Knowledge

Mott insulator

Source đź“ť

644: 31: 657: 1496:
ordering, it may be only weakly first order or even continuous (i.e second order). Weakly first order Mott transitions are seen in some quasi-two dimensional organic materials. Continuous Mott transitions have been reported in semiconductor moire materials. A theory of a continuous Mott transition is available if the Mott insulating phase is a quantum spin liquid with an emergent fermi surface of neutral fermions.
2632: 1471:
solutions, transition metal chalcogenides and transition metal oxides. In the case of transition metal oxides, the material typically switches from being a good electrical insulator to a good electrical conductor. The insulator-metal transition can also be modified by changes in temperature, pressure
1479:
The physical origin of the Mott transition is the interplay between the Coulomb repulsion of electrons and their degree of localization (band width). Once the carrier density becomes too high (e.g. due to doping), the energy of the system can be lowered by the localization of the formerly conducting
1495:
The Mott transition is usually first order, and involves discontinuous changes of physical properties. Theoretical studies of the Mott transition in the limit of large dimension find a first order transition. However in low dimensions and when the lattice geometry leads to frustration of magnetic
1377:
While the conduction in an n- (p-) type doped semiconductor sets in at high temperatures because the conduction (valence) band is partially filled with electrons (holes) with the original band structure being unchanged, the situation is different in the case of the Mott transition where the band
1483:
In a semiconductor, the doping level also affects the Mott transition. It has been observed that higher dopant concentrations in a semiconductor creates internal stresses that increase the free energy (acting as a change in pressure) of the system, thus reducing the ionization energy.
1487:
The reduced barrier causes easier transfer by tunneling or by thermal emission from donor to its adjacent donor. The effect is enhanced when pressure is applied for the reason stated previously. When the transport of carriers overcomes a minimum
1072:
There are a number of properties of Mott insulators, derived from both experimental and theoretical observations, which cannot be attributed to antiferromagnetic ordering and thus constitute mottism. These properties include:
2565:
Hasan, M. Z.; Montano, P. A.; Isaacs, E. D.; Shen, Z.-X.; Eisaki, H.; Sinha, S. K.; Islam, Z.; Motoyama, N.; Uchida, S. (2002-04-16). "Momentum-Resolved Charge Excitations in a Prototype One-Dimensional Mott Insulator".
1289:
the potential energy becomes much more sharply (exponentially) peaked around the equilibrium position of the atom and electrons become localized and can no longer conduct a current. It is named after physicist
1466:
Simply put, a Mott transition is a change in a material's behavior from insulating to metallic due to various factors. This transition is known to exist in various systems: mercury metal vapor-liquid, metal
1314:
and is electrically neutral. For an electron to move away from a site, it requires a certain amount of energy, as the electron is normally pulled back toward the (now positively charged) site by
1360: 2457:
Markiewicz, R. S.; Hasan, M. Z.; Bansil, A. (2008-03-25). "Acoustic plasmons and doping evolution of Mott physics in resonant inelastic x-ray scattering from cuprate superconductors".
965: 1461: 1022: 883:
Mott reviewed the subject (with a good overview) in 1968. The subject has been thoroughly reviewed in a comprehensive paper by Masatoshi Imada, Atsushi Fujimori, and
724:
is a transition from a metal to an insulator, driven by the strong interactions between electrons. One of the simplest models that can capture Mott transition is the
1233: 1047:
If the criterion is satisfied (i.e. if the density of electrons is sufficiently high) the material becomes conductive (metal) and otherwise it will be an insulator.
1410: 1262: 1181: 1151: 1125: 1207: 990: 1476:
in his 1949 publication on Ni-oxide, the origin of this behavior is correlations between electrons and the close relationship this phenomenon has to magnetism.
1042: 2798:
Jördens, Robert; Strohmaier, Niels; Günter, Kenneth; Moritz, Henning; Esslinger, Tilman (2008). "A Mott insulator of fermionic atoms in an optical lattice".
2149:
Choy, Ting-Pong; Leigh, Robert G.; Phillips, Philip; Powell, Philip D. (2008-01-17). "Exact integration of the high energy scale in doped Mott insulators".
1832:
Mello, Isys F.; Squillante, Lucas; Gomes, Gabriel O.; Seridonio, Antonio C.; De Souza, Mariano (2020). "Griffiths-like phase close to the Mott transition".
1968:
Meinders, M. B. J.; Eskes, H.; Sawatzky, G. A. (1993-08-01). "Spectral-weight transfer: Breakdown of low-energy-scale sum rules in correlated systems".
688: 2630:, Newns, Dennis, "Junction mott transition field effect transistor (JMTFET) and switch for logic and memory applications", published 2000 2324:
Bose, D. N.; B. Seishu; G. Parthasarathy; E. S. R. Gopal (1986). "Doping Dependence of Semiconductor-Metal Transition in InP at High Pressures".
2210:
Stanescu, Tudor D.; Phillips, Philip (2003-07-02). "Pseudogap in Doped Mott Insulators is the Near-Neighbor Analogue of the Mott Gap".
716:(particularly at low temperatures). These insulators fail to be correctly described by band theories of solids due to their strong 2019:
Stanescu, Tudor D.; Phillips, Philip; Choy, Ting-Pong (2007-03-06). "Theory of the Luttinger surface in doped Mott insulators".
2646:
Zhou, You; Ramanathan, Shriram (2013-01-01). "Correlated Electron Materials and Field Effect Transistors for Logic: A Review".
