Knowledge

Southern Ocean overturning circulation

Source 📝

364:, and they absorb around 25% of human-caused emissions. Out of all oceans, the Southern Ocean plays the greatest role in carbon uptake, and on its own, it is responsible for around 40%. In 2000s, some research suggested that climate-driven changes to Southern Hemisphere winds were reducing the amount of carbon it absorbed, but subsequent research found that this carbon sink had been even stronger than estimated earlier, by some 14% to 18%. Ocean circulation is very important for this process, as it brings deep water to the surface, which has not been there for centuries and so was not in contact with anthropogenic emissions before. Thus, deep water's dissolved carbon concentrations are much lower than of the modern surface waters, and it absorbs a lot more carbon before it's transported back to the depths through downwelling. 296: 20: 408: 336: 198: 270:(AAIW). Around 22 ± 4 Sv of the total upwelled water in the overturning circulation is transformed into lighter waters in the upper cell. The overturning process of density surfaces is balanced through the baroclinic instability of the thermal wind currents. This instability flattens the density surfaces and the transport towards the poles, resulting in energetic, time-dependent eddying motions. The potential energy from the wind-driven circulation is then flattened out by eddies. 566: 315:, resulting in water with a higher salinity and density and therefore buoyancy loss. When ice melts there is a freshwater flow and exposure to the atmosphere. If water turns into ice, there is more salt in the water and less exposure to the atmosphere. Due to seasonal variations, there is a gain of buoyancy during summer and a loss of buoyancy in winter. This cold and dense water filled with salt is called Dense Shelf Water (DSW). DSW is then transformed into 521: 2273: 602:
timeframe over which such collapse may occur, and the regional impacts it would cause, much less equivalent research exists for the Southern Ocean overturning circulation as of the early 2020s. There has been a suggestion that its collapse may occur between 1.7 °C (3.1 °F) and 3 °C (5.4 °F), but this estimate is much less certain than for many other tipping points.
218:(Sv) of deep water wells up to the surface in the Southern Ocean. This upwelled water is partly transformed to lighter water and denser water, respectively 22 ± 4 Sv and 5 ± 5 Sv. The densities of these waters change due to heat and buoyancy fluxes which result in upwelling in the upper cell and downwelling in the lower cell. 226:
upwelled in the Southern Ocean. Circulation is a slow process - for instance, the upwelling of North Atlantic Deep Water from the depths of 1,000–3,500 m (3,281–11,483 ft) to the surface mixed layer takes 60–90 years for just half of the water mass, and some water travels to the surface for more than a century.
1655:
Ohshima, Kay I.; Fukamachi, Yasushi; Williams, Guy D.; Nihashi, Sohey; Roquet, Fabien; Kitade, Yujiro; Tamura, Takeshi; Hirano, Daisuke; Herraiz-Borreguero, Laura; Field, Iain; Hindell, Mark; Aoki, Shigeru; Wakatsuchi, Masaaki (2013). "Antarctic Bottom Water production by intense sea-ice formation in
499:
then mixes back into the Southern Ocean, making its water fresher. This freshening of the Southern Ocean results in increased stratification and stabilization of its layers, and this has the single largest impact on the long-term properties of Southern Ocean circulation. These changes in the Southern
548:
currently disagree on whether the Southern Ocean circulation would continue to respond to changes in SAM the way it does now, or if it will eventually adjust to them. As of early 2020s, their best, limited-confidence estimate is that the lower cell would continue to weaken, while the upper cell may
1797:
Long, Matthew C.; Stephens, Britton B.; McKain, Kathryn; Sweeney, Colm; Keeling, Ralph F.; Kort, Eric A.; Morgan, Eric J.; Bent, Jonathan D.; Chandra, Naveen; Chevallier, Frederic; Commane, Róisín; Daube, Bruce C.; Krummel, Paul B.; Loh, Zoë; Luijkx, Ingrid T.; Munro, David; Patra, Prabir; Peters,
601:
is only inhabited by 10% of the world's population, and the Southern Ocean overturning circulation has historically received much less attention than the AMOC. Consequently, while multiple studies have set out to estimate the exact level of global warming which could result in AMOC collapsing, the
2774:
Bakker, P; Schmittner, A; Lenaerts, JT; Abe-Ouchi, A; Bi, D; van den Broeke, MR; Chan, WL; Hu, A; Beadling, RL; Marsland, SJ; Mernild, SH; Saenko, OA; Swingedouw, D; Sullivan, A; Yin, J (11 November 2016). "Fate of the Atlantic Meridional Overturning Circulation: Strong decline under continued
225:
by compensating for the North Atlantic downwelling by upwelling of North Atlantic Deep Water and connects the interior ocean to the surface. This upwelling is induced by the strong westerly winds that blow over the ACC. Observations suggest that approximately 80 percent of global deep water is
160:
evidence shows that the entire circulation had strongly weakened or outright collapsed before: some preliminary research suggests that such a collapse may become likely once global warming reaches levels between 1.7 °C (3.1 °F) and 3 °C (5.4 °F). However, there is far less
261:
forces. There is a net gain of buoyancy in the upper cell as a result of the freshening of the water caused by precipitation and the melting of sea ice during summer (on the Southern Hemipshere). This buoyancy gain transforms the waters into lighter, less dense waters, such as
242:(CDW) to the surface. Zonal wind stress induces upwelling near the pole and downwelling at the equator due to the zonal surface-wind maximum. This wind-driven circulation is also called the Deacon cell and acts to overturn water supporting the thermal wind current of the 1195:
Ribeiro, N.; Herraiz-Borreguero, L.; Rintoul, S. R.; McMahon, C. R.; Hindell, M.; Harcourt, R.; Williams, G. (15 July 2021). "Warm Modified Circumpolar Deep Water Intrusions Drive Ice Shelf Melt and Inhibit Dense Shelf Water Formation in Vincennes Bay, East Antarctica".
28:(ACC) and the formation of Antarctic Bottom Water beneath the sea ice of Antarctica due to buoyancy loss. The upper cell is depicted by the upwelling arrows north of the ACC and the formation of lighter Antarctic Intermediate water due to buoyancy gain north of the ACC. 282:
to close the circulation. To achieve this, vertical mixing is needed in the thermocline, which is not observed. Instead, dense water from sinking regions returned to the surface in nearly adiabatic pathways along density isopycnals, which was already written by
589:. It is possible that both circulations may not simply continue to weaken in response to increased warming and freshening, but eventually collapse to a much weaker state outright, in a way which would be difficult to reverse and constitute an example of 512:
per second), or 50-60% of its flow, while the lower cell has weakened by a similar amount, but because of its larger volume, these changes represent a 10-20% weakening. However, they were not fully caused by climate change, as the natural cycle of
106:. The strength of both halves had undergone substantial changes in the recent decades: the flow of the upper cell has increased by 50-60% since 1970s, while the lower cell has weakened by 10-20%. Some of this has been due to the natural cycle of 1239:
Chen, Jia-Jia; Swart, Neil C.; Beadling, Rebecca; Cheng, Xuhua; Hattermann, Tore; Jüling, André; Li, Qian; Marshall, John; Martin, Torge; Muilwijk, Morven; Pauling, Andrew G.; Purich, Ariaan; Smith, Inga J.; Thomas, Max (28 December 2023).
