1174: 1165: 1162: 1153: 1143: 1134: 1131: 1122: 1119: 1099:colloidal foams 1078:cranberry glass 1075: 1053: 1029: 1002: 986: 968: 948: 923: 893: 879: 869: 841: 836: 817: 799:Michael Faraday 795:Francesco Selmi 778:, which is the 774:because of the 708: 667: 654: 653: 646: 645: 644: 444: 436: 435: 434: 410:Amorphous solid 404: 394: 393: 392: 371: 353: 343: 342: 341: 330: 328:Antiferromagnet 321: 319:Superparamagnet 312: 299: 298:Magnetic phases 291: 290: 289: 269: 261: 260: 259: 189: 181: 180: 179: 165:Order parameter 159: 158:Phase phenomena 151: 150: 149: 79: 69: 17: 12: 11: 5: 5262: 5252: 5251: 5246: 5241: 5236: 5231: 5226: 5209: 5208: 5206: 5205: 5200: 5195: 5190: 5185: 5180: 5175: 5170: 5165: 5160: 5155: 5150: 5145: 5143:Protic solvent 5140: 5135: 5127: 5125: 5119: 5118: 5116: 5115: 5110: 5105: 5100: 5095: 5090: 5088:Lattice energy 5085: 5080: 5075: 5070: 5065: 5059: 5057: 5051: 5050: 5048: 5047: 5042: 5037: 5032: 5027: 5022: 5017: 5012: 5007: 5002: 4997: 4991: 4989: 4981: 4980: 4978: 4977: 4972: 4967: 4962: 4957: 4952: 4947: 4942: 4940:Eutectic point 4937: 4932: 4927: 4922: 4917: 4912: 4907: 4902: 4900:Solid solution 4897: 4892: 4890:Ideal solution 4886: 4884: 4878: 4877: 4870: 4869: 4862: 4855: 4847: 4838: 4837: 4835: 4834: 4829: 4824: 4819: 4814: 4809: 4804: 4799: 4794: 4789: 4784: 4779: 4774: 4769: 4763: 4761: 4757: 4756: 4754: 4753: 4748: 4746:Trouton's rule 4743: 4738: 4733: 4728: 4723: 4717: 4715: 4711: 4710: 4708: 4707: 4702: 4697: 4692: 4687: 4682: 4677: 4672: 4667: 4662: 4657: 4652: 4647: 4642: 4637: 4632: 4627: 4622: 4617: 4615:Critical point 4612: 4607: 4602: 4597: 4591: 4589: 4583: 4582: 4580: 4579: 4574: 4569: 4568: 4567: 4562: 4557: 4549: 4544: 4539: 4534: 4529: 4524: 4519: 4517:Liquid crystal 4514: 4509: 4503: 4501: 4497: 4496: 4494: 4493: 4488: 4483: 4477: 4475: 4471: 4470: 4468: 4467: 4462: 4457: 4452: 4450:Strange matter 4447: 4445:Rydberg matter 4442: 4437: 4432: 4427: 4421: 4419: 4415: 4414: 4407: 4405: 4403: 4402: 4397: 4392: 4383: 4378: 4372: 4370: 4366: 4365: 4353: 4352: 4345: 4338: 4330: 4322: 4321: 4290: 4257: 4228: 4210: 4175: 4149: 4104: 4069: 4062: 4042: 4007: 3980: 3953: 3918: 3891:(4962): 1151. 3875: 3840: 3799: 3764:Optics Express 3747: 3695: 3660: 3653: 3633: 3600: 3585: 3558: 3531:(8): 1284–92. 3515: 3496:(1–2): 85–94. 3480: 3461:(2): 214–227. 3441: 3408:Water Research 3398: 3371: 3356: 3336: 3329: 3299: 3257: 3242: 3219: 3217:. substech.com 3206: 3199: 3172: 3103: 3084: 3056: 3013: 2984:(6): 587–597. 2962: 2927: 2900: 2846: 2820:(2): 351–353. 2792: 2785: 2764: 2720: 2685: 2676: 2667: 2658: 2645: 2624:(2): 351–353. 2604: 2589: 2569: 2554: 2532: 2531: 2529: 2526: 2481: 2478: 2427: 2423: 2419: 2376: 2373: 2363:within cells. 