Knowledge

Antarctic bottom water

Source 📝

319:
water to be formed. While this would create a slowdown referenced above, it may also create additional warming. Increased stratification coming from the fresher and warmer waters will reduce bottom and deep-water circulation and increase warm water flows around Antarctica. The sustained warmer surface waters would only increase the level of ice melt, stratification, and the slowdown of the AABW circulation and formation. Additionally, without the presence of those colder waters producing brine rejection which deposits to the AABW, there may eventually be no formation of bottom water around Antarctica anymore. This would impact more than Antarctica, as AABW plays a major role in bottom water formation and deep-sea circulation, which deposits oxygen to the deep sea and is a major
127:(CDW; salinity > 35 g/kg and potential temperature > 0C). These warm watermasses are cooled by coastal polynyas to form the denser AABW. Coastal polynyas that form AABW help prevent the intruding warm CDW water masses from gaining access to the base of ice shelves, hence acting to protect ice shelves from enhanced basal melting due to oceanic warming. In areas like the Amundsen Sea, where coastal polynya activity has diminished to the point where dense water formation is hindered, the neighboring ice shelves have started to retreat and may be on the brink of collapse. 20: 159: 242: 71:. Since the water mass forms near the surface, it is responsible for the exchange of large quantities of heat and gases with the atmosphere. AABW has a high oxygen content relative to the rest of the oceans' deep waters, but this depletes over time. This water sinks at four distinct regions around the margins of the continent and forms the AABW; this process leads to ventilation of the deep ocean, or 111:
sea ice away from the coast, creating polynyas which opens up the water surface to a cold atmosphere during winter, which further helps form more sea ice. Antarctic coastal polynyas form as much as 10% of the overall Southern Ocean sea ice during a single season, amounting to about 2,000 km of
318:
While the freshening of the AABW has corrected itself over the past few years with a decrease in ice melt, the potential for more ice melt in the future still poses a threat. With the potential increase in ice melt at extreme-enough levels, it can have a serious impact on the ability for deep sea
306:
coupled with enhanced ice shelf basal melting can impact the formation of dense shelf waters. For surface water to become deep water, it must be very cold and saline. Much of the deep-water formation comes from brine rejection, where the water deposited is extremely saline and cold, making it
55:
from 34.6 to 35.0 g/kg. As the densest water mass of the oceans, AABW is found to occupy the depth range below 4000 m of all ocean basins that have a connection to the Southern Ocean at that level. AABW forms the lower branch of the large-scale movement in the world's oceans through
130:
Evidence indicates that Antarctic bottom water production through the Holocene (last 10,000 years) is not in a steady-state condition; that is, bottom water production sites shift along the Antarctic margin over decade-to-century timescales as conditions for the existence of
326:
Some studies indicate that WSBW formation in the Weddell Sea is dominantly driven by wind-driven sea ice changes, however, and that increased sea ice formation overcompensates for the melting of ice sheets, rendering the effects of melting Antarctic glaciers on WSBW minimal.
1458:
Silvano, A., Rintoul, S. R., Peña-Molino, B., Hobbs, W. R., van Wijk, E., Aoki, S., ... & Williams, G. D. (2018). Freshening by glacial meltwater enhances the melting of ice shelves and reduces the formation of Antarctic Bottom Water. Science advances, 4(4),
112:
sea ice. Surface water is enriched in salt from sea ice formation and cooled due to being exposed to a cold atmosphere during winter, which increases the density of this water mass. Due to its increased density, it forms overflows down the Antarctic
462:
Ohshima, Kay I.; Fukamachi, Yasushi; Williams, Guy D.; Nihashi, Sohey; Roquet, Fabien; Kitade, Yujiro; Tamura, Takeshi; Hirano, Daisuke; Herraiz-Borreguero, Laura; Field, Iain; Hindell, Mark; Aoki, Shigeru; Wakatsuchi, Masaaki (March 2013).