2377:
Kohsaka, Y.; Taylor, C.; Wahl, P.; et al. (August 28, 2008). "How Cooper pairs vanish approaching the Mott insulator in Bi
1081: 681: 1533:
by changing some parameters, which may be composition, pressure, strain, voltage, or magnetic field. The effect is known as a
1621: 1480:
electrons (band width reduction), leading to the formation of a band gap, e.g. by pressure (i.e. a semiconductor/insulator).
1069:
Thus, mottism accounts for all of the properties of Mott insulators that cannot be attributed simply to antiferromagnetism.
731:
The band gap in a Mott insulator exists between bands of like character, such as 3d electron bands, whereas the band gap in
1887: 808:
In this situation, the formation of an energy gap preventing conduction can be understood as the competition between the
2326: 1519: 1378:
structure itself changes. Mott argued that the transition must be sudden, occurring when the density of free electrons
1321: 2080:
Leigh, Robert G.; Phillips, Philip; Choy, Ting-Pong (2007-07-25). "Hidden Charge 2e Boson in Doped Mott Insulators".
1900: 674: 661: 1719:
Mott, N. F. (1949). "The basis of the electron theory of metals, with special reference to the transition metals".
1374:. The result is that at low temperatures a material is insulating, and at high temperatures the material conducts. 887:. A recent proposal of a "Griffiths-like phase close to the Mott transition" has been reported in the literature. 643: 896: 789:
also in 1937 predicted the failing of band theory can be explained by including interactions between electrons.
1573: 1278: 900: 436: 2862: 2492:
Hasan, M. Z.; Isaacs, E. D.; Shen, Z.-X.; Miller, L. L.; Tsutsui, K.; Tohyama, T.; Maekawa, S. (2000-06-09).
908: 1415: 1366:
predicts that a significant fraction of electrons will have enough energy to escape their site, leaving an
764: 611: 91: 1555: 877: 2877: 732: 616: 241: 2627: 2872: 1645:
de Boer, J. H.; Verwey, E. J. W. (1937). "Semi-conductors with partially and with completely filled 3
1561: 1154: 868:
is large enough to create an energy gap. One of the simplest theories of Mott insulators is the 1963
775:, this implies that such a material has to be a metal. This conclusion fails for several cases, e.g. 772: 760: 747:
of solids had been very successful in describing various electrical properties of materials, in 1937
744: 709: 506: 181: 2293: 1570: â€“ Approximate model used to describe the transition between conducting and insulating systems 1286: 501: 496: 22: 586: 2867: 1538: 1526: 1098: 1062:
ordering, which is necessary to fully describe a Mott insulator. In other words, we might write:
705: 191: 596: 2288: 1585: 1363: 995: 756: 581: 521: 491: 441: 161: 51: 2279:
Cyrot, M. (1972). "Theory of mott transition : Applications to transition metal oxides".
621: 236: 221: 2707:
Son, Junwoo; et al. (2011-10-18). "A heterojunction modulation-doped Mott transistor".
2493: 1212: 2817: 2726: 2665: 2585: 2515: 2466: 2415: 2335: 2229: 2168: 2099: 2038: 1977: 1934: 1851: 1806: 1763: 1728: 1693: 1658: 1530: 1388: 713: 211: 101: 1892: 8: 1473: 1291: 1241: 1160: 1130: 1104: 748: 451: 261: 111: 2821: 2730: 2669: 2589: 2519: 2470: 2419: 2339: 2233: 2172: 2103: 2042: 1981: 1938: 1855: 1810: 1767: 1732: 1697: 1662: 1189: 972: 2841: 2807: 2784: 2765: 2742: 2716: 2689: 2655: 2609: 2575: 2547: 2505: 2439: 2405: 2359: 2351: 2261: 2219: 2192: 2158: 2131: 2089: 2062: 2028: 1924: 1867: 1841: 1027: 591: 566: 314: 305: 2302: 1705: 1670: 2833: 2681: 2601: 2539: 2531: 2443: 2431: 2363: 2306: 2253: 2245: 2184: 2123: 2115: 2066: 2054: 2001: 1993: 1950: 1896: 1871: 1779: 1740: 1627: 1617: 1558: â€“ Method to determine the electronic structure of strongly correlated materials 1489: 1059: 809: 561: 406: 296: 216: 2746: 2693: 2613: 2196: 2135: 2845: 2825: 2734: 2673: 2593: 2551: 2523: 2474: 2423: 2343: 2298: 2265: 2237: 2176: 2107: 2046: 1985: 1942: 1859: 1814: 1771: 1736: 1701: 1666: 1371: 1315: 1282: 884: 793: 776: 266: 231: 226: 186: 156: 126: 86: 46: 2597: 2527: 2241: 2111: 1684:
Mott, N. F.; Peierls, R. (1937). "Discussion of the paper by de Boer and Verwey".
2677: 1515: 576: 526: 396: 151: 63: 720:–electron interactions, which are not considered in conventional band theory. A 2494:"Electronic Structure of Mott Insulators Studied by Inelastic X-ray Scattering" 2478: 2180: 2050: 1818: 1085: 786: 648: 626: 606: 601: 556: 476: 411: 309: 41: 16:
Materials classically predicted to be conductors, that are actually insulators
1946: 1775: 2856: 2685: 2535: 2310: 2249: 2188: 2119: 2058: 1997: 1989: 1954: 1783: 1631: 1579: 1567: 1367: 1303: 869: 828: 725: 337: 318: 300: 201: 121: 827:
electrons between neighboring atoms (the transfer integral is a part of the
531: 2837: 2605: 2543: 2435: 2347: 2323: 2257: 2127: 2094: 2005: 752: 551: 541: 511: 471: 466: 446: 291: 271: 131: 2789: 2770: 2580: 2510: 2224: 2033: 1929: 1492:, the semiconductor has undergone a Mott transition and become metallic. 1383: 1094: 782: 768: 571: 546: 516: 461: 456: 388: 30: 2829: 2427: 1797:
M. Imada; A. Fujimori; Y. Tojura (1998). "Metal-Insulator Transitions".
2355: 1564: â€“ Describes the range of energies of an electron within the solid 864:
In general, Mott insulators occur when the repulsive Coulomb potential
832: 481: 323: 116: 2738: 1863: 1508:
research, and are not yet fully understood. They have applications in
1611: 1509: 1311: 536: 486: 359: 206: 106: 1846: 1512: 763:
are insulators. With an odd number of electrons per unit cell, the
717: 96: 2812: 2721: 2660: 2410: 2163: 1505: 416: 401: 364: 355: 350: 1542: 369: 345: 76: 1754:
MOTT, N. F. (1 September 1968). "Metal-Insulator Transition".
1545:
and memory devices than possible with conventional materials.
2797: 1831: 374: 71: 1796: 1044:, according to various estimates, is 2.0, 2.78,4.0, or 4.2. 1307: 1576: â€“ Change between conductive and non-conductive state 796:
as an insulator, where conduction is based on the formula
2376: 81: 2148: 1644: 2648:
Critical Reviews in Solid State and Materials Sciences
2564: 2272: 1370:
behind and becoming conduction electrons that conduct
1326: 2779:
Anderson, P. W.; Baskaran, G. (1997). "A Critique of
2491: 2456: 1967: 1582: â€“ Model of electronic band structures of solids 1418: 1391: 1324: 1244: 1215: 1192: 1163: 1133: 1107: 1030: 998: 975: 911: 2764:
Laughlin, R. B. (1997). "A Critique of Two Metals".
2018: 1504:
Mott insulators are of growing interest in advanced
876:
is increased, can be predicted within the so-called
872:. The crossover from a metal to a Mott insulator as 1613:
Lecture notes on electron correlation and magnetism
1084:along a connected surface in momentum space in the 1455: 1404: 1354: 1256: 1227: 1201: 1175: 1145: 1119: 1064:antiferromagnetic order + mottism = Mott insulator 1036: 1016: 984: 959: 792:In 1949, in particular, Mott proposed a model for 2079: 1976:(6). American Physical Society (APS): 3916–3926. 2854: 2778: 2209: 1355:{\displaystyle {\tfrac {1}{2}}k_{\mathrm {B} }T} 1310:or group of atoms) contains a certain number of 1235:the charge of an electron) boson at low energies 2027:(10). American Physical Society (APS): 104503. 1891:(8th ed.), John Wiley & Sons, p.  1762:(4). American Physical Society (APS): 677–683. 1747: 1683: 2645: 2157:(1). American Physical Society (APS): 014512. 1058:denotes the additional ingredient, aside from 704:are a class of materials that are expected to 2626: 682: 992:is the electron density of the material and 1077:Spectral weight transfer on the Mott scale 689: 675: 29: 2811: 2788: 2769: 2720: 2659: 2579: 2509: 2409: 2292: 2223: 2203: 2162: 2093: 2032: 1928: 1845: 1318:. If the temperature is high enough that 1297: 1024:the effective bohr radius. The constant 861:is the number of nearest-neighbor atoms. 779:, one of the strongest insulators known. 2763: 2012: 1961: 1914: 1472:or composition (doping). As observed by 735:exists between anion and cation states. 1908: 1609: 1518:and the strong correlated phenomena in 960:{\displaystyle n^{-1/3}<Ca_{0}^{*},} 2855: 1884: 1616:. World Scientific. pp. 147–150. 1456:{\displaystyle N^{1/3}a_{0}\simeq 0.2} 2278: 2073: 1915:Phillips, Philip (2006). "Mottness". 1362:of energy is available per site, the 2142: 1753: 1718: 1605: 1603: 1238:A pseudogap away from half-filling ( 819:electrons and the transfer integral 2706: 1888:Introduction to Solid State Physics 1721:Proceedings of the Physical Society 1686:Proceedings of the Physical Society 1651:Proceedings of the Physical Society 13: 2327:Proceedings of the Royal Society A 1520:high-temperature superconductivity 1343: 1306:at low temperatures, each 'site' ( 1268: 14: 2889: 1600: 1537:and can be used to build smaller 1080:Vanishing of the single particle 895:The Mott criterion describes the 890: 767:is only partially filled, so the 656: 655: 642: 2700: 2639: 2620: 2558: 2485: 2450: 2370: 2317: 2303:10.1051/jphys:01972003301012500 1499: 771:lies within the band. From the 1878: 1825: 1790: 1712: 1677: 1638: 759:predicted to be conductors by 755:pointed out that a variety of 1: 2757: 2598:10.1103/PhysRevLett.88.177403 2528:10.1126/science.288.5472.1811 2242:10.1103/physrevlett.91.017002 2112:10.1103/physrevlett.99.046404 1923:(7). Elsevier BV: 1634–1650. 