1974:
Le QuéRé, Corinne; RöDenbeck, Christian; Buitenhuis, Erik T.; Conway, Thomas J.; Langenfelds, Ray; Gomez, Antony; Labuschagne, Casper; Ramonet, Michel; Nakazawa, Takakiyo; Metzl, Nicolas; Gillett, Nathan; Heimann, Martin (22 June 2007).
629:. Reduced marine productivity would also mean that the ocean absorbs less carbon (though not within the 21st century), which could increase the ultimate long-term warming in response to anthropogenic emissions (thus raising the overall 557:
models - the most advanced generation available as of early 2020s. Further, the largest long-term role in the state of the circulation is played by Antarctic meltwater, and Antarctic ice loss had been the least-certain aspect of future
137:
As the formation of dense and cold waters weakens near the coast while the flow of warm waters towards the coast strengthens, the surface waters become less likely to sink downwards and mix with the lower layers. Consequently,
1380:
Lenton, T. M.; Armstrong McKay, D.I.; Loriani, S.; Abrams, J.F.; Lade, S.J.; Donges, J.F.; Milkoreit, M.; Powell, T.; Smith, S.R.; Zimm, C.; Buxton, J.E.; Daube, Bruce C.; Krummel, Paul B.; Loh, Zoë; Luijkx, Ingrid T. (2023).
343:
at the surface had been decreasing, as more was pushed to the depths through the circulation. In the 2010s, however, the weakening circulation moved less carbon downwards, and its concentration started to increase across the
1401:
Tamsitt, Veronica; Drake, Henri F.; Morrison, Adele K.; Talley, Lynne D.; Dufour, Carolina O.; Gray, Alison R.; Griffies, Stephen M.; Mazloff, Matthew R.; Sarmiento, Jorge L.; Wang, Jinbo; Weijer, Wilbert (2 August 2017).
201:
3D representation of North Atlantic Deep Water upwelling in the Southern Ocean basin, which closes the connection between the Atlantic and Southern circulation, and takes place along the defined pathways with limited
214:. The upwelling in the upper cell is associated with mid-deep water that is brought to the surface, whereas the upwelling in the lower cell is linked to the fresh and abyssal waters around Antarctica. Around 27 ± 7 411:
Even under the most intense climate change scenario, which is currently considered unlikely, the Southern Ocean would continue to function as a strong sink in the 21st century, and take up an increasing amount of
1003: 23:
A schematic overview of the Southern Ocean overturning circulation. The arrows point in the direction of the water movement. The lower cell of the circulation is depicted by the upwelling arrows south of the
649:. However, the decline or an outright collapse of the AMOC would have similar but opposite impacts, and the two would counteract each other up to a point. Both impacts would also occur alongside the other 456:(ACC) is also warming faster than the global average. This warming directly affects the flow of warm and cold water masses which make up the overturning circulation, and it also has negative impacts on 605:
The impacts of Southern Ocean overturning circulation collapse have also been less closely studied, though scientists expect them to unfold over multiple centuries. A notable example is the loss of
725:
Schine, Casey M. S.; Alderkamp, Anne-Carlijn; van Dijken, Gert; Gerringa, Loes J. A.; Sergi, Sara; Laan, Patrick; van Haren, Hans; van de Poll, Willem H.; Arrigo, Kevin R. (22 February 2021).
1587:
Sverdrup, H. U. On vertical circulation in the ocean due to the action of the wind with application to conditions within the Antarctic Circumpolar Current. Discov. Rep. VII, 139–170 (1933).
1294:
Li, Qian; England, Matthew H.; Hogg, Andrew McC.; Rintoul, Stephen R.; Morrison, Adele K. (29 March 2023). "Abyssal ocean overturning slowdown and warming driven by Antarctic meltwater".
257:
overturning flow is from the north to the south in deep waters and from the south to the north at the ocean surface. At the surface deep waters are exposed to the atmosphere and surface
327:
and along the eastern coast of Antarctica. Around 5 ± 5 Sv of AABW is formed in the lower cell of the Southern Ocean circulation, which is around a third of the total AABW formation.
1026:
Stewart, K. D.; Hogg, A. McC.; England, M. H.; Waugh, D. W. (2 November 2020). "Response of the Southern Ocean Overturning Circulation to Extreme Southern Annular Mode Conditions".
504:, which already appears to have been observably weakened by the freshening, in spite of the limited recovery during 2010s. Since the 1970s, the upper cell has strengthened by 3-4 1146:
Silvano, Alessandro; Rintoul, Stephen Rich; Peña-Molino, Beatriz; Hobbs, William Richard; van Wijk, Esmee; Aoki, Shigeru; Tamura, Takeshi; Williams, Guy Darvall (18 April 2018).
500:
Ocean cause the upper cell circulation to speed up, accelerating the flow of major currents, while the lower cell circulation slows down, as it is dependent on the highly saline
966:
Zhou, Shenjie; Meijers, Andrew J. S.; Meredith, Michael P.; Abrahamsen, E. Povl; Holland, Paul R.; Silvano, Alessandro; Sallée, Jean-Baptiste; Østerhus, Svein (12 June 2023).
371:
through exposure to the atmosphere, partly compensating the carbon sink effect of the overturning circulation. Additionally, ocean upwelling brings mineral nutrients such as
920:
Lee, Sang-Ki; Lumpkin, Rick; Gomez, Fabian; Yeager, Stephen; Lopez, Hosmay; Takglis, Filippos; Dong, Shenfu; Aguiar, Wilton; Kim, Dongmin; Baringer, Molly (13 March 2023).
387:. At the same time, downwelling circulation moves much of dead phytoplankton and other organic matter to the depths before it could decompose at the surface and release CO 2196:, for instance, released a report last year stating that our current emissions trajectory had us headed for a 3°C warmer world, roughly in line with the middle scenario. 146:, with greater losses occurring afterwards. This slowdown would have important effects on the global climate due to the strength of the Southern Ocean as a global 679:
Liu, Y.; Moore, J. K.; Primeau, F.; Wang, W. L. (22 December 2022). "Reduced CO2 uptake and growing nutrient sequestration from slowing overturning circulation".
2217:
Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
165:. Even if initiated in the near future, the circulation's collapse is unlikely to be complete until close to 2300, Similarly, impacts such as the reduction in 791: 94:
Southern ocean overturning circulation itself consists of two parts, the upper and the lower cell. The smaller upper cell is most strongly affected by
597:
evidence for the overturning circulation being substantially weaker than now during past periods that were both warmer and colder than now. However,
311:
The lower cell is driven by freshwater fluxes where sea-ice formation and melting play an important role. The formation of sea-ice is accompanied by
1645:
Williams, G. et al. Antarctic bottom water from the adélie and george v land coast, east antarctica (140–149°e). J. Geophys. Res. Oceans 115 (2010)
154:
have not been strongly lowered, but the exact year depends on the status of the circulation more than any factor other than the overall emissions.
2506:
Shi, Jia-Rui; Talley, Lynne D.; Xie, Shang-Ping; Peng, Qihua; Liu, Wei (2021-11-29). "Ocean warming and accelerating Southern Ocean zonal flow".
1500:
Gill, A.E.; Green, J.S.A.; Simmons, A.J. (1974). "Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies".