2357:macromolecules 2349:liquid crystal 2337:of cells into 2322: 2319: 2275:macromolecules 2270:interactions, 2204: 2158:Main article: 2155: 2152: 2126: 2123: 2118:centrifugation 2112: 2109: 2081: 2078: 2061: 2060: 2053: 2049: 2046:zeta potential 2033: 2030: 2006: 2005: 2001: 1990:zeta potential 1920: 1917: 1916: 1915: 1892: 1869: 1866: 1855: 1854: 1840: 1837: 1834: 1831: 1826: 1821: 1817: 1810: 1807: 1779: 1775: 1771: 1766: 1762: 1750: 1749: 1735: 1731: 1727: 1722: 1719: 1714: 1711: 1691: 1677: 1676: 1665: 1660: 1656: 1652: 1647: 1643: 1639: 1636: 1633: 1628: 1624: 1597: 1586: 1585: 1569: 1558: 1557: 1541: 1530: 1529: 1513: 1508: 1504: 1489: 1488: 1477: 1474: 1471: 1468: 1465: 1462: 1459: 1454: 1450: 1399: 1396: 1395: 1394: 1388: 1382: 1376: 1370: 1359: 1356: 1318: 1315: 1309: 1306: 1262: 1259: 1258: 1257: 1254: 1247: 1245: 1231: 1224: 1222: 1204:Tyndall effect 1202: 1195: 1193: 1187: 1180: 1178: 1175: 1168: 1166: 1163: 1156: 1154: 1144: 1137: 1135: 1132: 1125: 1123: 1120: 1113: 1081: 1080: 1070: 1046: 1024: 1020: 1019: 995: 965:Liquid crystal 957: 941: 937: 936: 918: 885: 874: 871: 865: 864: 861: 858: 854: 853: 850: 840: 839:Classification 837: 812: 811: 776:Tyndall effect 710: 709: 707: 706: 699: 692: 684: 681: 680: 679: 678: 665: 648: 647: 643: 642: 637: 632: 627: 622: 617: 612: 607: 602: 597: 592: 587: 582: 577: 572: 567: 562: 557: 552: 547: 542: 537: 532: 527: 522: 517: 512: 507: 502: 497: 492: 487: 482: 477: 472: 467: 462: 457: 452: 446: 445: 442: 441: 438: 437: 433: 432: 427: 425:Liquid crystal 422: 417: 412: 406: 405: 400: 399: 396: 395: 391: 390: 385: 380: 375: 366: 361: 355: 354: 351:Quasiparticles 349: 348: 345: 344: 340: 339: 334: 325: 316: 310:Superdiamagnet 307: 301: 300: 297: 296: 293: 292: 288: 287: 282: 277: 271: 270: 267: 266: 263: 262: 258: 257: 252: 247: 242: 237: 235:Thermoelectric 232: 230:Superconductor 227: 222: 217: 212: 210:Mott insulator 207: 202: 197: 191: 190: 187: 186: 183: 182: 178: 177: 172: 167: 161: 160: 157: 156: 153: 152: 148: 147: 142: 137: 132: 127: 122: 117: 112: 107: 102: 97: 92: 87: 81: 80: 75: 74: 71: 70: 68: 67: 62: 57: 51: 48: 47: 39: 38: 15: 9: 6: 4: 3: 2: 5261: 5250: 5247: 5245: 5242: 5240: 5237: 5235: 5232: 5230: 5227: 5225: 5222: 5221: 5219: 5204: 5201: 5199: 5196: 5194: 5191: 5189: 5186: 5184: 5181: 5179: 5176: 5174: 5171: 5169: 5166: 5164: 5161: 5159: 5156: 5154: 5151: 5149: 5146: 5144: 5141: 5139: 5136: 5133: 5129: 5128: 5126: 5124: 5120: 5114: 5111: 5109: 5106: 5104: 5101: 5099: 5096: 5094: 5091: 5089: 5086: 5084: 5081: 5079: 5076: 5074: 5071: 5069: 5066: 5064: 5061: 5060: 5058: 5056: 5052: 5046: 5043: 5041: 5038: 5036: 5033: 5031: 5030:Mass fraction 5028: 5026: 5025:Mole fraction 5023: 5021: 5018: 5016: 5013: 5011: 5008: 5006: 5003: 5001: 4998: 4996: 4993: 4992: 4990: 4986: 4985:Concentration 4982: 4976: 4973: 4971: 4968: 4966: 4963: 4961: 4958: 4956: 4953: 4951: 4948: 4946: 4943: 4941: 4938: 4936: 4933: 4931: 4930:Phase diagram 4928: 4926: 4923: 4921: 4918: 4916: 4913: 4911: 4910:Flory–Huggins 4908: 4906: 4903: 4901: 4898: 4896: 4893: 4891: 4888: 4887: 4885: 4883: 4879: 4875: 4868: 4863: 4861: 4856: 4854: 4849: 4848: 4845: 4833: 4830: 4828: 4825: 4823: 4820: 4818: 4815: 4813: 4810: 4808: 4805: 4803: 4802:Mpemba effect 4800: 4798: 4795: 4793: 4790: 4788: 4785: 4783: 4782:Cooling curve 4780: 4778: 4775: 4773: 4770: 4768: 4765: 4764: 4762: 4758: 4752: 4749: 4747: 4744: 4742: 4739: 