Knowledge

Wavelength

Source 📝

2615: 1120: 1128: 1663: 1455: 1112: 2034: 3876: 1398:, which can be interpreted as indicating a "local wavelength" of the solution as a function of time and space. This method treats the system locally as if it were uniform with the local properties; in particular, the local wave velocity associated with a frequency is the only thing needed to estimate the corresponding local wavenumber or wavelength. In addition, the method computes a slowly changing amplitude to satisfy other constraints of the equations or of the physical system, such as for 1518: 1411: 1346: 27: 436: 428: 1376:
medium) may propagate at a velocity that varies with position, and as a result may not be sinusoidal in space. The figure at right shows an example. As the wave slows down, the wavelength gets shorter and the amplitude increases; after a place of maximum response, the short wavelength is associated
2045:
The notion of path difference and constructive or destructive interference used above for the double-slit experiment applies as well to the display of a single slit of light intercepted on a screen. The main result of this interference is to spread out the light from the narrow slit into a broader
1422:
because the same vibration can be considered to have a variety of different wavelengths, as shown in the figure. Descriptions using more than one of these wavelengths are redundant; it is conventional to choose the longest wavelength that fits the phenomenon. The range of wavelengths sufficient to
463:), thus determining the allowed wavelengths. For example, for an electromagnetic wave, if the box has ideal conductive walls, the condition for nodes at the walls results because the conductive walls cannot support a tangential electric field, forcing the wave to have zero amplitude at the wall. 1482:
In the special case of dispersion-free and uniform media, waves other than sinusoids propagate with unchanging shape and constant velocity. In certain circumstances, waves of unchanging shape also can occur in nonlinear media; for example, the figure shows ocean waves in shallow water that have
1317:
When wavelengths of electromagnetic radiation are quoted, the wavelength in vacuum usually is intended unless the wavelength is specifically identified as the wavelength in some other medium. In acoustics, where a medium is essential for the waves to exist, the wavelength value is given for a
1981: 1683:. As shown in the figure, light is passed through two slits and shines on a screen. The path of the light to a position on the screen is different for the two slits, and depends upon the angle θ the path makes with the screen. If we suppose the screen is far enough from the slits (that is, 1462:
The concept of wavelength is most often applied to sinusoidal, or nearly sinusoidal, waves, because in a linear system the sinusoid is the unique shape that propagates with no shape change – just a phase change and potentially an amplitude change. The wavelength (or alternatively
642: 1157:
The wave velocity in one medium not only may differ from that in another, but the velocity typically varies with wavelength. As a result, the change in direction upon entering a different medium changes with the wavelength of the wave.
2200: 962: 881: 800: 466:
The stationary wave can be viewed as the sum of two traveling sinusoidal waves of oppositely directed velocities. Consequently, wavelength, period, and wave velocity are related just as for a traveling wave. For example, the
1842: 2423: 1312: 497: 1666:
Pattern of light intensity on a screen for light passing through two slits. The labels on the right refer to the difference of the path lengths from the two slits, which are idealized here as point sources.
1670:
When sinusoidal waveforms add, they may reinforce each other (constructive interference) or cancel each other (destructive interference) depending upon their relative phase. This phenomenon is used in the
1635:
for such a particle being spread over all space, de Broglie proposed using wave packets to represent particles that are localized in space. The spatial spread of the wave packet, and the spread of the
1529:. Such waves are sometimes regarded as having a wavelength even though they are not sinusoidal. As shown in the figure, wavelength is measured between consecutive corresponding points on the waveform. 1361:
wavelength that depends in part on the depth of the sea floor compared to the wave height. The analysis of the wave can be based upon comparison of the local wavelength with the local water depth.
1027:
being interpreted as scalar speed in the direction of the wave vector. The first form, using reciprocal wavelength in the phase, does not generalize as easily to a wave in an arbitrary direction.
2527: 1538: 1820: 1222: 1101: 2467: 2249: 1365: 281: 2064:
In the analysis of the single slit, the non-zero width of the slit is taken into account, and each point in the aperture is taken as the source of one contribution to the beam of light (
1746: 2068:). On the screen, the light arriving from each position within the slit has a different path length, albeit possibly a very small difference. Consequently, interference occurs. 1329:. Separation occurs when the refractive index inside the prism varies with wavelength, so different wavelengths propagate at different speeds inside the prism, causing them to 3176: 2977:
To aid imagination, this bending of the wave often is compared to the analogy of a column of marching soldiers crossing from solid ground into mud. See, for example,
1471:) is a characterization of the wave in space, that is functionally related to its frequency, as constrained by the physics of the system. Sinusoids are the simplest 459:
The upper figure shows three standing waves in a box. The walls of the box are considered to require the wave to have nodes at the walls of the box (an example of
2093: 328: 304: 239: 2001:, is the single-slit result, which modulates the more rapidly varying second factor that depends upon the number of slits and their spacing. In the figure 1418:
Waves in crystalline solids are not continuous, because they are composed of vibrations of discrete particles arranged in a regular lattice. This produces
892: 811: 687: 3821: 2563:
is used to describe an object having one or more dimensions smaller than the length of the wave with which the object interacts. For example, the term
1976:{\displaystyle I_{q}=I_{1}\sin ^{2}\left({\frac {q\pi g\sin \alpha }{\lambda }}\right)/\sin ^{2}\left({\frac {\pi g\sin \alpha }{\lambda }}\right)\ ,} 405: 3749: 1639:
of sinusoids that make up the packet, correspond to the uncertainties in the particle's position and momentum, the product of which is bounded by
431:
Sinusoidal standing waves in a box that constrains the end points to be nodes will have an integer number of half wavelengths fitting in the box.
1333:
at different angles. The mathematical relationship that describes how the speed of light within a medium varies with wavelength is known as a
1139:, which means that the same frequency will correspond to a shorter wavelength in the medium than in vacuum, as shown in the figure at right. 74:
is the distance over which the wave's shape repeats. In other words, it is the distance between consecutive corresponding points of the same
1559:
that describes the overall amplitude of the wave; within the envelope, the distance between adjacent peaks or troughs is sometimes called a
3695: 2551:
As with other diffraction patterns, the pattern scales in proportion to wavelength, so shorter wavelengths can lead to higher resolution.
2359: 3639: 637:{\displaystyle y(x,\ t)=A\cos \left(2\pi \left({\frac {x}{\lambda }}-ft\right)\right)=A\cos \left({\frac {2\pi }{\lambda }}(x-vt)\right)} 2858: 1256: 1555:, "bursts" of wave action where each wave packet travels as a unit, find application in many fields of physics. A wave packet has an 3785: 2952: 2349:, the radius to the first null of the Airy disk, to a size proportional to the wavelength of the light used, and depending on the 1135:
The speed of a wave depends upon the medium in which it propagates. In particular, the speed of light in a medium is less than in
3346: 3814: 424:
so they can resolve targets smaller than 17 mm. Wavelengths in audible sound are much longer than those in visible light.
3759: 3732: 3705: 3649: 3562: 3533: 3471: 3356: 3329: 3302: 3273: 3074: 3047: 3020: 2990: 2962: 2901: 2868: 3394:
of a dispersing wave is twice the distance between two successive zeros. ... the local wavelength and the local wave number
452:
is an undulatory motion that stays in one place. A sinusoidal standing wave includes stationary points of no motion, called
3459: 3442:(p. 61) ... the individual waves move more slowly than the packet and therefore pass back through the packet as it advances 2565: 1357:
in space. For example, in an ocean wave approaching shore, shown in the figure, the incoming wave undulates with a varying
2490: 1042:
phase when describing a wave is based on the fact that the cosine is the real part of the complex exponential in the wave
216:
media, any wave pattern can be described in terms of the independent propagation of sinusoidal components. The wavelength
3064: 3037: 135:
Wavelength depends on the medium (for example, vacuum, air, or water) that a wave travels through. Examples of waves are
3240: 3207: 2585: 1825:
Thus, if the wavelength of the light is known, the slit separation can be determined from the interference pattern or
1761: 3807: 3678: 3622: 3595: 3500: 3435: 3383: 3155: 3124: 3104: 2935: 2841: 2816: 2789: 2760: 1173: 1048: 1423:
provide a description of all possible waves in a crystalline medium corresponds to the wave vectors confined to the
439:
A standing wave (black) depicted as the sum of two propagating waves traveling in opposite directions (red and blue)
132:
of the wave: waves with higher frequencies have shorter wavelengths, and lower frequencies have longer wavelengths.