1473:
Aoki, S., Yamazaki, K., Hirano, D., Katsumata, K., Shimada, K., Kitade, Y., ... & Murase, H. (2020). Reversal of freshening trend of Antarctic Bottom Water in the Australian-Antarctic Basin during 2010s. Scientific reports, 10(1),
293:
have slowed the formation of AABW, and this slowdown is likely to continue. A complete shutdown of AABW formation is possible as soon as 2050. This shutdown would have dramatic effects on ocean circulation and global weather patterns.
225:
In the Guiana Basin, west of 40°W, the sloping topography and the strong, eastward flowing deep western boundary current might prevent the Antarctic bottom water from flowing west: thus it has to turn north at the eastern slope of the
1174:
Harris, P.T.; Brancolini, G.; Armand, L.; Busetti, M.; Beaman, R.J.; Giorgetti, G.; Prestie, M.; Trincardi, F. (2001). "Continental shelf drift deposit indicates non-steady state Antarctic bottom water production in the Holocene".
307:
extremely dense. The increased ice melt that occurred starting in the early 2000s has created a period of fresher water between 2011-2015 within the bottom water. This has been distinctly prevalent in Antarctic bottom waters near
414:
Portela, Esther; Rintoul, Stephen R.; Herraiz-Borreguero, Laura; Roquet, Fabien; Bestley, Sophie; van Wijk, Esmee; Tamura, Takeshi; McMahon, Clive R.; Guinet, Christophe; Harcourt, Robert; Hindell, Mark A. (December 2022).
839:
Williams, G. D.; Herraiz-Borreguero, L.; Roquet, F.; Tamura, T.; Ohshima, K. I.; Fukamachi, Y.; Fraser, A. D.; Gao, L.; Chen, H.; McMahon, C. R.; Harcourt, R.; Hindell, M. (2016-08-23).
116:
and continues north along the bottom. It is the densest water in the open ocean, and underlies other bottom and intermediate waters throughout most of the southern hemisphere. The
1484:
Zhou, Shenjie; Meijers, Andrew J. S.; Meredith, Michael P.; Abrahamsen, E. Povl; Holland, Paul R.; Silvano, Alessandro; Sallée, Jean-Baptiste; Østerhus, Svein (12 June 2023).
1591:
Fahrbach, E.; Rohardt, G.; Scheele, N.; Schroder, M.; Strass, V.; Wisotzki, A. (1995). "Formation and discharge of deep and bottom water in the northwestern Weddell Sea".
230:. At 44°W, north of the Ceará Rise, Antarctic bottom water flows west in the interior of the basin. A large fraction of the Antarctic bottom water enters the eastern 1387:"Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2 °C global warming could be dangerous" 1385:
Hansen, James; Sato, Makiko; Hearty, Paul; Ruedy, Reto; Kelley, Maxwell; Masson-Delmotte, Valerie; Russell, Gary; Tselioudis, George; Cao, Junji (2016-03-22).
1049:
Broecker, W. S.; Peacock, S. L.; Walker, S.; Weiss, R.; Fahrbach, E.; Schroeder, M.; Mikolajewicz, U.; Heinze, C.; Key, R.; Peng, T.-H.; Rubin, S. (1998).
1139:
Harris, P.T. (2000). "Ripple cross-laminated sediments on the East Antarctic shelf: evidence for episodic bottom water production during the Holocene?".
262:. It takes the Antarctic Bottom Water 23 years to reach the Crozet-Kerguelen Gap. South of Africa, Antarctic bottom water flows northwards through the 139:, which occurred on 12–13 February 2010, dramatically changed the environment for producing bottom water, reducing export by up to 23% in the region of 1542: 275: 107:. An important factor enabling the formation of Antarctic bottom water is the cold surface wind blowing off the Antarctic continent. The surface winds 227: 67:
along the coastline of Antarctica, where high rates of sea ice formation during winter leads to the densification of the surface waters through
215: 323:. Without these connections, the deep sea will become drastically changed with the potential for collapse in entire deep-sea communities. 1338:"Sedimentary deposits on the southern South African continental margin: Slumping versus non-deposition or erosion by oceanic currents?" 155:
suggests that they have switched "on" and "off" again as important bottom water production sites over the last several thousand years.
