Knowledge

Hayflick limit

Source 📝

258: 222:, Moorhead was able to distinguish between male and female cells in culture. The experiment proceeded as follows: Hayflick mixed equal numbers of normal human male fibroblasts that had divided many times (cells at the 40th population doubling) with female fibroblasts that had divided fewer times (cells at the 15th population doubling). Unmixed cell populations were kept as controls. After 20 doublings of the mixed culture, only female cells remained. 210:
to find that the atypical cell cultures had all been cultured to approximately their 40th doubling while younger cultures never exhibited the same problems. Furthermore, conditions were similar between the younger and older cultures he observed—same culture medium, culture containers, and technician. This led him to doubt that the manifestations were due to contamination or technical error.
193:-activation nutrient, would have been capable of staving off replicative senescence, or even possibly reversing it. Cultures not containing telomerase-active pluripotent stem cells would have been populated with telomerase-inactive cells, which would have been subject to the 50 ± 10 mitosis event limit until 31: 261:
The typical normal human fetal cell will divide between 50 and 70 times before experiencing senescence. As the cell divides, the telomeres on the ends of chromosomes shorten. The Hayflick limit is the limit on cell replication imposed by the shortening of telomeres with each division. This end stage
209:
had developed an unusual appearance and that cell division had slowed. Initially, he brushed this aside as an anomaly caused by contamination or technical error. However, he later observed other cell cultures exhibiting similar manifestations. Hayflick checked his research notebook and was surprised
329:
during a normal postnatal lifespan. In addition, it has been suggested that no inverse correlation exists between the replicative capacity of normal human cell strains and the age of the human donor from which the cells were derived, as previously argued. It is now clear that at least some of these
244:
Hayflick describes three phases in the life of normal cultured cells. At the start of his experiment he named the primary culture "phase one". Phase two is defined as the period when cells are proliferating; Hayflick called this the time of "luxuriant growth". After months of doubling the cells
333:
Comparisons of different species indicate that cellular replicative capacity may correlate primarily with species body mass, but more likely to species lifespan. Thus, the limited capacity of cells to replicate in culture may be directly relevant to the overall physical aging of an organism.
278:
are unable to be copied and are lost. This occurs due to the uneven nature of DNA replication, where leading and lagging strands are not replicated symmetrically. The telomeric region of DNA does not code for any protein; it is simply a repeated code on the end region of linear eukaryotic
181:
of chickens may have been re-added to the culture daily. This would have easily allowed the cultivation of new, fresh cells in the culture, so there was not an infinite reproduction of the original cells. It has been speculated that Carrel knew about this error, but he never admitted it.
231:
were unlikely explanations as to why cell division ceased in the older cells, and proved that unless the virus or artifact could distinguish between male and female cells (which it could not) then the cessation of normal cell replication was governed by an internal counting mechanism.
213:
Hayflick next set out to prove that the cessation of normal cell replicative capacity that he observed was not the result of viral contamination, poor culture conditions or some unknown artifact. Hayflick teamed with
226:
ceased in the unmixed control cultures at the anticipated times; when the male control culture stopped dividing, only female cells remained in the mixed culture. This suggested that technical errors or contaminating
235:
These results disproved Carrel's immortality claims and established the Hayflick limit as a credible biological theory. Unlike Carrel's experiment, Hayflick's have been successfully repeated by other scientists.
177:
However, other scientists have been unable to replicate Carrel's results, and they are suspected to be due to an error in experimental procedure. To provide required nutrients,
314:
Hayflick suggested that his results in which normal cells have a limited replicative capacity may have significance for understanding human aging at the cellular level.
279:
chromosomes. After many divisions, the telomeres reach a critical length and the cell becomes senescent. It is at this point that a cell has reached its Hayflick limit.
127:
Hayflick interpreted his discovery to be aging at the cellular level. The aging of cell populations appears to correlate with the overall physical aging of an organism.
282:
Hayflick was the first to report that only cancer cells are immortal. This could not have been demonstrated until he had demonstrated that normal cells are mortal.
905:
Olovnikov, A. M. (1971). "Принцип маргинотомии в матричном синтезе полинуклеотидов" [Principles of marginotomy in template synthesis of polynucleotides].