2431: 1640: 2262:
is the distance of the pattern (on the screen) from the slit, and λ is the wavelength of light used. The function
2205: 1250:, where the latter is measured in vacuum rather than in the medium. The corresponding wavelength in the medium is 248: 1657: 118: 1707: 2484:) of the image diffracted by a circular aperture, a measure most commonly used for telescopes and cameras, is: 2584:
are holes smaller than the wavelength of light propagating through them. Such structures have applications in
2346: 1325:, and is also responsible for the familiar phenomenon in which light is separated into component colours by a 2053:
Two types of diffraction are distinguished, depending upon the separation between the source and the screen:
1443: 3348:
The Quantum Theory of Motion: An Account of the de Broglie–Bohm Causal Interpretation of Quantum Mechanics
3922: 2576:
A subwavelength particle is a particle smaller than the wavelength of light with which it interacts (see
1514:
with certain shapes can propagate unchanged, because of properties of the nonlinear surface-wave medium.
1372:
Waves that are sinusoidal in time but propagate through a medium whose properties vary with position (an
20: 3917: 2287: 2072: 346: 164: 3066:
Time-frequency and time-scale methods: adaptive decompositions, uncertainty principles, and sampling
4217: 3830: 1676: 1488: 390: 193: 2777: 2614: 1574:, wave packets can be analyzed into infinite sums (or integrals) of sinusoidal waves of different 1430:
This indeterminacy in wavelength in solids is important in the analysis of wave phenomena such as
4267: 2666: 1476: 2709:– dark lines in the solar spectrum, traditionally used as standard optical wavelength references 1146:, or a change in direction of waves that encounter the interface between media at an angle. For 1030:
Generalizations to sinusoids of other phases, and to complex exponentials, are also common; see
471:
can be determined from observation of standing waves in a metal box containing an ideal vacuum.
468: 3516:
Greenfield Sluder & David E. Wolf (2007). "IV. Young's Experiment: Two-Slit Interference".
2712: 2054: 1680: 1399: 114: 89: 3722: 3579: 3550: 3488: 3373: 3224: 3195: 3141: 3010: 2980: 2921: 2893: 2806: 3666: 3612: 3525: 3419: 3290: 3114: 2603: 2028: 1616: 1381: 1147: 3319: 3257: 2665:). It is usually encountered in quantum mechanics, where it is used in combination with the 4227: 4222: 2470: 2195:{\displaystyle S(u)=\mathrm {sinc} ^{2}(u)=\left({\frac {\sin \pi u}{\pi u}}\right)^{2}\ ;} 479:
Traveling sinusoidal waves are often represented mathematically in terms of their velocity
148: 8: 4262: 4257: 4232: 4212: 3963: 3777: 2919: 2589: 2577: 2058: 1334: 1322: 1119: 460: 339: 3782: 2015:
the light, so the energy contained in the light is not altered, just where it shows up.
1123:
Refraction: upon entering a medium where its speed is lower, the wave changes direction.
4252: 4100: 4073: 3983: 3968: 3795:
The visible electromagnetic spectrum displayed in web colors with according wavelengths
2717: 2651: 2350: 2293: 2283: 313: 289: 224: 201: 1349:
Various local wavelengths on a crest-to-crest basis in an ocean wave approaching shore
4108: 4104: 4085: 4081: 4077: 3755: 3728: 3701: 3674: 3645: 3618: 3591: 3558: 3529: 3518: 3496: 3467: 3431: 3379: 3352: 3325: 3298: 3269: 3236: 3203: 3151: 3120: 3100: 3093: 3070: 3043: 3016: 2986: 2958: 2931: 2897: 2886: 2864: 2837: 2812: 2785: 2756: 2696: 2674: 1612: 1386: 1354: 957:{\displaystyle \lambda ={\frac {2\pi }{k}}={\frac {2\pi v}{\omega }}={\frac {v}{f}}.} 876:{\displaystyle k={\frac {2\pi }{\lambda }}={\frac {2\pi f}{v}}={\frac {\omega }{v}},} 675: 335: 176: 94: 71: 2071:
In the Fraunhofer diffraction pattern sufficiently far from a single slit, within a
1127: 4242: 4013: 3988: 3856: 3426:(Reprint of Academic Press 1981 ed.). Courier Dover Publications. pp. 59 2706: 2701: 2038: 1624: 1581: 1571: 1414:
A wave on a line of atoms can be interpreted according to a variety of wavelengths.
1326: 1163: 1136: 189: 2033: 1662: 1454: 1131:
Separation of colors by a prism (click for animation if it is not already playing)
1111: 795:{\displaystyle y(x,\ t)=A\cos \left(kx-\omega t\right)=A\cos \left(k(x-vt)\right)} 4327: 4291: 4204: 4046: 3978: 3789: 3751:
Reflecting Telescope Optics I: Basic Design Theory and Its Historical Development
2335: 1608: 125: 3778:
Conversion: Wavelength to Frequency and vice versa – Sound waves and radio waves
1525:
If a traveling wave has a fixed shape that repeats in space or in time, it is a
175:
vary. Water waves are variations in the height of a body of water. In a crystal
4322: 4237: 4021: 2618:
Relationship between wavelength, angular wavelength, and other wave properties.
2541: 2301: 1672: 1424: 1232: 1151: 453: 401: 386: 365:. Thus the wavelength of a 100 MHz electromagnetic (radio) wave is about: 354: 307: 197: 172: 168: 156: 2544:
diameter of the imaging system, in the same units, and the angular resolution
4316: 4247: 4184: 4165: 4069: 4003: 3998: 3993: 3172: 2722: 2635: 2602:
may also refer to a phenomenon involving subwavelength objects; for example,
2570: 2308:. For a circular aperture, the diffraction-limited image spot is known as an 2084: 1632: 805:
in which wavelength and wavenumber are related to velocity and frequency as:
449: 85: 81: 76: 43: 39: 3875: 2573:
whose diameter is less than the wavelength of light propagating through it.
338:, the phase speed itself depends upon the frequency of the wave, making the 42:, such as between crests (on top), or troughs (on bottom), or corresponding 4123: 4118: 4096: 4091: 3799: 2727: 1537: 1517: 1484: 1431: 1410: 99: 1567:
of the wave packet moves at a speed different from the constituent waves.
1483:
sharper crests and flatter troughs than those of a sinusoid, typical of a
408:). The wavelengths of sound frequencies audible to the human ear (20  128:
moving at a fixed wave speed, wavelength is inversely proportional to the
4296: 3973: 3955: 3851: 3794: 2305: 2047: 2024: 1552: 1546: 1468: 1023:, is still in the same relationship with wavelength as shown above, with 1000: 55: 3582:. In John W Harris; Walter Benenson; Horst Stöcker; Holger Lutz (eds.). 2345:
size of objects viewed through a microscope is limited according to the
1691:) then the paths are nearly parallel, and the path difference is simply 1364: 3945: 3940: 3871: 1636: 1575: 1511: 1464: 1395: 1143: 1031: 1004: 668: 417: 397: 350: 182:
The range of wavelengths or frequencies for wave phenomena is called a
144: 136: 110: 2920:
David C. Cassidy; Gerald James Holton; Floyd James Rutherford (2002).
2316:
in the single-slit diffraction formula is replaced by radial distance
4286: 4133: 3909: 3887: 3866: 3841: 2638:). It is equal to the ordinary wavelength reduced by a factor of 2π ( 2593: 2481: 2309: 2297: 664: 382: 331: 129: 31: 2418:{\displaystyle r_{Airy}=1.22{\frac {\lambda }{2\,\mathrm {NA} }}\ ,} 4301: 4061: 3861: 2732: 2581: 1620: 1585: 1439: 1419: 1345: 1161:
For electromagnetic waves the speed in a medium is governed by its
184: 435: 26: 4170: 4156: 1435: 1330: 1307:{\displaystyle \lambda ={\frac {\lambda _{0}}{n(\lambda _{0})}}.} 1008: 51: 3258:"Chapter 1: Brief history and overview of nonlinear water waves" 2480:
size of the central bright portion (radius to first null of the
2046:
image on the screen. This distribution of wave energy is called
4194: 4189: 4179: 4151: 4146: 4141: 4112: 4041: 3783:
Teaching resource for 14–16 years on sound including wavelength
3062: 2804: 2469:
for θ being the half-angle of the cone of rays accepted by the
1701:. Accordingly, the condition for constructive interference is: 1035: 427: 213: 102: 3515: 1368:
A sinusoidal wave travelling in a nonuniform medium, with loss
4036: 3932: 3846: 2536:
is the wavelength of the waves that are focused for imaging,
413: 409: 377:= 3 m. The wavelength of visible light ranges from deep 160: 152: 140: 84:. Wavelength is a characteristic of both traveling waves and 3229:
Nonlinear Waves and Solitons on Contours and Closed Surfaces
3196:"Figure 4.4: Transition from quasi-harmonic to cnoidal wave" 1321:
The variation in speed of light with wavelength is known as
1115:
Wavelength is decreased in a medium with slower propagation.