218:, mainly through the southern half of the Equatorial Channel at 35°W. The other part recirculates and some of it flows through the 1210: 258:, the Crozet–Kerguelen Gap allows Antarctic bottom water to move toward the equator. This northward movement amounts to 2.5  1556: 598:
Talley, Lynne (1999). "Some aspects of ocean heat transport by the shallow, intermediate and deep overturning circulations".
1562:
Seabrooke, James M.; Hufford, Gary L.; Elder, Robert B. (1971). "Formation of Antarctic Bottom Water in the Weddell Sea".
906:"Zonal Distribution of Circumpolar Deep Water Transformation Rates and Its Relation to Heat Content on Antarctic Shelves" 904:
Narayanan, Aditya; Gille, Sarah T.; Mazloff, Matthew R.; du Plessis, Marcel D.; Murali, K.; Roquet, Fabien (June 2023).
1621: 178: 96: 623: 1631: 776:"Warm Circumpolar Deep Water transport toward Antarctica driven by local dense water export in canyons" 1266: 1238: 905: 728: 681: 511: 416: 207: 117: 57: 1261: 1002:"Unavoidable future increase in West Antarctic ice-shelf melting over the twenty-first century" 303: 219: 124: 953:"Coastal Polynyas Enable Transitions Between High and Low West Antarctic Ice Shelf Melt Rates" 1626: 1490: 465:"Antarctic Bottom Water production by intense sea-ice formation in the Cape Darnley polynya" 1571: 1499: 1408: 1352: 1308: 1253: 1184: 1148: 1103: 1062: 1013: 964: 917: 852: 787: 740: 693: 652: 603: 570: 557:
Gunn, Kathryn L.; Rintoul, Stephen R.; England, Matthew H.; Bowen, Melissa M. (June 2023).
523: 476: 428: 356: 123:
A major source water for the formation of AABW is the warm offshore watermass known as the
8: 841:"The suppression of Antarctic bottom water formation by melting ice shelves in Prydz Bay" 290: 148: 1575: 1503: 1412: 1356: 1312: 1257: 1188: 1152: 1107: 1066: 1017: 968: 921: 856: 791: 744: 697: 656: 607: 574: 527: 512:"Coastal polynyas in the southern Weddell Sea: Variability of the surface energy budget" 480: 432: 360: 1486:"Slowdown of Antarctic Bottom Water export driven by climatic wind and sea-ice changes" 1434: 1398: 1297:"The flow of Antarctic bottom water to the southwest Indian Ocean estimated using CFCs" 881: 840: 816: 775: 374: 235: 1275: 1196: 1160: 559:"Recent reduced abyssal overturning and ventilation in the Australian Antarctic Basin" 392: 345:"Wind– and Sea-Ice–Driven Interannual Variability of Antarctic Bottom Water Formation" 1552: 1527: 1426: 1121: 1031: 982: 933: 886: 868: 821: 803: 756: 727:
Tamura, Takeshi; Ohshima, Kay I.; Fraser, Alexander D.; Williams, Guy D. (May 2016).
709: 641:"The distribution and formative processes of latent heat polynyas in East Antarctica" 619: 539: 492: 444: 378: 113: 1600: 1579: 1517: 1507: 1438: 1416: 1360: 1316: 1271: 1192: 1156: 1111: 1070: 1021: 972: 925: 876: 860: 811: 795: 748: 701: 660: 611: 578: 531: 484: 436: 364: 1364: 308: 271: 267: 172: 68: 1386: 1092:"Impact of the Mertz Glacier Tongue calving on dense water formation and export" 665: 640: 92: 16:
Cold, dense, water mass originating in the Southern Ocean surrounding Antarctica
1512: 1485: 1026: 1001: 583: 558: 286: 231: 52: 44: 152: 140: 1615: 1604: 1531: 1430: 1421: 1035: 986: 937: 872: 807: 760: 713: 543: 496: 448: 263: 214:, about one-third of the northward flowing Antarctic bottom water enters the 193: 180: 144: 136: 1583: 343:
Schmidt, Christina; Morrison, Adele K.; England, Matthew H. (17 June 2023).