4737: 4734: 4732: 4729: 4727: 4724: 4722: 4719: 4718: 4716: 4712: 4706: 4705:Vitrification 4703: 4701: 4698: 4696: 4693: 4691: 4688: 4686: 4683: 4681: 4678: 4676: 4673: 4671: 4670:Recombination 4668: 4666: 4665:Melting point 4663: 4661: 4658: 4656: 4653: 4651: 4648: 4646: 4643: 4641: 4638: 4636: 4633: 4631: 4628: 4626: 4623: 4621: 4618: 4616: 4613: 4611: 4610:Critical line 4608: 4606: 4603: 4601: 4600:Boiling point 4598: 4596: 4593: 4592: 4590: 4588: 4584: 4578: 4575: 4573: 4570: 4566: 4563: 4561: 4558: 4556: 4553: 4552: 4550: 4548: 4545: 4543: 4540: 4538: 4535: 4533: 4532:Exotic matter 4530: 4528: 4525: 4523: 4520: 4518: 4515: 4513: 4510: 4508: 4505: 4504: 4502: 4498: 4492: 4489: 4487: 4484: 4482: 4479: 4478: 4476: 4472: 4466: 4463: 4461: 4458: 4456: 4453: 4451: 4448: 4446: 4443: 4441: 4438: 4436: 4433: 4431: 4428: 4426: 4423: 4422: 4420: 4416: 4411: 4401: 4398: 4396: 4393: 4391: 4387: 4384: 4382: 4379: 4377: 4374: 4373: 4371: 4367: 4362: 4358: 4351: 4346: 4344: 4339: 4337: 4332: 4331: 4328: 4309: 4305: 4304:The Telegraph 4301: 4294: 4279: 4278: 4273: 4266: 4264: 4262: 4253: 4247: 4239: 4235: 4231: 4229:9780133254594 4225: 4221: 4214: 4206: 4202: 4198: 4194: 4190: 4186: 4179: 4163: 4159: 4153: 4134: 4130: 4126: 4122: 4115: 4108: 4100: 4096: 4092: 4088: 4084: 4080: 4073: 4065: 4059: 4055: 4054: 4046: 4038: 4034: 4030: 4026: 4022: 4018: 4011: 4003: 3999: 3995: 3991: 3990:J. Phys. Chem 3984: 3976: 3972: 3968: 3964: 3957: 3949: 3945: 3941: 3937: 3933: 3929: 3922: 3914: 3910: 3906: 3902: 3898: 3894: 3890: 3886: 3879: 3871: 3867: 3863: 3859: 3855: 3851: 3844: 3835: 3830: 3826: 3822: 3819:(5): 053021. 3818: 3814: 3810: 3803: 3795: 3791: 3786: 3781: 3777: 3773: 3769: 3765: 3761: 3754: 3752: 3743: 3739: 3735: 3731: 3726: 3721: 3717: 3713: 3706: 3699: 3691: 3687: 3683: 3679: 3675: 3671: 3664: 3656: 3650: 3646: 3645: 3637: 3628: 3623: 3619: 3615: 3611: 3604: 3596: 3589: 3581: 3577: 3573: 3569: 3562: 3554: 3550: 3546: 3542: 3538: 3534: 3530: 3526: 3519: 3511: 3507: 3503: 3499: 3495: 3491: 3484: 3476: 3472: 3468: 3464: 3460: 3456: 3452: 3445: 3437: 3433: 3429: 3425: 3421: 3417: 3413: 3409: 3402: 3394: 3390: 3386: 3382: 3375: 3367: 3363: 3359: 3353: 3349: 3348: 3340: 3332: 3330:9780123750495 3326: 3322: 3318: 3314: 3310: 3303: 3295: 3291: 3286: 3281: 3277: 3274:(in German). 3273: 3269: 3261: 3253: 3249: 3245: 3239: 3235: 3234: 3226: 3224: 3216: 3210: 3202: 3200:9781444320183 3196: 3192: 3188: 3181: 3179: 3177: 3168: 3164: 3159: 3154: 3149: 3144: 3140: 3136: 3131: 3126: 3122: 3118: 3114: 3107: 3091: 3087: 3085:9789400712225 3081: 3077: 3073: 3069: 3068: 3060: 3052: 3048: 3044: 3040: 3036: 3032: 3028: 3024: 3017: 3009: 3005: 3000: 2995: 2991: 2987: 2983: 2979: 2978: 2973: 2966: 2958: 2954: 2950: 2946: 2942: 2938: 2937:J. Chem. Phys 2931: 2923: 2919: 2915: 2911: 2904: 2893: 2889: 2885: 2881: 2877: 2873: 2869: 2868: 2860: 2850: 2839: 2835: 2831: 2827: 2823: 2819: 2815: 2814: 2806: 2799: 2797: 2788: 2782: 2778: 2771: 2769: 2761: 2757: 2751: 2747: 2743: 2739: 2735: 2731: 2724: 2716: 2712: 2708: 2704: 2700: 2696: 2689: 