4031: 4026: 2649:), with SI units of meter per radian. It is the inverse of 1487:, a traveling wave so named because it is described by the 1472: 1394:). The method integrates phase through space using a local 1353:
Wavelength can be a useful concept even if the wave is not
1039: 67: 3375:
Introduction to partial differential equations with MATLAB
3262:
Nonlinear Ocean Waves and the Inverse Scattering Transform
667:
of the wave. They are also commonly expressed in terms of
456:, and the wavelength is twice the distance between nodes. 4051: 2883: 2860:
Electromagnetic Theory for Microwaves and Optoelectronics
2784:(2nd ed.). Cambridge University Press. p. 473. 1475:
solutions, and more complex solutions can be built up by
1150:, this change in the angle of propagation is governed by 421: 378: 3119:(4th ed.). Cambridge University Press. p. 22. 2978: 420:, respectively. Somewhat higher frequencies are used by 3614:
Fundamentals of light microscopy and electronic imaging
3183:(9th ed.). The Henry G Allen Company. p. 422. 2037:
Diffraction pattern of a double slit has a single-slit
1584:
postulated that all particles with a specific value of
1384:
of such systems is often done approximately, using the
1246:) is the refractive index of the medium at wavelength λ 38:, can be measured between any two points with the same 3035: 109:). The term "wavelength" is also sometimes applied to 80:
on the wave, such as two adjacent crests, troughs, or
3548: 3424:
Quantum Mechanics for Applied Physics and Engineering
2811:(4th ed.). Cengage Learning. pp. 404, 440. 2493: 2434: 2362: 2208: 2096: 1845: 1764: 1710: 1563:. An example is shown in the figure. In general, the 1521:
Wavelength of a periodic but non-sinusoidal waveform.
1259: 1176: 1051: 895: 814: 690: 500: 412:–20 kHz) are thus between approximately 17  316: 292: 251: 227: 220:
of a sinusoidal waveform traveling at constant speed
3200:
Nonlinear Dynamics: Between Linear and Impact Limits
2856: 2775: 2522:{\displaystyle \delta =1.22{\frac {\lambda }{D}}\ ,} 1755:
is an integer, and for destructive interference is:
3557:(Extended 8th ed.). Wiley-India. p. 965. 3288: 3193: 2908:
wavelength lambda light sound frequency wave speed.
2008:has been set to unity, a very rough approximation. 1142:This change in speed upon entering a medium causes 3517: 3092: 2885: 2521: 2461: 2417: 2243: 2194: 2057:or far-field diffraction at large separations and 1975: 1814: 1740: 1306: 1216: 1095: 956: 875: 794: 636: 322: 298: 275: 233: 3610: 3577: 2292:Diffraction is the fundamental limitation on the 2277: 2274:values at a separation proportion to wavelength. 1003:that specifies the direction and wavenumber of a 4314: 3700:. Courier Dover Publications. pp. 117–120. 3344: 2755:(2nd ed.). Addison Wesley. pp. 15–16. 2061:or near-field diffraction at close separations. 1815:{\displaystyle d\sin \theta =(m+1/2)\lambda \ .} 3720: 3693: 3139: 3063:Jeffrey A. Hogan & Joseph D. Lakey (2005). 1646: 1217:{\displaystyle v={\frac {c}{n(\lambda _{0})}},} 1096:{\displaystyle Ae^{i\left(kx-\omega t\right)}.} 389:, roughly 400 nm (for other examples, see 3637: 3486: 3417: 3371: 3295:Introduction to Macromolecular Crystallography 3255: 3112: 3015:. Jones & Bartlett Learning. p. 242. 1627:display have a De Broglie wavelength of about 474: 88:, as well as other spatial wave patterns. The 3815: 3747: 3495:. Vol. 53. Academic Press. p. 271. 3171: 2462:{\displaystyle \mathrm {NA} =n\sin \theta \;} 340:relationship between wavelength and frequency 3829: 3664: 3641:Optical scattering: measurement and analysis 3493:Advances in Electronics and Electron Physics 3008: 2622:A quantity related to the wavelength is the 2244:{\displaystyle u={\frac {xL}{\lambda R}}\ ,} 674:(2π times the reciprocal of wavelength) and 306:is called the phase speed (magnitude of the 276:{\displaystyle \lambda ={\frac {v}{f}}\,\,,} 3457: 3351:. Cambridge University Press. p. 160. 3222: 2985:. Cambridge University Press. p. 327. 2950: 2892:. Jones & Bartlett Publishers. p.  2831: 2782:An introduction to numerical methods in C++ 2428:where the numerical aperture is defined as 1994:is the grating constant. The first factor, 1675:. A simple example is an experiment due to 1651: 98:. Wavelength is commonly designated by the 3891:        3822: 3808: 3724:Handbook of biological confocal microscopy 3452: 3450: 3317: 3099:. Cambridge University Press. p. 97. 2805:Raymond A. Serway; John W. Jewett (2006). 2458: 2018: 1741:{\displaystyle d\sin \theta =m\lambda \ ,} 1615:. Nowadays, this wavelength is called the 967:In the second form given above, the phase 16:Distance over which a wave's shape repeats 3282: 3187: 3146:(2nd ed.). Birkhäuser. pp. 165 3090: 3004: 3002: 2884:Theo Koupelis & Karl F. Kuhn (2007). 2397: 1687:is large compared to the slit separation 1449: 1438:. It is mathematically equivalent to the 651:is the value of the wave at any position 406:room temperature and atmospheric pressure 269: 268: 3644:(2nd ed.). SPIE Press. p. 64. 3542: 3524:(3rd ed.). Academic Press. p.  3411: 3164: 2613: 2032: 1661: 1536: 1516: 1453: 1409: 1377:with a high loss and the wave dies out. 1363: 1344: 1126: 1118: 1110: 434: 426: 25: 3727:(2nd ed.). Springer. p. 112. 3551:"§35-4 Young's interference experiment" 3447: 3231:(2nd ed.). Springer. pp. 469 3143:Fundamentals of solid state engineering 3133: 4315: 3604: 3571: 3509: 3491:. In L. Marton; Claire Marton (eds.). 3480: 3365: 3083: 3042:. New Age International. p. 454. 2999: 2913: 2834:The surface physics of liquid crystals 2769: 1611:. This hypothesis was at the basis of 1458:Near-periodic waves over shallow water 1034:. The typical convention of using the 117:of modulated waves or waves formed by 3803: 3658: 2798: 2750: 2609: 192:but now can be applied to the entire 147:and periodic electrical signals in a 3460:"Heisenberg's uncertainty principle" 3456:See, for example, Figs. 2.8–2.10 in 3324:. John Wiley & Sons. p. 1. 