63:) at specific points. Thermohaline circulation transports not only massive volumes of warm and cold water across the planet, but also dissolved 633:) and/or prolong the time warming persists before it starts declining on the geological timescales. There is also expected to be a decline in 569:
Evidence suggests that the Antarctic bottom water requires a temperature range close to current conditions to be at full strength. During the
2339:. Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Vol. 2021. Cambridge University Press. pp. 1239–1241. 650: 582: 222: 52: 814:
Marshall, John; Speer, Kevin (26 February 2012). "Closure of the meridional overturning circulation through Southern Ocean upwelling".
488:
have not been strongly lowered) depends on the status of the circulation more than any other factor besides the emissions themselves.
2329:; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; Mix, A. (2021). 2200:
predicts 2.5 to 2.9°C of warming based on current policies and action, with pledges and government agreements taking this to 2.1°C.
1353: 2834: 1535:
St. Laurent, L. C.; Ledwell, J. R.; Girton, J. B.; Toole, J. M. (2011). "Diapycnal Mixing in the Antarctic Circumpolar Current".
367:
On the other hand, regions where deep warm circumpolar carbon rich waters are brought to the surface through upwelling, outgas CO
549:
strengthen by around 20% over the 21st century. A key reason for the uncertainty is the poor and inconsistent representation of
2192:"The IPCC doesn't make projections about which of these scenarios is more likely, but other researchers and modellers can. The 654: 2333:. In Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L. (eds.). 554: 2289: 2219:. Cambridge University Press, Cambridge, United Kingdom and New York, New York, US, pp. 3−32, doi:10.1017/9781009157896.001. 532:(SAM), which has been spending more and more years in its positive phase due to climate change (as well as the aftermath of 1461:"Closure of the Global Overturning Circulation Through the Indian, Pacific, and Southern Oceans: Schematics and Transports" 590: 162: 1148:"Freshening by glacial meltwater enhances the melting of ice shelves and reduces the formation of Antarctic Bottom Water" 1004:"Slowing deep Southern Ocean current may be linked to natural climate cycle—but melting Antarctic ice is still a concern" 433: 2557:
Aoki, S.; Yamazaki, K.; Hirano, D.; Katsumata, K.; Shimada, K.; Kitade, Y.; Sasaki, H.; Murase, H. (15 September 2020).
55:(AMOC). This circulation operates when certain currents send warm, oxygenated, nutrient-poor water into the deep ocean ( 2352: 98:
due to its proximity to the surface, while the behaviour of the larger lower cell is defined by the temperature and
514: 107: 284: 2026:"Dynamically and Observationally Constrained Estimates of Water-Mass Distributions and Ages in the Global Ocean" 577:
and the overturning circulation was much weaker than now. It was also weaker during the periods warmer than now.
1799: 1798:
Wouter; Ramonet, Michel; Rödenbeck, Christian; Stavert, Ann; Tans, Pieter; Wofsy, Steven C. (2 December 2021).
2193: 922:"Human-induced changes in the global meridional overturning circulation are emerging from the Southern Ocean" 453: 243: 25: 2075:"The impact of Southern Ocean residual upwelling on atmospheric CO2 on centennial and millennial timescales" 2212: 267: 480:
consistently show that the year when global warming will reach 2 °C (3.6 °F) (inevitable in all
452:, the temperature in the upper layer of the ocean has warmed 1 °C (1.8 °F) since 1955, and the 2719:"No detectable Weddell Sea Antarctic Bottom Water export during the Last and Penultimate Glacial Maximum" 1242:"Reduced Deep Convection and Bottom Water Formation Due To Antarctic Meltwater in a Multi-Model Ensemble" 858:
Pellichero, Violaine; Sallée, Jean-Baptiste; Chapman, Christopher C.; Downes, Stephanie M. (3 May 2018).
441: 2433:
Haumann, F. Alexander; Gruber, Nicolas; Münnich, Matthias; Frenger, Ivy; Kern, Stefan (September 2016).
206:
Southern Ocean overturning circulation consists of two cells in the Southern Ocean, which are driven by
142:
increases. One study suggests that the circulation would lose half its strength by 2050 under the worst
2559:"Reversal of freshening trend of Antarctic Bottom Water in the Australian-Antarctic Basin during 2010s" 2370:"Intense ocean freshening from melting glacier around the Antarctica during early twenty-first century" 1007: 2657:"Marine ice sheet instability amplifies and skews uncertainty in projections of future sea-level rise" 609:
from Antarctic bottom water diminishing ocean productivity and ultimately the state of Southern Ocean
491:
Greater warming of this ocean water increases ice loss from Antarctica, and also generates more fresh
150:
and heat sink. For instance, global warming will reach 2 °C (3.6 °F) in all scenarios where
2174: 1088:"Stratification constrains future heat and carbon uptake in the Southern Ocean between 30°S and 55°S" 528:
Additionally, the main controlling pattern of the extratropical Southern Hemisphere's climate is the
792:"NOAA Scientists Detect a Reshaping of the Meridional Overturning Circulation in the Southern Ocean" 524:
Since the 1970s, the upper cell of the circulation has strengthened, while the lower cell weakened.
485: 429: 380: 340: 151: 80: 68: 44: 481: 263: 143: 860:"The southern ocean meridional overturning in the sea-ice sector is driven by freshwater fluxes" 2197: 1751:
Friedlingstein, Pierre; O'Sullivan, Michael; Jones, Matthew W.; et al. (5 December 2023).
501: 316: 239: 103: 585:(AMOC), which is also affected by the ocean warming and by meltwater flows from the declining 420:
of heat per every additional degree of warming than it does now (right), as well as a smaller
2606:
Gunn, Kathryn L.; Rintoul, Stephen R.; England, Matthew H.; Bowen, Melissa M. (25 May 2023).
1857: 529: 357: 295: 115: 2073:
Lauderdale, Jonathan M.; Williams, Richard G.; Munday, David R.; Marshall, David P. (2017).
2784: 2730: 2668: 2619: 2515: 2446: 2381: 2242: 2137: 2037: 1930: 1872: 1811: 1707: 1665: 1610: 1544: 1509: 1415: 1357: 1303: 1253: 1205: 1099: 1086:
Bourgeois, Timothée; Goris, Nadine; Schwinger, Jörg; Tjiputra, Jerry F. (17 January 2022).
1035: 933: 871: 823: 738: 570: 550: 469: 246:(ACC) and creating a storage of potential energy. This upper cell process is also known as 139: 84: 2229:
von Schuckmann, K.; Cheng, L.; Palmer, M. D.; Hansen, J.; et al. (7 September 2020).
8: 646: 638: 630: 598: 586: 496: 461: 391:
back to the atmosphere. This so-called biological pump is so important that a completely
304: 174: 170: 127: 19: 2788: 2734: 2672: 2623: 2519: 2450: 2385: 2330: 2246: 2141: 2041: 1951: 1934: 1918: 1876: 1815: 1711: 1669: 1614: 1548: 1513: 1419: 1307: 1257: 1209: 1103: 1039: 937: 875: 827: 742: 727:"Massive Southern Ocean phytoplankton bloom fed by iron of possible hydrothermal origin" 2810: 2751: 2718: 2691: 2656: 2583: 2558: 2539: 2488: 2410: 2369: 2106: 2055: 2006: 1896: 1835: 1728: 1695: 1628: 1570: 1482: 1436: 1403: 1327: 1172: 1147: 1120: 1087: 1061: 968:"Slowdown of Antarctic Bottom Water export driven by climatic wind and sea-ice changes" 892: 859: 759: 726: 704: 622: 437: 407: 182: 119: 2608:"Recent reduced abyssal overturning and ventilation in the Australian Antarctic Basin" 2814: 2756: 2696: 2637: 2588: 2543: 2531: 2492: 2480: 2472: 2415: 2397: 2348: 2179: 2155: 1998: 1956: 1900: 1888: 1839: 1827: 1733: 1696:"A deep-learning estimate of the decadal trends in the Southern Ocean carbon storage" 1632: 1521: 1441: 1331: 1319: 1271: 1221: 1177: 1125: 1065: 897: 764: 708: 696: 2110: 2059: 2010: 1574: 2800: 2792: 2746: 2738: 2717:
Huang, Huang; Gutjahr, Marcus; Eisenhauer, Anton; Kuhn, Gerhard (22 January 2020).
