Knowledge

Radiation pressure

Source šŸ“

184: 4297: 2172: 2826: 2241: 2327: 2771: 2095:
be reflected on the surface that is ahead during the motion (front surface) than on the back surface. The backward acting force of pressure exerted on the front surface is thus larger than the force of pressure acting on the back. Hence, as the resultant of the two forces, there remains a force that counteracts the motion of the plate and that increases with the velocity of the plate. We will call this resultant 'radiation friction' in brief."
4333: 2057:). Therefore, the absorption of this radiation leads to a force with a component against the direction of movement. (The angle of aberration is tiny, since the radiation is moving at the speed of light, while the dust grain is moving many orders of magnitude slower than that.) The result is a gradual spiral of dust grains into the Sun. Over long periods of time, this effect cleans out much of the dust in the Solar System. 4357: 1368:. (The radiation pressure of sunlight on Earth is very small: it is equivalent to that exerted by the weight of about a milligram on an area of 1 square metre, or 10 Ī¼N/m.) While it acts on all objects, its net effect is generally greater on smaller bodies, since they have a larger ratio of surface area to mass. All spacecraft experience such a pressure, except when they are behind the shadow of a larger 2323:, and then evolves into a planetary system by collisions and gravitational capture. Radiation pressure can clear a region in the immediate vicinity of the star. As the formation process continues, radiation pressure continues to play a role in affecting the distribution of matter. In particular, dust and grains can spiral into the star or escape the stellar system under the action of radiation pressure. 4309: 4345: 4321: 2828: 2833: 2831: 2827: 2832: 2830: 2789:
The reflection of a laser pulse from the surface of an elastic solid can give rise to various types of elastic waves that propagate inside the solid or liquid. In other words, the light can excite and/or amplify motion of, and in, materials. This is the subject of study in the field of optomechanics.
2038:
affects the translation of a small body. It results from a face leaving solar exposure being at a higher temperature than a face approaching solar exposure. The radiation emitted from the warmer face is more intense than that of the opposite face, resulting in a net force on the body that affects its
933:
or any other radiative mechanism. Since all materials emit black-body radiation (unless they are totally reflective or at absolute zero), this source for radiation pressure is ubiquitous but usually tiny. However, because black-body radiation increases rapidly with temperature (as the fourth power of
2354:
stars the temperature may exceed 1 GK. As the radiation pressure scales as the fourth power of the temperature, it becomes important at these high temperatures. In the Sun, radiation pressure is still quite small when compared to the gas pressure. In the heaviest non-degenerate stars, radiation
2191:
began early in the history of the cosmos. Observations of the early universe strongly suggest that objects grew from bottom-up (i.e., smaller objects merging to form larger ones). As stars are thereby formed and become sources of electromagnetic radiation, radiation pressure from the stars becomes a
2094:
in 1909 predicted the existence of "radiation friction", which would oppose the movement of matter. He wrote: "radiation will exert pressure on both sides of the plate. The forces of pressure exerted on the two sides are equal if the plate is at rest. However, if it is in motion, more radiation will
1161:
photons per second per unit area striking the surface. Combining this with the above expression for the momentum of a single photon, results in the same relationships between irradiance and radiation pressure described above using classical electromagnetics. And again, reflected or otherwise emitted
2881:
An other active research area of laserā€“matter interaction is the radiation pressure acceleration of ions or protons from thinā€“foil targets. High ion energy beams can be generated for medical applications (for example in ion beam therapy) by the radiation pressure of short laser pulses on ultra-thin
2022:
The radiation pressure results in forces and torques on the bodies that can change their translational and rotational motions. Translational changes affect the orbits of the bodies. Rotational rates may increase or decrease. Loosely aggregated bodies may break apart under high rotation rates. Dust
2208:
of clouds of dust and gases is strongly influenced by radiation pressure, especially when the condensations lead to star births. The larger young stars forming within the compressed clouds emit intense levels of radiation that shift the clouds, causing either dispersion or condensations in nearby
2126:
A sail reflects about 90% of the incident radiation. The 10% that is absorbed is radiated away from both surfaces, with the proportion emitted from the unlit surface depending on the thermal conductivity of the sail. A sail has curvature, surface irregularities, and other minor factors that affect
2030:
At any particular time, some facets are exposed to the Sun, and some are in shadow. Each surface exposed to the Sun is reflecting, absorbing, and emitting radiation. Facets in shadow are emitting radiation. The summation of pressures across all of the facets defines the net force and torque on the
1893:
Note that unlike the case of an absorbing material, the resulting force on a reflecting body is given exactly by this pressure acting normal to the surface, with the tangential forces from the incident and reflecting waves canceling each other. In practice, materials are neither totally reflecting
2018:
Solar radiation pressure affects bodies throughout much of the Solar System. Small bodies are more affected than large ones because of their lower mass relative to their surface area. Spacecraft are affected along with natural bodies (comets, asteroids, dust grains, gas molecules).
20: 709:
The momentum from the incident wave is in the same direction of that wave. But only the component of that momentum normal to the surface contributes to the pressure on the surface, as given above. The component of that force tangent to the surface is not called pressure.
2774:
In this optomechanical cavity, light is trapped and enhanced between two mirrors. One of the mirrors is attached to a spring and can move. The radiation pressure force of the light circulating in the cavity can damp or amplify the oscillation of the mirror on the
2236:
of the constituent stars. These clusters will rapidly disperse within a few million years. In many cases, the stripping away of the gas from which the cluster formed by the radiation pressure of the hot young stars reduces the cluster mass enough to allow rapid
82:, where it is usually the main force acting on objects besides gravity, and where the net effect of a tiny force may have a large cumulative effect over long periods of time. For example, had the effects of the Sun's radiation pressure on the spacecraft of the 2754: 2651: 1541: 2877:
tuned to the absorption frequency of the target element. The radiation pressure on the atom slows movement in a particular direction until the Doppler effect moves out of the frequency range of the element, causing an overall cooling effect.
2060:
While rather small in comparison to other forces, the radiation pressure force is inexorable. Over long periods of time, the net effect of the force is substantial. Such feeble pressures can produce marked effects upon minute particles like
266:
given the momentum attributed to electromagnetic radiation. That momentum can be equally well calculated on the basis of electromagnetic theory or from the combined momenta of a stream of photons, giving identical results as is shown below.
183: 3842:
Kleckner, Dustin; Marshall, William; de Dood, Michiel J. A.; Dinyari, Khodadad Nima; Pors, Bart-Jan; Irvine, William T. M.; Bouwmeester, Dirk (2006-05-02). "High Finesse Opto-Mechanical Cavity with a Movable Thirty-Micron-Size Mirror".
2829: 2565: 1119:
The radiation pressure again can be seen as the transfer of each photon's momentum to the opaque surface, plus the momentum due to a (possible) recoil photon for a (partially) reflecting surface. Since an incident wave of irradiance
853: 2026:
A whole body is typically composed of numerous surfaces that have different orientations on the body. The facets may be flat or curved. They will have different areas. They may have optical properties differing from other aspects.
1713: 869:
Just as a wave reflected from a body contributes to the net radiation pressure experienced, a body that emits radiation of its own (rather than reflected) obtains a radiation pressure again given by the irradiance of that emission
527: 2790:
The weakest waves are generally those that are generated by the radiation pressure acting during the reflection of the light. Such light-pressure-induced elastic waves have for example observed inside an ultrahigh-reflectivity
1330: 77:
The forces generated by radiation pressure are generally too small to be noticed under everyday circumstances; however, they are important in some physical processes and technologies. This particularly includes objects in
2806:
of the light, and the radiation pressure it can exert on objects and materials. Optical control (that is, manipulation of the motion) of a plethora of objects has been realized: from kilometers long beams (such as in the
1428:, but effects remain essentially immeasureable in relation to Earth's orbit. However these pressures persist over eons, such that cumulatively having produced a measureable movement on the Earth-Moon system's orbit. 1244:
and will experience a compressive pressure due to that impinging radiation, its reflection, and its own black-body emission. From that it can be shown that the resulting pressure is equal to one third of the total
705: 639:
to the incident wave, the intensity across the surface will be geometrically reduced by the cosine of that angle and the component of the radiation force against the surface will also be reduced by the cosine of
1889: 4231:
Malka, Victor; Fritzler, Sven; Lefebvre, Erik; d'HumiĆØres, Emmanuel; Ferrand, RĆ©gis; Grillon, Georges; Albaret, Claude; Meyroneinc, Samuel; Chambaret, Jean-Paul; Antonetti, Andre; Hulin, DaniĆØle (2004-05-27).
1809: 722:, then the recoil due to the reflected wave will further contribute to the radiation pressure. In the case of a perfect reflector, this pressure will be identical to the pressure caused by the incident wave: 2146:
Radiation pressure has had a major effect on the development of the cosmos, from the birth of the universe to ongoing formation of stars and shaping of clouds of dust and gasses on a wide range of scales.