3216: 2857:Keqian Zhang & Dejie Li (2007). 2836:. Taylor & Francis. p. 17. 2744: 2566:subwavelength-diameter optical fibre 2270:is a non-zero integer, where are at 3311: 1836:For multiple slits, the pattern is 1340: 1011:, parameterized by position vector 207: 13: 3874: 3549:Halliday; Resnick; Walker (2008). 2971: 2586:extraordinary optical transmission 2439: 2436: 2402: 2399: 2123: 2120: 2117: 2114: 14: 4339: 3771: 3580:"§9.8.2 Diffraction by a grating" 3297:(2 ed.). Wiley. p. 77. 2979:Raymond T. Pierrehumbert (2010). 2011:The effect of interference is to 443: 3464:Quantum Physics: An Introduction 3116:Introduction to lattice dynamics 3095:Introduction to mineral sciences 2554: 2296:of optical instruments, such as 1641:Heisenberg uncertainty principle 1106: 483:(in the x direction), frequency 92:of the wavelength is called the 3741: 3714: 3687: 3631: 3338: 3249: 3056: 3036:Bishwanath Chakraborty (2007). 3029: 2982:Principles of Planetary Climate 2957:. Nelson Thornes. p. 460. 1658:Interference (wave propagation) 1532: 1015:. In that case, the wavenumber 188:. The name originated with the 3039:Principles of Plasma Mechanics 2944: 2877: 2850: 2825: 2278:Diffraction-limited resolution 2139: 2133: 2106: 2100: 1800: 1780: 1679:where light is passed through 1295: 1282: 1205: 1192: 995:, by replacing the wavenumber 784: 769: 709: 694: 626: 611: 519: 504: 1: 3697:Introduction to Modern Optics 3466:. CRC Press. pp. 53–56. 3264:. Academic Press. pp. 3 2776:Brian Hilton Flowers (2000). 2738: 2320:and the sine is replaced by 2 1495:th order, usually denoted as 681:(2π times the frequency) as: 113:waves, and to the sinusoidal 3291:"Waves and their properties" 3289:Alexander McPherson (2009). 3194:Valery N. Pilipchuk (2010). 1990:is the number of slits, and 1647:Interference and diffraction 7: 3923:Ultra-high-energy gamma ray 3069:. Birkhäuser. p. 348. 2926:. Birkhäuser. pp. 339 2690: 1405: 475:Mathematical representation 155:wave is a variation in air 21:Wavelength (disambiguation) 10: 4344: 3918:Very-high-energy gamma ray 3617:. Wiley/IEEE. p. 64. 3611:Douglas B. Murphy (2002). 3578:Kordt Griepenkerl (2002). 2778:"§21.2 Periodic functions" 2288:Diffraction-limited system 2281: 2022: 1655: 1544: 18: 4276: 4203: 4132: 4060: 4012: 3954: 3931: 3908: 3837: 3754:. Springer. p. 302. 3673:. CRC Press. p. 57. 3586:. Springer. pp. 307 3378:. Springer. p. 272. 3345:Peter R. Holland (1995). 3225:"§18.3 Special functions" 3202:. Springer. p. 127. 2863:. Springer. p. 533. 2630:), usually symbolized by 2073:small-angle approximation 1541:A propagating wave packet 353:, the phase speed is the 347:electromagnetic radiation 179:, atomic positions vary. 165:electromagnetic radiation 3831:Electromagnetic spectrum 3721:James B. Pawley (1995). 3694:Grant R. Fowles (1989). 3667:"Diffraction limitation" 3140:Manijeh Razeghi (2006). 2888:In Quest of the Universe 1652:Double-slit interference 1489:Jacobi elliptic function 979:is often generalized to 391:electromagnetic spectrum 194:electromagnetic spectrum 3638:John C. Stover (1995). 3555:Fundamentals of Physics 3489:"Electron Interference" 3487:Ming Chiang Li (1980). 3420:"Wave packet solutions" 3418:A. T. Fromhold (1991). 3372:Jeffery Cooper (1998). 3256:Alfred Osborne (2010). 3181:Encyclopædia Britannica 3113:Martin T. Dove (1993). 2667:reduced Planck constant 2592:, among other areas of 2079:is related to position 2075:, the intensity spread 2019:Single-slit diffraction 1446:at discrete intervals. 3879: 3748:Ray N. Wilson (2004). 3671:The science of imaging 2751:Hecht, Eugene (1987). 2713:Index of wave articles 2619: 2523: 2463: 2419: 2245: 2196: 2055:Fraunhofer diffraction 2042: 1977: 1816: 1742: 1667: 1542: 1522: 1459: 1450:More general waveforms 1415: 1400:conservation of energy 1392:Liouville–Green method 1382:differential equations 1369: 1350: 1308: 1218: 1132: 1124: 1116: 1097: 958: 877: 796: 638: 440: 432: 324: 300: 277: 235: 190:visible light spectrum 121:of several sinusoids. 47: 3878: 3665:Graham Saxby (2002). 3390:The local wavelength 3009:Paul R Pinet (2009). 2923:Understanding physics 2808:Principles of physics 2617: 2604:subwavelength imaging 2524: 2464: 2420: 2246: 2197: 2036: 2029:Diffraction formalism 1978: 1817: 1743: 1665: 1617:de Broglie wavelength 1540: 1520: 1457: 1413: 1367: 1348: 1309: 1219: 1148:electromagnetic waves 1130: 1122: 1114: 1098: 1038:phase instead of the 959: 878: 797: 639: 438: 430: 325: 301: 278: 236: 29: 3458:Joy Manners (2000). 3223:Andrei Ludu (2012). 2954:The World of Physics 2951:John Avison (1999). 2832:A. A. Sonin (1995). 2590:zero-mode waveguides 2491: 2471:microscope objective 2432: 2360: 2206: 2094: 1843: 1762: 1708: 1442:of a signal that is 1257: 1174: 1049: 893: 812: 688: 498: 404:is 343 m/s (at 314: 290: 249: 225: 167:the strength of the 30:The wavelength of a 19:For other uses, see 3964:Extreme ultraviolet 3584:Handbook of physics 3318:Eric Stade (2011). 3089:See Figure 4.20 in 2578:Rayleigh scattering 2258:is the slit width, 2202: with  2059:Fresnel diffraction 1619:. For example, the 1390:(also known as the 1335:dispersion relation 1019:, the magnitude of 461:boundary conditions 381:, roughly 700  3969:Vacuum ultraviolet 3880: 3788:2012-03-13 at the 3520:Digital microscopy 3111:and Figure 2.3 in 3091:A. Putnis (1992). 2718:Length measurement 2652:angular wavenumber 2628:reduced wavelength 2624:angular wavelength 2620: 2610:Angular wavelength 2519: 2459: 2415: 2351:numerical aperture 2347:Rayleigh criterion 2284:Angular resolution 2241: 2192: 2043: 1973: 1812: 1738: 1668: 1591:have a wavelength 1543: 1523: 1510:. Large-amplitude 1460: 1436:lattice vibrations 1416: 1370: 1351: 1318:specified medium. 