2680: 2671: 2662: 2655: 2649: 2641: 2637: 2632: 2627: 2623: 2619: 2615: 2608: 2600: 2596: 2592: 2586: 2582: 2581: 2573: 2565: 2561: 2557: 2551: 2547: 2540: 2538: 2533: 2525: 2523: 2522:Joachim Boldt 2519: 2515: 2511: 2507: 2503: 2499: 2495: 2491: 2487: 2477: 2475: 2471: 2467: 2463: 2460: 2456: 2452: 2448: 2443: 2441: 2437: 2433: 2417: 2416: 2411: 2407: 2403: 2399: 2395: 2391: 2387: 2383: 2372: 2370: 2366: 2362: 2358: 2354: 2350: 2346: 2342: 2341: 2336: 2332: 2328: 2318: 2315: 2311: 2306: 2304: 2300: 2296: 2292: 2288: 2284: 2280: 2276: 2273: 2269: 2266: 2261: 2259: 2255: 2251: 2248: 2245: 2241: 2237: 2234: 2230: 2226: 2222: 2221:sedimentation 2218: 2214: 2210: 2202: 2198: 2194: 2190: 2186: 2183: 2179: 2175: 2171: 2167: 2161: 2151: 2148: 2144: 2140: 2136: 2132: 2122: 2119: 2108: 2105: 2101: 2099: 2095: 2086: 2077: 2075: 2071: 2067: 2058: 2054: 2050: 2047: 2043: 2039: 2038: 2037: 2029: 2027: 2023: 2013: 2009: 2002: 1999: 1995: 1991: 1987: 1983: 1982: 1981: 1974: 1970: 1968: 1964: 1963:precipitation 1960: 1956: 1952: 1947: 1945: 1942:and T is the 1941: 1937: 1932: 1930: 1926: 1919:Stabilization 1913: 1909: 1905: 1901: 1897: 1896:precipitation 1893: 1890: 1886: 1882: 1878: 1875: 1874: 1873: 1865: 1863: 1858: 1838: 1835: 1832: 1829: 1824: 1819: 1815: 1808: 1805: 1798: 1797: 1796: 1793: 1777: 1773: 1769: 1764: 1760: 1733: 1729: 1725: 1720: 1717: 1712: 1709: 1689: 1682: 1681: 1680: 1658: 1654: 1650: 1645: 1641: 1634: 1631: 1626: 1622: 1614: 1613: 1612: 1609: 1595: 1583: 1567: 1560: 1559: 1555: 1539: 1532: 1531: 1527: 1511: 1506: 1502: 1494: 1493: 1492: 1475: 1472: 1469: 1466: 1463: 1460: 1457: 1452: 1448: 1440: 1439: 1438: 1436: 1432: 1427: 1425: 1421: 1417: 1413: 1404: 1392: 1389: 1386: 1385:Steric forces 1383: 1380: 1377: 1374: 1371: 1368: 1365: 1364: 1363: 1355: 1352: 1348: 1344: 1340: 1336: 1332: 1328: 1324: 1314: 1305: 1303: 1298: 1295: 1291: 1287: 1283: 1279: 1275: 1271: 1267: 1266:Hydrocolloids 1261:Hydrocolloids 1251: 1246: 1242: 1238: 1234: 1228: 1223: 1220: 1216: 1209: 1205: 1199: 1194: 1190: 1184: 1179: 1172: 1167: 1164:Whipped cream 1160: 1155: 1152: 1148: 1141: 1136: 1129: 1124: 1117: 1112: 1111: 1110: 1108: 1104: 1100: 1096: 1092: 1088: 1079: 1074: 1071: 1069: 1065: 1061: 1057: 1052: 1051: 1047: 1045: 1041: 1037: 1036:floating soap 1033: 1028: 1025: 1022: 1021: 1018: 1014: 1010: 1006: 1005:pigmented ink 1001: 1000: 996: 994: 989: 984: 980: 976: 972: 967: 966: 962: 958: 956: 955:shaving cream 952: 951:whipped cream 947: 946: 942: 939: 938: 935: 931: 927: 922: 921:Solid aerosol 919: 917: 913: 909: 905: 901: 897: 892: 891: 886: 883: 878: 872: 866: 862: 859: 856: 855: 849:Medium/phase 847: 844: 834: 832: 828: 826: 822: 815: 810: 808: 804: 803:Thomas Graham 800: 796: 792: 787: 785: 781: 777: 773: 768: 766: 762: 757: 756: 751: 747: 743: 739: 735: 731: 728: 725: 721: 717: 705: 700: 698: 693: 691: 686: 685: 683: 682: 676: 666: 663: 658: 652: 651: 650: 649: 641: 638: 636: 633: 631: 628: 626: 623: 621: 618: 616: 613: 611: 608: 606: 603: 601: 598: 596: 593: 591: 588: 586: 583: 581: 578: 576: 573: 571: 