Knowledge

Ion transport number

Source 📝

942:. This decrease may be measured by chemical analysis in order to evaluate the transport numbers. Analysis of the anode compartment gives a second pair of values as a check, while there should be no change of concentrations in the central compartment unless diffusion of solutes has led to significant mixing during the time of the experiment and invalidated the results. 119:, less than half of the current is carried by the positively charged sodium ions (cations) and more than half is carried by the negatively charged chloride ions (anions) because the chloride ions are able to move faster, i.e., chloride ions have higher mobility than sodium ions. The sum of the transport numbers for all of the ions in solution always equals unity: 965:
The cation of the indicator electrolyte should not move faster than the cation whose transport number is to be determined, and it should have same anion as the principle electrolyte. Besides the principal electrolyte (e.g., HCl) is kept light so that it floats on indicator electrolyte.
637:. Measurement of the concentration changes in the anode and cathode compartments determines the transport numbers. The exact relationship depends on the nature of the reactions at the two electrodes. For the electrolysis of aqueous 1380: 583: 440: 628:
in 1853., and is based on observations of the changes in concentration of an electrolyte solution in the vicinity of the electrodes. In the Hittorf method, electrolysis is carried out in a cell with three compartments:
359: 102: 1145: 596:) electrolytes with the transfer number of the ion near 1, concentration gradients do not develop. A constant electrolyte concentration is maintained during charge-discharge cycles. In case of 940: 1640:
M. Doyle, T. F. Fuller and J. Newman, "The importance of the lithium ion transference number in lithium/polymer cells." Electrochim Acta, 39, 2073 (1994) 10.1016/0013-4686(94)85091-7
1262: 962:. If a colored solution is used and the interface stays reasonably sharp, the speed of the moving boundary can be measured and used to determine the ion transference numbers. 251: 215: 163: 282: 844: 503: 472: 1464: 1437: 1410: 1175: 793: 728: 511:
of electrolyte. In practice the molar ionic conductivities are calculated from the measured ion transport numbers and the total molar conductivity. For the cation
600:
a more complete utilization of solid electroactive materials at high current densities is possible, even if the ionic conductivity of the electrolyte is reduced.
585:, and similarly for the anion. In solutions, where ionic complexation or associaltion are important, two different transport/transference numbers can be defined. 756: 693: 597: 1277: 514: 370: 1482:
of the distribution of ions comprising NMR-active nuclei (usually 1H, 19F, 7Li) in an electrochemical cells upon application of electric current
292: 1724:
Klett, Matilda; Giesecke, Marianne; Nyman, Andreas; Hallberg, Fredrik; Lindström, Rakel Wreland; Lindbergh, Göran; Furó, István (2012).
1605: 1786: 53: 1081: 1506: 1271:
The EMF of transport concentration cell involves both the transport number of the cation and its activity coefficient:
1666: 1613: 1594: 1692: 999:(HCl(aq)) may be determined by electrolysis between a cadmium anode and an Ag-AgCl cathode. The anode reaction is 853: 588:
The practical importance of high (i.e. close to 1) transference numbers of the charge-shuttling ion (i.e. Li+ in
958:
in 1893. It depends on the movement of the boundary between two adjacent electrolytes under the influence of an
1700: 616:
involves measuring the speed of displacement of the boundary between two solutions due to an electric current.