205:
Hayflick first became suspicious of Carrel's claims while working in a lab at the Wistar Institute. Hayflick noticed that one of his cultures of embryonic human
166:
are immortal, and that the lack of continuous cell replication was due to ignorance on how best to cultivate the cells". He claimed to have cultivated
298:. This enzyme extends telomeres, preventing the telomeres of cancer cells from shortening and giving them infinite replicative potential. A proposed 985:
Wright WE, Shay JW (2000). "Telomere dynamics in cancer progression and prevention: Fundamental differences in human and mouse telomere biology".
1499: 215: 270:
The Hayflick limit has been found to correlate with the length of the telomeric region at the end of chromosomes. During the process of
1413: 299: 330:
variable results are attributable to the mosaicism of cell replication numbers at different body sites where cells were taken.
17: 1332: 1133:
Harley, Calvin B.; Futcher, A. Bruce; Greider, Carol W. (1990). "Telomeres shorten during ageing of human fibroblasts".
1358: 1194: 762: 753:
Hayflick, L (19 May 2016). "Unlike Aging, Longevity is Sexually Determined". In Bengtson, VL; Settersten, RA (eds.).
1479: 1535: 1378: 1368: 1033:"Relationship between donor age and the replicative lifespan of human cells in culture: a reevaluation" 907: 1423: 306:
that would prevent the restoration of the telomere, allowing the cell to die like other body cells.
1325: 79: 379:"Quantifying replicative senescence as a tumor suppressor pathway and a target for cancer therapy" 1525: 1398: 1489: 1449: 353: 121: 1408: 1393: 1494: 1142: 1044: 943: 390: 178: 8: 1530: 1469: 1373: 1318: 283: 263: 246: 194: 113: 1146: 1048: 947: 496:
Hayflick L, Moorhead PS (1961). "The serial cultivation of human diploid cell strains".
394: 377:
Rodriguez-Brenes, Ignacio A.; Wodarz, Dominik; Komarova, Natalia L. (December 9, 2015).
174:(which typically live 5 to 10 years) and to have kept the culture growing for 34 years. 1294: 1269: 1256: 1218: 1178: 1166: 1121: 1010: 967: 887: 839: 814: 727: 702: 651: 626: 607: 462: 453: 437: 413: 378: 1109: 1520: 1484: 1439: 1299: 1248: 1190: 1158: 1125: 1113: 1072: 1067: 1032: 1002: 959: 916: 879: 875: 844: 795: 758: 732: 687: 656: 599: 557: 553: 513: 509: 467: 418: 130: 1260: 1014: 891: 218:
for the definitive experiment to eliminate these as causative factors. As a skilled
185:
Also, it has been theorized that the cells Carrel used were young enough to contain
1418: 1403: 1388: 1289: 1281: 1238: 1170: 1150: 1105: 1062: 1052: 994: 971: 951: 871: 834: 826: 787: 722: 714: 683: 646: 638: 611: 591: 549: 540:
Hayflick L. (1965). "The limited in vitro lifetime of human diploid cell strains".
505: 457: 449: 408: 398: 325:
is far greater than the number of replication events experienced by non-stem cells
303: 94: 90: 830: 1310: 582:
Shay, JW; Wright, WE (October 2000). "Hayflick, his limit, and cellular ageing".
271: 1474: 1243: 1226: 1222: 219: 163: 1227:"Homologous Recombination Generates T-Loop-Sized Deletions at Human Telomeres" 862:
Olovnikov AM (1996). "Telomeres, telomerase and aging: Origin of the theory".
718: 1514: 1204:
Gavrilov LA, Gavrilova NS (1993). "How many cell divisions in 'old' cells?".
1186: 1057: 223: 155: 117: 83: 955: 1454: 1303: 1270:"Telomere Rapid Deletion Regulates Telomere Length in Arabidopsis thaliana" 1252: 1117: 1006: 848: 791: 660: 603: 561: 517: 471: 422: 322: 186: 109: 98: 75: 1162: 1076: 963: 920: 883: 799: 736: 1285: 642: 287: 206: 167: 159: 815:"Telomere biology: Rationale for diagnostics and therapeutics in cancer" 1464: 1363: 1350: 1341: 318: 295: 190: 151: 59: 39: 403: 317:
It has been reported that the limited replicative capability of human
1154: 934:
Feng F; et al. (1995). "The RNA component of human telomerase".
595: 348: 257: 89:
The concept of the Hayflick limit was advanced by American anatomist
30: 275: 55: 43: 1096:
Watts, Geoff (2011). "Leonard Hayflick and the limits of ageing".