1234: 1125: 890: 825: 799: 464: 255: 51:
with temperatures ranging from −0.8 to 2 °C (35 °F) and absolute
1337: 147:
sediments indicating phases of stronger bottom currents, collected on the
1522: 1295:
Haine, T. W. N.; Watson, A. J.; Liddicoat, M. I.; Dickson, R. R. (1998).
977: 952: 929: 752: 705: 535: 440: 417:"Controls on Dense Shelf Water Formation in Four East Antarctic Polynyas" 369: 344: 320: 312: 84: 19: 864: 158: 1116: 1091: 774:
Morrison, A. K.; Hogg, A. McC.; England, M. H.; Spence, P. (May 2020).
615: 48: 40: 1321: 1296: 1075: 1050: 1000:
Naughten, Kaitlin A.; Holland, Paul R.; De Rydt, Jan (November 2023).
838: 413: 488: 108: 104: 1549:
Ocean Currents: A derivative of the Encyclopedia of Ocean Sciences,
1403: 951:
Moorman, Ruth; Thompson, Andrew F.; Wilson, Earle A. (2023-08-28).
259: 88: 23:
AABW is formed in the Southern Ocean from surface water cooling in
1239:"The spreading of Antarctic bottom water in the tropical Atlantic" 211: 132: 100: 64: 24: 1547:
Steele, John H., Steve A. Thorpe and Karl K. Turekian, editors,
903: 680:
Tamura, Takeshi; Ohshima, Kay I.; Nihashi, Sohey (April 2008).
461: 241: 1590: 729:"Sea ice production variability in Antarctic coastal polynyas" 682:"Mapping of sea ice production for Antarctic coastal polynyas" 602:. Geophysical Monograph Series. Vol. 112. pp. 1–22. 510:
Renfrew, Ian A.; King, John C.; Markus, Thorsten (June 2002).
1483: 1173: 1090:
Kusahara, Kazuya; Hasumi, Hiroyasu; Williams, Guy D. (2011).
600:
Mechanisms of Global Climate Change at Millennial Time Scales
639:
Massom, R.; Michael, K.; Harris, P.T.; Potter, M.J. (1998).
1294: 726: 1048: 773: 638: 206:, is an important conduit for Antarctic Bottom Water and 120:
is the densest component of the Antarctic bottom water.
556: 1089: 1051:"How much deep water is formed in the Southern Ocean?" 999: 342: 162:
Antarctic bottom water flow in the Equatorial Atlantic
143:. Evidence from sediment cores, containing layers of 1561: 1384: 950: 393:"AMS Glossary of Meteorology, Antarctic Bottom Water" 1335: 1233: 679: 83:Antarctic bottom water is created is formed in the 509: 1613: 297: 78: 1454: 1452: 1450: 1448: 1237:; Stramma, Lothar; Krahmann, Gerd (1998). 1521: 1511: 1420: 1402: 1320: 1265: 1229: 1227: 1115: 1074: 1025: 976: 880: 815: 664: 582: 368: 135:change. For example, the calving of the 240: 157: 18: 1469: 1467: 1465: 1445: 1336:Uenzelmann-Neben, G.; Huhn, K. (2009). 