1054:
solution, it will rapidly be accelerated back to the boundary by the higher electric field; if a less mobile
1810: 1223: 1726:"Quantifying Mass Transport during Polarization in a Li Ion Battery Electrolyte by in Situ Li NMR Imaging" 1479: 224: 188: 125: 1805: 1531: 173: 1058:
ion diffuses into the HCl solution it will decelerate in the lower electric field and return to the
179:
At zero concentration, the limiting ion transport numbers may be expressed in terms of the limiting
1511: 260: 1516: 1065:
solution. Also the apparatus is constructed with the anode below the cathode, so that the denser
802: 1546: 625: 169: 481: 450: 955: 593: 589: 1714:, G. A. Lonergan and D. C. Pepper, J. Chem. Educ., 1965, 42 (2), p. 82. doi:10.1021/ed042p82 1768: 1677: 1556: 1491: 1442: 1415: 1388: 1153: 1022:
is added to make visible the boundary between the acidic HCl solution and the near-neutral
1014:) solution is formed near the anode and moves toward the cathode during the experiment. An 771: 608:
There are several experimental techniques for the determination of transport numbers. The
702: 8: 1551: 1015: 108: 1265: 741: 678: 638: 180: 1782: 1745: 1696: 1662: 1609: 1590: 1536: 1439:
are activities of HCl solutions of right and left hand electrodes, respectively, and
996: 1774: 1737: 1654: 1209: 1201: 1043:, and therefore a lower electric field to carry the same current. If a more mobile 1019: 1004: 761: 112: 32: 1541: 1526: 1375:{\displaystyle E_{\mathrm {T} }=-z{\frac {RT}{F}}\int _{I}^{II}t_{+}d\ln a_{+/-}} 116: 16:
Fraction of total electric current carried in an electrolyte by an ionic species
1711: 959: 612:
is based on measurements of ion concentration changes near the electrodes. The
1778: 1799: 1725: 1496: 578:{\displaystyle \lambda _{0}^{+}=t_{+}\cdot {\tfrac {\Lambda _{0}}{\nu ^{+}}}} 435:{\displaystyle t_{-}=\nu ^{-}\cdot {\frac {\lambda _{0}^{-}}{\Lambda _{0}}},} 354:{\displaystyle t_{+}=\nu ^{+}\cdot {\frac {\lambda _{0}^{+}}{\Lambda _{0}}}} 1749: 1582: 1501: 951: 508: 1075:
The cation transport number of the leading solution is then calculated as
176:
can arise from ions in a solution having different ion transport numbers.
36: 1629: 1741: 20: 1712:
Transport numbers and ionic mobilities by the moving boundary method
1473: 168:
The concept and measurement of transport number were introduced by
634: 1220:
This quantity can be calculated from the slope of the function
669:
and the anode reaction is the corresponding oxidation of Cu to
592:) is related to the fact, that in single-ion devices (such as 1521: 630: 1766: 1723: 107:
Differences in transport number arise from differences in
40: 1029:
solution. The boundary tends to remain sharp since the
507:
are the numbers of cations and anions respectively per