938:), radiation pressure due to the temperature of a very hot object (or due to incoming black-body radiation from similarly hot surroundings) can become significant. This is important in stellar interiors. 1624: 1020: 925: 324: 2845:: the radiation pressure force causes it to vibrate. The presence of a single molecule on the sphere disturbs that (thermal) vibration, and the disturbance in the sphere's motion can be detected in the 175:), as is illustrated in the accompanying figure for the case of light being perfectly reflected by a surface. This transfer of momentum is the general explanation for what we term radiation pressure. 2658: 769: 2572: 1115: 857:
For a partially reflective surface, the second term must be multiplied by the reflectivity (also known as reflection coefficient of intensity), so that the increase is less than double. For a
281:
According to Maxwell's theory of electromagnetism, an electromagnetic wave carries momentum. Momentum will be transferred to any surface it strikes that absorbs or reflects the radiation.
132:(where light is used to probe and control objects like atoms, qubits and macroscopic quantum objects). Direct applications of the radiation pressure force in these fields are, for example, 1456: 2488: 1219: 782: 1635: 2469: 2375:
then drive the dust and gases away from the Sun's direction. The gases form a generally straight tail, while slower moving dust particles create a broader, curving tail.
464: 2967: 2435: 2415: 2053:
applies to grain-size particles. From the perspective of a grain of dust circling the Sun, the Sun's radiation appears to be coming from a slightly forward direction (
1350: 3225: 1259: 578: 1721:
force (in the direction away from the Sun) given by the preceding equation, rather than just the component normal to the surface that we identify as "pressure".
3969:
Kashkanova, A. D.; Shkarin, A. B.; Brown, C. D.; Flowers-Jacobs, N. E.; Childress, L.; Hoch, S. W.; Hohmann, L.; Ott, K.; Reichel, J.; Harris, J. G. E. (2017).
602: 547: 89:
been ignored, the spacecraft would have missed Mars orbit by about 15,000 km (9,300 mi). Radiation pressure from starlight is crucial in a number of
964:. Photons do not have a rest-mass; however, photons are never at rest (they move at the speed of light) and acquire a momentum nonetheless which is given by: 861:
surface, the details of the reflection and geometry must be taken into account, again resulting in an increased net radiation pressure of less than double.
647: 2046:
is a collection of effects expanding upon the earlier concept of the Yarkovsky effect, but of a similar nature. It affects the spin properties of bodies.
1820: 1743: 1171: 171:, any change in the total momentum of the waves or photons must involve an equal and opposite change in the momentum of the matter it interacted with ( 2288:
as its immediate products. Star formation theory, as well as accounting for the formation of a single star, must also account for the statistics of
159:
Radiation pressure can equally well be accounted for by considering the momentum of a classical electromagnetic field or in terms of the momenta of
3619: 3751: 1568: 967: 883: 232:
in 1901. The pressure is very small, but can be detected by allowing the radiation to fall upon a delicately poised vane of reflective metal in a
3623: 284:
Consider the momentum transferred to a perfectly absorbing (black) surface. The energy flux (irradiance) of a plane wave is calculated using the
2221:. Radiation pressure from the member stars eventually disperses the clouds, which can have a profound effect on the evolution of the cluster. 3399:, Vol. 27, No. 1, Janā€“Feb. First known publication describing how solar radiation pressure creates forces and torques that affect spacecraft. 718:
The above treatment for an incident wave accounts for the radiation pressure experienced by a black (totally absorbing) body. If the wave is
93:
processes as well. The significance of radiation pressure increases rapidly at extremely high temperatures and can sometimes dwarf the usual
3495:
On the development of our views concerning the nature and constitution of radiation. Translated in: The Collected Papers of Albert Einstein
1717:
Note, however, that in order to account for the net effect of solar radiation on a spacecraft for instance, one would need to consider the
1413:. This distribution must be taken into account when calculating the radiation pressure or identifying reflector materials for optimizing a 1175: 727: 1066: 361:
is the density of the linear momentum per unit area (pressure) of the electromagnetic field. So, dimensionally, the Poynting vector is
3693:
Požar, T.; LaloŔ, J.; Babnik, A.; PetkovŔek, R.; Bethune-Waddell, M.; Chau, K. J.; Lukasievicz, G. V. B.; Astrath, N. G. C. (2018).
3290: 291: 3769:
Schreppler, Sydney; Spethmann, Nicolas; Brahms, Nathan; Botter, Thierry; Barrios, Maryrose; Stamper-Kurn, Dan M. (2014-06-27).
2892: 55: 3543:. Unruh, W. G., Semenoff, G. W., North Atlantic Treaty Organization. Scientific Affairs Division. Dordrecht: D. Reidel. 1988. 2794:. These waves are the most basic fingerprint of a light-solid matter interaction on the macroscopic scale. In the field of 66:) by matter on any scale (from macroscopic objects to dust particles to gas molecules). The associated force is called the 2083:-size) particles are susceptible to radiation pressure even in the outer Solar System. For example, the evolution of the 1628:
To find the component of this force normal to the surface, another cosine factor must be applied resulting in a pressure
1894:
nor totally absorbing, so the resulting force will be a weighted average of the forces calculated using these formulas.
1188: 2113:, uses radiation pressure from the Sun as a motive force. The idea of interplanetary travel by light was mentioned by 3595: 3525: 2159:
is a phase when the energy of the universe was dominated by photons, between 10 seconds and 380,000 years after the
4296: 2846: 2346:
interiors the temperatures are very high. Stellar models predict a temperature of 15 MK in the center of the
2134:) has successfully unfurled a solar sail in space, which has already succeeded in propelling its payload with the 172: 163:, particles of light. The interaction of electromagnetic waves or photons with matter may involve an exchange of 3548: 2749:{\displaystyle p={\frac {F}{A}}\approx {\frac {10^{-10}{\text{ N}}}{10^{-12}{\text{ m}}^{2}}}=100{\text{ Pa}}.} 2188: 2932: 2646:{\displaystyle F={\frac {P}{c}}={\frac {30{\text{ mW}}}{299792458{\text{ m/s}}}}\approx 10^{-10}{\text{ N}},} 2050: 2006: 1353: 2079:
Because the ratio of surface area to volume (and thus mass) increases with decreasing particle size, dusty (
4377: 1406: 105:. Furthermore, large lasers operating in space have been suggested as a means of propelling sail craft in 4382: 4287: 3572: 2119: 1364:
Solar radiation pressure is due to the Sun's radiation at closer distances, thus especially within the
1724:
The solar constant is defined for the Sun's radiation at the distance to the Earth, also known as one
4282:
Demir, Dilek, "A table-top demonstration of radiation pressure", 2011, Diplomathesis, E-Theses univie
2957: 2205: 1536:{\displaystyle P={\frac {G_{\text{SC}}}{c}}\approx 4.5\cdot 10^{-6}~{\text{Pa}}=4.5~\mu {\text{Pa}}.} 957: 253: 221: 205: 47: 4111:
Aspelmeyer, Markus; Kippenberg, Tobias J.; Marquardt, Florian (2014-12-30). "Cavity optomechanics".
2012: 1253: 935: 263: 168: 3254: 2440: 2333:(C/1995 O1). Radiation pressure and solar wind effects on the dust and gas tails are clearly seen. 2171: 197:
put forward the concept of radiation pressure in 1619 to explain the observation that a tail of a
3650:
Požar, T.; Možina, J. (2013). "Measurement of Elastic Waves Induced by the Reflection of Light".
2015:. It significantly affects the orbits and trajectories of small bodies including all spacecraft. 1436:
Solar radiation pressure at the Earth's distance from the Sun, may be calculated by dividing the
106: 94: 1425: 137: 2420: 2400: 2927: 2293: 2277: 2110: 2084: 1335: 1230:
This can also be shown in the specific case of the pressure exerted on surfaces of a body in
102: 43: 3410: 2837:
In this optomechanical system, the radiation pressure force is leveraged to detect a single
2560:{\displaystyle A=\pi \left({\frac {\lambda }{2}}\right)^{2}\approx 10^{-12}{\text{ m}}^{2},} 4245: 4187: 4130: 4057: 3992: 3927: 3904:
Harris, G. I.; McAuslan, D. L.; Sheridan, E.; Sachkou, Y.; Baker, C.; Bowen, W. P. (2016).
3852: 3792: 3706: 3659: 3457: 3365: 3187: 3146: 3097: 3048: 2897: 2780: 2285: 1410: 930: 719: 556: 345: 129: 63: 59: 1813:
Finally, considering not an absorbing but a perfectly reflecting surface, the pressure is
8: 4361: 2803: 2330: 2312: 2273: 2054: 1231: 848:{\displaystyle P_{\text{net}}=P_{\text{incident}}+P_{\text{emitted}}=2{\frac {I_{f}}{c}}} 217: 117: 4249: 4191: 4134: 4061: 3996: 3931: 3856: 3796: 3710: 3663: 3461: 3369: 3191: 3150: 3101: 3052: 1708:{\displaystyle P={\frac {F\cos \alpha }{A}}={\frac {G_{\text{SC}}}{c}}\cos ^{2}\alpha .} 4387: 4349: 4337: 4213: 4177: 4146: 4120: 4088: 4047: 4035: 4016: 3982: 3951: 3917: 3886: 3824: 3782: 3727: 3694: 3613: 3566: 3447: 3203: 2261: 2240: 2193: 1737: 858: 587: 532: 237: 233: 229: 225: 3770: 2853:
Opposite to exciting or amplifying motion, light can also damp the motion of objects.