1157:have only one sign change at 2678:10.1080/10408436.2012.719131 2287:(1). EDP Sciences: 125–134. 753:Evert Johannes Willem Verwey 7: 1706:10.1088/0959-5309/49/4S/308 1671:10.1088/0959-5309/49/4S/307 1556:Dynamical mean-field theory 1548: 1050: 878:dynamical mean field theory 10: 2894: 2479:10.1103/PhysRevB.77.094518 2181:10.1103/physrevb.77.014512 2051:10.1103/physrevb.75.104503 1834:Journal of Applied Physics 1819:10.1103/RevModPhys.70.1039 1741:10.1088/0370-1298/62/7/303 1574:Metal–insulator transition 1279:metal-insulator transition 901:metal–insulator transition 831:approximation). The total 738: 733:charge-transfer insulators 708:according to conventional 242:Spin gapless semiconductor 1947:10.1016/j.aop.2006.04.003 1776:10.1103/revmodphys.40.677 1756:Reviews of Modern Physics 1562:Electronic band structure 1186:The presence of a charge 1017:{\displaystyle a_{0}^{*}} 182:Electronic band structure 2781:A Critique of Two Metals 1990:10.1103/physrevb.48.3916 1885:Kittel, Charles (2005), 1610:Fazekas, Patrik (2008). 1593: 1539:field-effect transistors 1287:electric field screening 92:Bose–Einstein condensate 23:Condensed matter physics 2709:Applied Physics Letters 2568:Physical Review Letters 2212:Physical Review Letters 2082:Physical Review Letters 757:transition metal oxides 2715:(8): 084503–084503–4. 2348:10.1098/rspa.1986.0057 1586:Variable-range hopping 1457: 1406: 1364:Boltzmann distribution 1356: 1298:Conceptual explanation 1258: 1229: 1228:{\displaystyle e<0} 1203: 1177: 1147: 1121: 1038: 1018: 986: 961: 2628:US patent 6121642 1458: 1407: 1405:{\displaystyle a_{0}} 1357: 1259: 1230: 1204: 1178: 1148: 1122: 1039: 1019: 987: 962: 712:, but turn out to be 237:Topological insulator 2863:Correlated electrons 1416: 1389: 1322: 1242: 1213: 1190: 1161: 1131: 1105: 1093:sign changes of the 1086:first Brillouin zone 1028: 996: 973: 909: 255:Electronic phenomena 102:Fermionic condensate 2830:10.1038/nature07244 2822:2008Natur.455..204J 2731:2011JAP...110h4503S 2670:2013CRSSM..38..286Z 2590:2002PhRvL..88q7403H 2520:2000Sci...288.1811H 2504:(5472): 1811–1814. 2471:2008PhRvB..77i4518M 2428:10.1038/nature07243 2420:2008Natur.454.1072K 2404:(7208): 1072–1078. 2340:1986RSPSA.405..345B 2281:Journal de Physique 2234:2003PhRvL..91a7002S 2173:2008PhRvB..77a4512C 2104:2007PhRvL..99d6404L 2043:2007PhRvB..75j4503S 1982:1993PhRvB..48.3916M 1939:2006AnPhy.321.1634P 1856:2020JAP...128v5102M 1811:1998RvMP...70.1039I 1768:1968RvMP...40..677M 1733:1949PPSA...62..416M 1698:1937PPS....49...72M 1663:1937PPS....49...59B 1474:Nevill Francis Mott 1292:Nevill Francis Mott 1257:{\displaystyle n=1} 1176:{\displaystyle n=1} 1146:{\displaystyle n=2} 1120:{\displaystyle n=0} 1013: 953: 903:. The criterion is 749:Jan Hendrik de Boer 706:conduct electricity 262:Quantum Hall effect 2095:cond-mat/0612130v3 1453: 1402: 1352: 1335: 1254: 1225: 1202:{\displaystyle 2e} 1199: 1173: 1143: 1117: 1034: 1014: 999: 985:{\displaystyle ~n} 982: 957: 939: 649:Physics portal 2878:Phase transitions 2806:(7210): 204–207. 2739:10.1063/1.3651612 2459:Physical Review B 2334:(1829): 345–353. 2151:Physical Review B 2021:Physical Review B 1970:Physical Review B 1917:Annals of Physics 1864:10.1063/5.0018604 1649:-lattice bands". 