550: 1445: 1418: 1391: 1280: 1226: 1156: 1084: 856: 805: 774: 744: 705: 681: 517: 484: 453: 373: 295: 263: 227: 191: 128: 97:{\displaystyle t_{i}={\frac {I_{i}}{I_{\text{tot}}}}} 56: 1140:{\displaystyle t_{+}={\frac {z_{+}cLAF}{I\Delta t}}} 1458: 1431: 1404: 1374: 1256: 1169: 1139: 934: 838: 787: 750: 722: 697:coulombs of electricity leads to the reduction of 687: 577: 497: 466: 434: 353: 276: 245: 209: 157: 96: 1589:(8th ed. Oxford University Press, 2006) p.768-9 1474:Electrophoretic magnetic resonance imaging method 1797: 950:This method was developed by British physicists 1693:Principles and Applications of Electrochemistry 624:This method was developed by German physicist 1767:Friedman, H. L.; Franks, Felix, eds. (1973). 1695:D.R.Crow (4th ed., CRC Press 1994) p.165-169 665:ions, the cathode reaction is the reduction 1608:by Salvatore Califano (Springer 2012) p.61 1185:the distance moved by the boundary in time 935:{\displaystyle (1-t_{+})(Q/2F)=t_{-}(Q/2F)} 603: 1625: 1623: 1621: 945: 1770:Aqueous Solutions of Simple Electrolytes 1730:Journal of the American Chemical Society 799:flowing into the cathode compartment is 1618: 1033:HCl has a higher conductivity that the 1798: 1688: 1686: 1215: 995:For example, the transport numbers of 1630:http://lacey.se/science/transference/ 1578: 1576: 1574: 1572: 1257:{\displaystyle E_{\mathrm {T} }=f(E)} 846:moles, so there is a net decrease of 1650: 1648: 1646: 850:in the cathode compartment equal to 1683: 1661:(Benjamin/Cummings 1982) p.276-280 1606:Pathways to Modern Chemical Physics 1268:, without or with ionic transport. 992:and the principal electrolyte HCl. 13: 1569: 1507:Einstein relation (kinetic theory) 1287: 1233: 1128: 553: 418: 340: 265: 14: 1822: 1760: 1643: 673:. At the cathode, the passage of 619: 795:of the current, the quantity of 246:{\displaystyle \lambda _{0}^{-}} 210:{\displaystyle \lambda _{0}^{+}} 158:{\displaystyle \sum _{i}t_{i}=1} 1678:Electrochemistry Dictionary - H 31:, is the fraction of the total 1717: 1705: 1671: 1634: 1599: 1251: 1245: 1072:solution forms at the bottom. 929: 912: 896: 879: 876: 857: 833: 816: 1: 277:{\displaystyle \Lambda _{0}} 7: 1773:. Boston, MA: Springer US. 1485: 1466:is the transport number of 839:{\displaystyle t_{+}(Q/2F)} 10: 1827: 1480:magnetic resonance imaging 1196:the cross-sectional area, 1779:10.1007/978-1-4684-2955-8 1532:Liquid junction potential 1478:This method is based on 174:Liquid junction potential 1562: 1512:Electrochemical kinetics 604:Experimental measurement 498:{\displaystyle \nu ^{-}} 467:{\displaystyle \nu ^{+}} 1517:Ion selective electrode 1547:Supporting electrolyte 1460: 1433: 1406: 1376: 1258: 1177:is the cation charge, 1171: 1141: 1047:ion diffuses into the 946:Moving boundary method 936: 840: 789: 768:ions carry a fraction 752: 724: 689: 667:Cu(aq) + 2 e → Cu(s) 648:) as an example, with 626:Johann Wilhelm Hittorf 614:moving boundary method 579: 499: 468: 436: 355: 278: 247: 211: 170:Johann Wilhelm Hittorf 159: 98: 1585:and Julio de Paula, 1461: 1459:{\displaystyle t_{M}} 1434: 1432:{\displaystyle a_{1}} 1407: 1405:{\displaystyle a_{2}} 1377: 1259: 1172: 1170:{\displaystyle z_{+}} 1142: 956:William Cecil Dampier 937: 841: 790: 788:{\displaystyle t_{+}} 753: 725: 690: 594:lithium-ion batteries 590:lithium-ion batteries 580: 500: 469: 437: 356: 279: 248: 212: 160: 111:. For example, in an 99: 1492:Activity coefficient 1443: 1416: 1389: 1278: 1224: 1154: 1082: 977:is less mobile than 973:serves best because 854: 803: 772: 742: 723:{\displaystyle Q/2F} 703: 679: 515: 482: 451: 371: 293: 261: 255:), and electrolyte ( 225: 189: 181:molar conductivities 126: 54: 25:ion transport number 1811:Physical quantities 1736:(36): 14654–14657. 