1304: 1214: 1133: 1125: 1117: 1093: 954: 873: 792: 634: 441: 433: 349:—such as light—in 320: 310:) of the wave and 296: 273: 231: 202:vibration spectrum 48: 4310: 4309: 4014:Visible (optical) 3761:978-3-540-40106-3 3734:978-0-306-44826-3 3707:978-0-486-65957-2 3651:978-0-8194-1934-7 3564:978-81-265-1442-7 3535:978-0-12-374025-0 3473:978-0-7503-0720-8 3358:978-0-521-48543-2 3331:978-1-118-16551-5 3304:978-0-470-18590-2 3275:978-0-12-528629-9 3076:978-0-8176-4276-1 3049:978-81-224-1446-2 3022:978-0-7637-5993-3 2992:978-0-521-86556-2 2964:978-0-17-438733-6 2903:978-0-7637-4387-1 2870:978-3-540-74295-1 2697:Emission spectrum 2675:angular frequency 2673:, h-bar) and the 2634:("lambda-bar" or 2580:). Subwavelength 2515: 2511: 2411: 2407: 2334:is a first order 2237: 2233: 2188: 2174: 2066:Huygens' wavelets 1969: 1961: 1911: 1808: 1734: 1631:. To prevent the 1613:quantum mechanics 1299: 1209: 949: 936: 915: 868: 855: 834: 705: 676:angular frequency 609: 558: 515: 336:dispersive medium 323:{\displaystyle f} 299:{\displaystyle v} 266: 234:{\displaystyle v} 177:lattice vibration 95:spatial frequency 72:periodic function 4335: 3901: 3899: 3892: 3885: 3824: 3817: 3810: 3801: 3800: 3766: 3765: 3745: 3739: 3738: 3718: 3712: 3711: 3691: 3685: 3684: 3662: 3656: 3655: 3635: 3629: 3628: 3608: 3602: 3601: 3575: 3569: 3568: 3546: 3540: 3539: 3523: 3513: 3507: 3506: 3484: 3478: 3477: 3454: 3445: 3444: 3415: 3409: 3408: 3369: 3363: 3362: 3342: 3336: 3335: 3321:Fourier Analysis 3315: 3309: 3308: 3286: 3280: 3279: 3253: 3247: 3246: 3220: 3214: 3213: 3191: 3185: 3184: 3168: 3162: 3161: 3137: 3131: 3130: 3110: 3098: 3087: 3081: 3080: 3060: 3054: 3053: 3033: 3027: 3026: 3006: 2997: 2996: 2975: 2969: 2968: 2948: 2942: 2941: 2917: 2911: 2910: 2891: 2881: 2875: 2874: 2854: 2848: 2847: 2829: 2823: 2822: 2802: 2796: 2795: 2773: 2767: 2766: 2748: 2707:Fraunhofer lines 2702:Envelope (waves) 2686: 2664: 2648: 2528: 2526: 2525: 2520: 2513: 2512: 2504: 2468: 2466: 2465: 2460: 2442: 2424: 2422: 2421: 2416: 2409: 2408: 2406: 2405: 2389: 2381: 2380: 2266:has zeros where 2250: 2248: 2247: 2242: 2235: 2234: 2232: 2224: 2216: 2201: 2199: 2198: 2193: 2186: 2185: 2184: 2179: 2175: 2173: 2165: 2151: 2132: 2131: 2126: 1982: 1980: 1979: 1974: 1967: 1966: 1962: 1957: 1940: 1931: 1930: 1921: 1916: 1912: 1907: 1887: 1878: 1877: 1868: 1867: 1855: 1854: 1821: 1819: 1818: 1813: 1806: 1796: 1747: 1745: 1744: 1739: 1732: 1700: 1630: 1582:Louis de Broglie 1578:or wavelengths. 1572:Fourier analysis 1561:local wavelength 1509: 1380:The analysis of 1341:Nonuniform media 1313: 1311: 1310: 1305: 1300: 1298: 1294: 1293: 1277: 1276: 1267: 1223: 1221: 1220: 1215: 1210: 1208: 1204: 1203: 1184: 1164:refractive index 1102: 1100: 1099: 1094: 1089: 1088: 1087: 1083: 994: 978: 963: 961: 960: 955: 950: 942: 937: 932: 921: 916: 911: 903: 882: 880: 879: 874: 869: 861: 856: 851: 840: 835: 830: 822: 801: 799: 798: 793: 791: 787: 748: 744: 703: 643: 641: 640: 635: 633: 629: 610: 605: 597: 578: 574: 573: 569: 559: 551: 513: 376: 372: 370: 364: 362: 329: 327: 326: 321: 305: 303: 302: 297: 282: 280: 279: 274: 267: 259: 240: 238: 237: 232: 208:Sinusoidal waves 196:as well as to a 4343: 4342: 4338: 4337: 4336: 4334: 4333: 4332: 4313: 4312: 4311: 4306: 4272: 4199: 4174: 4160: 4128: 4056: 4008: 3950: 3927: 3904: 3897: 3890: 3883: 3881: 3833: 3828: 3790:Wayback Machine 3774: 3769: 3762: 3746: 3742: 3735: 3719: 3715: 3708: 3692: 3688: 3681: 3663: 3659: 3652: 3636: 3632: 3625: 3609: 3605: 3598: 3576: 3572: 3565: 3547: 3543: 3536: 3514: 3510: 3503: 3485: 3481: 3474: 3455: 3448: 3438: 3416: 3412: 3398:are related by 3386: 3370: 3366: 3359: 3343: 3339: 3332: 3316: 3312: 3305: 3287: 3283: 3276: 3254: 3250: 3243: 3221: 3217: 3210: 3192: 3188: 3169: 3165: 3158: 3138: 3134: 3127: 3107: 3088: 3084: 3077: 3061: 3057: 3050: 3034: 3030: 3023: 3007: 3000: 2993: 2976: 2972: 2965: 2949: 2945: 2938: 2918: 2914: 2904: 2882: 2878: 2871: 2855: 2851: 2844: 2830: 2826: 2819: 2803: 2799: 2792: 2774: 2770: 2763: 2749: 2745: 2741: 2693: 2678: 2656: 2639: 2626:(also known as 2612: 2557: 2548:is in radians. 2503: 2492: 2489: 2488: 2435: 2433: 2430: 2429: 2398: 2393: 2388: 2367: 2363: 2361: 2358: 2357: 2341:The resolvable 2336:Bessel function 2333: 2326: 2312:; the distance 2302:radiotelescopes 2294:resolving power 2290: 2282:Main articles: 2280: 2225: 2217: 2215: 2207: 2204: 2203: 2180: 2166: 2152: 2150: 2146: 2145: 2127: 2113: 2112: 2095: 2092: 2091: 2031: 2023:Main articles: 2021: 2007: 2000: 1941: 1939: 1935: 1926: 1922: 1917: 1888: 1886: 1882: 1873: 1869: 1863: 1859: 1850: 1846: 1844: 1841: 1840: 1792: 1763: 1760: 1759: 1709: 1706: 1705: 1692: 1660: 1654: 1649: 1628: 1609:Planck constant 1549: 1535: 1496: 1452: 1408: 1343: 1289: 1285: 1278: 1272: 1268: 1266: 1258: 1255: 1254: 1249: 1245: 1199: 1195: 1188: 1183: 1175: 1172: 1171: 1109: 1067: 1063: 1059: 1055: 1050: 1047: 1046: 980: 968: 941: 922: 920: 904: 902: 894: 891: 890: 860: 841: 839: 823: 821: 813: 810: 809: 765: 761: 728: 724: 689: 686: 685: 598: 596: 595: 591: 550: 549: 545: 538: 534: 499: 496: 495: 487:and wavelength 477: 446: 374: 368: 366: 360: 358: 345:In the case of 315: 312: 311: 291: 288: 287: 258: 250: 247: 246: 226: 223: 222: 210: 126:sinusoidal wave 24: 17: 12: 11: 5: 4341: 4331: 4330: 4325: 4308: 4307: 4305: 4304: 4299: 4294: 4289: 4283: 4281: 4274: 4273: 4271: 4270: 4265: 4260: 4255: 4250: 4245: 4240: 4235: 4230: 4225: 4220: 4215: 4209: 4207: 4201: 4200: 4198: 4197: 4192: 4187: 4182: 4177: 4172: 4168: 4163: 4158: 4154: 4149: 4144: 4138: 4136: 4130: 4129: 4127: 4126: 4121: 4116: 4094: 4089: 4066: 4064: 4058: 4057: 4055: 4054: 4049: 4044: 4039: 4034: 4029: 4024: 4018: 4016: 4010: 4009: 4007: 4006: 4001: 3996: 