2217:
Stars predominantly form in regions of large clouds of dust and gases, giving rise to
4261: 4217: 4205: 4150: 4093: 4075: 4008: 3955: 3943: 3878: 3828: 3816: 3808: 3752:"Quantum squeezing boosts performance of LIGO and Virgo gravitational-wave detectors" 3732: 3675: 3601: 3591: 3554: 3544: 3521: 3475: 3207: 3115: 3066: 2869:
of the material are synonyms here, because they represent the energy associated with
2791: 1725: 1409:
that depends on their surface temperature. The distribution is approximately that of
1380: 1375:
Solar radiation pressure on objects near the Earth may be calculated using the Sun's
522:{\displaystyle P_{\text{incident}}={\frac {\langle S\rangle }{c}}={\frac {I_{f}}{c}}} 98: 4020: 4313: 4253: 4195: 4138: 4083: 4065: 4000: 3935: 3890: 3868: 3860: 3800: 3722: 3714: 3671: 3667: 3513: 3465: 3373: 3195: 3154: 3105: 3056: 2962: 2912: 2812: 2759: 2389: 2304: 2035: 1998: 1924: 244:
caused by radiation pressure but by air flow caused by temperature differentials.)
153: 141: 3864: 3517: 3395:
Georgevic, R. M. (1973) "The Solar Radiation Pressure Forces and Torques Model",
3354:"A new, lower value of total solar irradiance: Evidence and climate significance" 3221: 3159: 3134: 2922: 2870: 2316: 2257: 2229: 2091: 1035: 285: 276: 194: 2802:, for example between mirrors. This serves the purpose of gravely enhancing the 4301: 4142: 3718: 3470: 3435: 3110: 3085: 2942: 2937: 2874: 2866: 2862: 2799: 2308: 2253: 1447: 1437: 1384: 1325:{\displaystyle P_{\text{compress}}={\frac {u}{3}}={\frac {4\sigma }{3c}}T^{4},} 1246: 605: 358: 340: 332: 257: 149: 125: 124:(where light is used to irradiate and observe microbes, cells, and molecules), 83: 4200: 4166:"Radiation pressure acceleration of protons from structured thin-foil targets" 4165: 3497:. Vol. 2. Princeton, New Jersey: Princeton University Press. p. 391. 3061: 3036: 1898:
Calculated solar radiation pressure on perfect reflector at normal incidence (
1420:
Momentary or hours long solar pressures can indeed escalate due to release of
270: 4371: 4209: 4079: 4012: 3947: 3812: 3605: 3479: 3119: 3070: 2902: 2858: 2854: 2784: 2368: 2031:
body. These can be calculated using the equations in the preceding sections.
1550: 1546: 1369: 328: 133: 90: 3970: 3905: 3804: 3558: 1240:: the body will be surrounded by a uniform radiation field described by the 4325: 4265: 4097: 3882: 3820: 3736: 3679: 3199: 3175: 3086:"Nobel Lecture: Superposition, entanglement, and raising Schrƶdinger's cat" 2320: 2307:
are generally believed to form as part of the same process that results in
2225: 2218: 2180: 2156: 1421: 1365: 1170:
In general, the pressure of electromagnetic waves can be obtained from the
187: 2244:
A protoplanetary disk with a cleared central region (artist's conception).
4233: 3378: 3353: 3349: 2873:
of the material. Atoms traveling towards a laser light source perceive a
2842: 2819: 2326: 2289: 2114: 2043: 2002: 79: 4070: 2417:. With a set of lenses, one can focus the laser beam to a point that is 2072:, and are essential in the theory of electron emission from the Sun, of 2947: 2815: 2770: 2372: 2364: 2351: 2104: 2080: 1414: 1376: 1241: 1045: 581: 121: 51: 4257: 4004: 3939: 3873: 3508:
Karel Velan, A. (1992), "The Birth of the First Generation of Stars",
960:
in terms of particles rather than waves; these particles are known as
700:{\displaystyle P_{\text{incident}}={\frac {I_{f}}{c}}\cos ^{2}\alpha } 461:. That pressure is experienced as radiation pressure on the surface: 16:
Pressure exerted upon any surface exposed to electromagnetic radiation
3695:"Isolated detection of elastic waves driven by the momentum of light" 3240:
P. Lebedew, 1901, "Untersuchungen Ć¼ber die DruckkrƤfte des Lichtes",
2281: 2269: 3968: 2280:(GMC) as precursors to the star formation process, and the study of 4230: 4182: 4052: 3987: 3922: 3452: 2952: 2233: 2160: 2069: 1968: 1884:{\displaystyle P=2{\frac {G_{\text{SC}}}{cR^{2}}}\cos ^{2}\alpha .} 1561:
of a sheet is reduced by a geometrical factor resulting in a force
1162:
photons will contribute to the net radiation pressure identically.
951: 213: 209: 164: 39: 35: 4125: 3787: 1804:{\displaystyle P={\frac {G_{\text{SC}}}{cR^{2}}}\cos ^{2}\alpha .} 116:
and the branches of science that rely heavily on lasers and other
2838: 2023:
grains can either leave the Solar System or spiral into the Sun.
1980: 961: 947: 550: 160: 3135:"Nobel Lecture: LIGO and the discovery of gravitational waves I" 3906:"Laser cooling and control of excitations in superfluid helium" 3768: 3411:"Dust models paint alien's view of the solar system (w/ Video)" 2917: 2397:
can be used as a source of monochromatic light with wavelength
2209:
regions, which influences birth rates in those nearby regions.
2135: 3841: 19: 4234:"Practicability of protontherapy using compact laser systems" 4110: 4034:
Yu, Wenyan; Jiang, Wei C.; Lin, Qiang; Lu, Tao (2016-07-27).
3903: 2861:
by converting some of material's motional energy into light.
2394: 2371:, which also carry away dust grains. Radiation pressure and 2073: 1936: 1399: 198: 113: 2990:, D. Mihalas (1978), Second edition, W. H. Freeman & Co. 1619:{\displaystyle F={\frac {G_{\text{SC}}}{c}}(A\cos \alpha ).} 1015:{\displaystyle p={\dfrac {h}{\lambda }}={\frac {E_{p}}{c}},} 920:{\displaystyle P_{\text{emitted}}={\frac {I_{\text{e}}}{c}}} 319:{\displaystyle \mathbf {S} =\mathbf {E} \times \mathbf {H} } 23:
Force on a reflector results from reflecting the photon flux
3771:"Optically measuring force near the standard quantum limit" 2907: 2808: 2798:
optomechanics, light is trapped and resonantly enhanced in
2378: 2343: 2265: 2228:
are inherently unstable, with a small enough mass that the
2131: 1956: 1395: 1172:
vanishing of the trace of the electromagnetic stress tensor
1165: 271:
Radiation pressure from momentum of an electromagnetic wave
4320: 4036:"Cavity optomechanical spring sensing of single molecules" 3585: 1453:. For an absorbing sheet facing the Sun, this is simply: 3692: 2347: 2065: 2062: 1431: 941: 262:
Radiation pressure can be viewed as a consequence of the
145: 220:
in 1862, and proven experimentally by Russian physicist
216:
upon any surface that is exposed to it was published by
2141: 3434:
Vokrouhlicky, David; Bottke, William F. (2012-05-02).
2367:. Solar heating causes gases to be released from the 4285: 4164:
Meinhold, Tim Arniko; Kumar, Naveen (December 2021).
3640:(2nd edition), page 341, Pearson, San Francisco, 2007 2661: 2575: 2491: 2482:= 1064 nm can therefore be computed as follows. 2443: 2423: 2403: 1823: 1746: 1638: 1571: 1459: 1338: 1262: 1191: 1069: 978: 970: 886: 785: 764:{\displaystyle P_{\text{emitted}}={\frac {I_{f}}{c}}} 730: 713: 650: 590: 559: 535: 467: 294: 3347: 3338:
Kardar, Mehran. "Statistical Physics of Particles".