1552:Thermogalvanic cell 1334: 1266:concentration cells 1216:Concentration cells 1181:the concentration, 1016:acid-base indicator 532: 416: 338: 242: 206: 109:electrical mobility 29:transference number 1680:Corrosion Doctors. 1659:Physical Chemistry 1587:Physical Chemistry 1456: 1429: 1402: 1372: 1317: 1254: 1167: 1137: 1035:indicator solution 985:is common to both 932: 836: 785: 748: 720: 685: 639:copper(II) sulfate 575: 573: 518: 495: 464: 432: 402: 351: 324: 274: 243: 228: 207: 192: 172:in the year 1853. 155: 138: 94: 27:, also called the 1788:978-1-4684-2957-2 1742:10.1021/ja305461j 1657:and Meiser J.H., 1557:van't Hoff factor 1537:Solvated electron 1315: 1135: 997:hydrochloric acid 751:{\displaystyle F} 688:{\displaystyle Q} 598:porous electrodes 572: 427: 349: 129: 92: 89: 1818: 1806:Electrochemistry 1792: 1754: 1753: 1721: 1715: 1709: 1703: 1690: 1681: 1675: 1669: 1652: 1641: 1638: 1632: 1627: 1616: 1603: 1597: 1580: 1469: 1465: 1463: 1462: 1457: 1455: 1454: 1438: 1436: 1435: 1430: 1428: 1427: 1411: 1409: 1408: 1403: 1401: 1400: 1381: 1379: 1378: 1373: 1371: 1370: 1366: 1344: 1343: 1333: 1325: 1316: 1311: 1303: 1292: 1291: 1290: 1263: 1261: 1260: 1255: 1238: 1237: 1236: 1210:electric current 1207: 1202:Faraday constant 1199: 1195: 1191: 1184: 1180: 1176: 1174: 1173: 1168: 1166: 1165: 1146: 1144: 1143: 1138: 1136: 1134: 1123: 1110: 1109: 1099: 1094: 1093: 1071: 1064: 1057: 1053: 1046: 1042: 1031:leading solution 1028: 1020:bromophenol blue 1013: 1005:cadmium chloride 1002: 991: 984: 980: 976: 972: 941: 939: 938: 933: 922: 911: 910: 889: 875: 874: 849: 845: 843: 842: 837: 826: 815: 814: 798: 794: 792: 791: 786: 784: 783: 767: 762:Faraday constant 759: 757: 755: 754: 749: 735: 731: 729: 727: 726: 721: 713: 696: 694: 692: 691: 686: 672: 668: 664: 662: 661: 658: 651: 647: 584: 582: 581: 576: 574: 571: 570: 561: 560: 551: 545: 544: 531: 526: 506: 504: 502: 501: 496: 494: 493: 475: 473: 471: 470: 465: 463: 462: 441: 439: 438: 433: 428: 426: 425: 415: 410: 401: 396: 395: 383: 382: 360: 358: 357: 352: 350: 348: 347: 337: 332: 323: 318: 317: 305: 304: 285: 283: 281: 280: 275: 273: 272: 254: 252: 250: 249: 244: 241: 236: 218: 216: 214: 213: 208: 205: 200: 164: 162: 161: 156: 148: 147: 137: 113:aqueous solution 103: 101: 100: 95: 93: 91: 90: 87: 81: 80: 71: 66: 65: 46: 33:electric current 1826: 1825: 1821: 1820: 1819: 1817: 1816: 1815: 1796: 1795: 1789: 1763: 1758: 1757: 1722: 1718: 1710: 1706: 1691: 1684: 1676: 1672: 1653: 1644: 1639: 1635: 1628: 1619: 1604: 1600: 1581: 1570: 1565: 1542:Solvation shell 1527:Law of dilution 1488: 1476: 1467: 1450: 1446: 1444: 1441: 1440: 1423: 1419: 1417: 1414: 1413: 1396: 1392: 1390: 1387: 1386: 1362: 1358: 1354: 1339: 1335: 1326: 1321: 1304: 1302: 1286: 1285: 1281: 1279: 1276: 1275: 1232: 1231: 1227: 1225: 1222: 1221: 1218: 1205: 1197: 1193: 1186: 1182: 1178: 1161: 1157: 1155: 1152: 1151: 1124: 1105: 1101: 1100: 1098: 1089: 1085: 1083: 1080: 1079: 1070: 1066: 1063: 1059: 1055: 1052: 1048: 1044: 1041: 1037: 1027: 1023: 1012: 1008: 1001:Cd → Cd + 2 e 1000: 990: 986: 982: 978: 974: 971: 967: 948: 918: 906: 902: 885: 870: 866: 855: 852: 851: 847: 822: 