998: 326: 228: 171: 1031:
Cristofalo VJ, Allen RG, Pignolo RJ, Martin BG, Beck JC (1998).
249:", where cell replication rate slows before halting altogether. 1444: 757:(Third ed.). Springer Publishing Company. pp. 31–52. 343: 291: 51: 47: 376: 1459: 105: 102: 1030: 150:
Prior to Leonard Hayflick's discovery, it was believed that
358: 162:-winning surgeon, had stated "that all cells explanted in 1203: 1177: 35: 1216: 748: 746: 495: 108:
cell population will divide between 40 and 60 times in
933: 813:
Rousseau, Philippe; Autexier, Chantal (October 2015).
743: 674:
Witkowski JA (1985). "The myth of cell immortality".
245:
eventually reach phase three, a phenomenon he named "
1132: 624: 436:
Petersen, Thomas; Niklason, Laura (September 2007).
101:, Pennsylvania. Hayflick demonstrated that a normal 42:
lie horizontally between the two spiraling strands.
778:Watson JD (1972). "Origin of concatemeric T7 DNA". 274:of a chromosome, small segments of DNA within each 135:
Intrinsic Mutagenesis: A Genetic Approach to Ageing
1340: 984: 1183:The Biology of Life Span: A Quantitative Approach 145: 1512: 812: 435: 1500:Strategies for engineered negligible senescence 154:cells had an unlimited potential to replicate. 1026: 1024: 535: 533: 531: 529: 527: 491: 489: 487: 485: 483: 481: 116:phase. This finding refuted the contention by 1326: 1267: 438:"Cellular Lifespan and Regenerative Medicine" 133:coined the name "Hayflick limit" in his book 861: 700: 673: 197:occurs as described in Hayflick's findings. 1021: 539: 524: 478: 200: 34:Animation of the structure of a section of 1333: 1319: 581: 577: 575: 573: 571: 1414:Reliability theory of aging and longevity 1293: 1242: 1066: 1056: 904: 838: 777: 726: 650: 461: 412: 402: 82:human cell population will divide before 27:Limit to divisions of a normal human cell 752: 256: 29: 627:"Age and multiplication of fibroblasts" 568: 189:, which, if supplied with a supporting 14: 1513: 1268:Watson, J. M.; Shippen, D. E. (2006). 1314: 1095: 584:Nature Reviews Molecular Cell Biology 309: 24: 1359:Antagonistic pleiotropy hypothesis 1089: 454:10.1016/j.biomaterials.2007.05.012 252: 74:, is the number of times a normal 25: 1547: 1480:List of longest-living organisms 978: 927: 898: 855: 806: 771: 1274:Molecular and Cellular Biology 1189:: Harwood Academic Publisher. 694: 667: 618: 429: 370: 239: 146:The belief in cell immortality 13: 1: 1110:10.1016/S0140-6736(11)60908-2 831:10.1080/15476286.2015.1081329 755:Handbook of Theories of Aging 703:"Dr. Carrel's immortal cells" 625:Carrel A, Ebeling AH (1921). 364: 1379:Free-radical theory of aging 1037:Proc. Natl. Acad. Sci. U.S.A 876:10.1016/0531-5565(96)00005-8 688:10.1016/0968-0004(85)90076-3 554:10.1016/0014-4827(65)90211-9 510:10.1016/0014-4827(61)90192-6 7: 1206:Int. J. Geriatr. Psychiatry 337: 302:is the usage of telomerase 10: 1552: 1369:DNA damage theory of aging 1244:10.1016/j.cell.2004.10.011 908:Doklady Akademii Nauk SSSR 140: 1432: 1424:Stem cell theory of aging 1349: 1179:Gavrilov LA, Gavrilova NS 719:10.1017/S0025727300040126 1058:10.1073/pnas.95.18.10614 290:due to expression of an 201:Experiment and discovery 1399:Network theory of aging 956:10.1126/science.7544491 286:does not occur in most 1490:Regeneration (biology) 1450:Biological immortality 792:10.1038/newbio239197a0 354:Biological immortality 267: 187:pluripotent stem cells 120:that normal cells are 63: 18:Replicative senescence 1409:Programmed cell death 1394:Negligible senescence 701:Witkowski JA (1980). 