1055:Journal of Geophysical Research: Oceans 910:Journal of Geophysical Research: Oceans 733:Journal of Geophysical Research: Oceans 516:Journal of Geophysical Research: Oceans 421:Journal of Geophysical Research: Oceans 349:Journal of Geophysical Research: Oceans 171:The Vema Channel, a deep trough in the 63:AABW forms near the surface in coastal 1614: 1224: 1138: 597: 336: 270:and over the southern margins of the 1462: 550: 210:migrating north. Upon reaching the 13: 289:and the subsequent melting of the 245:Pathways of Antarctic bottom water 14: 1643: 1543:Glossary of Physical Oceanography 1391:Atmospheric Chemistry and Physics 1213:. American Meteorological Society 395:. American Meteorological Society 281: 166: 1564:Journal of Geophysical Research 1477: 1378: 1329: 1301:Journal of Geophysical Research 1288: 1203: 1167: 1132: 1083: 1042: 993: 944: 897: 832: 767: 720: 249: 1551:Academic Press, 1st ed., 2010 673: 632: 591: 503: 455: 407: 385: 99:from surface water cooling in 1: 1276:10.1016/S0967-0637(97)00030-7 1197:10.1016/s0025-3227(01)00183-9 1161:10.1016/s0025-3227(00)00096-7 330: 298:Potential for AABW Disruption 1365:10.1016/j.margeo.2009.07.011 1211:"AMS Glossary, Vema Channel" 957:Geophysical Research Letters 686:Geophysical Research Letters 302:Increased intrusion of warm 7: 666:10.3189/1998aog27-1-420-426 222:into the eastern Atlantic. 10: 1648: 1593:Journal of Marine Research 1513:10.1038/s41558-023-01695-4 1027:10.1038/s41558-023-01818-x 584:10.1038/s41558-023-01667-8 266:and then east through the 1622:Environment of Antarctica 175:of the South Atlantic at 79:Formation and circulation 1605:10.1357/0022240953213089 1422:10.5194/acp-16-3761-2016 1246:Deep-Sea Research Part I 208:Weddell Sea Bottom Water 118:Weddell Sea Bottom Water 58:thermohaline circulation 1584:10.1029/jc076i009p02164 800:10.1126/sciadv.aav2516 304:Circumpolar Deep Water 246: 220:Romanche Fracture Zone 163: 125:circumpolar deep water 33:Antarctic bottom water 28: 1632:Physical oceanography 1491:Nature Climate Change 1096:Nature Communications 1006:Nature Climate Change 845:Nature Communications 563:Nature Climate Change 244: 161: 22: 1307:(C12): 27637–27653. 978:10.1029/2023GL104724 930:10.1029/2022JC019310 753:10.1002/2015JC011537 706:10.1029/2007GL032903 645:Annals of Glaciology 536:10.1029/2000JC000720 441:10.1029/2022JC018804 370:10.1029/2023JC019774 149:Mac. Robertson shelf 1576:1971JGR....76.2164S 1504:2023NatCC..13..701Z 1413:2016ACP....16.3761H 1357:2009MGeol.266...65U 1313:1998JGR...10327637H 1258:1998DSRI...45..507R 1189:2001MGeol.179....1H 1153:2000MGeol.170..317H 1108:2011NatCo...2..159K 1067:1998JGR...10315833B 1061:(C8): 15833–15843. 1018:2023NatCC..13.1222N 969:2023GeoRL..5004724M 922:2023JGRC..12819310N 865:10.1038/ncomms12577 857:2016NatCo...712577W 792:2020SciA....6.2516M 745:2016JGRC..121.2967T 698:2008GeoRL..35.7606T 657:1998AnGla..27..420M 608:1999GMS...112....1T 575:2023NatCC..13..537G 528:2002JGRC..107.3063R 481:2013NatGe...6..235O 433:2022JGRC..12718804P 361:2023JGRC..12819774S 311:, primarily in the 190: /  73:abyssal ventilation 1117:10.1038/ncomms1156 616:10.1029/GM112p0001 291:Southern ice sheet 274:and then into the 247: 236:Vema Fracture Zone 164: 29: 1557:978-0-08-096486-7 1322:10.1029/98JC02476 1076:10.1029/98JC00248 1012:(11): 1222–1228. 