810: 806: 804: 801: 800: 796: 779: 775: 773: 770: 769: 765: 743: 740: 739: 737: 733: 709: 704: 701: 700: 698: 680: 677: 676: 674: 670: 666: 659: 656: 655: 653: 649: 646: 642: 633:, central, and 622: 606: 566: 562: 556: 552: 549: 540: 536: 527: 522: 516: 513: 512: 489: 485: 483: 480: 479: 477: 458: 454: 452: 449: 448: 446: 421: 417: 411: 406: 400: 391: 387: 378: 374: 372: 369: 368: 343: 339: 333: 328: 322: 313: 309: 300: 296: 294: 291: 290: 268: 264: 262: 259: 258: 256: 237: 232: 226: 223: 222: 220: 201: 196: 190: 187: 186: 184: 183:of the cation ( 143: 139: 133: 127: 124: 123: 117:sodium chloride 86: 82: 76: 72: 70: 61: 57: 55: 52: 51: 44: 17: 12: 11: 5: 1824: 1814: 1813: 1808: 1794: 1793: 1787: 1762: 1761:External links 1759: 1756: 1755: 1716: 1704: 1682: 1670: 1642: 1633: 1617: 1598: 1567: 1566: 1564: 1561: 1560: 1559: 1554: 1549: 1544: 1539: 1534: 1529: 1524: 1519: 1514: 1509: 1504: 1499: 1494: 1487: 1484: 1475: 1472: 1453: 1449: 1426: 1422: 1399: 1395: 1383: 1382: 1369: 1365: 1361: 1357: 1353: 1350: 1347: 1342: 1338: 1332: 1329: 1324: 1320: 1314: 1310: 1307: 1301: 1298: 1295: 1289: 1284: 1253: 1250: 1247: 1244: 1241: 1235: 1230: 1217: 1214: 1164: 1160: 1148: 1147: 1133: 1130: 1127: 1122: 1119: 1116: 1113: 1108: 1104: 1097: 1092: 1088: 1068: 1061: 1050: 1039: 1025: 1010: 988: 969: 960:electric field 947: 944: 931: 928: 925: 921: 917: 914: 909: 905: 901: 898: 895: 892: 888: 884: 881: 878: 873: 869: 865: 862: 859: 835: 832: 829: 825: 821: 818: 813: 809: 782: 778: 747: 719: 716: 712: 708: 684: 644: 621: 620:Hittorf method 618: 610:Hittorf method 605: 602: 569: 565: 559: 555: 548: 543: 539: 535: 530: 525: 521: 492: 488: 461: 457: 443: 442: 431: 424: 420: 414: 409: 405: 399: 394: 390: 386: 381: 377: 362: 361: 346: 342: 336: 331: 327: 321: 316: 312: 308: 303: 299: 271: 267: 240: 235: 231: 204: 199: 195: 166: 165: 154: 151: 146: 142: 136: 132: 105: 104: 85: 79: 75: 69: 64: 60: 35:carried in an 15: 9: 6: 4: 3: 2: 1823: 1812: 1809: 1807: 1804: 1803: 1801: 1790: 1784: 1780: 1776: 1772: 1771: 1765: 1764: 1751: 1747: 1743: 1739: 1735: 1731: 1727: 1720: 1713: 1708: 1702: 1698: 1694: 1689: 1687: 1679: 1674: 1668: 1667:0-8053-5682-7 1664: 1660: 1656: 1651: 1649: 1647: 1637: 1631: 1626: 1624: 1622: 1615: 1614:9783642281808 1611: 1607: 1602: 1596: 1595:0-7167-8759-8 1592: 1588: 1584: 1579: 1577: 1575: 1573: 1568: 1558: 1555: 1553: 1550: 1548: 1545: 1543: 1540: 1538: 1535: 1533: 1530: 1528: 1525: 1523: 1520: 1518: 1515: 1513: 1510: 1508: 1505: 1503: 1500: 1498: 1497:Born equation 1495: 1493: 1490: 1489: 1483: 1481: 1471: 1451: 1447: 1424: 1420: 1397: 1393: 1367: 1363: 1359: 1355: 1351: 1348: 1345: 1340: 1336: 1330: 1327: 1322: 1318: 1312: 1308: 1305: 1299: 1296: 1293: 1282: 1274: 1273: 1272: 1269: 1267: 1248: 1242: 1239: 1228: 1213: 1211: 1203: 1190: 1162: 1158: 1131: 1125: 1120: 1117: 1114: 1111: 1106: 1102: 1095: 1090: 1086: 1078: 1077: 1076: 1073: 1036: 1032: 1021: 1017: 1006: 998: 993: 963: 961: 957: 953: 943: 926: 923: 919: 915: 907: 903: 899: 893: 890: 886: 882: 871: 867: 863: 860: 830: 827: 823: 819: 811: 807: 780: 776: 763: 745: 717: 714: 710: 706: 682: 640: 636: 632: 627: 617: 615: 611: 601: 599: 595: 591: 586: 567: 563: 557: 546: 541: 537: 533: 528: 