3991: 3986: 3981: 3976: 3971: 3966: 3960: 3958: 3952: 3951: 3949: 3948: 3943: 3937: 3935: 3929: 3928: 3926: 3925: 3920: 3914: 3912: 3906: 3905: 3903: 3902: 3869: 3864: 3859: 3854: 3849: 3844: 3838: 3835: 3834: 3827: 3826: 3819: 3812: 3804: 3798: 3797: 3792: 3780: 3773: 3772:External links 3770: 3768: 3767: 3760: 3740: 3733: 3713: 3706: 3686: 3679: 3657: 3650: 3630: 3623: 3603: 3596: 3570: 3563: 3541: 3534: 3508: 3501: 3479: 3472: 3446: 3436: 3410: 3384: 3364: 3357: 3337: 3330: 3310: 3303: 3281: 3274: 3248: 3242:978-3642228940 3241: 3215: 3209:978-3642127984 3208: 3186: 3163: 3156: 3132: 3125: 3105: 3082: 3075: 3055: 3048: 3028: 3021: 2998: 2991: 2970: 2963: 2943: 2936: 2912: 2902: 2876: 2869: 2849: 2842: 2824: 2817: 2797: 2790: 2768: 2761: 2742: 2740: 2737: 2736: 2735: 2730: 2725: 2720: 2715: 2710: 2704: 2699: 2692: 2689: 2611: 2608: 2556: 2553: 2542:entrance pupil 2530: 2529: 2518: 2510: 2507: 2502: 2499: 2496: 2457: 2454: 2451: 2448: 2445: 2441: 2438: 2426: 2425: 2414: 2404: 2401: 2396: 2392: 2387: 2384: 2379: 2376: 2373: 2370: 2366: 2331: 2324: 2279: 2276: 2252: 2251: 2240: 2231: 2228: 2223: 2220: 2214: 2211: 2191: 2183: 2178: 2172: 2169: 2164: 2161: 2158: 2155: 2149: 2144: 2141: 2138: 2135: 2130: 2125: 2122: 2119: 2116: 2111: 2108: 2105: 2102: 2099: 2083:via a squared 2020: 2017: 2005: 1998: 1984: 1983: 1972: 1965: 1960: 1956: 1953: 1950: 1947: 1944: 1938: 1934: 1929: 1925: 1920: 1915: 1910: 1906: 1903: 1900: 1897: 1894: 1891: 1885: 1881: 1876: 1872: 1866: 1862: 1858: 1853: 1849: 1823: 1822: 1811: 1805: 1802: 1799: 1795: 1791: 1788: 1785: 1782: 1779: 1776: 1773: 1770: 1767: 1749: 1748: 1737: 1731: 1728: 1725: 1722: 1719: 1716: 1713: 1673:interferometer 1656:Main article: 1653: 1650: 1648: 1645: 1545:Main article: 1534: 1531: 1473:traveling wave 1451: 1448: 1425:Brillouin zone 1407: 1404: 1342: 1339: 1315: 1314: 1303: 1297: 1292: 1288: 1284: 1281: 1275: 1271: 1265: 1262: 1247: 1243: 1235:in vacuum and 1233:speed of light 1225: 1224: 1213: 1207: 1202: 1198: 1194: 1191: 1187: 1182: 1179: 1108: 1105: 1104: 1103: 1092: 1086: 1082: 1079: 1076: 1073: 1070: 1066: 1062: 1058: 1054: 965: 964: 953: 948: 945: 940: 935: 931: 928: 925: 919: 914: 910: 907: 901: 898: 884: 883: 872: 867: 864: 859: 854: 850: 847: 844: 838: 833: 829: 826: 820: 817: 803: 802: 790: 786: 783: 780: 777: 774: 771: 768: 764: 760: 757: 754: 751: 747: 743: 740: 737: 734: 731: 727: 723: 720: 717: 714: 711: 708: 702: 699: 696: 693: 645: 644: 632: 628: 625: 622: 619: 616: 613: 608: 604: 601: 594: 590: 587: 584: 581: 577: 572: 568: 565: 562: 557: 554: 548: 544: 541: 537: 533: 530: 527: 524: 521: 518: 512: 509: 506: 503: 476: 473: 469:speed of light 445: 444:Standing waves 442: 402:speed of sound 355:speed of light 330:is the wave's 319: 308:phase velocity 295: 284: 283: 272: 265: 262: 257: 254: 230: 209: 206: 198:sound spectrum 173:magnetic field 86:standing waves 82:zero crossings 64:spatial period 44:zero crossings 15: 9: 6: 4: 3: 2: 4340: 4329: 4326: 4324: 4321: 4320: 4318: 4303: 4300: 4298: 4295: 4293: 4290: 4288: 4285: 4284: 4282: 4279: 4275: 4269: 4266: 4264: 4261: 4259: 4256: 4254: 4251: 4249: 4246: 4244: 4241: 4239: 4236: 4234: 4231: 4229: 4226: 4224: 4221: 4219: 4216: 4214: 4211: 4210: 4208: 4206: 4202: 4196: 4193: 4191: 4188: 4186: 4183: 4181: 4178: 4176: 4169: 4167: 4164: 4162: 4155: 4153: 4150: 4148: 4145: 4143: 4140: 4139: 4137: 4135: 4131: 4125: 4122: 4120: 4117: 4114: 4110: 4106: 4102: 4098: 4095: 4093: 4090: 4087: 4083: 4079: 4075: 4071: 4068: 4067: 4065: 4063: 4059: 4053: 4050: 4048: 4045: 4043: 4040: 4038: 4035: 4033: 4030: 4028: 4025: 4023: 4020: 4019: 4017: 4015: 4011: 4005: 4002: 4000: 3997: 3995: 3992: 3990: 3987: 3985: 3982: 3980: 3977: 3975: 3972: 3970: 3967: 3965: 3962: 3961: 3959: 3957: 3953: 3947: 3944: 3942: 3939: 3938: 3936: 3934: 3930: 3924: 3921: 3919: 3916: 3915: 3913: 3911: 3907: 3900: 3896: 3889: 3877: 3873: 3870: 3868: 3865: 3863: 3860: 3858: 3855: 3853: 3850: 3848: 3845: 3843: 3840: 3839: 3836: 3832: 3825: 3820: 3818: 3813: 3811: 3806: 3805: 3802: 3796: 3793: 3791: 3787: 3784: 3781: 3779: 3776: 3775: 3763: 3757: 3753: 3752: 3744: 3736: 3730: 3726: 3725: 3717: 3709: 3703: 3699: 3698: 3690: 3682: 3680:0-7503-0734-X 3676: 3672: 3668: 3661: 3653: 3647: 3643: 3642: 3634: 3626: 3624:0-471-23429-X 3620: 3616: 3615: 3607: 3599: 3597:0-387-95269-1 3593: 3589: 3585: 3581: 3574: 3566: 3560: 3556: 3552: 3545: 3537: 3531: 3527: 3522: 3521: 3512: 3504: 3502:0-12-014653-3 3498: 3494: 3490: 3483: 3475: 3469: 3465: 3461: 3453: 3451: 3443: 3439: 3437:0-486-66741-3 3433: 3429: 3425: 3421: 3414: 3407: 3405: 3401: 3397: 3393: 3387: 3385:0-8176-3967-5 3381: 3377: 3376: 3368: 3360: 3354: 3350: 3349: 3341: 3333: 3327: 3323: 3322: 3314: 3306: 3300: 3296: 3292: 3285: 3277: 3271: 3267: 3263: 3259: 3252: 3244: 3238: 3234: 3230: 3226: 3219: 3211: 3205: 3201: 3197: 3190: 3182: 3178: 3177:"Wave theory" 3174: 3173:Lord Rayleigh 3167: 3159: 3157:0-387-28152-5 3153: 3149: 3145: 3144: 3136: 3128: 3126:0-521-39293-4 3122: 3118: 3117: 3108: 3106:0-521-42947-1 3102: 3097: 3096: 3086: 3078: 3072: 3068: 3067: 3059: 3051: 3045: 3041: 3040: 3032: 3024: 3018: 3014: 3013: 3005: 3003: 2994: 2988: 2984: 2983: 2974: 2966: 2960: 2956: 2955: 2947: 2939: 2937:0-387-98756-8 2933: 2929: 2925: 2924: 2916: 2909: 2905: 2899: 2895: 2890: 2889: 2880: 2872: 2866: 2862: 2861: 2853: 2845: 2843:2-88124-995-7 2839: 2835: 2828: 2820: 2818:0-534-49143-X 2814: 2810: 2809: 2801: 2793: 2791:0-19-850693-7 2787: 2783: 2779: 2772: 2764: 2762:0-201-11609-X 2758: 2754: 2747: 2743: 2734: 2731: 2729: 2726: 2724: 2723:Spectral line 2721: 2719: 2716: 2714: 2711: 2708: 2705: 2703: 2700: 2698: 2695: 2694: 2688: 2685: 2681: 2677:(symbol  2676: 2672: 2669:(symbol  2668: 2663: 2659: 2654: 2653: 2646: 2642: 2637: 2636:barred lambda 2633: 