469:Nature Geoscience 114:continental slope 1639: 1608: 1587: 1570:(9): 2164–2178. 1536: 1535: 1525: 1515: 1481: 1475: 1471: 1460: 1456: 1443: 1442: 1424: 1406: 1397:(6): 3761–3812. 1382: 1376: 1375: 1373: 1371: 1342: 1333: 1327: 1326: 1324: 1292: 1286: 1285: 1283: 1282: 1269: 1252:(4–5): 507–527. 1243: 1231: 1222: 1221: 1219: 1218: 1207: 1201: 1200: 1171: 1165: 1164: 1147:(3–4): 317–330. 1136: 1130: 1129: 1119: 1087: 1081: 1080: 1078: 1046: 1040: 1039: 1029: 997: 991: 990: 980: 948: 942: 941: 901: 895: 894: 884: 836: 830: 829: 819: 786:(18): eaav2516. 780:Science Advances 771: 765: 764: 739:(5): 2967–2979. 724: 718: 717: 677: 671: 670: 668: 636: 630: 629: 595: 589: 588: 586: 554: 548: 547: 507: 501: 500: 489:10.1038/ngeo1738 459: 453: 452: 411: 405: 404: 402: 400: 389: 383: 382: 372: 340: 276:Mozambique Basin 205: 204: 202: 201: 200: 195: 191: 188: 187: 186: 183: 1647: 1646: 1642: 1641: 1640: 1638: 1637: 1636: 1612: 1611: 1539: 1482: 1478: 1472: 1463: 1457: 1446: 1383: 1379: 1369: 1367: 1340: 1334: 1330: 1293: 1289: 1280: 1278: 1267:10.1.1.571.6529 1241: 1232: 1225: 1216: 1214: 1209: 1208: 1204: 1172: 1168: 1137: 1133: 1088: 1084: 1047: 1043: 998: 994: 949: 945: 902: 898: 837: 833: 772: 768: 725: 721: 678: 674: 637: 633: 626: 596: 592: 555: 551: 508: 504: 460: 456: 412: 408: 398: 396: 391: 390: 386: 341: 337: 333: 309:West Antarctica 300: 284: 272:Agulhas Plateau 268:Agulhas Passage 252: 198: 196: 192: 189: 184: 181: 179: 177: 176: 173:Rio Grande Rise 169: 81: 69:brine rejection 39:) is a type of 17: 12: 11: 5: 1645: 1635: 1634: 1629: 1624: 1610: 1609: 1599:(4): 515–538. 1588: 1559: 1545: 1538: 1537: 1498:(7): 701–709. 1476: 1461: 1444: 1377: 1351:(1–4): 65–79. 1345:Marine Geology 1328: 1287: 1223: 1202: 1177:Marine Geology 1166: 1141:Marine Geology 1131: 1082: 1041: 992: 943: 896: 831: 766: 719: 672: 631: 624: 590: 569:(6): 537–544. 549: 502: 475:(3): 235–240. 454: 406: 384: 334: 332: 329: 299: 296: 287:Climate change 283: 282:Climate change 280: 251: 248: 168: 167:Atlantic Ocean 165: 103:and below the 80: 77: 45:Southern Ocean 15: 9: 6: 4: 3: 2: 1644: 1633: 1630: 1628: 1625: 1623: 1620: 1619: 1617: 1606: 1602: 1598: 1594: 1589: 1585: 1581: 1577: 1573: 1569: 1565: 1560: 1558: 1554: 1550: 1546: 1544: 1541: 1540: 1533: 1529: 1524: 1523:11250/3084548 1519: 1514: 1509: 1505: 1501: 1497: 1493: 1492: 1487: 1480: 1470: 1468: 1466: 1455: 1453: 1451: 1449: 1440: 1436: 1432: 1428: 1423: 1418: 1414: 1410: 1405: 1400: 1396: 1392: 1388: 1381: 1366: 1362: 1358: 1354: 1350: 1346: 1339: 1332: 1323: 1318: 1314: 1310: 1306: 1302: 1298: 1291: 1277: 1273: 1268: 1263: 1259: 1255: 1251: 1247: 1240: 1236: 1235:Rhein, Monika 1230: 1228: 1212: 1206: 1198: 1194: 1190: 