1623:978-981-02-2474-5 1490:activation energy 1334: 1060:antiferromagnetic 1037:{\displaystyle C} 978: 810:Coulomb potential 699: 698: 407:Granular material 175:Electronic phases 2885: 2873:Electric current 2849: 2815: 2794: 2792: 2790:cond-mat/9711197 2775: 2773: 2771:cond-mat/9709195 2751: 2750: 2724: 2704: 2698: 2697: 2663: 2643: 2637: 2636: 2635: 2631: 2624: 2618: 2617: 2583: 2581:cond-mat/0102485 2562: 2556: 2555: 2513: 2511:cond-mat/0102489 2489: 2483: 2482: 2454: 2448: 2447: 2413: 2374: 2368: 2367: 2321: 2315: 2314: 2296: 2276: 2270: 2269: 2227: 2225:cond-mat/0209118 2207: 2201: 2200: 2166: 2146: 2140: 2139: 2097: 2077: 2071: 2070: 2036: 2034:cond-mat/0602280 2016: 2010: 2009: 1965: 1959: 1958: 1932: 1930:cond-mat/0702348 1912: 1906: 1905: 1882: 1876: 1875: 1849: 1829: 1823: 1822: 1794: 1788: 1787: 1751: 1745: 1744: 1716: 1710: 1709: 1681: 1675: 1674: 1642: 1636: 1635: 1607: 1516:heterostructures 1462: 1460: 1459: 1454: 1446: 1445: 1436: 1435: 1431: 1411: 1409: 1408: 1403: 1401: 1400: 1361: 1359: 1358: 1353: 1348: 1347: 1346: 1336: 1327: 1283:condensed matter 1263: 1261: 1260: 1255: 1234: 1232: 1231: 1226: 1208: 1206: 1205: 1200: 1182: 1180: 1179: 1174: 1152: 1150: 1149: 1144: 1126: 1124: 1123: 1118: 1095:Hall coefficient 1043: 1041: 1040: 1035: 1023: 1021: 1020: 1015: 1012: 1007: 991: 989: 988: 983: 976: 966: 964: 963: 958: 952: 947: 932: 931: 927: 885:Yoshinori Tokura 691: 684: 677: 664: 659: 658: 651: 647: 646: 267:Spin Hall effect 157:Phase transition 127:Luttinger liquid 64:States of matter 47:Phase transition 33: 19: 18: 2893: 2892: 2888: 2887: 2886: 2884: 2883: 2882: 2853: 2852: 2760: 2755: 2754: 2705: 2701: 2644: 2640: 2633: 2625: 2621: 2563: 2559: 2490: 2486: 2455: 2451: 2395: 2388: 2384: 2380: 2375: 2371: 2322: 2318: 2294:10.1.1.463.1403 2277: 2273: 2208: 2204: 2147: 2143: 2078: 2074: 2017: 2013: 1966: 1962: 1913: 1909: 1903: 1883: 1879: 1830: 1826: 1795: 1791: 1752: 1748: 1717: 1713: 1682: 1678: 1643: 1639: 1624: 1608: 1601: 1596: 1591: 1551: 1535:Mott transition 1522:, for example. 1502: 1470: 1441: 1437: 1427: 1423: 1419: 1417: 1414: 1413: 1396: 1392: 1390: 1387: 1386: 1342: 1341: 1337: 1325: 1323: 1320: 1319: 1300: 1275:Mott transition 1271: 1269:Mott transition 1243: 1240: 1239: 1214: 1211: 1210: 1191: 1188: 1187: 1162: 1159: 1158: 1155:band insulators 1132: 1129: 1128: 1106: 1103: 1102: 1053: 1029: 1026: 1025: 1008: 1003: 997: 994: 993: 974: 971: 970: 948: 943: 923: 916: 912: 910: 907: 906: 893: 844: 803: 741: 722:Mott transition 702:Mott insulators 695: 654: 641: 640: 633: 632: 631: 431: 423: 422: 421: 397:Amorphous solid 391: 381: 380: 379: 358: 340: 330: 329: 328: 317: 315:Antiferromagnet 308: 306:Superparamagnet 299: 286: 285:Magnetic phases 278: 277: 276: 256: 248: 247: 246: 176: 168: 167: 166: 152:Order parameter 146: 145:Phase phenomena 138: 137: 136: 66: 56: 17: 12: 11: 5: 2891: 2881: 2880: 2875: 2870: 2868:Quantum phases 2865: 2851: 2850: 2795: 2776: 2759: 2756: 2753: 2752: 2699: 2654:(4): 286–317. 2638: 2619: 2574:(17): 177403. 2557: 2484: 2449: 2390: 2386: 2382: 2378: 2369: 2316: 2271: 2202: 2141: 2072: 2011: 1960: 1907: 1901: 1877: 1840:(22): 225102. 1824: 1799:Rev. Mod. Phys 1789: 1746: 1727:(7): 416–422. 1711: 1676: 1637: 1622: 1598: 1597: 1595: 1592: 1590: 1589: 1583: 1577: 1571: 1565: 1559: 1552: 1550: 1547: 1501: 1498: 1468: 1452: 1449: 1444: 1440: 1434: 1430: 1426: 1422: 1399: 1395: 1351: 1345: 1340: 1333: 1330: 1316:Coulomb forces 1299: 1296: 1270: 1267: 1266: 1265: 1253: 1250: 1247: 1236: 1224: 1221: 1218: 1198: 1195: 1184: 1172: 1169: 1166: 1142: 1139: 1136: 1116: 1113: 1110: 1088: 1082:Green function 1078: 1052: 1049: 1033: 1011: 1006: 1002: 981: 956: 951: 946: 942: 938: 935: 930: 926: 922: 919: 915: 897:critical point 892: 891:Mott criterion 889: 855: 854: 842: 806: 805: 801: 787:Rudolf Peierls 740: 737: 697: 696: 694: 693: 686: 679: 671: 668: 667: 666: 665: 652: 635: 634: 630: 629: 624: 619: 614: 609: 604: 599: 594: 589: 584: 579: 574: 