568: 566: 563: 561: 558: 556: 553: 551: 548: 546: 543: 541: 538: 536: 533: 531: 528: 526: 523: 521: 518: 516: 513: 511: 508: 506: 503: 501: 498: 496: 493: 491: 488: 486: 483: 481: 478: 476: 473: 471: 468: 466: 463: 461: 458: 456: 453: 451: 450:Van der Waals 448: 447: 440: 439: 431: 428: 426: 423: 421: 418: 416: 413: 411: 408: 407: 403: 398: 397: 389: 386: 384: 381: 379: 376: 374: 370: 367: 365: 362: 360: 357: 356: 352: 347: 346: 338: 335: 333: 329: 326: 324: 320: 317: 315: 311: 308: 306: 303: 302: 295: 294: 286: 283: 281: 278: 276: 273: 272: 265: 264: 256: 253: 251: 248: 246: 245:Ferroelectric 243: 241: 240:Piezoelectric 238: 236: 233: 231: 228: 226: 223: 221: 218: 216: 215:Semiconductor 213: 211: 208: 206: 203: 201: 198: 196: 193: 192: 185: 184: 176: 173: 171: 168: 166: 163: 162: 155: 154: 146: 143: 141: 138: 136: 135:Superfluidity 133: 131: 128: 126: 123: 121: 118: 116: 113: 111: 108: 106: 103: 101: 98: 96: 93: 91: 88: 86: 83: 82: 78: 73: 72: 66: 63: 61: 58: 56: 53: 52: 50: 49: 45: 41: 40: 37: 34: 33: 30: 25: 21: 5249:Dosage forms 5093:Raoult's law 5045:Ternary plot 5040:Mixing ratio 4924: 4827:Superheating 4700:Vaporization 4695:Triple point 4690:Supercooling 4655:Lambda point 4605:Condensation 4522:Time crystal 4506: 4500:Other states 4440:Quantum Hall 4312:. Retrieved 4308:the original 4303: 4293: 4281:. Retrieved 4275: 4219: 4213: 4188: 4184: 4178: 4166:. Retrieved 4162:the original 4152: 4140:. Retrieved 4133:the original 4120: 4107: 4082: 4078: 4072: 4052: 4045: 4020: 4016: 4010: 3993: 3989: 3983: 3969:(1): 84–85. 3966: 3962: 3956: 3934:(4): 84–95. 3931: 3927: 3921: 3888: 3884: 3878: 3853: 3849: 3843: 3816: 3812: 3802: 3767: 3763: 3715: 3711: 3698: 3673: 3669: 3663: 3643: 3636: 3617: 3613: 3603: 3594: 3588: 3571: 3567: 3561: 3528: 3524: 3518: 3493: 3489: 3483: 3458: 3454: 3444: 3411: 3407: 3401: 3384: 3380: 3374: 3346: 3339: 3312: 3308: 3302: 3275: 3271: 3260: 3232: 3209: 3186: 3120: 3116: 3106: 3094:. Retrieved 3090:the original 3066: 3059: 3026: 3022: 3016: 2981: 2975: 2965: 2940: 2936: 2930: 2913: 2909: 2903: 2871: 2865: 2849: 2817: 2811: 2776: 2759: 2755: 2733: 2729: 2723: 2698: 2694: 2688: 2679: 2670: 2661: 2653: 2648: 2621: 2617: 2607: 2579: 2572: 2545: 2506:crystalloids 2483: 2447:soil science 2444: 2415:eigencolloid 2413: 2378: 2347:, a type of 2338: 2324: 2307: 2262: 2233:interstitial 2189:close-packed 2187:result from 2163: 2128: 2114: 2102: 2098:turbidimetry 2091: 2066:viscoelastic 2062: 2035: 2018: 2007: 1979: 1966: 1955:flocculation 1948: 1933: 1922: 1900:condensation 1871: 1859: 1856: 1794: 1751: 1678: 1610: 1587: 1490: 1428: 1410:The Earth’s 1409: 1361: 1320: 1311: 1299: 1265: 1264: 1106: 1102: 1098: 1094: 1090: 1086: 1084: 1072: 1048: 1026: 1013:precipitates 997: 959: 943: 920: 904:condensation 887: 876: 842: 830: 829: 824: 820: 819: 806: 788: 769: 753: 749: 715: 713: 580:von Klitzing 414: 285:Kondo effect 145:Time crystal 125:Fermi liquid 29: 5244:Soft matter 5198:Lyonium ion 5113:Miscibility 5098:Henry's law 4736:Latent heat 4685:Sublimation 4630:Evaporation 4565:Ferromagnet 4560:Ferrimagnet 4542:Dark matter 4474:High energy 4168:12 February 4142:22 February 3996:(7): 2306. 