2087:is significantly influenced by radiation pressure. 1992: 3433: 2748: 2645: 2559: 2463: 2429: 2409: 1883: 1803: 1707: 1618: 1535: 1344: 1324: 1213: 1110:{\displaystyle E_{p}=h\nu ={\frac {hc}{\lambda }}} 1109: 1014: 919: 847: 763: 699: 596: 572: 541: 521: 318: 3308: 2999:Eddington, A. S., & Eddington, A. S. (1988). 2166: 864: 4369: 3037:"Nobel Lecture: Manipulating atoms with photons" 3220: 3034: 2857:is a method of cooling materials very close to 2183:shaped by radiation pressure and stellar winds. 2758:This is used to trap or levitate particles in 38:exerted upon a surface due to the exchange of 4163: 2355:pressure is the dominant pressure component. 2256:is the process by which dense regions within 112:Radiation pressure forces are the bedrock of 4033: 3618:: CS1 maint: multiple names: authors list ( 3492: 2968:Yarkovskyā€“O'Keefeā€“Radzievskiiā€“Paddack effect 2765: 2299: 1063:is the energy of a single photon given by: 490: 484: 3649: 3507: 3025:Eugene Hecht, "Optics", 4th edition, p. 57. 2272:, star formation includes the study of the 2199: 1553:per square meter). For a sheet at an angle 1359: 777:the net radiation pressure on the surface: 3622:) CS1 maint: numeric names: authors list ( 2363:Solar radiation pressure strongly affects 1249:per unit volume in the surrounding space. 4199: 4181: 4124: 4087: 4069: 4051: 3986: 3921: 3872: 3786: 3726: 3469: 3451: 3397:The Journal of the Astronautical Sciences 3377: 3269: 3267: 3158: 3109: 3060: 3035:Cohen-Tannoudji, Claude N. (1998-07-01). 2109:Solar sailing, an experimental method of 1817:due to the reflected wave, resulting in: 1227:is the radiation energy per unit volume. 46:. This includes the momentum of light or 3749: 3173: 3083: 2824: 2769: 2379:Laser applications of radiation pressure 2325: 2239: 2232:of the system is lower than the average 2170: 2130:The Japan Aerospace Exploration Agency ( 2011:Solar radiation pressure is a source of 1736:thus being dimensionless), applying the 1234:with its surroundings, at a temperature 1166:Compression in a uniform radiation field 182: 120:. That includes, but is not limited to, 18: 3636:Dale A. Ostlie and Bradley W. Carroll, 3323: 3253:Nichols, E. F & Hull, G. F. (1903) 4370: 3638:An Introduction to Modern Astrophysics 3391: 3389: 3311:An Introduction to Modern Astrophysics 3288: 3278:, Gordon and Breach Science Publishers 3273: 3264: 3001:The internal constitution of the stars 2893:Absorption (electromagnetic radiation) 1432:Pressures of absorption and reflection 942:Radiation pressure in terms of photons 872:in the direction normal to the surface 236:(this should not be confused with the 190:coin commemorating Lebedev's discovery 3409:Center, NASA's Goddard Space Flight. 3132: 2315:forms by gravitational collapse of a 1728:(au). Consequently, at a distance of 635:If the surface is planar at an angle 3971:"Superfluid Brillouin optomechanics" 3309:Carroll, Bradley W; Dale A. Ostlie. 2337: 2212: 2192:factor in the dynamics of remaining 2142:Cosmic effects of radiation pressure 2090:As a consequence of light pressure, 3586:Longair, Malcolm S., 1941ā€“ (2008). 3386: 2383: 13: 4276: 4104: 3408: 1394:, whose value is set at 1361  714:Radiation pressure from reflection 152:(2017 Nobel Prize in Physics) and 14: 4399: 3512:, Springer US, pp. 267ā€“278, 3084:Wineland, David J. (2013-07-12). 2248: 2150: 1910:Radiation pressure in Ī¼Pa (Ī¼N/m) 1214:{\displaystyle P={\frac {u}{3}},} 1054:is speed of light in vacuum. And 956:Electromagnetic radiation can be 240:, whose characteristic motion is 201:always points away from the Sun. 4355: 4343: 4331: 4319: 4307: 4295: 3750:Johnston, Hamish (10 Dec 2019). 3174:Schirber, Michael (2018-10-04). 1993:Radiation pressure perturbations 1563:in the direction of the sunlight 312: 304: 296: 4224: 4157: 4027: 3962: 3897: 3835: 3762: 3743: 3686: 3643: 3630: 3579: 3533: 3501: 3486: 3427: 3402: 3341: 3332: 3317: 3302: 3292:Principles of Quantum Mechanics 3282: 3247: 3234: 2841:. Laser light interacts with a 2811:) to clouds of atoms, and from 1557:to the Sun, the effective area 1242:Planck black-body radiation law 439:, which is the speed of light, 156:(2018 Nobel Prize in Physics). 148:(2012 Nobel Prize in Physics), 3672:10.1103/Physrevlett.111.185501 3214: 3167: 3126: 3077: 3028: 3019: 3006: 2993: 2981: 2189:galaxy formation and evolution 2167:Galaxy formation and evolution 2098: 1610: 1595: 865:Radiation pressure by emission 343:'s auxiliary field vector (or 1: 3865:10.1103/PhysRevLett.96.173901 3255:The Pressure due to Radiation 3176:"Nobel Prizeā€”Lasers as Tools" 3003:. Cambridge University Press. 2974: 353:. The magnitude, denoted by 204:The assertion that light, as 62:, or otherwise emitted (e.g. 3518:10.1007/978-1-4684-6030-8_22 3436:"Yarkovsky and YORP effects" 3358:Geophysical Research Letters 3324:Jackson, John David (1999). 3160:10.1103/RevModPhys.90.040501 3133:Weiss, Rainer (2018-12-18). 2474:The radiation pressure of a 2464:{\displaystyle r=\lambda /2} 1407:spectral energy distribution 178: 173:Newton's third law of motion 7: 3244:, 1901 Series 4 6, 433-458. 2885: 1256:, this can be expressed as 644:, resulting in a pressure: 144:of macroscopic objects and 42:between the object and the 10: 4404: 4143:10.1103/RevModPhys.86.1391 3719:10.1038/s41467-018-05706-3 3471:10.4249/scholarpedia.10599 3274:Wright, Jerome L. (1992), 3111:10.1103/RevModPhys.85.1103 3012:Chandrasekhar, S. (2013). 2778: 2387: 2120:From the Earth to the Moon 2102: 1996: 945: 934:temperature, given by the 274: 251: 4201:10.1017/S0022377821001070 4170:Journal of Plasma Physics 4113:Reviews of Modern Physics 3510:The Multi-Universe Cosmos 3326:Classical Electrodynamics 3259:The Astrophysical Journal 3139:Reviews of Modern Physics 3090:Reviews of Modern Physics 3062:10.1103/RevModPhys.70.707 3041:Reviews of Modern Physics 2933:Poyntingā€“Robertson effect 2766:Lightā€“matter interactions 2358: 2300:Stellar planetary systems 2206:gravitational compression 2051:Poyntingā€“Robertson effect 2007:Poyntingā€“Robertson effect 1354:Stefanā€“Boltzmann constant 1145:, this implies a flux of 929:The emission can be from 254:Electromagnetic radiation 247: 206:electromagnetic radiation 136:(the subject of the 1997 48:electromagnetic radiation 3261:, Vol.17 No.5, p.315-351 2478:= 30 mW laser with 2430:{\displaystyle \lambda } 2410:{\displaystyle \lambda } 2200:Clouds of dust and gases 1360:Solar radiation pressure 549:is pressure (usually in 264:conservation of momentum 169:conservation of momentum 70:, or sometimes just the 68:radiation pressure force 3845:Physical Review Letters 3805:10.1126/science.1249850 3652:Physical Review Letters 3227:De Cometis Libelli Tres 1345:{\displaystyle \sigma } 107:beam-powered propulsion 3571:: CS1 maint: others ( 3200:10.1103/physics.11.100 3016:. Courier Corporation. 