2629: 2625: 2616: 2607: 2605: 2601: 2600:Subwavelength 2597: 2595: 2591: 2587: 2583: 2579: 2574: 2572: 2571:optical fibre 2568: 2567: 2562: 2561:subwavelength 2555:Subwavelength 2552: 2549: 2547: 2543: 2539: 2535: 2516: 2508: 2505: 2500: 2497: 2494: 2487: 2486: 2485: 2483: 2479: 2474: 2472: 2455: 2452: 2449: 2446: 2443: 2412: 2394: 2390: 2385: 2382: 2377: 2374: 2371: 2368: 2364: 2356: 2355: 2354: 2352: 2348: 2344: 2339: 2337: 2330: 2323: 2319: 2315: 2311: 2307: 2303: 2299: 2295: 2289: 2285: 2275: 2273: 2269: 2265: 2261: 2257: 2238: 2229: 2226: 2221: 2218: 2212: 2209: 2189: 2181: 2176: 2170: 2167: 2162: 2159: 2156: 2153: 2147: 2142: 2136: 2128: 2109: 2103: 2097: 2090: 2089: 2088: 2086: 2085:sinc function 2082: 2078: 2074: 2069: 2067: 2062: 2060: 2056: 2051: 2049: 2040: 2035: 2030: 2026: 2016: 2014: 2009: 2004: 1997: 1993: 1989: 1970: 1963: 1958: 1954: 1951: 1948: 1945: 1942: 1936: 1932: 1927: 1923: 1918: 1913: 1908: 1904: 1901: 1898: 1895: 1892: 1889: 1883: 1879: 1874: 1870: 1864: 1860: 1856: 1851: 1847: 1839: 1838: 1837: 1834: 1832: 1828: 1809: 1803: 1797: 1793: 1789: 1786: 1783: 1777: 1774: 1771: 1768: 1765: 1758: 1757: 1756: 1754: 1735: 1729: 1726: 1723: 1720: 1717: 1714: 1711: 1704: 1703: 1702: 1699: 1695: 1690: 1686: 1682: 1678: 1674: 1664: 1659: 1644: 1642: 1638: 1634: 1633:wave function 1626: 1622: 1618: 1614: 1610: 1606: 1602: 1598: 1594: 1590: 1587: 1583: 1579: 1577: 1573: 1568: 1566: 1562: 1558: 1554: 1548: 1539: 1530: 1528: 1527:periodic wave 1519: 1515: 1513: 1507: 1503: 1499: 1494: 1490: 1486: 1480: 1478: 1477:superposition 1474: 1470: 1466: 1456: 1447: 1445: 1441: 1437: 1433: 1428: 1426: 1421: 1412: 1403: 1402:in the wave. 1401: 1397: 1393: 1389: 1388: 1383: 1378: 1375: 1374:inhomogeneous 1366: 1362: 1360: 1356: 1347: 1338: 1336: 1332: 1328: 1324: 1319: 1301: 1290: 1286: 1279: 1273: 1269: 1263: 1260: 1253: 1252: 1251: 1242: 1238: 1234: 1230: 1211: 1200: 1196: 1189: 1185: 1180: 1177: 1170: 1169: 1168: 1167:according to 1166: 1165: 1159: 1155: 1153: 1149: 1145: 1140: 1138: 1129: 1121: 1113: 1107:General media 1090: 1084: 1080: 1077: 1074: 1071: 1068: 1064: 1060: 1056: 1052: 1045: 1044: 1043: 1041: 1037: 1033: 1028: 1026: 1022: 1018: 1014: 1010: 1006: 1002: 998: 992: 988: 984: 976: 972: 951: 946: 943: 938: 933: 929: 926: 923: 917: 912: 908: 905: 899: 896: 889: 888: 887: 870: 865: 862: 857: 852: 848: 845: 842: 836: 831: 827: 824: 818: 815: 808: 807: 806: 788: 781: 778: 775: 772: 766: 762: 758: 755: 752: 749: 745: 741: 738: 735: 732: 729: 725: 721: 718: 715: 712: 706: 700: 697: 691: 684: 683: 682: 680: 677: 673: 670: 666: 662: 658: 654: 650: 630: 623: 620: 617: 614: 606: 602: 599: 592: 588: 585: 582: 579: 575: 570: 566: 563: 560: 555: 552: 546: 542: 539: 535: 531: 528: 525: 522: 516: 510: 507: 501: 494: 493: 492: 490: 486: 482: 472: 470: 464: 462: 457: 455: 451: 450:standing wave 437: 429: 425: 423: 419: 415: 411: 407: 403: 399: 394: 392: 388: 384: 380: 356: 352: 348: 343: 341: 337: 333: 317: 309: 293: 270: 263: 260: 255: 252: 245: 244: 243: 241: 228: 219: 215: 205: 203: 199: 195: 191: 187: 186: 180: 178: 174: 170: 166: 162: 158: 154: 150: 146: 142: 138: 133: 131: 127: 122: 120: 116: 112: 108: 104: 101: 97: 96: 91: 87: 83: 79: 78: 73: 69: 65: 61: 57: 53: 45: 41: 37: 33: 28: 22: 4277: 3894: 3882: 3750: 3743: 3723: 3716: 3696: 3689: 3670: 3660: 3640: 3633: 3613: 3606: 3587: 3583: 3573: 3554: 3544: 3519: 3511: 3492: 3482: 3463: 3441: 3427: 3423: 3413: 3403: 3399: 3395: 3391: 3389: 3374: 3367: 3347: 3340: 3320: 3313: 3294: 3284: 3265: 3261: 3251: 3232: 3228: 3218: 3199: 3189: 3180: 3166: 3147: 3142: 3135: 3115: 3094: 3085: 3065: 3058: 3038: 3031: 3011: 2981: 2973: 2953: 2946: 2927: 2922: 2915: 2907: 2887: 2879: 2859: 2852: 2833: 2827: 2807: 2800: 2781: 2771: 2752: 2746: 2728:Spectroscopy 2683: 2679: 2670: 2661: 2657: 2650: 2644: 2640: 2631: 2627: 2623: 2621: 2599: 2598: 2575: 2564: 2560: 2558: 2550: 2545: 2537: 2533: 2531: 2477: 2475: 2427: 2342: 2340: 2328: 2321: 2317: 2313: 2291: 2271: 2267: 2263: 2259: 2255: 2253: 2080: 2076: 2070: 2065: 2063: 2052: 2044: 2013:redistribute 2012: 2010: 2002: 1995: 1991: 1987: 1985: 1835: 1830: 1826: 1824: 1752: 1750: 1697: 1693: 1688: 1684: 1669: 1604: 1600: 1596: 1592: 1588: 1580: 1569: 1564: 1560: 1556: 1553:wave packets 1550: 1533:Wave packets 1526: 1524: 1505: 1501: 1497: 1492: 1485:cnoidal wave 1481: 1461: 1432:energy bands 1429: 1417: 1391: 1385: 1379: 1373: 1371: 1358: 1352: 1320: 1316: 1240: 1236: 1228: 1226: 1162: 1160: 1156: 1141: 1134: 1029: 1024: 1020: 1016: 1012: 996: 990: 986: 982: 974: 970: 966: 885: 804: 678: 671: 660: 656: 652: 648: 646: 488: 484: 480: 478: 465: 458: 447: 416:and 17  400:in air, the 395: 344: 285: 242:is given by 221: 217: 211: 183: 181: 134: 123: 119:interference 106: 100:Greek letter 93: 75: 63: 59: 49: 35: 4297:Medium wave 3974:Lyman-alpha 3956:Ultraviolet 3895:wavelengths 3888:frequencies 3852:Ultraviolet 2306:microscopes 2300:(including 2048:diffraction 2025:Diffraction 1637:wavenumbers 1576:wavenumbers 1547:Wave packet 1512:ocean waves 1469:wave vector 1152:Snell's law 1001:wave vector 398:sound waves 373:divided by 371:10 m/s 363:10 m/s 342:nonlinear. 159:, while in 145:water waves 137:sound waves 124:Assuming a 56:mathematics 4317:Categories 4278:Wavelength 4134:Microwaves 3946:Hard X-ray 3941:Soft X-ray 3910:Gamma rays 3842:Gamma rays 2739:References 2298:telescopes 1831:vice versa 1551:Localized 1465:wavenumber 1396:wavenumber 1387:WKB method 1323:dispersion 1144:refraction 1032:plane wave 1005:plane wave 669:wavenumber 375:10 Hz 351:free space 163:and other 60:wavelength 4292:Shortwave 4287:Microwave 3867:Microwave 2594:photonics 2582:apertures 2569:means an 2559:The term 2506:λ 2495:δ 2482:Airy disk 2456:θ 2453:⁡ 2391:λ 2310:Airy disk 2227:λ 2168:π 2160:π 2157:⁡ 1959:λ 1955:α 1952:⁡ 1943:π 1933:⁡ 1909:λ 1905:α 1902:⁡ 1893:π 1880:⁡ 1804:λ 1775:θ 1772:⁡ 1730:λ 1721:θ 1718:⁡ 1681:two slits 1629:10 m 1621:electrons 1287:λ 1270:λ 1261:λ 1197:λ 1078:ω 1075:− 934:ω 927:π 909:π 897:λ 863:ω 846:π 832:λ 828:π 776:− 759:⁡ 739:ω 736:− 722:⁡ 665:amplitude 655:and time 618:− 607:λ 603:π 589:⁡ 561:− 556:λ 543:π 532:⁡ 332:frequency 253:λ 149:conductor 130:frequency 115:envelopes 111:modulated 46:as shown. 