3096:5 September 2943:(6): 2322. 2426:, or Am(OH) 2351:. The term 2317:formation. 2295:Bragg’s law 2287:iridescence 2260:lightwave. 2229:hydrostatic 2225:compression 2209:precipitate 2191:domains of 1998:peptization 1994:DLVO theory 1959:coagulation 1951:aggregation 1929:free energy 1868:Preparation 1151:opalescence 1149:with light 1133:Jello cubes 1066:, gel-like 916:hair sprays 868:Dispersion 772:translucent 748:. The term 402:Soft matter 323:Ferromagnet 5218:Categories 5193:Amphiphile 5188:Lipophilic 5183:Hydrophile 5178:Hydrophobe 5055:Solubility 4950:Saturation 4920:Suspension 4751:Volatility 4714:Quantities 4675:Regelation 4650:Ionization 4625:Deposition 4577:Superglass 4547:Antimatter 4481:QCD matter 4460:Supersolid 4455:Superfluid 4418:Low energy 4314:4 November 4238:1035317420 2916:(8): 806. 2701:: 97–121. 2528:References 2436:bentonites 2325:Colloidal 2321:In biology 2299:scattering 2211:in highly 2074:toothpaste 2057:depletants 1877:Dispersion 1354:solution. 1308:Components 1239:of liquid 1147:silica gel 1145:Colloidal 1054:Examples: 1030:Examples: 1027:Solid foam 1003:Examples: 979:hand cream 975:mayonnaise 969:Examples: 924:Examples: 894:Examples: 882:immiscible 816:definition 780:scattering 765:micrometre 755:suspension 545:Louis NĂ©el 535:Schrieffer 443:Scientists 337:Spin glass 332:Metamagnet 314:Paramagnet 130:Supersolid 5203:Lyate ion 5158:Solvation 5073:Solvation 5015:Normality 4246:cite book 4129:1015-2636 3856:: 25–73. 3620:(1): 33. 3366:701308697 3252:232632488 3130:1309.1187 3051:221770585 2750:186208563 2599:406528399 2564:706803091 2462:particles 2386:sandstone 2382:limestone 2345:membranes 2331:cytoplasm 2314:chemistry 2268:Coulombic 2265:repulsive 2217:Australia 2215:pools in 2213:siliceous 2193:amorphous 2170:analogous 2070:bentonite 1836:η 1833:π 1774:ρ 1770:− 1761:ρ 1726:π 1655:ρ 1651:− 1642:ρ 1554:viscosity 1540:η 1470:η 1467:π 1433:with the 1339:molecules 1270:chemicals 1241:butterfat 1107:hydrosols 1076:Example: 1073:Solid sol 1040:styrofoam 991:, liquid 949:Example: 930:ice cloud 831:Colloidal 825:colloidal 761:nanometre 734:suspended 730:particles 727:insoluble 724:dispersed 625:Abrikosov 540:Josephson 510:Van Vleck 500:Luttinger 373:Polariton 305:Diamagnet 225:Conductor 220:Semimetal 205:Insulator 120:Fermi gas 5224:Colloids 5173:Polarity 5132:Category 5020:Molality 4882:Solution 4812:Spinodal 4760:Concepts 4640:Freezing 4277:Medscape 4037:23836297 3794:24104290 3734:26315444 3690:18986182 3670:Langmuir 3553:24157992 3545:12948027 3510:12954183 3475:41264141 3436:19577785 3381:Langmuir 3315:: 1–57. 3294:96812603 3167:25344532 3043:32937070 3023:Langmuir 3008:23572691 2892:Archived 2888:96812603 2838:Archived 2834:95122531 2756:colloids 2715:55882753 2640:95122531 2518:efficacy 2466:diameter 2258:incident 2182:spectral 2154:Crystals 2052:polymer. 2026:guar gum 1885:spraying 1416:sediment 1327:solution 1288:through 1278:proteins 1272:(mostly 1237:emulsion 1219:crystals 1015:, solid 1009:sediment 961:Emulsion 827:system. 