Knowledge

Electrode potential

Source đź“ť

198: 294:
In 1953 in Stockholm IUPAC recognized that either of the conventions is permissible; however, it unanimously recommended that only the magnitude expressed according to the convention (2) be called "the electrode potential". To avoid possible ambiguities, the electrode potential thus defined can also
506:
This follows from the IUPAC definition of the electric potential difference of a galvanic cell, according to which the electric potential difference of a cell is the difference of the potentials of the electrodes on the right and the left of the galvanic cell. When
501: 435: 138: 356:. Proponents of the convention (2) argue that all reported electrode potentials should be consistent with the electrostatic sign of the relative potential difference. 147:
at the working electrode ("reversible potential"), or a potential with a non-zero net reaction on the working electrode but zero net current ("corrosion potential", "
215: 81:
In an electrochemical cell, the cathode and the anode have certain electrode potentials independently and the difference between them is the cell potential:
447: 384: 658: 602: 598: 373: 631:
C.A. Hamel, "The Encyclopedia of Electrochemistry", Reinhold Publishing Corporation, New York-Chapman & Hall Ltd., London, 1964, p. 429–431.
87: 299:. In both conventions, the standard hydrogen electrode is defined to have a potential of 0 V. Both conventions also agree on the sign of 185:
involves this reference electrode with hydrogen ion in an ideal solution having is "zero potential at all temperatures" equivalently to
170:
The value of the electrode potential under non-equilibrium depends on the nature and composition of the contacting phases, and on the
640:
P. van Rysselberghe, "Bericht der Kommission für electrochemische Nomenklatur und Definitionen", Z. Electrochem., 58 (1954), 530–535.
570: 50:
The electrode potential has its origin in the potential difference developed at the interface between the electrode and the
701: 352:
switches sign when a reaction is written in reverse, so too, proponents of the convention (1) argue, should the sign of
235:
in the electrolyte, e.g., by positioning the reference electrode near the surface of the working electrode (e.g., see
378:
Potential of a cell assembled of two electrodes can be determined from the two individual electrode potentials using
186: 74:
due to the transfer of charged species across the interface, specific adsorption of ions at the interface, and
306:
The main difference between the two conventions is that upon reversing the direction of a half-cell reaction
649:
Anson, Fred C. "Common sources of confusion; Electrode Sign Conventions," J. Chem. Educ., 1959, 36, p. 394.
565: 534: 160: 369: 47:. It may also be defined as the potential difference between the charged metallic rods and salt solution. 244: 182: 40: 175: 696: 144: 272: 171: 314:
also switches, whereas in the convention (2) it does not. The logic behind switching the sign of
575: 345:. It is assumed that the half-reaction is balanced by the appropriate SHE half-reaction. Since 240: 148: 517:
is positive, then positive electrical charge flows through the cell from the left electrode (
67: 279: 268: 365: 8: 251:
connected to the working electrode and the negative terminal to the reference electrode.
221: 39:
and another electrode to be characterized. By convention, the reference electrode is the
205:
The measurement is generally conducted using a three-electrode setup (see the drawing):
539: 152: 544: 374:
Electrolytic cell § Anode and cathode definitions depend on charge and discharge
319: 209: 668: 612: 675: 663: 616: 607: 496:{\displaystyle \Delta V_{\text{cell}}=E_{\text{red,cathode}}+E_{\text{oxy,anode}}.} 342: 236: 20: 430:{\displaystyle \Delta V_{\text{cell}}=E_{\text{red,cathode}}-E_{\text{red,anode}}} 228:
In case of non-zero net current on the electrode, it is essential to minimize the
181:
An operational assumption for determinations of the electrode potentials with the
580: 549: 283: 163:
for a given electroactive species by extrapolation of the measured values to the
151:"), or a potential with a non-zero net current on the working electrode (like in 259:
Historically, two conventions for sign for the electrode potential have formed:
264: 164: 247:. The potential measurements are performed with the positive terminal of the 690: 667:, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) " 611:, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) " 554: 359: 75: 32: 679: 620: 248: 229: 156: 71: 54:. It is common, for instance, to speak of the electrode potential of the 51: 197: 287: 36: 133:{\displaystyle E_{\text{cell}}=E_{\text{cathode}}-E_{\text{anode}}.} 559: 522: 232: 78:/orientation of polar molecules, including those of the solvent. 28: 518: 44: 303:
for a half-cell reaction when it is written as a reduction.
201:
Three-electrode setup for measurement of electrode potential
159:). Reversible potentials can be sometimes converted to the 360:
Potential difference of a cell assembled of two electrodes
318:
is to maintain the correct sign relationship with the
450: 387: 90: 16:
Electromotive force of a cell built of two electrodes
189:
of hydrogen ion is also "zero at all temperatures".
495: 429: 132: 43:(SHE). It is defined to have a potential of zero 688: 224:(standard hydrogen electrode or an equivalent). 310:, according to the convention (1) the sign of 143:The electrode potential may be either that at 61: 370:Electrochemical cell § Cell potential 337:is the number of electrons involved and 290:" (sometimes referred to as "European"). 275:" (sometimes referred to as "American"), 196: 689: 571:Table of standard electrode potentials 297:Gibbs–Stockholm electrode potential 254: 66:Electrode potential appears at the 13: 669:electric potential difference, ΔV 664:Compendium of Chemical Terminology 625: 608:Compendium of Chemical Terminology 451: 388: 14: 713: 366:Galvanic cell § Cell voltage 35:built from a standard reference 172:kinetics of electrode reactions 652: 643: 634: 592: 192: 187:standard enthalpy of formation 1: 586: 566:Standard electrode potential 535:Absolute electrode potential 161:standard electrode potential 7: 528: 183:standard hydrogen electrode 41:standard hydrogen electrode 10: 718: 702:Electrochemical potentials 521:) to the right electrode ( 363: 70:between an electrode and 62:Origin and interpretation 680:10.1351/goldbook.E01934 621:10.1351/goldbook.E01956 613:electrode potential, E 576:Thermodynamic activity 497: 431: 241:supporting electrolyte 202: 176:Butler–Volmer equation 174:at the interface (see 134: 498: 437:however , it depends. 