32:sine wave 4302:Longwave 4062:Infrared 3862:Infrared 3786:Archived 3175:(1890). 2733:Spectrum 2691:See also 2327:, where 2039:envelope 1603:, where 1586:momentum 1565:envelope 1557:envelope 1440:aliasing 1420:aliasing 1406:Crystals 1355:periodic 357:, about 185:spectrum 171:and the 169:electric 157:pressure 3893:longer 3886:higher 3857:Visible 3402:= 2π / 3012:op. cit 2478:angular 2343:spatial 1827:fringes 1607:is the 1444:sampled 1331:refract 1231:is the 1009:3-space 999:with a 663:is the 334:. In a 90:inverse 52:physics 4328:Length 4195:L band 4190:S band 4185:C band 4180:X band 4166:K band 4152:Q band 4147:V band 4142:W band 4047:Orange 4042:Yellow 4022:Violet 3933:X-rays 3847:X-rays 3758:  3731:  3704:  3677:  3648:  3621:  3594:  3561:  3532:  3499:  3470:  3434:  3382:  3355:  3328:  3301:  3272:  3239:  3206:  3154:  3123:  3103:  3073:  3046:  3019:  2989:  2961:  2934:  2900:  2867:  2840:  2815:  2788:  2759:  2753:Optics 2588:, and 2532:where 2514:  2410:  2304:) and 2254:where 2236:  2187:  1986:where 1968:  1829:, and 1807:  1751:where 1733:  1570:Using 1227:where 1137:vacuum 1036:cosine 704:  659:, and 647:where 514:  387:violet 286:where 214:linear 103:lambda 4323:Waves 4280:types 4205:Radio 4101:Bands 4074:Bands 4037:Green 3872:Radio 2660:= 2π/ 1677:Young 1623:in a 1359:local 1327:prism 454:nodes 385:, to 161:light 153:sound 141:light 77:phase 66:of a 40:phase 4175:band 4161:band 4119:LWIR 4097:MWIR 4092:SWIR 4032:Cyan 4027:Blue 3756:ISBN 3729:ISBN 3702:ISBN 3675:ISBN 3646:ISBN 3619:ISBN 3592:ISBN 3559:ISBN 3530:ISBN 3497:ISBN 3468:ISBN 3432:ISBN 3380:ISBN 3353:ISBN 3326:ISBN 3299:ISBN 3270:ISBN 3237:ISBN 3204:ISBN 3170:See 3152:ISBN 3121:ISBN 3101:ISBN 3071:ISBN 3044:ISBN 3017:ISBN 2987:ISBN 2959:ISBN 2932:ISBN 2898:ISBN 2865:ISBN 2838:ISBN 2813:ISBN 2786:ISBN 2757:ISBN 2682:= 2π 2540:the 2501:1.22 2476:The 2386:1.22 2286:and 2027:and 1696:sin 1434:and 1040:sine 491:as: 422:bats 396:For 151:. A 68:wave 54:and 4268:ELF 4263:SLF 4258:ULF 4253:VLF 4233:VHF 4228:UHF 4223:SHF 4218:EHF 4213:THF 4124:FIR 4070:NIR 4052:Red 4004:UVA 3999:UVB 3994:UVC 3989:NUV 3984:MUV 3979:FUV 2894:102 2687:). 2647:/2π 2450:sin 2154:sin 1949:sin 1924:sin 1899:sin 1871:sin 1769:sin 1715:sin 1625:CRT 1491:of 1467:or 1007:in 886:or 756:cos 719:cos 586:cos 529:cos 393:). 379:red 212:In 200:or 70:or 62:or 50:In 4319:: 4248:LF 4243:MF 4238:HF 4111:, 4107:, 4103:: 4084:, 4080:, 4076:: 3669:. 3590:. 3588:ff 3553:. 3528:. 3526:15 3462:. 3449:^ 3440:. 3430:. 3428:ff 3422:. 3388:. 3293:. 3268:. 3266:ff 3260:. 3235:. 3233:ff 3227:. 3198:. 3179:. 3150:. 3148:ff 3001:^ 2930:. 2928:ff 2906:. 2896:. 2780:. 2643:= 2606:. 2596:. 2473:. 2353:: 2338:. 2087:: 2050:. 1833:. 1643:. 1595:= 1504:; 1498:cn 1479:. 1427:. 1337:. 1154:. 991:ωt 989:− 985:⋅ 975:ωt 973:− 971:kx 448:A 418:mm 410:Hz 383:nm 204:. 143:, 139:, 58:, 34:, 4173:u 4171:K 4159:a 4157:K 4115:) 4113:N 4109:M 4105:L 4099:( 4088:) 4086:H 4082:K 4078:J 4072:( 3898:→ 3884:← 3823:e 3816:t 3809:v 3764:. 3737:. 3710:. 3683:. 3654:. 3627:. 3600:. 3567:. 3538:. 3505:. 3476:. 3406:. 3404:λ 3400:k 3396:k 3392:λ 3361:. 3334:. 3307:. 3278:. 3245:. 3212:. 3160:. 3129:. 3109:. 3079:. 3052:. 3025:. 2995:. 2967:. 2940:. 2873:. 2846:. 2821:. 2794:. 2765:. 2684:f 2680:ω 2671:ħ 2662:λ 2658:k 2655:( 2645:λ 2641:ƛ 2632:ƛ 2546:δ 2538:D 2534:λ 2517:, 2509:D 2498:= 2447:n 2444:= 2440:A 2437:N 2413:, 2403:A 2400:N 2395:2 2383:= 2378:y 2375:r 2372:i 2369:A 2365:r 2332:1 2329:J 2325:1 2322:J 2318:r 2314:x 2272:x 2268:u 2264:S 2260:R 2256:L 2239:, 2230:R 2222:L 2219:x 2213:= 2210:u 2190:; 2182:2 2177:) 2171:u 2163:u 2148:( 2143:= 2140:) 2137:u 2134:( 2129:2 2124:c 2121:n 2118:i 2115:s 2110:= 2107:) 2104:u 2101:( 2098:S 2081:x 2077:S 2041:. 2006:1 2003:I 1999:1 1996:I 1992:g 1988:q 1971:, 1964:) 1946:g 1937:( 1928:2 1919:/ 1914:) 1896:g 1890:q 1884:( 1875:2 1865:1 1861:I 1857:= 1852:q 1848:I 1810:. 1801:) 1798:2 1794:/ 1790:1 1787:+ 1784:m 1781:( 1778:= 1766:d 1753:m 1736:, 1727:m 1724:= 1712:d 1698:θ 1694:d 1689:d 1685:s 1605:h 1601:p 1599:/ 1597:h 1593:λ 1589:p 1508:) 1506:m 1502:x 1500:( 1493:m 1302:. 1296:) 1291:0 1283:( 1280:n 1274:0 1264:= 1248:0 1244:0 1241:λ 1239:( 1237:n 1229:c 1212:, 1206:) 1201:0 1193:( 1190:n 1186:c 1181:= 1178:v 1091:. 1085:) 1081:t 1072:x 1069:k 1065:( 1061:i 1057:e 1053:A 1025:v 1021:k 1017:k 1013:r 997:k 993:) 987:r 983:k 981:( 977:) 969:( 952:. 947:f 944:v 939:= 930:v 924:2 918:= 913:k 906:2 900:= 871:, 866:v 858:= 853:v 849:f 843:2 837:= 825:2 819:= 816:k 789:) 785:) 782:t 779:v 773:x 770:( 767:k 763:( 753:A 750:= 746:) 742:t 733:x 730:k 726:( 716:A 713:= 710:) 707:t 701:, 698:x 695:( 692:y 679:ω 672:k 661:A 657:t 653:x 649:y 631:) 627:) 624:t 621:v 615:x 612:( 600:2 593:( 583:A 580:= 576:) 571:) 567:t 564:f 553:x 547:( 540:2 536:( 526:A 523:= 520:) 517:t 511:, 508:x 505:( 502:y 489:λ 485:f 481:v 414:m 369:× 367:3 361:× 359:3 318:f 294:v 271:, 264:f 261:v 256:= 229:v 218:λ 107:λ 105:( 36:λ 23:.

Index

Wavelength (disambiguation)

sine wave
phase
zero crossings
physics
mathematics
wave
periodic function
phase
zero crossings
standing waves
inverse
spatial frequency
Greek letter
lambda
modulated
envelopes
interference
sinusoidal wave
frequency
sound waves
light
water waves
conductor
sound
pressure
light
electromagnetic radiation
electric

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.