2686: 2676: 2627: 2578: 2570: 2523: 2462: 2454: 2405: 2389: 2340: 2260: 2250: 2145: 2096: 2086: 2045: 1988: 1946: 1938: 1880: 1819: 1774: 1764: 1723: 1715: 1694:
Zemskova, Varvara E.; He, Tai-Long; Wan, Zirui; Grisouard, Nicolas (13 July 2022).
1673: 1618: 1560: 1552: 1517: 1472: 1431: 1423: 1382: 1311: 1261: 1213: 1167: 1159: 1115: 1107: 1051: 1043: 979: 941: 887: 879: 831: 754: 746: 688: 626: 335: 186: 533: 449: 395:
Southern Ocean, where this pump would be absent, would also be a net source of CO
312: 247: 2336:
Climate Change 2021: The Physical Science Basis. Contribution of Working Group I
2742: 2632: 2607: 2574: 2527: 2467: 2393: 2277: 2265: 2150: 2125: 1719: 1427: 1404:"Spiraling pathways of global deep waters to the surface of the Southern Ocean" 1315: 1111: 984: 967: 946: 921: 883: 750: 692: 559: 445: 413: 384: 349: 123: 111: 88: 2434: 2344: 2255: 2230: 2091: 2074: 1858:"Southern Ocean anthropogenic carbon sink constrained by sea surface salinity" 1769: 1752: 197: 2828: 2641: 2535: 2476: 2401: 2326: 2050: 1275: 1225: 634: 545: 537: 495:, at a rate of 1100-1500 billion tons (GT) per year. This meltwater from the 477: 444:
since 1971. Since 2005, from 67% to 98% of this increase has occurred in the
376: 166: 2681: 2025: 1993: 1976: 1942: 1884: 1823: 1477: 1460: 278:
The missing-mixing paradox assumes that dense water is upwelled through the
2760: 2700: 2592: 2484: 2419: 2159: 2002: 1960: 1892: 1831: 1737: 1445: 1323: 1181: 1163: 1129: 901: 768: 594: 157: 59:), while the cold, oxygen-limited, nutrient-rich water travels upwards (or 1919:"Biogenic carbon pool production maintains the Southern Ocean carbon sink" 1556: 1002:
Silvano, Alessandro; Meijers, Andrew J. S.; Zhou, Shenjie (17 June 2023).
2796: 2435:"Sea-ice transport driving Southern Ocean salinity and its recent trends" 2368:
Pan, Xianliang L.; Li, Bofeng F.; Watanabe, Yutaka W. (10 January 2022).
2101: 1977:"Saturation of the Southern Ocean CO 2 Sink Due to Recent Climate Change" 1917:
Huang, Yibin; Fassbender, Andrea J.; Bushinsky, Seth M. (26 April 2023).
1623: 1598: 1266: 1241: 1217: 1047: 574: 565: 509: 361: 324: 279: 211: 147: 114:
has also played a substantial role in both trends, as it had altered the
56: 2805: 2458: 1779: 1486: 1194: 1056: 614: 541: 254: 235: 2655:
Robel, Alexander A.; Seroussi, Hélène; Roe, Gerard H. (23 July 2019).
2334: 2216: 1800:"Strong Southern Ocean carbon uptake evident in airborne observations" 1354:"Landmark study projects 'dramatic' changes to Southern Ocean by 2050" 700: 1856:
Terhaar, Jens; Frölicher, Thomas L.; Joos, Fortunat (28 April 2021).
1677: 1565: 835: 642: 610: 492: 473: 300: 207: 178: 131: 60: 520: 2499: 2324: 606: 505: 320: 258: 215: 99: 72: 1379: 2773: 1973: 1750: 724: 457: 392: 234:
The upper cell is driven by wind generated flow, a result of the
2072: 2228: 1654: 1085: 465: 64: 1599:"Mapping of sea ice production for Antarctic coastal polynyas" 1145: 416:(left) and heat (middle). However, it would take up a smaller 79:. Thus, both halves of the circulation have a great effect on 2276:
Text was copied from this source, which is available under a
2272: 1534: 965: 857: 348:
The ocean is in normally in equilibrium with the atmospheric
48: 2231:"Heat stored in the Earth system: where does the energy go?" 2556: 2432: 795: 618: 375:
from the depths to the surface, which are then consumed by
372: 95: 76: 2716: 2514:(12). Springer Science and Business Media LLC: 1090–1097. 1400: 221:
The Southern Ocean plays a key role in the closure of the
47:, which connects different water basins across the global 2126:"Emissions – the 'business as usual' story is misleading" 1796: 1597:
Tamura, Takeshi; Ohshima, Kay I.; Nihashi, Sohey (2008).