2850: 2776: 2750: 2647: 2561: 2465: 2431: 2411: 2350:, and at the cores of 2334: 2278:giant molecular clouds 2245: 2184: 1885: 1805: 1709: 1620: 1537: 1426:coronal mass ejections 1346: 1326: 1215: 1111: 1016: 921: 849: 765: 701: 598: 574: 543: 523: 320: 208:, has the property of 191: 138:Nobel Prize in Physics 24: 4040:Nature Communications 3699:Nature Communications 3493:Einstein, A. (1989). 2958:Waveā€“particle duality 2836: 2773: 2751: 2648: 2562: 2466: 2432: 2412: 2329: 2294:initial mass function 2286:young stellar objects 2243: 2174: 2111:spacecraft propulsion 2085:outer rings of Saturn 2076:material, and so on. 2013:orbital perturbations 1886: 1806: 1710: 1621: 1549:, equivalent to N/m ( 1538: 1347: 1327: 1216: 1112: 1017: 922: 850: 766: 702: 599: 584:(usually in W/m) and 575: 573:{\displaystyle I_{f}} 544: 524: 321: 186: 103:thermonuclear weapons 44:electromagnetic field 22: 3379:10.1029/2010GL045777 2898:Cavity optomechanics 2781:Cavity optomechanics 2659: 2573: 2489: 2441: 2421: 2401: 1821: 1744: 1732:astronomical units ( 1636: 1569: 1457: 1411:black-body radiation 1336: 1260: 1254:Stefanā€“Boltzmann law 1189: 1067: 968: 936:Stefanā€“Boltzmann law 931:black-body radiation 884: 859:diffusely reflective 783: 728: 720:specularly reflected 648: 588: 557: 533: 465: 292: 167:. Due to the law of 118:optical technologies 64:black-body radiation 4378:Celestial mechanics 4250:2004MedPh..31.1587M 4192:2021JPlPh..87f9007M 4135:2014RvMP...86.1391A 4071:10.1038/ncomms12311 4062:2016NatCo...712311Y 3997:2017NatPh..13...74K 3932:2016NatPh..12..788H 3857:2006PhRvL..96q3901K 3797:2014Sci...344.1486S 3781:(6191): 1486ā€“1489. 3711:2018NatCo...9.3340P 3664:2013PhRvL.111r5501P 3462:2012SchpJ...710599B 3370:2011GeoRL..38.1706K 3192:2018PhyOJ..11..100S 3151:2018RvMP...90d0501W 3102:2013RvMP...85.1103W 3053:1998RvMP...70..707C 2988:Stellar Atmospheres 2847:oscillator spectrum 2809:LIGO interferometer 2313:protoplanetary disk 2274:interstellar medium 2177:Pillars of Creation 2055:aberration of light 1903: 1632:on the surface of: 1232:thermal equilibrium 1174:: since this trace 218:James Clerk Maxwell 97:, for instance, in 3541:The early universe 3242:Annalen der Physik 3014:Radiative transfer 2928:Poynting's theorem 2851: 2777: 2746: 2643: 2557: 2461: 2427: 2407: 2335: 2262:interstellar space 2246: 2185: 2179:clouds within the 2117:in his 1865 novel 1897: 1881: 1801: 1738:inverse-square law 1705: 1616: 1545:This result is in 1533: 1342: 1322: 1211: 1107: 1012: 987: 917: 845: 761: 697: 608:in vacuum. Here, 594: 570: 539: 519: 453:, times pressure, 387:rate of doing work 316: 238:Crookes radiometer 234:Nichols radiometer 230:Gordon Ferrie Hull 226:Ernest Fox Nichols 212:and thus exerts a 192: 28:Radiation pressure 25: 4383:Radiation effects 4258:10.1118/1.1747751 4005:10.1038/nphys3900 3940:10.1038/nphys3714 2834: 2792:dielectric mirror 2741: 2730: 2721: 2700: 2676: 2638: 2617: 2614: 2604: 2590: 2546: 2514: 2338:Stellar interiors 2305:Planetary systems 2268:. As a branch of 2264:collapse to form 2213:Clusters of stars 2127:its performance. 1990: 1989: 1967:3.00 au (typical 1907:Distance from Sun 1860: 1842: 1780: 1762: 1740:, we would find: 1726:astronomical unit 1684: 1678: 1664: 1593: 1587: 1528: 1521: 1511: 1507: 1481: 1475: 1405:All stars have a 1307: 1284: 1270: 1206: 1105: 1007: 986: 915: 909: 894: 843: 819: 806: 793: 759: 738: 679: 658: 597:{\displaystyle c} 542:{\displaystyle P} 517: 497: 475: 357:, divided by the 346:magnetizing field 99:stellar interiors 4395: 4360: 4359: 4358: 4348: 4347: 4346: 4336: 4335: 4334: 4324: 4323: 4312: 4311: 4310: 4300: 4299: 4291: 4270: 4269: 4244:(6): 1587ā€“1592. 4228: 4222: 4221: 4203: 4185: 4176:(6): 905870607. 4161: 4155: 4154: 4128: 4119:(4): 1391ā€“1452. 4108: 4102: 4101: 4091: 4073: 4055: 4031: 4025: 4024: 3990: 3966: 3960: 3959: 3925: 3901: 3895: 3894: 3876: 3839: 3833: 3832: 3790: 3766: 3760: 3759: 3747: 3741: 3740: 3730: 3690: 3684: 3683: 3647: 3641: 3634: 3628: 3627: 3617: 3609: 3588:Galaxy formation 3583: 3577: 3576: 3570: 3562: 3537: 3531: 3530: 3505: 3499: 3498: 3490: 3484: 3483: 3473: 3455: 3431: 3425: 3424: 3422: 3421: 3406: 3400: 3393: 3384: 3383: 3381: 3345: 3339: 3336: 3330: 3329: 3321: 3315: 3314: 3306: 3300: 3299: 3297: 3286: 3280: 3279: 3271: 3262: 3251: 3245: 3238: 3232: 3231: 3218: 3212: 3211: 3171: 3165: 3164: 3162: 3130: 3124: 3123: 3113: 3096:(3): 1103ā€“1114. 3081: 3075: 3074: 3064: 3032: 3026: 3023: 3017: 3010: 3004: 2997: 2991: 2985: 2963:Yarkovsky effect 2913:Optical tweezers 2839:protein molecule 2835: 2813:micro-engineered 2800:optical cavities 2760:optical tweezers 2755: 2753: 2752: 2747: 2742: 2739: 2731: 2729: 2728: 2727: 2722: 2719: 2716: 2715: 2702: 2701: 2698: 2696: 2695: 2682: 2677: 2669: 2652: 2650: 2649: 2644: 2639: 2636: 2634: 2633: 2618: 2616: 2615: 2612: 2606: 2605: 2602: 2596: 2591: 2583: 2566: 2564: 2563: 2558: 2553: 2552: 2547: 2544: 2541: 2540: 2525: 2524: 2519: 2515: 2507: 2470: 2468: 2467: 2462: 2457: 2437:in diameter (or 2436: 2434: 2433: 2428: 2416: 2414: 2413: 2408: 2390:Optical tweezers 2384:Optical tweezers 2258:molecular clouds 2036:Yarkovsky effect 1999:Yarkovsky effect 1947:1.00 au (Earth) 1904: 1896: 1890: 1888: 1887: 1882: 1871: 1870: 1861: 1859: 1858: 1857: 1844: 1843: 1840: 1834: 1810: 1808: 1807: 1802: 1791: 1790: 1781: 1779: 1778: 1777: 1764: 1763: 1760: 1754: 1714: 1712: 1711: 1706: 1695: 1694: 1685: 1680: 1679: 1676: 1670: 1665: 1660: 1646: 1625: 1623: 1622: 1617: 1594: 1589: 1588: 1585: 1579: 1542: 1540: 1539: 1534: 1529: 1526: 1519: 1512: 1509: 1505: 1504: 1503: 1482: 1477: 1476: 1473: 1467: 1417:, for instance. 1351: 1349: 1348: 1343: 1331: 1329: 1328: 1323: 1318: 1317: 1308: 1306: 1298: 1290: 1285: 1277: 1272: 1271: 1268: 1239: 1226: 1220: 1218: 1217: 1212: 1207: 1199: 1160: 1144: 1135:has a power of 1134: 1128: 1116: 1114: 1113: 1108: 1106: 1101: 1093: 1079: 1078: 1062: 1053: 1043: 1033: 1027: 1021: 1019: 1018: 1013: 1008: 1003: 1002: 993: 988: 979: 926: 924: 923: 918: 916: 911: 910: 907: 901: 896: 895: 892: 854: 852: 851: 846: 844: 839: 838: 829: 821: 820: 817: 808: 807: 804: 795: 794: 791: 770: 768: 767: 762: 760: 755: 754: 745: 740: 739: 736: 706: 704: 703: 698: 690: 689: 680: 675: 674: 665: 660: 659: 656: 631: 630: 626: 624: 623: 618: 615: 603: 601: 600: 595: 580:is the incident 579: 577: 576: 571: 569: 568: 548: 546: 545: 540: 528: 526: 525: 520: 518: 513: 512: 503: 498: 493: 482: 477: 476: 473: 460: 452: 438: 437: 435: 434: 431: 428: 423: 421: 420: 414: 411: 397: 395: 394: 391: 388: 381: 379: 378: 375: 372: 326: 325: 323: 322: 317: 315: 307: 299: 154:optical tweezers 114:laser technology 34:) is mechanical 4403: 4402: 4398: 4397: 4396: 4394: 4393: 4392: 4368: 4367: 4366: 4356: 4354: 4344: 4342: 4332: 4330: 4318: 4308: 4306: 4294: 4286: 4279: 4277:Further reading 4274: 4273: 4238:Medical Physics 4229: 4225: 4162: 4158: 4109: 4105: 4032: 4028: 3967: 3963: 3902: 3898: 3840: 3836: 3767: 3763: 3748: 3744: 3691: 3687: 3648: 3644: 3635: 3631: 3611: 3610: 3598: 3584: 3580: 3564: 3563: 3551: 3539: 3538: 3534: 3528: 3506: 3502: 3491: 3487: 3432: 3428: 3419: 3417: 3407: 3403: 3394: 3387: 3346: 3342: 3337: 3333: 3322: 3318: 3313:(2nd ed.). 