260: 137:, published in 1974. 33: 1495:Rejuvenation (aging) 1286:10.1128/MCB.02059-06 643:10.1084/jem.34.6.599 300:treatment for cancer 179:embryonic stem cells 1536:Cellular senescence 1470:Indefinite lifespan 1374:Evolution of ageing 1344:(biology of ageing) 1219:Smogorzewska, Agata 1147:1990Natur.345..458H 1049:1998PNAS...9510614C 948:1995Sci...269.1236F 942:(5228): 1236–1241. 676:Trends Biochem. Sci 395:2015NatSR...517660R 284:Cellular senescence 264:cellular senescence 195:cellular senescence 170:from the hearts of 72:Hayflick phenomenon 1217:Wang, Richard C.; 780:Nature New Biology 383:Scientific Reports 268: 112:before entering a 64: 1508: 1507: 1485:Maximum life span 1440:Adaptive mutation 825:(10): 1078–1082. 448:(26): 3751–3756. 404:10.1038/srep17660 131:Macfarlane Burnet 16:(Redirected from 1543: 1419:Selection shadow 1404:Plant senescence 1389:Immunosenescence 1335: 1328: 1321: 1312: 1311: 1307: 1297: 1264: 1246: 1213: 1200: 1174: 1155:10.1038/345458a0 1141:(6274): 458–60. 1129: 1081: 1080: 1070: 1060: 1028: 1019: 1018: 982: 976: 975: 931: 925: 924: 915:(6): 1496–1499. 902: 896: 895: 859: 853: 852: 842: 810: 804: 803: 775: 769: 768: 750: 741: 740: 730: 698: 692: 691: 671: 665: 664: 654: 622: 616: 615: 596:10.1038/35036093 579: 566: 565: 537: 522: 521: 493: 476: 475: 465: 433: 427: 426: 416: 406: 374: 310:Organismal aging 95:Wistar Institute 93:in 1961, at the 91:Leonard Hayflick 21: 1551: 1550: 1546: 1545: 1544: 1542: 1541: 1540: 1511: 1510: 1509: 1504: 1428: 1345: 1339: 1223:De Lange, Titia 1197: 1092: 1090:Further reading 1086: 1084: 1043:(18): 10614–9. 1029: 1022: 987:Nature Medicine 983: 979: 932: 928: 903: 899: 860: 856: 811: 807: 786:(94): 197–201. 776: 772: 765: 751: 744: 699: 695: 672: 668: 623: 619: 580: 569: 538: 525: 494: 479: 434: 430: 375: 371: 367: 340: 312: 272:DNA replication 255: 253:Telomere length 242: 203: 148: 143: 28: 23: 22: 15: 12: 11: 5: 1549: 1539: 1538: 1533: 1528: 1526:Life extension 1523: 1506: 1505: 1503: 1502: 1497: 1492: 1487: 1482: 1477: 1475:Life extension 1472: 1467: 1462: 1457: 1452: 1447: 1442: 1436: 1434: 1433:Related topics 1430: 1429: 1427: 1426: 1421: 1416: 1411: 1406: 1401: 1396: 1391: 1386: 1384:Hayflick limit 1381: 1376: 1371: 1366: 1361: 1355: 1353: 1347: 1346: 1338: 1337: 1330: 1323: 1315: 1309: 1308: 1280:(5): 1706–15. 1265: 1214: 1201: 1195: 1175: 1130: 1104:(9783): 2075. 1091: 1088: 1083: 1082: 1020: 993:(8): 849–851. 977: 926: 897: 870:(4): 443–448. 854: 805: 770: 763: 742: 713:(2): 129–142. 693: 682:(7): 258–260. 666: 637:(6): 599–606. 617: 567: 548:(3): 614–636. 523: 504:(3): 585–621. 