1916: 2605: 1025: 189:, are also expected to unfold over multiple centuries. 2278:
Creative Commons Attribution 4.0 International License
1693: 1238: 997: 995: 919: 2320: 2318: 2316: 2314: 2312: 2310: 2117: 1855: 1596: 1293: 573:(a cold period), it was too weak to flow out of the 379:
and allow them to increase their numbers, enhancing
678: 2124:Hausfather, Zeke; Peters, Glen (29 January 2020). 1001: 992: 464:, (which is highly reflective and so elevates the 2307: 2222: 432:cause increased warming, one of the most notable 161:certainty than with the estimates for most other 2826: 2654: 2505: 2205: 2123: 1499: 1081: 1079: 1077: 1075: 853: 851: 849: 847: 845: 16:Southern half of the global ocean current system 2661:Proceedings of the National Academy of Sciences 1923:Proceedings of the National Academy of Sciences 1689: 1687: 87:, and so play an essential role in the Earth's 51:. Its better-known northern counterpart is the 2023: 1851: 1849: 1396: 1394: 1392: 1141: 1139: 809: 807: 805: 2367: 1502:Deep Sea Research and Oceanographic Abstracts 1072: 1021: 1019: 1017: 842: 813: 352:concentration. The increase in atmospheric CO 339:In the 1990s and 2000s, the concentration of 118:weather pattern, while the massive growth of 2712: 2710: 2166: 1912: 1910: 1684: 1347: 1345: 1343: 1341: 720: 718: 651:effects of climate change on the water cycle 476:and peripheral glaciers. For these reasons, 440:, which accounted for over 90% of the total 383:and boosting the carbon sink due to greater 1846: 1792: 1790: 1389: 1375: 1373: 1371: 1369: 1367: 1136: 802: 583:Atlantic meridional overturning circulation 223:Atlantic meridional overturning circulation 53:Atlantic meridional overturning circulation 37:Southern Meridional overturning circulation 1014: 961: 959: 957: 786: 784: 782: 780: 778: 2804: 2750: 2707: 2690: 2680: 2631: 2582: 2466: 2409: 2282: 2264: 2254: 2149: 2100: 2090: 2049: 1992: 1950: 1907: 1778: 1768: 1727: 1622: 1564: 1476: 1435: 1338: 1289: 1287: 1285: 1265: 1171: 1119: 1055: 983: 945: 915: 913: 911: 891: 758: 715: 674: 672: 670: 544:, freshening the Southern Ocean further. 402: 273: 2550: 2331:"Ocean, Cryosphere and Sea Level Change" 2172: 2024:Devries, Tim; Primeau, François (2011). 1787: 1364: 581:Similar processes are taking place with 564: 519: 406: 334: 294: 196: 18: 1744: 1198:Journal of Geophysical Research: Oceans 954: 775: 645:, with a corresponding increase in the 307:in driving the lower-cell circulation. 181:in the Southern Ocean with a potential 173:, with a corresponding increase in the 2827: 1458: 1282: 926:Communications Earth & Environment 908: 667: 655:effects of climate change on fisheries 330: 134:dilutes salty Antarctic bottom water. 33:Southern Ocean overturning circulation 1383:The Global Tipping Points Report 2023 1351: 536:), which means more warming and more 591:tipping points in the climate system 517:had also played an important role. 508:(Sv; represents a flow of 1 million 163:tipping points in the climate system 434:effects of climate change on oceans 43:) is the southern half of a global 13: 14: 2846: 360:had turned the oceans into a net 126:has increased the melting of the 41:Antarctic overturning circulation 2775:warming and Greenland melting". 2271: 2173:Phiddian, Ellen (5 April 2022). 2030:Journal of Physical Oceanography 1537:Journal of Physical Oceanography 515:Interdecadal Pacific Oscillation 468:of Earth's surface), as well as 108:Interdecadal Pacific Oscillation 2767: 2648: 2599: 2426: 2361: 2066: 2017: 1967: 1648: 1639: 1590: 1581: 1528: 1493: 1452: 1385:(Report). University of Exeter. 1232: 1188: 540:over the ocean due to stronger 285:Harald Sverdrup (oceanographer) 2835:Currents of the Southern Ocean 562:projections for a long time. 35:(sometimes referred to as the 1: 2194:Australian Academy of Science 1352:Logan, Tyne (29 March 2023). 660: 613:, potentially leading to the 454:Antarctic Circumpolar Current 319:(AABW), originating from the 290: 244:Antarctic Circumpolar Current 238:, that brings water from the 229: 26:Antarctic Circumpolar Current 2777:Geophysical Research Letters 1603:Geophysical Research Letters 1522:10.1016/0011-7471(74)90010-2 1246:Geophysical Research Letters 1028:Geophysical Research Letters 268:Antarctic Intermediate Water 7: 2290:"Impacts of climate change" 2175:"Explainer: IPCC Scenarios" 1753:"Global Carbon Budget 2023" 1656:the Cape Darnley polynya". 192: 10: 2851: 2743:10.1038/s41467-020-14302-3 2633:10.1038/s41558-023-01667-8 2575:10.1038/s41598-020-71290-6 2528:10.1038/s41558-021-01212-5 2394:10.1038/s41598-021-04231-6 2151:10.1038/d41586-020-00177-3 1720:10.1038/s41467-022-31560-5 1428:10.1038/s41467-017-00197-0 1316:10.1038/s41586-023-05762-w 1112:10.1038/s41467-022-27979-5 985:10.1038/s41558-023-01667-8 947:10.1038/s43247-023-00727-3 884:10.1038/s41467-018-04101-2 751:10.1038/s41467-021-21339-5 693:10.1038/s41558-022-01555-7 2345:10.1017/9781009157896.011 2256:10.5194/essd-12-2013-2020 2235:Earth System Science Data 2092:10.1007/s00382-016-3163-y 1770:10.5194/essd-15-5301-2023 1757:Earth System Science Data 2213:Summary for Policymakers 2051:10.1175/JPO-D-10-05011.1 486:greenhouse gas emissions 482:climate change scenarios 430:greenhouse gas emissions 381:ocean primary production 341:dissolved organic carbon 152:greenhouse gas emissions 69:dissolved organic carbon 45:thermohaline circulation 2783:(23): 12, 252–12, 260. 