809:in 1861. 742:aerosols 675:Category 630:Ginzburg 605:Laughlin 565:Kadanoff 520:Shockley 505:Anderson 460:von Laue 110:Bose gas 5123:Solvent 4925:Colloid 4915:Mixture 4772:Binodal 4660:Melting 4595:Boiling 4512:Crystal 4507:Colloid 4193:Bibcode 4087:Bibcode 3936:Bibcode 3913:4191566 3893:Bibcode 3858:Bibcode 3821:Bibcode 3772:Bibcode 3742:5727282 3712:Science 3416:Bibcode 3158:4234574 3135:Bibcode 2999:3551143 2945:Bibcode 2474:soil pH 2422:, U(OH) 2390:granite 2335:nucleus 2310:physics 2283:crystal 2279:aqueous 2256:as the 2244:visible 2174:natural 2166:ordered 2131:physics 2022:xanthan 1881:milling 1580:is the 1552:is the 1524:is the 1351:crystal 1349:(NaCl) 1335:solvent 1208:opalite 1121:Aerogel 1060:gelatin 1032:aerogel 940:Liquid 890:aerosol 888:Liquid 870:medium 860:Liquid 821:Colloid 807:colloid 720:mixture 716:colloid 635:Leggett 610:Störmer 595:Bednorz 555:Giaever 525:Bardeen 515:Hubbard 490:Peierls 480:Onsager 430:Polymer 415:Colloid 378:Polaron 369:Plasmon 364:Exciton 4400:Plasma 4381:Liquid 4283:6 July 4236:  4226:  4127:  4060:  4035:  3911:  3885:Nature 3792:  3740:  3732:  3688:  3651:  3551:  3543:  3508:  3473:  3434:  3364:  3354:  3327:  3292:  3250:  3240:  3197:  3165:  3155:  3082:  3049:  3041:  3006:  2996:  2886:  2832:  2783:  2748:  2713:  2638:  2597:  2587:  2562:  2552:  2410:fulvic 2303:X-rays 2277:in an 2227:under 2201:silica 1908:silica 1679:where 1582:radius 1491:where 1331:solute 1329:, the 1206:in an 1189:Creams 1044:pumice 1023:Solid 900:clouds 863:Solid 784:opaque 738:liquid 673:  640:Parisi 600:MĂĽller 590:Rohrer 585:Binnig 575:Wilson 570:Fisher 530:Cooper 495:Landau 383:Magnon 359:Phonon 200:Plasma 100:Plasma 90:Liquid 55:Phases 4945:Alloy 4390:Vapor 4376:Solid 4369:State 4136:(PDF) 4117:(PDF) 3909:S2CID 3738:S2CID 3708:(PDF) 3549:S2CID 3471:JSTOR 3290:S2CID 3125:arXiv 3047:S2CID 2895:(PDF) 2884:S2CID 2862:(PDF) 2841:(PDF) 2830:S2CID 2808:(PDF) 2746:S2CID 2711:S2CID 2636:S2CID 2459:humus 2451:soils 2406:humic 2250:waves 2247:light 2236:voids 2203:, SiO 2185:color 2143:model 2135:atoms 2064:with 1904:redox 1902:, or 1420:cream 1286:foods 1282:water 1105:, or 1064:jelly 983:latex 926:smoke 912:steam 814:IUPAC 763:to 1 718:is a 550:Esaki 475:Bloch 470:Debye 465:Bragg 455:Onnes 388:Roton 85:Solid 4361:list 4316:2011 4285:2016 4252:link 4234:OCLC 4224:ISBN 4170:2009 4144:2009 4125:ISSN 4058:ISBN 4033:PMID 3790:PMID 3730:PMID 3686:PMID 3649:ISBN 3541:PMID 3506:PMID 3432:PMID 3362:OCLC 3352:ISBN 3325:ISBN 3248:OCLC 3238:ISBN 3195:ISBN 3163:PMID 3098:2018 3080:ISBN 3039:PMID 3004:PMID 2781:ISBN 2595:OCLC 2585:ISBN 2560:OCLC 2550:ISBN 2512:and 2457:and 2455:clay 2408:and 2398:clay 2394:sorb 2333:and 2312:and 2242:for 2223:and 2199:(or 2178:opal 2072:and 2024:and 1967:floc 1912:gold 1752:and 1588:and 1343:ions 1333:and 1294:skin 1276:and 1255:Mist 1233:Milk 1215:opal 1056:agar 971:milk 945:Foam 908:mist 873:Gas 857:Gas 801:and 746:gels 744:and 620:Tsui 615:Yang 560:Kohn 485:Mott 4386:Gas 4201:doi 4095:doi 