1186: 1182: 1178: 1170: 1162: 1158: 1154: 1150: 1146: 1142: 1135: 1127: 1123: 1118: 1113: 1109: 1105: 1101: 1097: 1093: 1086: 1077: 1072: 1068: 1064: 1060: 1056: 1052: 1045: 1037: 1033: 1028: 1023: 1019: 1015: 1011: 1007: 1003: 996: 988: 984: 979: 974: 970: 966: 962: 958: 954: 947: 939: 935: 931: 927: 923: 919: 915: 911: 907: 900: 892: 888: 883: 878: 874: 870: 866: 862: 858: 854: 850: 846: 842: 835: 827: 823: 818: 813: 809: 805: 801: 797: 793: 789: 785: 781: 777: 770: 762: 758: 754: 750: 746: 742: 738: 734: 730: 723: 715: 711: 707: 703: 699: 695: 691: 687: 683: 676: 667: 662: 658: 654: 650: 646: 642: 635: 627: 625:0-87590-095-X 621: 617: 613: 609: 605: 601: 594: 585: 580: 576: 572: 568: 564: 560: 553: 545: 541: 537: 533: 529: 525: 521: 517: 513: 506: 498: 494: 490: 486: 482: 478: 474: 470: 466: 458: 450: 446: 442: 438: 434: 430: 426: 422: 418: 410: 394: 388: 380: 376: 371: 366: 362: 358: 354: 350: 346: 339: 335: 328: 324: 322: 316: 314: 310: 305: 295: 292: 288: 279: 277: 273: 269: 265: 264:Agulhas Basin 261: 257: 243: 239: 237: 233: 229: 223: 221: 217: 213: 209: 203: 194:31.3°S 39.4°W 174: 160: 156: 154: 150: 146: 142: 138: 137:Mertz Glacier 134: 128: 126: 121: 119: 115: 110: 106: 102: 98: 94: 90: 86: 76: 74: 70: 66: 61: 59: 54: 50: 46: 42: 38: 34: 26: 21: 1627:Water masses 1596: 1592: 1567: 1563: 1548: 1495: 1489: 1479: 1394: 1390: 1380: 1368:. Retrieved 1348: 1344: 1331: 1304: 1300: 1290: 1279:. Retrieved 1249: 1245: 1215:. Retrieved 1205: 1183:(1–2): 1–8. 1180: 1176: 1169: 1144: 1140: 1134: 1099: 1095: 1085: 1058: 1054: 1044: 1009: 1005: 995: 960: 956: 946: 913: 909: 899: 851:(1): 12577. 848: 844: 834: 783: 779: 769: 736: 732: 722: 689: 685: 675: 648: 644: 634: 599: 593: 566: 562: 552: 522:(C6): 3063. 519: 515: 505: 472: 468: 457: 424: 420: 409: 397:. Retrieved 387: 352: 348: 338: 325: 317: 301: 285: 256:Indian Ocean 253: 250:Indian Ocean 234:through the 224: 216:Guiana Basin 199:-31.3; -39.4 170: 145:cross-bedded 129: 122: 97:Cape Darnley 93:Adélie Coast 82: 72: 62: 47:surrounding 36: 32: 30: 651:: 420–426. 321:carbon sink 313:Weddell Sea 197: / 153:Adélie Land 141:Adélie Land 1616:Categories 1404:1602.01393 1281:2012-02-14 1217:2012-02-20 1102:(1): 159. 331:References 228:Ceará Rise 91:, off the 53:salinities 49:Antarctica 41:water mass 1532:1758-6798 1459:eaap9467. 1431:1680-7324 1262:CiteSeerX 1036:1758-6798 987:0094-8276 938:2169-9275 873:2041-1723 808:2375-2548 761:2169-9275 714:0094-8276 544:0148-0227 497:1752-0908 449:2169-9275 379:259468175 105:ice shelf 89:Ross Seas 1126:21245840 891:27552365 826:32494658 232:Atlantic 133:polynyas 101:polynyas 65:polynyas 25:polynyas 1572:Bibcode 1500:Bibcode 1439:9410444 1409:Bibcode 1370:1 April 1353:Bibcode 1309:Bibcode 1254:Bibcode 1185:Bibcode 1149:Bibcode 1104:Bibcode 1063:Bibcode 1014:Bibcode 965:Bibcode 918:Bibcode 882:4996980 853:Bibcode 817:7195130 788:Bibcode 741:Bibcode 694:Bibcode 653:Bibcode 604:Bibcode 571:Bibcode 524:Bibcode 477:Bibcode 429:Bibcode 399:29 June 357:Bibcode 254:In the 212:equator 185:39°24′W 182:31°18′S 95:and by 85:Weddell 43:in the 1555:  1530:  1437:  1429:  1264:  1124:  1034:  985:  963:(16). 