2682:10.1073/pnas.1904822116 1994:10.1126/science.1136188 1943:10.1073/pnas.2217909120 1885:10.1126/science.abi4355 1824:10.1126/science.abi4355 1478:10.5670/oceanog.2013.07 264:Subantarctic Mode Water 144:climate change scenario 2294:Discovering Antarctica 2198:Climate Action Tracker 1459:Talley, Lynne (2013). 1164:10.1126/sciadv.aap9467 578: 525: 502:Antarctic bottom water 425: 403:Climate change impacts 345: 317:Antarctic Bottom Water 308: 274:Missing-mixing paradox 240:Circumpolar Deep Water 203: 104:Antarctic bottom water 29: 2723:Nature Communications 2612:Nature Climate Change 2508:Nature Climate Change 1700:Nature Communications 1557:10.1175/2010JPO4557.1 1408:Nature Communications 1092:Nature Communications 1034:(22): e2020GL091103. 972:Nature Climate Change 864:Nature Communications 731:Nature Communications 681:Nature Climate Change 568: 530:Southern Annular Mode 523: 410: 358:Industrial Revolution 338: 299:The role of seasonal 298: 200: 116:Southern Annular Mode 81:Earth's energy budget 22: 2797:10.1002/2016GL070457 1624:10.1029/2007GL032903 1267:10.1029/2023GL106492 1218:10.1029/2020JC016998 1048:10.1029/2020GL091103 571:Last Glacial Maximum 551:ocean stratification 140:ocean stratification 128:Antarctic ice sheets 85:oceanic carbon cycle 2789:2016GeoRL..4312252B 2735:2020NatCo..11..424H 2673:2019PNAS..11614887R 2667:(30): 14887–14892. 2624:2023NatCC..13..537G 2520:2021NatCC..11.1090S 2468:20.500.11850/120143 2459:10.1038/nature19101 2451:2016Natur.537...89H 2386:2022NatSR..12..383P 2266:20.500.11850/443809 2247:2020ESSD...12.2013V 2142:2020Natur.577..618H 2042:2011JPO....41.2381D 1987:(5832): 1735–1738. 1935:2023PNAS..12017909H 1929:(18): e2217909120. 1877:2021Sci...374.1275L 1816:2021Sci...374.1275L 1810:(6572): 1275–1280. 1712:2022NatCo..13.4056Z 1670:2013NatGe...6..235O 1615:2008GeoRL..35.7606T 1549:2011JPO....41..241L 1514:1974DSRA...21..499G 1420:2017NatCo...8..172T 1308:2023Natur.615..841L 1258:2023GeoRL..5006492C 1210:2021JGRC..12616998R 1104:2022NatCo..13..340B 1040:2020GeoRL..4791103S 938:2023ComEE...4...69L 876:2018NatCo...9.1789P 828:2012NatGe...5..171M 743:2021NatCo..12.1211S 647:Northern Hemisphere 639:Southern Hemisphere 631:climate sensitivity 617:of some species of 599:Southern Hemisphere 587:Greenland ice sheet 497:Antarctic ice sheet 462:Southern Hemisphere 436:is the increase in 331:Global carbon cycle 305:Antarctic ice sheet 171:Southern Hemisphere 2563:Scientific Reports 2374:Scientific Reports 2085:(5–6): 1611–1631. 579: 526: 438:ocean heat content 426: 346: 309: 204: 177:, or a decline of 120:ocean heat content 30: 2036:(12): 2381–2401. 1871:(18): 1275–1280. 1763:(12): 5301–5369. 1658:Nature Geoscience 1302:(7954): 841–847. 816:Nature Geoscience 627:marine ecosystems 187:marine ecosystems 130:, and this fresh 2842: 2819: 2818: 2808: 2771: 2765: 2764: 2754: 2714: 2705: 2704: 2694: 2684: 2652: 2646: 2645: 2635: 2603: 2597: 2596: 2586: 2554: 2548: 2547: 2503: 2497: 2496: 2470: 2430: 2424: 2423: 2413: 2365: 2359: 2358: 2325:Fox-Kemper, B.; 2322: 2305: 2304: 2302: 2300: 2286: 2280: 2275: 2270: 2268: 2258: 2241:(3): 2013–2041. 2226: 2220: 2209: 2203: 2202: 2189: 2187: 2170: 2164: 2163: 2153: 2136:(7792): 618–20. 2121: 2115: 2114: 2104: 2094: 2079:Climate Dynamics 2070: 2064: 2063: 2053: 2021: 2015: 2014: 1996: 1971: 1965: 1964: 1954: 1914: 1905: 1904: 1865:Science Advances 1862: 1853: 1844: 1843: 1794: 1785: 1784: 1782: 1772: 1748: 1742: 1741: 1731: 1691: 1682: 1681: 1678:10.1038/ngeo1738 1652: 1646: 1643: 1637: 1636: 1626: 1594: 1588: 1585: 1579: 1578: 1568: 1532: 1526: 1525: 1497: 1491: 1490: 1480: 1456: 1450: 1449: 1439: 1398: 1387: 1386: 1377: 1362: 1361: 1349: 1336: 1335: 1291: 1280: 1279: 1269: 1236: 1230: 1229: 1192: 1186: 1185: 1175: 1152:Science Advances 1143: 1134: 1133: 1123: 1083: 1070: 1069: 1059: 1023: 1012: 1011: 1008:The Conversation 999: 990: 989: 987: 963: 952: 951: 949: 917: 906: 905: 895: 855: 840: 839: 836:10.1038/ngeo1391 811: 800: 799: 798:. 29 March 2023. 788: 773: 772: 762: 722: 713: 712: 676: 472:of Antarctica's 428:As human-caused 2850: 2849: 2845: 2844: 2843: 2841: 2840: 2839: 2825: 2824: 2823: 2822: 2772: 2768: 2715: 2708: 2653: 2649: 2604: 2600: 2555: 2551: 2504: 2500: 2445:(7618): 89–92. 2431: 2427: 2366: 2362: 2355: 2323: 2308: 2298: 2296: 2288: 2287: 2283: 2227: 2223: 2210: 2206: 2185: 2183: 2171: 2167: 2122: 2118: 2071: 2067: 2022: 2018: 1972: 1968: 1915: 1908: 1860: 1854: 1847: 1795: 1788: 1749: 1745: 1692: 1685: 1653: 1649: 1644: 1640: 1595: 1591: 1586: 1582: 1533: 1529: 1498: 1494: 1457: 1453: 1399: 1390: 1378: 1365: 1350: 1339: 1292: 1283: 1237: 1233: 1193: 1189: 1158:(4): eaap9467. 1144: 1137: 1084: 1073: 1024: 1015: 1000: 993: 964: 955: 918: 909: 856: 843: 812: 803: 790: 789: 776: 723: 716: 677: 668: 663: 641:countries like 534:ozone depletion 450:West Antarctica 405: 398: 390: 370: 355: 333: 313:brine rejection 293: 276: 248:Ekman transport 232: 195: 17: 12: 11: 5: 2848: 2838: 2837: 2821: 2820: 2766: 2706: 2647: 2618:(6): 537–544. 2598: 2549: 2498: 2425: 2360: 2353: 2306: 2281: 2221: 2204: 2165: 2116: 2065: 2016: 1966: 1906: 1845: 1786: 1743: 1683: 1647: 1638: 1589: 1580: 1543:(1): 241–246. 1527: 1508:(7): 499–528. 1492: 1451: 1388: 1363: 1337: 1281: 1231: 1187: 1135: 1071: 1013: 991: 953: 907: 841: 822:(3): 171–180. 