569: 564: 559: 554: 549: 544: 539: 534: 529: 524: 519: 514: 509: 504: 499: 494: 489: 484: 479: 474: 469: 464: 459: 454: 449: 444: 439: 433: 432: 429: 428: 425: 424: 420: 419: 414: 412:Liquid crystal 409: 404: 399: 393: 392: 387: 386: 383: 382: 378: 377: 372: 367: 362: 353: 348: 342: 341: 338:Quasiparticles 336: 335: 332: 331: 327: 326: 321: 312: 303: 297:Superdiamagnet 294: 288: 287: 284: 283: 280: 279: 275: 274: 269: 264: 258: 257: 254: 253: 250: 249: 245: 244: 239: 234: 229: 224: 222:Thermoelectric 219: 217:Superconductor 214: 209: 204: 199: 197:Mott insulator 194: 189: 184: 178: 177: 174: 173: 170: 169: 165: 164: 159: 154: 148: 147: 144: 143: 140: 139: 135: 134: 129: 124: 119: 114: 109: 104: 99: 94: 89: 84: 79: 74: 68: 67: 62: 61: 58: 57: 55: 54: 49: 44: 38: 35: 34: 26: 25: 15: 9: 6: 4: 3: 2: 2890: 2879: 2876: 2874: 2871: 2869: 2866: 2864: 2861: 2860: 2858: 2847: 2843: 2839: 2835: 2831: 2827: 2823: 2819: 2814: 2809: 2805: 2801: 2796: 2791: 2786: 2782: 2777: 2772: 2767: 2762: 2761: 2748: 2744: 2740: 2736: 2732: 2728: 2723: 2718: 2714: 2710: 2703: 2695: 2691: 2687: 2683: 2679: 2675: 2671: 2667: 2662: 2657: 2653: 2649: 2642: 2629: 2623: 2615: 2611: 2607: 2603: 2599: 2595: 2591: 2587: 2582: 2577: 2573: 2569: 2561: 2553: 2549: 2545: 2541: 2537: 2533: 2529: 2525: 2521: 2517: 2512: 2507: 2503: 2499: 2495: 2488: 2480: 2476: 2472: 2468: 2465:(9): 094518. 2464: 2460: 2453: 2445: 2441: 2437: 2433: 2429: 2425: 2421: 2417: 2412: 2407: 2403: 2399: 2394: 2373: 2365: 2361: 2357: 2353: 2349: 2345: 2341: 2337: 2333: 2329: 2328: 2320: 2312: 2308: 2304: 2300: 2295: 2290: 2286: 2282: 2275: 2267: 2263: 2259: 2255: 2251: 2247: 2243: 2239: 2235: 2231: 2226: 2221: 2218:(1): 017002. 2217: 2213: 2206: 2198: 2194: 2190: 2186: 2182: 2178: 2174: 2170: 2165: 2160: 2156: 2152: 2145: 2137: 2133: 2129: 2125: 2121: 2117: 2113: 2109: 2105: 2101: 2096: 2091: 2088:(4): 046404. 2087: 2083: 2076: 2068: 2064: 2060: 2056: 2052: 2048: 2044: 2040: 2035: 2030: 2026: 2022: 2015: 2007: 2003: 1999: 1995: 1991: 1987: 1983: 1979: 1975: 1971: 1964: 1956: 1952: 1948: 1944: 1940: 1936: 1931: 1926: 1922: 1918: 1911: 1904: 1902:0-471-41526-X 1898: 1894: 1890: 1889: 1881: 1873: 1869: 1865: 1861: 1857: 1853: 1848: 1843: 1839: 1835: 1828: 1820: 1816: 1812: 1808: 1804: 1800: 1793: 1785: 1781: 1777: 1773: 1769: 1765: 1761: 1757: 1750: 1742: 1738: 1734: 1730: 1726: 1722: 1715: 1707: 1703: 1699: 1695: 1691: 1687: 1680: 1672: 1668: 1664: 1660: 1656: 1652: 1648: 1641: 1633: 1629: 1625: 1619: 1615: 1614: 1606: 1604: 1599: 1587: 1584: 1581: 1580:Tight binding 1578: 1575: 1572: 1569: 1568:Hubbard model 1566: 1563: 1560: 1557: 1554: 1553: 1546: 1544: 1540: 1536: 1532: 1529:can become a 1528: 1525:This kind of 1523: 1521: 1517: 1514: 1511: 1507: 1497: 1493: 1491: 1485: 1481: 1477: 1475: 1464: 1450: 1447: 1442: 1438: 1432: 1428: 1424: 1420: 1397: 1393: 1385: 1381: 1375: 1373: 1369: 1368:electron hole 1365: 1349: 1338: 1331: 1328: 1317: 1313: 1309: 1305: 1304:semiconductor 1295: 1293: 1288: 1284: 1280: 1276: 1251: 1248: 1245: 1237: 1222: 1219: 1216: 1196: 1193: 1185: 1170: 1167: 1164: 1156: 1140: 1137: 1134: 1114: 1111: 1108: 1100: 1096: 1092: 1089: 1087: 1083: 1079: 1076: 1075: 1074: 1070: 1067: 1065: 1061: 1057: 1048: 1045: 1031: 1009: 1004: 1000: 979: 967: 954: 949: 944: 940: 936: 933: 928: 924: 920: 917: 913: 904: 902: 898: 888: 886: 881: 879: 875: 871: 870:Hubbard model 867: 862: 860: 852: 848: 841: 838: 837: 836: 834: 830: 829:tight binding 826: 822: 818: 814: 811: 799: 798: 797: 795: 790: 788: 784: 780: 778: 774: 770: 766: 762: 758: 754: 750: 746: 743:Although the 736: 734: 729: 727: 726:Hubbard model 723: 719: 715: 711: 710:band theories 707: 703: 692: 687: 685: 680: 678: 673: 672: 670: 669: 663: 653: 650: 645: 639: 638: 637: 636: 628: 625: 623: 620: 618: 615: 613: 610: 608: 605: 