477: 428: 368: 366: 363: 362: 361: 356: 351: 346: 339: 336: 311: 308: 254: 251: 241: 238: 220:cytogeneticist 202: 199: 164:tissue culture 147: 144: 142: 139: 80:differentiated 68:Hayflick limit 26: 9: 6: 4: 3: 2: 1548: 1537: 1534: 1532: 1529: 1527: 1524: 1522: 1519: 1518: 1516: 1501: 1498: 1496: 1493: 1491: 1488: 1486: 1483: 1481: 1478: 1476: 1473: 1471: 1468: 1466: 1463: 1461: 1458: 1456: 1453: 1451: 1448: 1446: 1443: 1441: 1438: 1437: 1435: 1431: 1425: 1422: 1420: 1417: 1415: 1412: 1410: 1407: 1405: 1402: 1400: 1397: 1395: 1392: 1390: 1387: 1385: 1382: 1380: 1377: 1375: 1372: 1370: 1367: 1365: 1362: 1360: 1357: 1356: 1354: 1352: 1348: 1343: 1336: 1331: 1329: 1324: 1322: 1317: 1316: 1313: 1305: 1301: 1296: 1291: 1287: 1283: 1279: 1275: 1271: 1266: 1262: 1258: 1254: 1250: 1245: 1240: 1237:(3): 355–68. 1236: 1232: 1228: 1224: 1220: 1215: 1211: 1207: 1202: 1198: 1196:3-7186-4983-7 1192: 1188: 1184: 1180: 1176: 1172: 1168: 1164: 1160: 1156: 1152: 1148: 1144: 1140: 1136: 1131: 1127: 1123: 1119: 1115: 1111: 1107: 1103: 1099: 1094: 1093: 1087: 1078: 1074: 1069: 1064: 1059: 1054: 1050: 1046: 1042: 1038: 1034: 1027: 1025: 1016: 1012: 1008: 1004: 1000: 999:10.1038/78592 996: 992: 988: 981: 973: 969: 965: 961: 957: 953: 949: 945: 941: 937: 930: 922: 918: 914: 910: 909: 901: 893: 889: 885: 881: 877: 873: 869: 865: 864:Exp. Gerontol 858: 850: 846: 841: 836: 832: 828: 824: 820: 816: 809: 801: 797: 793: 789: 785: 781: 774: 766: 764:9780826129420 760: 756: 749: 747: 738: 734: 729: 724: 720: 716: 712: 708: 704: 697: 689: 685: 681: 677: 670: 662: 658: 653: 648: 644: 640: 636: 632: 628: 621: 613: 609: 605: 601: 597: 593: 589: 585: 578: 576: 574: 572: 563: 559: 555: 551: 547: 543: 542:Exp. Cell Res 536: 534: 532: 530: 528: 519: 515: 511: 507: 503: 499: 492: 490: 488: 486: 484: 482: 473: 469: 464: 459: 455: 451: 447: 443: 439: 432: 424: 420: 415: 410: 405: 400: 396: 392: 388: 384: 380: 373: 369: 360: 357: 355: 352: 350: 347: 345: 342: 341: 335: 331: 328: 324: 320: 315: 307: 305: 301: 297: 293: 289: 285: 280: 277: 273: 265: 259: 250: 248: 237: 233: 230: 225: 224:Cell division 221: 217: 216:Paul Moorhead 211: 208: 198: 196: 192: 188: 183: 180: 175: 173: 169: 165: 161: 157: 156:Alexis Carrel 153: 138: 136: 132: 128: 125: 123: 119: 118:Alexis Carrel 115: 111: 107: 104: 100: 96: 92: 87: 85: 84:cell division 81: 77: 73: 69: 61: 57: 53: 49: 45: 41: 37: 32: 19: 1455:CGK733 fraud 1383: 1277: 1273: 1234: 1230: 1209: 1205: 1182: 1138: 1134: 1101: 1097: 1085: 1040: 1036: 990: 986: 980: 939: 935: 929: 912: 906: 900: 867: 863: 857: 822: 818: 808: 783: 779: 773: 754: 710: 706: 696: 679: 675: 669: 634: 630: 620: 587: 583: 545: 541: 501: 498:Exp Cell Res 497: 445: 442:Biomaterials 441: 431: 386: 382: 372: 332: 323:cell culture 321:observed in 316: 313: 288:cancer cells 281: 269: 262:is known as 243: 234: 212: 204: 184: 176: 149: 134: 129: 126: 110:cell culture 99:Philadelphia 88: 71: 67: 65: 819:RNA Biology 631:J. Exp. Med 590:(1): 72–6. 319:fibroblasts 240:Cell phases 207:fibroblasts 168:fibroblasts 160:Nobel prize 1531:Senescence 1515:Categories 1465:DNA repair 1364:Catabiosis 1351:Senescence 1342:Senescence 1098:The Lancet 365:References 359:HeLa cells 304:inhibitors 296:telomerase 247:senescence 191:telomerase 152:vertebrate 114:senescence 60:phosphorus 1212:(6): 528. 