3307: 3303: 3298:(2nd ed.). 3295: 3287: 3283: 3272: 3265: 3252: 3248: 3239: 3235: 3222:Johannes Kepler 3219: 3215: 3172: 3168: 3131: 3127: 3082: 3078: 3033: 3029: 3024: 3020: 3011: 3007: 2998: 2994: 2986: 2982: 2977: 2972: 2923:Poynting vector 2888: 2871:Brownian motion 2825: 2787: 2779:Main articles: 2768: 2738: 2723: 2718: 2717: 2708: 2704: 2703: 2697: 2688: 2684: 2683: 2681: 2668: 2660: 2657: 2656: 2635: 2626: 2622: 2611: 2607: 2601: 2597: 2595: 2582: 2574: 2571: 2570: 2548: 2543: 2542: 2533: 2529: 2520: 2506: 2502: 2501: 2490: 2487: 2486: 2453: 2442: 2439: 2438: 2422: 2419: 2418: 2402: 2399: 2398: 2392: 2386: 2381: 2361: 2340: 2331:Comet Haleā€“Bopp 2317:molecular cloud 2302: 2251: 2230:escape velocity 2215: 2202: 2187:The process of 2169: 2153: 2144: 2107: 2101: 2009: 1995: 1866: 1862: 1853: 1849: 1845: 1839: 1835: 1833: 1822: 1819: 1818: 1786: 1782: 1773: 1769: 1765: 1759: 1755: 1753: 1745: 1742: 1741: 1690: 1686: 1675: 1671: 1669: 1647: 1645: 1637: 1634: 1633: 1584: 1580: 1578: 1570: 1567: 1566: 1525: 1508: 1496: 1492: 1472: 1468: 1466: 1458: 1455: 1454: 1446:(above) by the 1445: 1434: 1393: 1383:, known as the 1362: 1337: 1334: 1333: 1313: 1309: 1299: 1291: 1289: 1276: 1267: 1263: 1261: 1258: 1257: 1235: 1222: 1198: 1190: 1187: 1186: 1168: 1158: 1151: 1146: 1141: 1136: 1130: 1126: 1121: 1094: 1092: 1074: 1070: 1068: 1065: 1064: 1060: 1055: 1049: 1039: 1036:Planck constant 1029: 1023: 998: 994: 992: 977: 969: 966: 965: 954: 944: 906: 902: 900: 891: 887: 885: 882: 881: 879: 867: 834: 830: 828: 816: 812: 803: 799: 790: 786: 784: 781: 780: 750: 746: 744: 735: 731: 729: 726: 725: 716: 685: 681: 670: 666: 664: 655: 651: 649: 646: 645: 628: 619: 616: 613: 612: 610: 609: 589: 586: 585: 564: 560: 558: 555: 554: 534: 531: 530: 508: 504: 502: 483: 481: 472: 468: 466: 463: 462: 454: 440: 432: 429: 415: 412: 406: 405: 403: 402: 401: 399: 392: 389: 386: 385: 383: 376: 373: 370: 369: 367: 362: 327:, which is the 311: 303: 295: 293: 290: 289: 288: 286:Poynting vector 279: 277:Poynting vector 273: 260: 250: 224:in 1900 and by 195:Johannes Kepler 181: 142:quantum control 30:(also known as 17: 12: 11: 5: 4401: 4391: 4390: 4385: 4380: 4365: 4364: 4352: 4340: 4328: 4316: 4304: 4284: 4283: 4278: 4275: 4272: 4271: 4223: 4156: 4103: 4026: 3975:Nature Physics 3961: 3916:(8): 788ā€“793. 3910:Nature Physics 3896: 3851:(17): 173901. 3834: 3761: 3742: 3685: 3658:(18): 185501. 3642: 3629: 3596: 3578: 3549: 3532: 3526: 3500: 3485: 3426: 3401: 3385: 3340: 3331: 3316: 3301: 3281: 3263: 3246: 3233: 3213: 3166: 3125: 3076: 3047:(3): 707ā€“719. 3027: 3018: 3005: 2992: 2979: 2978: 2976: 2973: 2971: 2970: 2965: 2960: 2955: 2950: 2945: 2943:Solar constant 2940: 2938:Quantum optics 2935: 2930: 2925: 2920: 2915: 2910: 2905: 2900: 2895: 2889: 2887: 2884: 2875:doppler effect 2867:thermal energy 2863:Kinetic energy 2767: 2764: 2745: 2737: 2734: 2726: 2714: 2711: 2707: 2694: 2691: 2687: 2680: 2675: 2672: 2667: 2664: 2642: 2632: 2629: 2625: 2621: 2610: 2600: 2594: 2589: 2586: 2581: 2578: 2556: 2551: 2539: 2536: 2532: 2528: 2523: 2518: 2513: 2510: 2505: 2500: 2497: 2494: 2460: 2456: 2452: 2449: 2446: 2426: 2406: 2388:Main article: 2385: 2382: 2380: 2377: 2360: 2357: 2339: 2336: 2309:star formation 2301: 2298: 2254:Star formation 2250: 2249:Star formation 2247: 2214: 2211: 2201: 2198: 2168: 2165: 2152: 2151:Early universe 2149: 2143: 2140: 2103:Main article: 2100: 2097: 1994: 1991: 1988: 1987: 1984: 1976: 1975: 1972: 1964: 1963: 1960: 1952: 1951: 1948: 1944: 1943: 1940: 1932: 1931: 1928: 1920: 1919: 1916: 1912: 1911: 1908: 1880: 1877: 1874: 1869: 1865: 1856: 1852: 1848: 1838: 1832: 1829: 1826: 1800: 1797: 1794: 1789: 1785: 1776: 1772: 1768: 1758: 1752: 1749: 1704: 1701: 1698: 1693: 1689: 1683: 1674: 1668: 1663: 1659: 1656: 1653: 1650: 1644: 1641: 1615: 1612: 1609: 1606: 1603: 1600: 1597: 1592: 1583: 1577: 1574: 1532: 1524: 1518: 1515: 1502: 1499: 1495: 1491: 1488: 1485: 1480: 1471: 1465: 1462: 1448:speed of light 1443: 1438:solar constant 1433: 1430: 1391: 1385:solar constant 1361: 1358: 1341: 1321: 1316: 1312: 1305: 1302: 1297: 1294: 1288: 1283: 1280: 1275: 1266: 1247:radiant energy 1210: 1205: 1202: 1197: 1194: 1167: 1164: 1156: 1149: 1139: 1124: 1104: 1100: 1097: 1091: 1088: 1085: 1082: 1077: 1073: 1058: 1011: 1006: 1001: 997: 991: 985: 982: 976: 973: 943: 940: 914: 905: 899: 890: 877: 866: 863: 842: 837: 833: 827: 824: 815: 811: 802: 798: 789: 758: 753: 749: 743: 734: 715: 712: 696: 693: 688: 684: 678: 673: 669: 663: 654: 629:3.34 N/GW 606:speed of light 593: 567: 563: 538: 516: 511: 507: 501: 496: 492: 489: 486: 480: 471: 359:speed of light 341:magnetic field 333:electric field 314: 310: 306: 302: 298: 275:Main article: 272: 269: 258:Speed of light 249: 246: 180: 177: 150:interferometry 126:quantum optics 72:force of light 32:light pressure 15: 9: 6: 4: 3: 2: 4400: 4389: 4386: 4384: 4381: 4379: 4376: 4375: 4373: 4363: 4353: 4351: 4341: 4339: 4329: 4327: 4322: 4317: 4315: 4305: 4303: 4298: 4293: 4292: 4289: 4281: 4280: 4267: 4263: 4259: 4255: 4251: 4247: 4243: 4239: 4235: 4227: 4219: 4215: 4211: 4207: 4202: 4197: 4193: 4189: 4184: 4179: 4175: 4171: 4167: 4160: 4152: 4148: 4144: 4140: 4136: 4132: 4127: 4122: 4118: 4114: 4107: 4099: 4095: 4090: 4085: 4081: 4077: 4072: 4067: 4063: 4059: 4054: 4049: 4045: 4041: 4037: 4030: 4022: 4018: 4014: 4010: 4006: 4002: 3998: 3994: 3989: 3984: 3980: 3976: 3972: 3965: 3957: 3953: 3949: 3945: 3941: 3937: 3933: 3929: 3924: 3919: 3915: 3911: 3907: 3900: 3892: 3888: 3884: 3880: 3875: 3870: 3866: 3862: 3858: 3854: 3850: 3846: 3838: 3830: 3826: 3822: 3818: 3814: 3810: 3806: 3802: 3798: 3794: 3789: 3784: 3780: 3776: 3772: 3765: 3757: 3753: 3746: 3738: 3734: 3729: 3724: 3720: 3716: 3712: 3708: 3704: 3700: 3696: 3689: 3681: 3677: 3673: 3669: 3665: 3661: 3657: 3653: 3646: 3639: 3633: 3625: 3621: 3615: 3607: 3603: 3599: 3597:9783540734772 3593: 3589: 3582: 3574: 3568: 3560: 3556: 3552: 3546: 3542: 3536: 3529: 3527:9781468460322 3523: 3519: 3515: 3511: 3504: 3496: 3489: 3481: 3477: 3472: 3467: 3463: 3459: 3454: 3449: 3445: 3441: 3437: 3430: 3416: 3412: 3405: 3398: 3392: 3390: 3380: 3375: 3371: 3367: 3363: 3359: 3355: 3351: 3344: 3335: 3327: 3320: 3312: 3305: 3294: 3293: 3285: 3277: 3276:Space Sailing 3270: 3268: 3260: 3256: 3250: 3243: 3237: 3229: 3228: 3223: 3217: 3209: 3205: 3201: 3197: 3193: 3189: 3185: 3181: 3177: 3170: 3161: 3156: 3152: 3148: 3145:(4): 040501. 