523: 519: 510: 490: 486: 459: 455: 429: 422: 412: 407: 403: 397: 392: 388: 384: 379: 375: 367: 366: 365: 344: 334: 329: 325: 319: 314: 310: 306: 301: 297: 289: 288: 287: 269: 238: 233: 229: 202: 197: 193: 182: 177: 175: 171: 152: 149: 144: 140: 134: 130: 122: 121: 120: 118: 114: 110: 83: 77: 73: 67: 62: 58: 50: 49: 48: 42: 38: 34: 30: 26: 22: 1769: 1733: 1729: 1719: 1707: 1673: 1658: 1655:Laidler K.J. 1636: 1601: 1586: 1583:Peter Atkins 1502:Debye length 1477: 1384: 1270: 1219: 1188: 1149: 1074: 1034: 1030: 994: 964: 954:in 1886 and 952:Oliver Lodge 949: 764:. Since the 623: 613: 609: 607: 587: 509:formula unit 444: 363: 178: 167: 106: 28: 24: 18: 39:by a given 37:electrolyte 1800:Categories 1701:0748743782 1003:so that a 219:), anion ( 1368:− 1352:⁡ 1319:∫ 1297:− 1129:Δ 908:− 864:− 732:moles of 564:ν 554:Λ 547:⋅ 520:λ 491:− 487:ν 456:ν 419:Λ 413:− 404:λ 398:⋅ 393:− 389:ν 380:− 341:Λ 326:λ 320:⋅ 311:ν 266:Λ 239:− 230:λ 194:λ 131:∑ 21:chemistry 1750:22900791 1486:See also 1018:such as 736:, where 43:species 1264:of two 760:is the 758:⁠ 738:⁠ 730:⁠ 699:⁠ 695:⁠ 675:⁠ 635:cathode 505:⁠ 478:⁠ 474:⁠ 447:⁠ 284:⁠ 257:⁠ 253:⁠ 221:⁠ 217:⁠ 185:⁠ 1785:  1748:  1699:  1665:  1612:  1593:  1385:where 1204:, and 1150:where 650:Cu(aq) 445:where 1563:Notes 1522:ITIES 631:anode 364:and 41:ionic 1783:ISBN 1746:PMID 1697:ISBN 1663:ISBN 1610:ISBN 1591:ISBN 1412:and 1208:the 1200:the 1067:CdCl 1060:CdCl 1049:CdCl 1038:CdCl 1024:CdCl 1009:CdCl 987:CdCl 981:and 968:CdCl 663:(aq) 652:and 643:CuSO 476:and 1775:doi 1738:doi 1734:134 286:): 115:of 88:tot 19:In 1802:: 1781:. 1744:. 1732:. 1728:. 1685:^ 1645:^ 1620:^ 1571:^ 1470:. 1468:Cl 1349:ln 1212:. 1192:, 1056:Cd 983:Cl 975:Cd 848:Cu 797:Cu 766:Cu 734:Cu 671:Cu 657:2− 654:SO 47:: 23:, 1791:. 1777:: 1752:. 1740:: 1452:M 1448:t 1425:1 1421:a 1398:2 1394:a 1364:/ 1360:+ 1356:a 1346:d 1341:+ 1337:t 1331:I 1328:I 1323:I 1313:F 1309:T 1306:R 1300:z 1294:= 1288:T 1283:E 1252:) 1249:E 1246:( 1243:f 1240:= 1234:T 1229:E 1206:I 1198:F 1194:A 1189:t 1187:Δ 1183:L 1179:c 1163:+ 1159:z 1132:t 1126:I 1121:F 1118:A 1115:L 1112:c 1107:+ 1103:z 1096:= 1091:+ 1087:t 1069:2 1062:2 1051:2 1045:H 1040:2 1026:2 1011:2 1007:( 989:2 979:H 970:2 930:) 927:F 924:2 920:/ 916:Q 913:( 904:t 900:= 897:) 894:F 891:2 887:/ 883:Q 880:( 877:) 872:+ 868:t 861:1 858:( 834:) 831:F 828:2 824:/ 820:Q 817:( 812:+ 808:t 781:+ 777:t 746:F 718:F 715:2 711:/ 707:Q 683:Q 660:4 645:4 641:( 568:+ 558:0 542:+ 538:t 534:= 529:+ 524:0 460:+ 430:, 423:0 408:0 385:= 376:t 345:0 335:+ 330:0 315:+ 307:= 302:+ 298:t 270:0 234:0 203:+ 198:0 153:1 150:= 145:i 141:t 135:i 84:I 78:i 74:I 68:= 63:i 59:t 45:i

Index

chemistry
electric current
electrolyte
ionic
electrical mobility
aqueous solution
sodium chloride
Johann Wilhelm Hittorf
Liquid junction potential
molar conductivities
formula unit
lithium-ion batteries
lithium-ion batteries
porous electrodes
Johann Wilhelm Hittorf
anode
cathode
copper(II) sulfate
Faraday constant
Oliver Lodge
William Cecil Dampier
electric field
hydrochloric acid
cadmium chloride
acid-base indicator
bromophenol blue
Faraday constant
electric current
concentration cells
magnetic resonance imaging

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.