1126:205963134 707:Med. Hist 389:: 17660. 349:Apoptosis 62:: orange. 58:: white, 54:: green, 1521:Genetics 1304:17189431 1261:10686288 1253:15507207 1225:(2004). 1187:New York 1181:(1991). 1118:21684371 1015:20339035 1007:10932210 892:26381790 849:26291128 661:19868581 604:11413492 562:14315085 518:13905658 472:17574669 423:26647820 338:See also 276:telomere 172:chickens 122:immortal 56:hydrogen 46:: blue, 44:Nitrogen 1295:1820464 1171:1145492 1163:2342578 1143:Bibcode 1077:9724752 1045:Bibcode 972:9440710 964:7544491 944:Bibcode 936:Science 921:5158754 884:9415101 840:4829327 800:4507727 737:6990125 728:1082700 652:2128071 612:6821048 463:2706083 414:4673423 391:Bibcode 327:in vivo 294:called 229:viruses 141:History 86:stops. 76:somatic 50:: red, 1445:Ageing 1302:  1292:  1259:  1251:  1193:  1169:  1161:  1135:Nature 1124:  1116:  1075:  1065:  1013:  1005:  970:  962:  919:  890:  882:  847:  837:  798:  761:  735:  725:  659:  649:  610:  602:  560:  516:  470:  460:  421:  411:  344:Ageing 292:enzyme 52:carbon 48:oxygen 38:. The 1460:Death 1257:S2CID 1167:S2CID 1122:S2CID 1068:27943 1011:S2CID 968:S2CID 888:S2CID 608:S2CID 106:fetal 103:human 70:, or 40:bases 1300:PMID 1249:PMID 1231:Cell 1191:ISBN 1159:PMID 1114:PMID 1073:PMID 1003:PMID 960:PMID 917:PMID 880:PMID 845:PMID 796:PMID 759:ISBN 733:PMID 657:PMID 600:PMID 558:PMID 514:PMID 468:PMID 419:PMID 158:, a 66:The 1290:PMC 1282:doi 1239:doi 1235:119 1151:doi 1139:345 1106:doi 1102:377 1063:PMC 1053:doi 995:doi 952:doi 940:269 913:201 872:doi 835:PMC 827:doi 788:doi 784:239 723:PMC 715:doi 684:doi 647:PMC 639:doi 592:doi 550:doi 506:doi 458:PMC 450:doi 409:PMC 399:doi 97:in 36:DNA 1517:: 1298:. 1288:. 1278:27 1276:. 1272:. 1255:. 1247:. 1233:. 1229:. 1221:; 1208:. 1185:. 1165:. 1157:. 1149:. 1137:. 1120:. 1112:. 1100:. 1071:. 1061:. 1051:. 1041:95 1039:. 1035:. 1023:^ 1009:. 1001:. 989:. 966:. 958:. 950:. 938:. 911:. 886:. 878:. 868:31 866:. 843:. 833:. 823:12 821:. 817:. 794:. 782:. 745:^ 731:. 721:. 711:24 709:. 705:. 680:10 678:. 655:. 645:. 635:34 633:. 629:. 606:. 598:. 586:. 570:^ 556:. 546:37 544:. 526:^ 512:. 502:25 500:. 480:^ 466:. 456:. 446:28 444:. 440:. 417:. 407:. 397:. 385:. 381:. 124:. 78:, 1334:e 1327:t 1320:v 1306:. 1284:: 1263:. 1241:: 1210:8 1199:. 1173:. 1153:: 1145:: 1128:. 1108:: 1079:. 1055:: 1047:: 1017:. 997:: 991:6 974:. 954:: 946:: 923:. 894:. 874:: 851:. 829:: 802:. 790:: 767:. 739:. 717:: 690:. 686:: 663:. 641:: 614:. 594:: 588:1 564:. 552:: 520:. 508:: 474:. 452:: 425:. 401:: 393:: 387:5 266:. 20:)

Index

Replicative senescence

DNA
bases
Nitrogen
oxygen
carbon
hydrogen
phosphorus
somatic
differentiated
cell division
Leonard Hayflick
Wistar Institute
Philadelphia
human
fetal
cell culture
senescence
Alexis Carrel
immortal
Macfarlane Burnet
vertebrate
Alexis Carrel
Nobel prize
tissue culture
fibroblasts
chickens
embryonic stem cells
pluripotent stem cells

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.