3144: 3140: 3136: 3129: 3121: 3117: 3112: 3107: 3103: 3099: 3095: 3091: 3087: 3080: 3072: 3068: 3063: 3058: 3054: 3050: 3046: 3042: 3038: 3031: 3022: 3015: 3009: 3002: 2996: 2989: 2984: 2980: 2969: 2966: 2964: 2961: 2959: 2956: 2954: 2951: 2949: 2946: 2944: 2941: 2939: 2936: 2934: 2931: 2929: 2926: 2924: 2921: 2919: 2916: 2914: 2911: 2909: 2906: 2904: 2903:Laser cooling 2901: 2899: 2896: 2894: 2891: 2890: 2883: 2879: 2876: 2872: 2868: 2864: 2860: 2859:absolute zero 2856: 2855:Laser cooling 2849:on the left. 2848: 2844: 2840: 2823: 2821: 2817: 2814: 2810: 2805: 2801: 2797: 2793: 2786: 2785:Laser cooling 2782: 2772: 2763: 2761: 2756: 2743: 2735: 2732: 2724: 2712: 2709: 2705: 2692: 2689: 2685: 2678: 2673: 2670: 2665: 2662: 2653: 2640: 2630: 2627: 2623: 2619: 2608: 2598: 2592: 2587: 2584: 2579: 2576: 2567: 2554: 2549: 2537: 2534: 2530: 2526: 2521: 2516: 2511: 2508: 2503: 2498: 2495: 2492: 2483: 2481: 2477: 2472: 2458: 2454: 2450: 2447: 2444: 2424: 2404: 2396: 2391: 2376: 2374: 2370: 2369:comet nucleus 2366: 2356: 2353: 2349: 2345: 2332: 2328: 2324: 2322: 2318: 2314: 2310: 2306: 2297: 2295: 2291: 2287: 2283: 2279: 2275: 2271: 2267: 2263: 2259: 2255: 2242: 2238: 2235: 2231: 2227: 2226:open clusters 2222: 2220: 2219:star clusters 2210: 2207: 2197: 2195: 2194:circumstellar 2190: 2182: 2178: 2173: 2164: 2162: 2158: 2148: 2139: 2137: 2133: 2128: 2124: 2122: 2121: 2116: 2112: 2106: 2096: 2093: 2088: 2086: 2082: 2077: 2075: 2071: 2067: 2064: 2058: 2056: 2052: 2047: 2045: 2040: 2037: 2032: 2028: 2024: 2020: 2016: 2014: 2008: 2004: 2000: 1985: 1982: 1978: 1977: 1973: 1970: 1966: 1965: 1961: 1958: 1954: 1953: 1949: 1946: 1945: 1941: 1938: 1934: 1933: 1929: 1926: 1922: 1921: 1917: 1914: 1913: 1909: 1906: 1905: 1901: 1895: 1891: 1878: 1875: 1872: 1867: 1863: 1854: 1850: 1846: 1836: 1830: 1827: 1824: 1816: 1811: 1798: 1795: 1792: 1787: 1783: 1774: 1770: 1766: 1756: 1750: 1747: 1739: 1735: 1731: 1727: 1722: 1720: 1715: 1702: 1699: 1696: 1691: 1687: 1681: 1672: 1666: 1661: 1657: 1654: 1651: 1648: 1642: 1639: 1631: 1626: 1613: 1607: 1604: 1601: 1598: 1590: 1581: 1575: 1572: 1564: 1560: 1556: 1552: 1548: 1543: 1530: 1522: 1516: 1513: 1500: 1497: 1493: 1489: 1486: 1483: 1478: 1469: 1463: 1460: 1452: 1449: 1442: 1439: 1429: 1427: 1423: 1418: 1416: 1412: 1408: 1403: 1401: 1397: 1390: 1386: 1382: 1378: 1373: 1371: 1370:orbiting body 1367: 1357: 1355: 1339: 1319: 1314: 1310: 1303: 1300: 1295: 1292: 1286: 1281: 1278: 1273: 1264: 1255: 1250: 1248: 1243: 1238: 1233: 1228: 1225: 1208: 1203: 1200: 1195: 1192: 1184: 1183: 1179: 1173: 1163: 1159: 1152: 1143: 1133: 1129:over an area 1127: 1117: 1102: 1098: 1095: 1089: 1086: 1083: 1080: 1075: 1071: 1061: 1052: 1047: 1042: 1037: 1032: 1028:is momentum, 1026: 1009: 1004: 999: 995: 989: 983: 980: 974: 971: 963: 959: 953: 949: 939: 937: 932: 927: 912: 903: 897: 888: 876: 873: 862: 860: 855: 840: 835: 831: 825: 822: 813: 809: 800: 796: 787: 778: 776: 771: 756: 751: 747: 741: 732: 723: 721: 711: 707: 694: 691: 686: 682: 676: 671: 667: 661: 652: 643: 638: 633: 622: 607: 591: 583: 565: 561: 552: 536: 514: 509: 505: 499: 494: 487: 478: 469: 458: 451: 447: 443: 427: 419: 410: 365: 360: 356: 352: 348: 347: 342: 338: 334: 330: 329:cross product 308: 300: 287: 282: 278: 268: 265: 259: 255: 245: 243: 239: 235: 231: 227: 223: 222:Pyotr Lebedev 219: 215: 211: 207: 202: 200: 196: 189: 185: 176: 174: 170: 166: 162: 157: 155: 151: 147: 143: 139: 135: 134:laser cooling 131: 130:optomechanics 127: 123: 122:biomicroscopy 119: 115: 110: 108: 104: 100: 96: 92: 91:astrophysical 88: 86: 81: 75: 73: 69: 65: 61: 57: 53: 49: 45: 41: 37: 33: 29: 21: 4362:Solar System 4241: 4237: 4226: 4173: 4169: 4159: 4116: 4112: 4106: 4046:(1): 12311. 4043: 4039: 4029: 3981:(1): 74ā€“79. 3978: 3974: 3964: 3913: 3909: 3899: 3848: 3844: 3837: 3778: 3774: 3764: 3756:PhysicsWorld 3755: 3745: 3702: 3698: 3688: 3655: 3651: 3645: 3637: 3632: 3590:. Springer. 3587: 3581: 3540: 3535: 3509: 3503: 3494: 3488: 3446:(5): 10599. 3443: 3440:Scholarpedia 3439: 3429: 3418:. Retrieved 3414: 3404: 3396: 3361: 3357: 3343: 3334: 3325: 3319: 3310: 3304: 3291: 3284: 3275: 3258: 3249: 3241: 3236: 3226: 3216: 3183: 3179: 3169: 3142: 3138: 3128: 3093: 3089: 3079: 3044: 3040: 3030: 3021: 3013: 3008: 3000: 2995: 2987: 2983: 2880: 2852: 2843:glass sphere 2795: 2788: 2757: 2654: 2568: 2484: 2479: 2475: 2473: 2393: 2362: 2341: 2321:solar nebula 2303: 2290:binary stars 2252: 2223: 2216: 2203: 2186: 2181:Eagle Nebula 2176: 2157:photon epoch 2154: 2145: 2129: 2125: 2118: 2108: 2089: 2078: 2059: 2048: 2041: 2033: 2029: 2025: 2021: 2017: 2010: 1899: 1892: 1814: 1812: 1733: 1729: 1723: 1718: 1716: 1629: 1627: 1562: 1558: 1554: 1544: 1450: 1440: 1435: 1422:solar flares 1419: 1404: 1402:as of 2011. 1388: 1374: 1366:Solar System 1363: 1251: 1236: 1229: 1223: 1181: 1177: 1169: 1154: 1147: 1137: 1131: 1122: 1118: 1056: 1050: 1040: 1030: 1024: 955: 928: 874: 871: 868: 856: 779: 774: 772: 724: 717: 708: 641: 636: 634: 620: 456: 449: 445: 441: 425: 417: 408: 363: 354: 350: 344: 336: 283: 280: 261: 241: 203: 193: 188:Soviet ruble 158: 111: 95:gas pressure 84: 76: 71: 67: 31: 27: 26: 4350:Outer space 4338:Spaceflight 3705:(1): 3340. 3350:Lean, J. L. 3289:Shankar R. 2820:superfluids 2816:trampolines 2365:comet tails 2319:, called a 2115:Jules Verne 2099:Solar sails 2044:YORP effect 2003:YORP effect 80:outer space 4372:Categories 4183:2111.14087 4053:1504.03727 3988:1602.05640 3923:1506.04542 3874:1887/65506 3550:9027726191 3453:1502.01249 3420:2022-03-01 3364:(1): n/a. 3348:Kopp, G.; 2975:References 2948:Solar sail 2655:pressure: 2373:solar wind 2352:supergiant 2282:protostars 2237:dispersal. 2196:material. 2105:Solar sail 2081:micrometre 1997:See also: 1415:solar sail 1379:at 1  1377:irradiance 1046:wavelength 946:See also: 582:irradiance 252:See also: 52:wavelength 4388:Radiation 4314:Astronomy 4218:244636880 4210:0022-3778 4151:119252645 4126:1303.0733 4080:2041-1723 4013:1745-2481 3956:118135792 3948:1745-2481 3829:206554506 3813:0036-8075 3788:1312.4896 3614:cite book 3606:212409895 3567:cite book 3480:1941-6016 3208:125788399 3120:0034-6861 3071:0034-6861 2710:− 2690:− 2679:≈ 2628:− 2620:≈ 2613: m/s 2609:299792458 2535:− 2527:≈ 2509:λ 2499:π 2451:λ 2425:λ 2405:λ 2270:astronomy 2138:project. 