936:  889:  879:  871:  824:  814:  806:  759:  712:  622:  542:  495:  447:  427:(12). 377:  315:area. 109:advect 1435:S2CID 1399:arXiv 1341:(PDF) 1242:(PDF) 916:(6). 692:(7). 375:S2CID 355:(6). 1553:ISBN 1528:ISSN 1474:1-7. 1427:ISSN 1372:2015 1122:PMID 1032:ISSN 983:ISSN 934:ISSN 887:PMID 869:ISSN 822:PMID 804:ISSN 757:ISSN 710:ISSN 620:ISBN 540:ISSN 493:ISSN 445:ISSN 401:2023 151:and 87:and 37:AABW 31:The 1601:doi 1580:doi 1518:hdl 1508:doi 1417:doi 1361:doi 1349:266 1317:doi 1305:103 1272:doi 1193:doi 1181:179 1157:doi 1145:170 1112:doi 1071:doi 1059:103 1022:doi 973:doi 926:doi 914:128 877:PMC 861:doi 812:PMC 796:doi 749:doi 737:121 702:doi 661:doi 612:doi 579:doi 532:doi 520:107 485:doi 437:doi 425:127 365:doi 353:128 1618:: 1597:53 1595:. 1578:. 1568:76 1566:. 1526:. 1516:. 1506:. 1496:13 1494:. 1488:. 1464:^ 1447:^ 1433:. 1425:. 1415:. 1407:. 1395:16 1393:. 1389:. 1359:. 1347:. 1343:. 1315:. 1303:. 1299:. 1270:. 1260:. 1250:45 1248:. 1244:. 1226:^ 1191:. 1179:. 1155:. 1143:. 1120:. 1110:. 1098:. 1094:. 1069:. 1057:. 1053:. 1030:. 1020:. 1010:13 1008:. 1004:. 981:. 971:. 961:50 959:. 955:. 932:. 924:. 912:. 908:. 885:. 875:. 867:. 859:. 847:. 843:. 820:. 810:. 802:. 794:. 782:. 778:. 755:. 747:. 735:. 731:. 708:. 700:. 690:35 688:. 684:. 659:. 649:27 647:. 643:. 618:. 610:. 577:. 567:13 565:. 561:. 538:. 530:. 518:. 514:. 491:. 483:. 471:. 467:. 443:. 435:. 423:. 419:. 373:. 363:. 351:. 347:. 278:. 260:Sv 238:. 75:. 60:. 1607:. 1603:: 1586:. 1582:: 1574:: 1534:. 1520:: 1510:: 1502:: 1441:. 1419:: 1411:: 1401:: 1374:. 1363:: 1355:: 1325:. 1319:: 1311:: 1284:. 1274:: 1256:: 1220:. 1199:. 1195:: 1187:: 1163:. 1159:: 1151:: 1128:. 1114:: 1106:: 1100:2 1079:. 1073:: 1065:: 1038:. 1024:: 1016:: 989:. 975:: 967:: 940:. 928:: 920:: 893:. 863:: 855:: 849:7 828:. 798:: 790:: 784:6 763:. 751:: 743:: 716:. 704:: 696:: 669:. 663:: 655:: 628:. 614:: 606:: 587:. 581:: 573:: 546:. 534:: 526:: 499:. 487:: 479:: 473:6 451:. 439:: 431:: 403:. 381:. 367:: 359:: 35:( 27:.

Index


polynyas
water mass
Southern Ocean
Antarctica
salinities
thermohaline circulation
polynyas
brine rejection
Weddell
Ross Seas
Adélie Coast
Cape Darnley
polynyas
ice shelf
advect
continental slope
Weddell Sea Bottom Water
circumpolar deep water
polynyas
Mertz Glacier
Adélie Land
cross-bedded
Mac. Robertson shelf
Adélie Land

Rio Grande Rise
31°18′S 39°24′W / 31.3°S 39.4°W / -31.3; -39.4
Weddell Sea Bottom Water
equator

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.