4025:doi 3998:doi 3971:doi 3944:doi 3932:234 3901:doi 3889:204 3866:doi 3829:doi 3780:doi 3720:doi 3716:349 3678:doi 3622:doi 3576:doi 3572:152 3533:doi 3498:doi 3494:263 3463:doi 3424:doi 3389:doi 3317:doi 3280:doi 3153:PMC 3143:doi 3121:111 3072:doi 3031:doi 2994:PMC 2986:doi 2953:doi 2918:doi 2876:doi 2822:doi 2738:doi 2734:151 2703:doi 2626:doi 2445:In 2301:of 2129:In 1961:or 1910:or 1341:or 1050:Gel 999:Sol 963:or 896:fog 732:is 175:QCP 95:Gas 65:QCP 24:SEM 5220:: 4388:/ 4302:. 4274:. 4260:^ 4248:}} 4244:{{ 4232:. 4199:. 4189:32 4187:. 4119:. 4093:. 4083:32 4081:. 4031:. 4021:42 4019:. 3994:73 3992:. 3967:67 3965:. 3942:. 3930:. 3907:. 3899:. 3887:. 3864:. 3854:24 3852:. 3827:. 3817:13 3815:. 3811:. 3788:. 3778:. 3768:21 3766:. 3762:. 3750:^ 3736:. 3728:. 3714:. 3710:. 3684:. 3674:24 3672:. 3618:72 3616:. 3612:. 3570:. 3547:. 3539:. 3529:20 3527:. 3504:. 3492:. 3469:. 3459:56 3457:. 3453:. 3430:. 3422:. 3412:43 3410:. 3385:10 3383:. 3360:. 3323:. 3313:18 3311:. 3288:. 3276:83 3270:. 3246:. 3222:^ 3193:. 3189:. 3175:^ 3161:. 3151:. 3141:. 3133:. 3119:. 3115:. 3078:. 3045:. 3037:. 3027:36 3025:. 3002:. 2992:. 2982:47 2980:. 2974:. 2951:. 2941:44 2939:. 2914:82 2912:. 2890:. 2882:. 2872:83 2870:. 2864:. 2836:. 2828:. 2818:81 2816:. 2810:. 2795:^ 2767:^ 2762:." 2744:. 2732:. 2709:. 2699:14 2697:. 2634:. 2622:81 2620:. 2616:. 2593:. 2558:. 2536:^ 2476:. 2388:, 2384:, 2371:. 2028:. 1957:, 1936:kT 1898:, 1891:). 1883:, 1437:: 1235:- 1109:. 1101:, 1097:, 1093:, 1089:, 1062:, 1058:, 1042:, 1038:, 1034:, 1011:, 1007:, 985:, 981:, 977:, 973:, 953:, 932:, 928:, 914:, 910:, 906:, 902:, 898:, 767:. 714:A 5134:) 5130:( 4866:e 4859:t 4852:v 4363:) 4359:( 4349:e 4342:t 4335:v 4318:. 4287:. 4254:) 4240:. 4207:. 4203:: 4195:: 4172:. 4146:. 4101:. 4097:: 4089:: 4066:. 4039:. 4027:: 4004:. 4000:: 3977:. 3973:: 3950:. 3946:: 3938:: 3915:. 3903:: 3895:: 3872:. 3868:: 3860:: 3837:. 3831:: 3823:: 3796:. 3782:: 3774:: 3744:. 3722:: 3692:. 3680:: 3657:. 3630:. 3624:: 3597:. 3582:. 3578:: 3555:. 3535:: 3512:. 3500:: 3477:. 3465:: 3438:. 3426:: 3418:: 3395:. 3391:: 3368:. 3333:. 3319:: 3296:. 3282:: 3254:. 3203:. 3169:. 3145:: 3137:: 3127:: 3100:. 3074:: 3053:. 3033:: 3010:. 2988:: 2959:. 2955:: 2947:: 2924:. 2920:: 2878:: 2824:: 2789:. 2752:. 2740:: 2717:. 2705:: 2656:. 2642:. 2628:: 2601:. 2566:. 2428:3 2424:4 2420:4 2205:2 1914:. 1839:r 1830:6 1825:g 1820:A 1816:m 1809:= 1806:v 1778:2 1765:1 1748:, 1734:3 1730:r 1721:3 1718:4 1713:= 1710:V 1690:V 1664:) 1659:2 1646:1 1638:( 1635:V 1632:= 1627:A 1623:m 1596:v 1568:r 1512:g 1507:A 1503:m 1476:v 1473:r 1464:6 1461:= 1458:g 1453:A 1449:m 1210:: 703:e 696:t 689:v

Index


SEM
Condensed matter physics

Phases
Phase transition
QCP
States of matter
Solid
Liquid
Gas
Plasma
Bose–Einstein condensate
Bose gas
Fermionic condensate
Fermi gas
Fermi liquid
Supersolid
Superfluidity
Luttinger liquid
Time crystal
Order parameter
Phase transition
QCP
Electronic band structure
Plasma
Insulator
Mott insulator
Semiconductor
Semimetal

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