603: 600: 598: 595: 593: 590: 588: 585: 583: 580: 578: 575: 573: 570: 568: 565: 563: 560: 558: 555: 553: 550: 548: 545: 543: 540: 538: 535: 533: 530: 528: 525: 523: 520: 518: 515: 513: 510: 508: 505: 503: 500: 498: 495: 493: 490: 488: 485: 483: 480: 478: 475: 473: 470: 468: 465: 463: 460: 458: 455: 453: 450: 448: 445: 443: 440: 438: 437:Van der Waals 435: 434: 427: 426: 418: 415: 413: 410: 408: 405: 403: 400: 398: 395: 394: 390: 385: 384: 376: 373: 371: 368: 366: 363: 361: 357: 354: 352: 349: 347: 344: 343: 339: 334: 333: 325: 322: 320: 316: 313: 311: 307: 304: 302: 298: 295: 293: 290: 289: 282: 281: 273: 270: 268: 265: 263: 260: 259: 252: 251: 243: 240: 238: 235: 233: 232:Ferroelectric 230: 228: 227:Piezoelectric 225: 223: 220: 218: 215: 213: 210: 208: 205: 203: 202:Semiconductor 200: 198: 195: 193: 190: 188: 185: 183: 180: 179: 172: 171: 163: 160: 158: 155: 153: 150: 149: 142: 141: 133: 130: 128: 125: 123: 122:Superfluidity 120: 118: 115: 113: 110: 108: 105: 103: 100: 98: 95: 93: 90: 88: 85: 83: 80: 78: 75: 73: 70: 69: 65: 60: 59: 53: 50: 48: 45: 43: 40: 39: 37: 36: 32: 28: 27: 24: 21: 20: 2803: 2799: 2780: 2712: 2708: 2702: 2651: 2647: 2641: 2622: 2571: 2567: 2560: 2501: 2497: 2487: 2462: 2458: 2452: 2401: 2397: 2392: 2372: 2331: 2325: 2319: 2284: 2280: 2274: 2215: 2211: 2205: 2154: 2150: 2144: 2085: 2081: 2075: 2024: 2020: 2014: 1973: 1969: 1963: 1920: 1916: 1910: 1886: 1880: 1837: 1833: 1827: 1802: 1798: 1792: 1759: 1755: 1749: 1724: 1723:. Series A. 1720: 1714: 1689: 1685: 1679: 1654: 1650: 1646: 1640: 1612: 1534: 1524: 1503: 1500:Applications 1494: 1486: 1482: 1478: 1465: 1379: 1376: 1301: 1274: 1272: 1097:as electron 1090: 1071: 1068: 1063: 1055: 1054: 1046: 968: 905: 894: 882: 873: 865: 863: 858: 856: 850: 846: 839: 824: 820: 816: 812: 807: 804:→ NiO + NiO. 791: 781: 765:valence band 742: 730: 721: 701: 700: 567:von Klitzing 272:Kondo effect 196: 132:Time crystal 112:Fermi liquid 1805:(4): 1039. 1384:Bohr radius 783:Nevill Mott 773:band theory 769:Fermi level 761:band theory 745:band theory 389:Soft matter 310:Ferromagnet 2857:Categories 2758:References 1847:2003.11866 1692:(4S): 72. 1657:(4S): 59. 1412:satisfies 1101:goes from 833:energy gap 714:insulators 532:Louis NĂ©el 522:Schrieffer 430:Scientists 324:Spin glass 319:Metamagnet 301:Paramagnet 117:Supersolid 2813:0804.4009 2722:1109.5299 2686:1040-8436 2661:1212.2684 2536:0036-8075 2444:205214473 2411:0808.3816 2364:136711168 2311:0302-0738 2289:CiteSeerX 2250:0031-9007 2189:1098-0121 2164:0707.1554 2120:0031-9007 2067:119430461 2059:1098-0121 1998:0163-1829 1955:0003-4916 1872:214667402 1784:0034-6861 1632:633481726 1531:conductor 1527:insulator 1510:thin-film 1448:≃ 1312:electrons 1285:. Due to 1010:∗ 950:∗ 918:− 849:− 2 815:between 3 612:Abrikosov 527:Josephson 497:Van Vleck 487:Luttinger 360:Polariton 292:Diamagnet 212:Conductor 207:Semimetal 192:Insulator 107:Fermi gas 2838:18784720 2747:27583830 2694:93921400 2614:30809135 2606:12005784 2544:10846160 2436:18756248 2258:12906566 2197:32553272 2136:37595030 2128:17678382 2006:10008840 1549:See also 1543:switches 1513:magnetic 1382:and the 1051:Mottness 835:is then 718:electron 662:Category 617:Ginzburg 592:Laughlin 552:Kadanoff 507:Shockley 492:Anderson 447:von Laue 97:Bose gas 2846:4426395 2818:Bibcode 2727:Bibcode 2666:Bibcode 2586:Bibcode 2552:2581764 2516:Bibcode 2498:Science 2467:Bibcode 2416:Bibcode 2356:2397982 2336:Bibcode 2266:5993172 2230:Bibcode 2169:Bibcode 2100:Bibcode 2039:Bibcode 1978:Bibcode 1935:Bibcode 1893:407–409 1852:Bibcode 1807:Bibcode 1764:Bibcode 1729:Bibcode 1694:Bibcode 1659:Bibcode 1506:physics 1372:current 1056:Mottism 899:of the 739:History 622:Leggett 597:Störmer 582:Bednorz 542:Giaever 512:Bardeen 502:Hubbard 477:Peierls 467:Onsager 417:Polymer 402:Colloid 365:Polaron 356:Plasmon 