432: 243:of sufficiently high 200: 135: 560:Potential difference 448: 385: 88: 222:reference electrode 76:specific adsorption 25:electrode potential 671:of a galvanic cell 540:Electric potential 493: 441:or, equivalently, 427: 295:be referred to as 203: 153:galvanic corrosion 130: 545:Galvani potential 487: 474: 461: 424: 411: 398: 322:change, given by 320:Gibbs free energy 239:), or by using a 216:counter electrode 210:working electrode 124: 111: 98: 709: 697:Electrochemistry 682: 656: 650: 647: 641: 638: 632: 629: 623: 596: 516: 502: 500: 499: 494: 489: 488: 485: 476: 475: 472: 463: 462: 459: 436: 434: 433: 428: 426: 425: 422: 413: 412: 409: 400: 399: 396: 355: 351: 343:Faraday constant 340: 336: 332: 317: 313: 302: 255:Sign conventions 237:Luggin capillary 139: 137: 136: 131: 126: 125: 122: 113: 112: 109: 100: 99: 96: 57: 21:electrochemistry 717: 716: 712: 711: 710: 708: 707: 706: 687: 686: 685: 657: 653: 648: 644: 639: 635: 630: 626: 597: 593: 589: 581:Volta potential 550:Nernst equation 531: 515: 508: 484: 480: 471: 467: 458: 454: 449: 446: 445: 421: 417: 408: 404: 395: 391: 386: 383: 382: 376: 362: 353: 346: 338: 334: 323: 315: 311: 300: 257: 195: 149:mixed potential 121: 117: 108: 104: 95: 91: 89: 86: 85: 64: 55: 17: 12: 11: 5: 715: 705: 704: 699: 684: 683: 651: 642: 633: 624: 590: 588: 585: 584: 583: 578: 573: 568: 563: 557: 552: 547: 542: 537: 530: 527: 513: 504: 503: 492: 483: 479: 470: 466: 457: 453: 439: 438: 420: 416: 407: 403: 394: 390: 361: 358: 292: 291: 276: 256: 253: 226: 225: 219: 213: 194: 191: 165:standard state 141: 140: 129: 120: 116: 107: 103: 94: 63: 60: 58:redox couple. 15: 9: 6: 4: 3: 2: 714: 703: 700: 698: 695: 694: 692: 681: 677: 673: 672: 666: 665: 660: 655: 646: 637: 628: 622: 618: 614: 610: 609: 604: 600: 595: 591: 582: 579: 577: 574: 572: 569: 567: 564: 561: 558: 556: 555:Overpotential 553: 551: 548: 546: 543: 541: 538: 536: 533: 532: 526: 524: 520: 512: 490: 481: 477: 468: 464: 455: 444: 443: 442: 418: 414: 405: 401: 392: 381: 380: 379: 375: 371: 367: 357: 350: 344: 331: 327: 321: 309: 304: 298: 289: 285: 281: 277: 274: 270: 266: 262: 261: 260: 252: 250: 246: 242: 238: 234: 231: 223: 220: 217: 214: 211: 208: 207: 206: 199: 190: 188: 184: 179: 177: 173: 168: 166: 162: 158: 154: 150: 146: 127: 118: 114: 105: 101: 92: 84: 83: 82: 79: 77: 73: 69: 59: 53: 48: 46: 42: 38: 34: 33:galvanic cell 30: 26: 22: 670: 662: 654: 645: 636: 627: 606: 594: 510: 505: 440: 377: 348: 329: 325: 307: 305: 296: 293: 278:convention " 263:convention " 258: 249:electrometer 245:conductivity 227: 204: 180: 169: 142: 80: 65: 49: 24: 18: 473:red,cathode 410:red,cathode 193:Measurement 157:voltammetry 145:equilibrium 72:electrolyte 52:electrolyte 691:Categories 587:References 364:See also: 308:as written 562:(voltage) 486:oxy,anode 452:Δ 423:red,anode 415:− 389:Δ 288:Stockholm 115:− 68:interface 37:electrode 529:See also 523:cathode 341:is the 284:Ostwald 273:Latimer 233:IR-drop 110:cathode 29:voltage 27:is the 372:, and 333:where 265:Nernst 659:IUPAC 603:IUPAC 599:IUPAC 519:anode 280:Gibbs 269:Lewis 230:ohmic 123:anode 45:volts 31:of a 514:cell 460:cell 397:cell 97:cell 676:doi 674:". 617:doi 615:". 525:). 330:nFE 328:= – 178:). 155:or 56:M/M 19:In 693:: 661:, 605:, 601:, 368:, 167:. 23:, 678:: 619:: 511:V 509:Δ 491:. 482:E 478:+ 469:E 465:= 456:V 419:E 406:E 402:= 393:V 354:E 349:G 347:Δ 339:F 335:n 326:G 324:Δ 316:E 312:E 301:E 286:– 282:– 271:– 267:– 218:, 212:, 128:. 119:E 106:E 102:= 93:E

Index

electrochemistry
voltage
galvanic cell
electrode
standard hydrogen electrode
volts
electrolyte
interface
electrolyte
specific adsorption
equilibrium
mixed potential
galvanic corrosion
voltammetry
standard electrode potential
standard state
kinetics of electrode reactions
Butler–Volmer equation
standard hydrogen electrode
standard enthalpy of formation

working electrode
counter electrode
reference electrode
ohmic
IR-drop
Luggin capillary
supporting electrolyte
conductivity
electrometer

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