2070:electrons 1979:5.20 au ( 1955:1.52 au ( 1935:0.72 au ( 1923:0.39 au ( 1876:α 1873:⁡ 1796:α 1793:⁡ 1700:α 1697:⁡ 1658:α 1655:⁡ 1608:α 1605:⁡ 1523:μ 1498:− 1490:⋅ 1484:≈ 1340:σ 1296:σ 1252:By using 1185:, we get 1103:λ 1087:ν 984:λ 695:α 692:⁡ 491:⟩ 485:⟨ 309:× 179:Discovery 60:reflected 4266:15259663 4098:27460277 4021:10880961 3883:16712296 3821:24970079 3737:30131489 3680:24237537 3559:16684785 3415:phys.org 3352:(2011). 3224:(1619). 2953:Sunlight 2886:See also 2740: Pa 2603: mW 2292:and the 2234:velocity 2161:Big Bang 2092:Einstein 2074:cometary 2039:motion. 1969:asteroid 1915:0.20 au 1269:compress 1176:equals 3 952:Momentum 805:incident 775:doubling 657:incident 474:incident 339:and the 214:pressure 210:momentum 165:momentum 56:absorbed 54:that is 40:momentum 36:pressure 4302:Physics 4288:Portals 4246:Bibcode 4188:Bibcode 4131:Bibcode 4089:4974467 4058:Bibcode 3993:Bibcode 3928:Bibcode 3891:1801710 3853:Bibcode 3793:Bibcode 3775:Science 3728:6105914 3707:Bibcode 3660:Bibcode 3458:Bibcode 3366:Bibcode 3188:Bibcode 3186:: 100. 3180:Physics 3147:Bibcode 3098:Bibcode 3049:Bibcode 2882:foils. 2775:spring. 2720: m 2699: N 2637: N 2569:force: 2545: m 2344:stellar 1981:Jupiter 1925:Mercury 1815:doubled 1551:newtons 1547:pascals 1352:is the 1034:is the 962:photons 948:Photons 893:emitted 818:emitted 737:emitted 625:⁠ 611:⁠ 604:is the 551:pascals 436:⁠ 422:⁠ 404:⁠ 400:⁠ 396:⁠ 384:⁠ 380:⁠ 368:⁠ 335:vector 331:of the 161:photons 87:program 50:of any 4264:  4216:  4208:  4149:  4096:  4086:  4078:  4019:  4011:  3954:  3946:  3889:  3881:  3827:  3819:  3811:  3735:  3725:  3678:  3604:  3594:  3557:  3547:  3524:  3478:  3206:  3118:  3069:  2918:Photon 2796:cavity 2485:Area: 2395:Lasers 2359:Comets 2136:IKAROS 2005:, and 1520:  1506:  1332:where 1221:where 1048:, and 1022:where 958:viewed 529:where 459:/ area 248:Theory 128:, and 85:Viking 4326:Stars 4214:S2CID 4178:arXiv 4147:S2CID 4121:arXiv 4048:arXiv 4017:S2CID 3983:arXiv 3952:S2CID 3918:arXiv 3887:S2CID 3825:S2CID 3783:arXiv 3448:arXiv 3296:(PDF) 3204:S2CID 2804:power 2266:stars 2224:Many 1986:0.34 1974:1.01 1962:3.93 1950:9.08 1942:17.5 1937:Venus 1930:59.7 1902:= 0) 1719:total 1387:, or 773:thus 371:power 199:comet 146:atoms 4262:PMID 4206:ISSN 4094:PMID 4076:ISSN 4009:ISSN 3944:ISSN 3879:PMID 3817:PMID 3809:ISSN 3733:PMID 3676:PMID 3624:link 3620:link 3602:OCLC 3592:ISBN 3573:link 3555:OCLC 3545:ISBN 3522:ISBN 3476:ISSN 3116:ISSN 3067:ISSN 2908:LIGO 2865:and 2783:and 2311:. A 2284:and 2276:and 2204:The 2175:The 2155:The 2132:JAXA 2068:and 2066:ions 2049:The 2042:The 2034:The 1957:Mars 1918:227 1565:of: 1424:and 950:and 433:area 393:area 377:area 256:and 228:and 101:and 4254:doi 4196:doi 4139:doi 4084:PMC 4066:doi 4001:doi 3936:doi 3869:hdl 3861:doi 3801:doi 3779:344 3723:PMC 3715:doi 3668:doi 3656:111 3514:doi 3466:doi 3374:doi 3196:doi 3155:doi 3106:doi 3057:doi 2818:to 2736:100 2471:). 2348:Sun 2342:In 2260:in 2063:gas 1864:cos 1784:cos 1688:cos 1652:cos 1602:cos 1517:4.5 1487:4.5 1044:is 792:net 683:cos 553:), 448:/ Ī” 444:= Ī” 242:not 140:), 4374:: 4260:. 4252:. 4242:31 4240:. 4236:. 4212:. 4204:. 4194:. 4186:. 4174:87 4172:. 4168:. 4145:. 4137:. 4129:. 4117:86 4115:. 4092:. 4082:. 4074:. 4064:. 4056:. 4042:. 4038:. 4015:. 4007:. 3999:. 3991:. 3979:13 3977:. 3973:. 3950:. 3942:. 3934:. 3926:. 3914:12 3912:. 3908:. 3885:. 3877:. 3867:. 3859:. 3849:96 3847:. 3823:. 3815:. 3807:. 3799:. 3791:. 3777:. 3773:. 3754:. 3731:. 3721:. 3713:. 3701:. 3697:. 3674:. 3666:. 3654:. 3616:}} 3612:{{ 3600:. 3569:}} 3565:{{ 3553:. 3520:, 3474:. 3464:. 3456:. 3442:. 3438:. 3413:. 3388:^ 3372:. 3362:38 3360:. 3356:. 3266:^ 3257:, 3202:. 3194:. 3184:11 3182:. 3178:. 3153:. 3143:90 3141:. 3137:. 3114:. 3104:. 3094:85 3092:. 3088:. 3065:. 3055:. 3045:70 3043:. 3039:. 2822:. 2762:. 2713:12 2706:10 2693:10 2686:10 2631:10 2624:10 2599:30 2538:12 2531:10 2296:. 2163:. 2123:. 2001:, 1983:) 1971:) 1959:) 1939:) 1927:) 1841:SC 1761:SC 1677:SC 1586:SC 1527:Pa 1510:Pa 1494:10 1474:SC 1444:SC 1392:SC 1381:AU 1372:. 1356:. 1180:āˆ’ 1038:, 880:: 632:. 627:ā‰ˆ 398:= 382:= 366:= 349:) 109:. 74:. 58:, 4290:: 4268:. 4256:: 4248:: 4220:. 4198:: 4190:: 4180:: 4153:. 4141:: 4133:: 4123:: 4100:. 4068:: 4060:: 4050:: 4044:7 4023:. 4003:: 3995:: 3985:: 3958:. 3938:: 3930:: 3920:: 3893:. 3871:: 3863:: 3855:: 3831:. 3803:: 3795:: 3785:: 3758:. 3739:. 3717:: 3709:: 3703:9 3682:. 3670:: 3662:: 3626:) 3608:. 3575:) 3561:. 3516:: 3482:. 3468:: 3460:: 3450:: 3444:7 3423:. 3382:. 3376:: 3368:: 3328:. 3230:. 3210:. 3198:: 3190:: 3163:. 3157:: 3149:: 3122:. 3108:: 3100:: 3073:. 3059:: 3051:: 2744:. 2733:= 2725:2 2674:A 2671:F 2666:= 2663:p 2641:, 2593:= 2588:c 2585:P 2580:= 2577:F 2555:, 2550:2 2522:2 2517:) 2512:2 2504:( 2496:= 2493:A 2480:Ī» 2476:P 2459:2 2455:/ 2448:= 2445:r 1900:Ī± 1879:. 1868:2 1855:2 1851:R 1847:c 1837:G 1831:2 1828:= 1825:P 1799:. 1788:2 1775:2 1771:R 1767:c 1757:G 1751:= 1748:P 1734:R 1730:R 1703:. 1692:2 1682:c 1673:G 1667:= 1662:A 1649:F 1643:= 1640:P 1630:P 1614:. 1611:) 1599:A 1596:( 1591:c 1582:G 1576:= 1573:F 1559:A 1555:Ī± 1531:. 1514:= 1501:6 1479:c 1470:G 1464:= 1461:P 1451:c 1441:G 1400:m 1398:/ 1396:W 1389:G 1320:, 1315:4 1311:T 1304:c 1301:3 1293:4 1287:= 1282:3 1279:u 1274:= 1265:P 1237:T 1224:u 1209:, 1204:3 1201:u 1196:= 1193:P 1182:u 1178:P 1157:p 1155:E 1153:/ 1150:f 1148:I 1142:A 1140:f 1138:I 1132:A 1125:f 1123:I 1099:c 1096:h 1090:= 1084:h 1081:= 1076:p 1072:E 1059:p 1057:E 1051:c 1041:Ī» 1031:h 1025:p 1010:, 1005:c 1000:p 996:E 990:= 981:h 975:= 972:p 913:c 908:e 904:I 898:= 889:P 878:e 875:I 841:c 836:f 832:I 826:2 823:= 814:P 810:+ 801:P 797:= 788:P 757:c 752:f 748:I 742:= 733:P 687:2 677:c 672:f 668:I 662:= 653:P 642:Ī± 637:Ī± 621:c 617:/ 614:1 592:c 566:f 562:I 537:P 515:c 510:f 506:I 500:= 495:c 488:S 479:= 470:P 457:F 455:Ī” 450:t 446:x 442:c 430:/ 426:x 424:Ī” 418:t 416:Ī” 413:/ 409:F 407:Ī” 390:/ 374:/ 364:S 355:S 351:H 337:E 313:H 305:E 301:= 297:S

Index


pressure
momentum
electromagnetic field
electromagnetic radiation
wavelength
absorbed
reflected
black-body radiation
outer space
Viking program
astrophysical
gas pressure
stellar interiors
thermonuclear weapons
beam-powered propulsion
laser technology
optical technologies
biomicroscopy
quantum optics
optomechanics
laser cooling
Nobel Prize in Physics
quantum control
atoms
interferometry
optical tweezers
photons
momentum
conservation of momentum

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

ā†‘