351:Exciton 2844:  2836:  2800:Nature 2745:  2692:  2684:  2634:  2612:  2604:  2550:  2542:  2534:  2442:  2434:  2398:Nature 2393:δ 2362:  2354:  2309:  2291:  2264:  2256:  2248:  2195:  2187:  2134:  2126:  2118:  2065:  2057:  2004:  1996:  1953:  1899:  1870:  1782:  1630:  1620:  1588:(Mott) 1209:(with 1099:doping 977:  969:where 857:where 660:  627:Parisi 587:MĂĽller 577:Rohrer 572:Binnig 562:Wilson 557:Fisher 517:Cooper 482:Landau 370:Magnon 346:Phonon 187:Plasma 87:Plasma 77:Liquid 42:Phases 2842:S2CID 2808:arXiv 2785:arXiv 2766:arXiv 2743:S2CID 2717:arXiv 2690:S2CID 2656:arXiv 2610:S2CID 2576:arXiv 2548:S2CID 2506:arXiv 2440:S2CID 2406:arXiv 2360:S2CID 2352:JSTOR 2262:S2CID 2220:arXiv 2193:S2CID 2159:arXiv 2132:S2CID 2090:arXiv 2063:S2CID 2029:arXiv 1925:arXiv 1868:S2CID 1842:arXiv 1594:Notes 1302:In a 1277:is a 800:(NiO) 537:Esaki 462:Bloch 457:Debye 452:Bragg 442:Onnes 375:Roton 72:Solid 2834:PMID 2682:ISSN 2602:PMID 2540:PMID 2532:ISSN 2432:PMID 2385:CaCu 2307:ISSN 2254:PMID 2246:ISSN 2185:ISSN 2124:PMID 2116:ISSN 2055:ISSN 2002:PMID 1994:ISSN 1951:ISSN 1897:ISBN 1780:ISSN 1628:OCLC 1618:ISBN 1308:atom 1220:< 934:< 823:of 3 785:and 751:and 607:Tsui 602:Yang 547:Kohn 472:Mott 2826:doi 2804:455 2783:". 2735:doi 2713:110 2674:doi 2594:doi 2524:doi 2502:288 2475:doi 2424:doi 2402:454 2396:". 2344:doi 2332:405 2299:doi 2238:doi 2177:doi 2108:doi 2047:doi 1986:doi 1943:doi 1921:321 1860:doi 1838:128 1815:doi 1772:doi 1737:doi 1702:doi 1667:doi 1451:0.2 1281:in 1127:to 1091:Two 843:gap 794:NiO 777:CoO 162:QCP 82:Gas 52:QCP 2859:: 2840:. 2832:. 2824:. 2816:. 2802:. 2741:. 2733:. 2725:. 2711:. 2688:. 2680:. 2672:. 2664:. 2652:38 2650:. 2608:. 2600:. 2592:. 2584:. 2572:88 2570:. 2546:. 2538:. 2530:. 2522:. 2514:. 2500:. 2496:. 2473:. 2463:77 2461:. 2438:. 2430:. 2422:. 2414:. 2400:. 2391:8+ 2381:Sr 2358:. 2350:. 2342:. 2330:. 2305:. 2297:. 2285:33 2283:. 2260:. 2252:. 2244:. 2236:. 2228:. 2216:91 2214:. 2191:. 2183:. 2175:. 2167:. 2155:77 2153:. 2130:. 2122:. 2114:. 2106:. 2098:. 2086:99 2084:. 2061:. 2053:. 2045:. 2037:. 2025:75 2023:. 2000:. 1992:. 1984:. 1974:48 1972:. 1949:. 1941:. 1933:. 1919:. 1895:, 1866:. 1858:. 1850:. 1836:. 1813:. 1803:70 1801:. 1778:. 1770:. 1760:40 1758:. 1735:. 1725:62 1700:. 1690:49 1688:. 1665:. 1655:49 1653:. 1626:. 1602:^ 1541:, 1467:NH 1463:. 1294:. 1273:A 1066:. 880:. 851:zt 845:= 728:. 2848:. 2828:: 2820:: 2810:: 2793:. 2787:: 2774:. 2768:: 2749:. 2737:: 2729:: 2719:: 2696:. 2676:: 2668:: 2658:: 2616:. 2596:: 2588:: 2578:: 2554:. 2526:: 2518:: 2508:: 2481:. 2477:: 2469:: 2446:. 2426:: 2418:: 2408:: 2389:O 2387:2 2383:2 2379:2 2366:. 2346:: 2338:: 2313:. 2301:: 2268:. 2240:: 2232:: 2222:: 2199:. 2179:: 2171:: 2161:: 2138:. 2110:: 2102:: 2092:: 2069:. 2049:: 2041:: 2031:: 2008:. 1988:: 1980:: 1957:. 1945:: 1937:: 1927:: 1874:. 1862:: 1854:: 1844:: 1821:. 1817:: 1809:: 1786:. 1774:: 1766:: 1743:. 1739:: 1731:: 1708:. 1704:: 1696:: 1673:. 1669:: 1661:: 1647:d 1634:. 1469:3 1443:0 1439:a 1433:3 1429:/ 1425:1 1421:N 1398:0 1394:a 1380:N 1350:T 1344:B 1339:k 1332:2 1329:1 1264:) 1252:1 1249:= 1246:n 1223:0 1217:e 1197:e 1194:2 1183:) 1171:1 1168:= 1165:n 1153:( 1141:2 1138:= 1135:n 1115:0 1112:= 1109:n 1032:C 1005:0 1001:a 980:n 955:, 945:0 941:a 937:C 929:3 925:/ 921:1 914:n 874:U 866:U 859:z 853:, 847:U 840:E 825:d 821:t 817:d 813:U 802:2 690:e 683:t 676:v

Index

Condensed matter physics

Phases
Phase transition
QCP
States of matter
Solid
Liquid
Gas
Plasma
Bose–Einstein condensate
Bose gas
Fermionic condensate
Fermi gas
Fermi liquid
Supersolid
Superfluidity
Luttinger liquid
Time crystal
Order parameter
Phase transition
QCP
Electronic band structure
Plasma
Insulator
Mott insulator
Semiconductor
Semimetal
Conductor
Superconductor

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