801: 774: 714: 665: 664: 662: 659: 560:sea level rise 546:Climate models 478:climate models 446:Southern Ocean 442:global heating 414:carbon dioxide 404: 401: 396: 388: 385:photosynthesis 368: 353: 350:carbon dioxide 332: 329: 292: 289: 275: 272: 231: 228: 194: 191: 124:Southern Ocean 112:climate change 89:climate system 15: 9: 6: 4: 3: 2: 2847: 2836: 2833: 2832: 2830: 2816: 2812: 2807: 2802: 2798: 2794: 2790: 2786: 2782: 2778: 2770: 2762: 2758: 2753: 2748: 2744: 2740: 2736: 2732: 2728: 2724: 2720: 2713: 2711: 2702: 2698: 2693: 2688: 2683: 2678: 2674: 2670: 2666: 2662: 2658: 2651: 2643: 2639: 2634: 2629: 2625: 2621: 2617: 2613: 2609: 2602: 2594: 2590: 2585: 2580: 2576: 2572: 2568: 2564: 2560: 2553: 2545: 2541: 2537: 2533: 2529: 2525: 2521: 2517: 2513: 2509: 2502: 2494: 2490: 2486: 2482: 2478: 2474: 2469: 2464: 2460: 2456: 2452: 2448: 2444: 2440: 2436: 2429: 2421: 2417: 2412: 2407: 2403: 2399: 2395: 2391: 2387: 2383: 2379: 2375: 2371: 2364: 2356: 2354:9781009157896 2350: 2346: 2342: 2338: 2337: 2332: 2328: 2321: 2319: 2317: 2315: 2313: 2311: 2295: 2291: 2285: 2279: 2274: 2267: 2262: 2257: 2252: 2248: 2244: 2240: 2236: 2232: 2225: 2218: 2214: 2208: 2201: 2199: 2195: 2182: 2181: 2176: 2169: 2161: 2157: 2152: 2147: 2143: 2139: 2135: 2131: 2127: 2120: 2112: 2108: 2103: 2102:1721.1/107158 2098: 2093: 2088: 2084: 2080: 2076: 2069: 2061: 2057: 2052: 2047: 2043: 2039: 2035: 2031: 2027: 2020: 2012: 2008: 2004: 2000: 1995: 1990: 1986: 1982: 1978: 1970: 1962: 1958: 1953: 1948: 1944: 1940: 1936: 1932: 1928: 1924: 1920: 1913: 1911: 1902: 1898: 1894: 1890: 1886: 1882: 1878: 1874: 1870: 1866: 1859: 1852: 1850: 1841: 1837: 1833: 1829: 1825: 1821: 1817: 1813: 1809: 1805: 1801: 1793: 1791: 1781: 1776: 1771: 1766: 1762: 1758: 1754: 1747: 1739: 1735: 1730: 1725: 1721: 1717: 1713: 1709: 1705: 1701: 1697: 1690: 1688: 1679: 1675: 1671: 1667: 1663: 1659: 1651: 1642: 1634: 1630: 1625: 1620: 1616: 1612: 1608: 1604: 1600: 1593: 1584: 1576: 1572: 1567: 1562: 1558: 1554: 1550: 1546: 1542: 1538: 1531: 1523: 1519: 1515: 1511: 1507: 1503: 1496: 1488: 1484: 1479: 1474: 1470: 1466: 1462: 1455: 1447: 1443: 1438: 1433: 1429: 1425: 1421: 1417: 1413: 1409: 1405: 1397: 1395: 1393: 1384: 1376: 1374: 1372: 1370: 1368: 1359: 1355: 1348: 1346: 1344: 1342: 1333: 1329: 1325: 1321: 1317: 1313: 1309: 1305: 1301: 1297: 1290: 1288: 1286: 1277: 1273: 1268: 1263: 1259: 1255: 1251: 1247: 1243: 1235: 1227: 1223: 1219: 1215: 1211: 1207: 1203: 1199: 1191: 1183: 1179: 1174: 1169: 1165: 1161: 1157: 1153: 1149: 1142: 1140: 1131: 1127: 1122: 1117: 1113: 1109: 1105: 1101: 1097: 1093: 1089: 1082: 1080: 1078: 1076: 1067: 1063: 1058: 1053: 1049: 1045: 1041: 1037: 1033: 1029: 1022: 1020: 1018: 1009: 1005: 998: 996: 986: 981: 977: 973: 969: 962: 960: 958: 948: 943: 939: 935: 931: 927: 923: 916: 914: 912: 903: 899: 894: 889: 885: 881: 877: 873: 869: 865: 861: 854: 852: 850: 848: 846: 837: 833: 829: 825: 821: 817: 810: 808: 806: 797: 793: 787: 785: 783: 781: 779: 770: 766: 761: 756: 752: 748: 744: 740: 736: 732: 728: 721: 719: 710: 706: 702: 698: 694: 690: 686: 682: 675: 673: 671: 666: 658: 656: 652: 648: 644: 640: 636: 635:precipitation 632: 628: 624: 620: 616: 612: 608: 603: 600: 596: 592: 588: 584: 576: 572: 567: 563: 561: 556: 552: 547: 543: 539: 538:precipitation 535: 531: 522: 518: 516: 511: 507: 503: 498: 494: 489: 487: 483: 479: 475: 471: 467: 463: 459: 455: 451: 447: 443: 439: 435: 431: 424:of emissions. 423: 419: 415: 409: 400: 394: 386: 382: 378: 377:phytoplankton 374: 365: 363: 359: 351: 342: 337: 328: 326: 322: 318: 314: 306: 302: 297: 288: 286: 281: 271: 269: 265: 260: 256: 251: 249: 245: 241: 237: 227: 224: 219: 217: 213: 209: 199: 190: 188: 184: 180: 176: 172: 168: 167:precipitation 164: 159: 155: 153: 149: 145: 141: 135: 133: 129: 125: 121: 117: 113: 109: 105: 101: 97: 92: 90: 86: 82: 78: 74: 70: 66: 62: 58: 54: 50: 46: 42: 38: 34: 27: 21: 2806:10150/622754 2780: 2776: 2769: 2726: 2722: 2664: 2660: 2650: 2615: 2611: 2601: 2569:(1): 14415. 2566: 2562: 2552: 2511: 2507: 2501: 2442: 2438: 2428: 2377: 2373: 2363: 2335: 2327:Hewitt, H.T. 2297:. Retrieved 2293: 2284: 2238: 2234: 2224: 2211:IPCC, 2021: 2207: 2191: 2186:30 September 2184:. Retrieved 2178: 2168: 2133: 2129: 2119: 2082: 2078: 2068: 2033: 2029: 2019: 1984: 1980: 1969: 1926: 1922: 1868: 1864: 1807: 1803: 1780:10871/134742 1760: 1756: 1746: 1703: 1699: 1661: 1657: 1650: 1641: 1606: 1602: 1592: 1583: 1540: 1536: 1530: 1505: 1501: 1495: 1471:(1): 80–97. 1468: 1465:Oceanography 1464: 1454: 1411: 1407: 1299: 1295: 1249: 1245: 1234: 1201: 1197: 1190: 1155: 1151: 1095: 1091: 1031: 1027: 975: 971: 929: 925: 867: 863: 819: 815: 734: 730: 684: 680: 604: 595:paleoclimate 580: 553:in even the 527: 510:cubic meters 490: 470:mass balance 427: 421: 417: 366: 347: 310: 277: 252: 233: 220: 205: 158:Paleoclimate 156: 136: 93: 40: 36: 32: 31: 1706:(1): 4056. 1057:1885/274441 978:: 701–709. 870:(1): 1789. 737:(1): 1211. 593:. There is 575:Weddell Sea 474:ice shelves 362:carbon sink 325:Weddell Sea 280:thermocline 266:(SAMW) and 212:downwelling 185:of certain 148:carbon sink 57:downwelling 2729:(1): 424. 2380:(1): 383. 1664:(3): 235. 1414:(1): 172. 1098:(1): 340. 661:References 621:, and the 615:extinction 542:westerlies 356:since the 291:Lower cell 255:meridional 236:Westerlies 230:Upper cell 71:and other 39:(SMOC) or 2815:133069692 2642:1758-6798 2544:244726388 2536:1758-678X 2493:205250191 2477:1476-4687 2402:2045-2322 1901:244841359 1840:244841359 1633:128716199 1566:1912/4409 1332:257807573 1276:0094-8276 1226:2169-9275 1066:229063736 932:(1): 69. 709:255028552 687:: 83–90. 643:Australia 611:fisheries 607:nutrients 493:meltwater 460:cover in 303:from the 301:meltwater 208:upwelling 179:fisheries 132:meltwater 73:nutrients 2829:Category 2761:31969564 2701:31285345 2593:32934273 2485:27582222 2420:35013425 2160:31996825 2111:56324078 2060:42020235 2011:34642281 2003:17510327 1961:37099629 1952:10160987 1893:34855495 1832:34855495 1738:35831323 1575:55251243 1487:24862019 1446:28769035 1358:ABC News 1324:36991191 1182:29675467 1130:35039511 902:29724994 769:33619262 625:of some 623:collapse 506:sverdrup 422:fraction 418:fraction 344:surface. 321:Ross Sea 259:buoyancy 216:Sverdrup 193:Dynamics 183:collapse 100:salinity 75:such as 2785:Bibcode 2752:6976697 2731:Bibcode 2692:6660720 2669:Bibcode 2620:Bibcode 2584:7492216 2516:Bibcode 2447:Bibcode 2411:8748732 2382:Bibcode 2243:Bibcode 2138:Bibcode 2038:Bibcode 1981:Science 1931:Bibcode 1873:Bibcode 1812:Bibcode 1804:Science 1729:9279406 1708:Bibcode 1666:Bibcode 1611:Bibcode 1545:Bibcode 1510:Bibcode 1437:5541074 1416:Bibcode 1304:Bibcode 1254:Bibcode 1206:Bibcode 1173:5906079 1121:8764023 1100:Bibcode 1036:Bibcode 934:Bibcode 893:5934442 872:Bibcode 824:Bibcode 760:7900241 739:Bibcode 701:2242376 637:in the 458:sea ice 393:abiotic 202:mixing. 169:in the 122:in the 61:upwells 2813:  2759:  2749:  2699:  2689:  2640:  2591:  2581:  2542:  2534:  2491:  2483:  2475:  2439:Nature 2418:  2408:  2400:  2351:  2299:15 May 2215:. In: 2180:Cosmos 2158:  2130:Nature 2109:  2058:  2009:  2001:  1959:  1949:  1899:  1891:  1838:  1830:  1736:  1726:  1631:  1573:  1485:  1444:  1434:  1330:  1322:  1296:Nature 1274:  1252:(24). 1224:  1180:  1170:  1128:  1118:  1064:  900:  890:  767:  757:  707:  699:  484:where 466:albedo 110:, but 65:oxygen 2811:S2CID 2540:S2CID 2489:S2CID 2107:S2CID 2056:S2CID 2007:S2CID 1897:S2CID 1861:(PDF) 1836:S2CID 1629:S2CID 1609:(7). 1571:S2CID 1483:JSTOR 1328:S2CID 1204:(8). 1062:S2CID 705:S2CID 555:CMIP6 448:. In 175:North 96:winds 49:ocean 2757:PMID 2697:PMID 2638:ISSN 2589:PMID 2532:ISSN 2481:PMID 2473:ISSN 2416:PMID 2398:ISSN 2349:ISBN 2301:2022 2188:2023 2156:PMID 1999:PMID 1957:PMID 1889:PMID 1828:PMID 1734:PMID 1442:PMID 1320:PMID 1272:ISSN 1222:ISSN 1178:PMID 1126:PMID 898:PMID 796:NOAA 765:PMID 697:OSTI 653:and 619:fish 373:iron 253:The 210:and 83:and 77:iron 2801:hdl 2793:doi 2747:PMC 2739:doi 2687:PMC 2677:doi 2665:116 2628:doi 2579:PMC 2571:doi 2524:doi 2463:hdl 2455:doi 2443:537 2406:PMC 2390:doi 2341:doi 2261:hdl 2251:doi 2146:doi 2134:577 2097:hdl 2087:doi 2046:doi 1989:doi 1985:316 1947:PMC 1939:doi 1927:120 1881:doi 1820:doi 1808:374 1775:hdl 1765:doi 1724:PMC 1716:doi 1674:doi 1619:doi 1561:hdl 1553:doi 1518:doi 1473:doi 1432:PMC 1424:doi 1312:doi 1300:615 1262:doi 1214:doi 1202:126 1168:PMC 1160:doi 1116:PMC 1108:doi 1052:hdl 1044:doi 980:doi 942:doi 888:PMC 880:doi 832:doi 755:PMC 747:doi 689:doi 102:of 2831:: 2809:. 2799:. 2791:. 2781:43 2779:. 2755:. 2745:. 2737:. 2727:11 2725:. 2721:. 2709:^ 2695:. 2685:. 2675:. 2663:. 2659:. 2636:. 2626:. 2616:13 2614:. 2610:. 2587:. 2577:. 2567:10 2565:. 2561:. 2538:. 2530:. 2522:. 2512:11 2510:. 2487:. 2479:. 2471:. 2461:. 2453:. 2441:. 2437:. 2414:. 2404:. 2396:. 2388:. 2378:12 2376:. 2372:. 2347:. 2309:^ 2292:. 2259:. 2249:. 2239:12 2237:. 2233:. 2190:. 2177:. 2154:. 2144:. 2132:. 2128:. 2105:. 2095:. 2083:48 2081:. 2077:. 2054:. 2044:. 2034:41 2032:. 2028:. 2005:. 1997:. 1983:. 1979:. 1955:. 1945:. 1937:. 1925:. 1921:. 1909:^ 1895:. 1887:. 1879:. 1867:. 1863:. 1848:^ 1834:. 1826:. 1818:. 1806:. 1802:. 1789:^ 1773:. 1761:15 1759:. 1755:. 1732:. 1722:. 1714:. 1704:13 1702:. 1698:. 1686:^ 1672:. 1660:. 1627:. 1617:. 1607:35 1605:. 1601:. 1569:. 1559:. 1551:. 1541:41 1539:. 1516:. 1506:21 1504:. 1481:. 1469:26 1467:. 1463:. 1440:. 1430:. 1422:. 1410:. 1406:. 1391:^ 1366:^ 1356:. 1340:^ 1326:. 1318:. 1310:. 1298:. 1284:^ 1270:. 1260:. 1250:50 1248:. 1244:. 1220:. 1212:. 1200:. 1176:. 1166:. 1154:. 1150:. 1138:^ 1124:. 1114:. 1106:. 1096:13 1094:. 1090:. 1074:^ 1060:. 1050:. 1042:. 1032:47 1030:. 1016:^ 1006:. 994:^ 976:13 974:. 970:. 956:^ 940:. 928:. 924:. 910:^ 896:. 886:. 878:. 866:. 862:. 844:^ 830:. 818:. 804:^ 794:. 777:^ 763:. 753:. 745:. 735:12 733:. 729:. 717:^ 703:. 695:. 685:13 683:. 669:^ 657:. 399:. 323:, 287:. 250:. 91:. 67:, 2817:. 2803:: 2795:: 2787:: 2763:. 2741:: 2733:: 2703:. 2679:: 2671:: 2644:. 2630:: 2622:: 2595:. 2573:: 2546:. 2526:: 2518:: 2495:. 2465:: 2457:: 2449:: 2422:. 2392:: 2384:: 2357:. 2343:: 2303:. 2269:. 2263:: 2253:: 2245:: 2162:. 2148:: 2140:: 2113:. 2099:: 2089:: 2062:. 2048:: 2040:: 2013:. 1991:: 1963:. 1941:: 1933:: 1903:. 1883:: 1875:: 1869:7 1842:. 1822:: 1814:: 1783:. 1777:: 1767:: 1740:. 1718:: 1710:: 1680:. 1676:: 1668:: 1662:6 1635:. 1621:: 1613:: 1577:. 1563:: 1555:: 1547:: 1524:. 1520:: 1512:: 1489:. 1475:: 1448:. 1426:: 1418:: 1412:8 1360:. 1334:. 1314:: 1306:: 1278:. 1264:: 1256:: 1228:. 1216:: 1208:: 1184:. 1162:: 1156:4 1132:. 1110:: 1102:: 1068:. 1054:: 1046:: 1038:: 1010:. 988:. 982:: 950:. 944:: 936:: 930:4 904:. 882:: 874:: 868:9 838:. 834:: 826:: 820:5 771:. 749:: 741:: 711:. 691:: 397:2 389:2 369:2 354:2

Index


Antarctic Circumpolar Current
thermohaline circulation
ocean
Atlantic meridional overturning circulation
downwelling
upwells
oxygen
dissolved organic carbon
nutrients
iron
Earth's energy budget
oceanic carbon cycle
climate system
winds
salinity
Antarctic bottom water
Interdecadal Pacific Oscillation
climate change
Southern Annular Mode
ocean heat content
Southern Ocean
Antarctic ice sheets
meltwater
ocean stratification
climate change scenario
carbon sink
greenhouse gas emissions
Paleoclimate
tipping points in the climate system

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.