Knowledge

Sound

Source 📝

635: 3368: 1830:
gained from frequency transients, noisiness, unsteadiness, perceived pitch and the spread and intensity of overtones in the sound over an extended time frame. The way a sound changes over time provides most of the information for timbre identification. Even though a small section of the wave form from each instrument looks very similar, differences in changes over time between the clarinet and the piano are evident in both loudness and harmonic content. Less noticeable are the different noises heard, such as air hisses for the clarinet and hammer strikes for the piano.
282: 522: 48: 29: 1898: 514: 391: 1798: 3655: 496: 1789:
related to the physical duration of a sound. For example; in a noisy environment, gapped sounds (sounds that stop and start) can sound as if they are continuous because the offset messages are missed owing to disruptions from noises in the same general bandwidth. This can be of great benefit in understanding distorted messages such as radio signals that suffer from interference, as (owing to this effect) the message is heard as if it was continuous.
1778: 1819: 1746: 1758:
can vary. Sometimes individuals identify different pitches for the same sound, based on their personal experience of particular sound patterns. Selection of a particular pitch is determined by pre-conscious examination of vibrations, including their frequencies and the balance between them. Specific attention is given to recognising potential harmonics. Every sound is placed on a pitch continuum from low to high.
484: 285: 284: 289: 288: 283: 290: 341:, and displacement of the medium vary in time. At an instant in time, the pressure, velocity, and displacement vary in space. The particles of the medium do not travel with the sound wave. This is intuitively obvious for a solid, and the same is true for liquids and gases (that is, the vibrations of particles in the gas or liquid transport the vibrations, while the 287: 1489: 1877:
Spatial location represents the cognitive placement of a sound in an environmental context; including the placement of a sound on both the horizontal and vertical plane, the distance from the sound source and the characteristics of the sonic environment. In a thick texture, it is possible to identify
1809:
is perceived as how "loud" or "soft" a sound is and relates to the totalled number of auditory nerve stimulations over short cyclic time periods, most likely over the duration of theta wave cycles. This means that at short durations, a very short sound can sound softer than a longer sound even though
175:
in pressure, stress, particle displacement, particle velocity, etc., propagated in a medium with internal forces (e.g., elastic or viscous), or the superposition of such propagated oscillation. (b) Auditory sensation evoked by the oscillation described in (a)." Sound can be viewed as a wave motion in
1932:
is sound waves with frequencies lower than 20 Hz. Although sounds of such low frequency are too low for humans to hear as a pitch, these sound are heard as discrete pulses (like the 'popping' sound of an idling motorcycle). Whales, elephants and other animals can detect infrasound and use it to
1757:
is perceived as how "low" or "high" a sound is and represents the cyclic, repetitive nature of the vibrations that make up sound. For simple sounds, pitch relates to the frequency of the slowest vibration in the sound (called the fundamental harmonic). In the case of complex sounds, pitch perception
371:
Motion of the medium itself. If the medium is moving, this movement may increase or decrease the absolute speed of the sound wave depending on the direction of the movement. For example, sound moving through wind will have its speed of propagation increased by the speed of the wind if the sound and
1829:
is perceived as the quality of different sounds (e.g. the thud of a fallen rock, the whir of a drill, the tone of a musical instrument or the quality of a voice) and represents the pre-conscious allocation of a sonic identity to a sound (e.g. "it's an oboe!"). This identity is based on information
1605:
is dedicated to such studies. Webster's dictionary defined sound as: "1. The sensation of hearing, that which is heard; specif.: a. Psychophysics. Sensation due to stimulation of the auditory nerves and auditory centers of the brain, usually by vibrations transmitted in a material medium, commonly
1801:
Loudness information is summed over a period of about 200 ms before being sent to the auditory cortex. Louder signals create a greater 'push' on the Basilar membrane and thus stimulate more nerves, creating a stronger loudness signal. A more complex signal also creates more nerve firings and so
1788:
is perceived as how "long" or "short" a sound is and relates to onset and offset signals created by nerve responses to sounds. The duration of a sound usually lasts from the time the sound is first noticed until the sound is identified as having changed or ceased. Sometimes this is not directly
533:
Although there are many complexities relating to the transmission of sounds, at the point of reception (i.e. the ears), sound is readily dividable into two simple elements: pressure and time. These fundamental elements form the basis of all sound waves. They can be used to describe, in absolute
1694:
is a term often used to refer to an unwanted sound. In science and engineering, noise is an undesirable component that obscures a wanted signal. However, in sound perception it can often be used to identify the source of a sound and is an important component of timbre perception (see below).
925:
Those physical properties and the speed of sound change with ambient conditions. For example, the speed of sound in gases depends on temperature. In 20 °C (68 °F) air at sea level, the speed of sound is approximately 343 m/s (1,230 km/h; 767 mph) using the formula
1701:
is the component of the acoustic environment that can be perceived by humans. The acoustic environment is the combination of all sounds (whether audible to humans or not) within a given area as modified by the environment and understood by people, in context of the surrounding environment.
2347: 1249:
is the difference, in a given medium, between average local pressure and the pressure in the sound wave. A square of this difference (i.e., a square of the deviation from the equilibrium pressure) is usually averaged over time and/or space, and a square root of this average provides a
955:
In fresh water the speed of sound is approximately 1,482 m/s (5,335 km/h; 3,315 mph). In steel, the speed of sound is about 5,960 m/s (21,460 km/h; 13,330 mph). Sound moves the fastest in solid atomic hydrogen at about 36,000 m/s (129,600 km/h;
1908:
is sound waves with frequencies higher than 20,000 Hz. Ultrasound is not different from audible sound in its physical properties, but cannot be heard by humans. Ultrasound devices operate with frequencies from 20 kHz up to several gigahertz.
537:
In order to understand the sound more fully, a complex wave such as the one shown in a blue background on the right of this text, is usually separated into its component parts, which are a combination of various sound wave frequencies (and noise).
286: 1333: 2931: 1606:
air, affecting the organ of hearing. b. Physics. Vibrational energy which occasions such a sensation. Sound is propagated by progressive longitudinal vibratory disturbances (sound waves)." This means that the correct response to the question: "
2626:
In J. Rosevear & S. Harding. (Eds.), ASME XXth National Conference proceedings. Paper presented at: Music: Educating for life: ASME XXth National Conference (pp. 22–28), Parkville, Victoria: The Australian Society for Music Education
3063: 2283: 1749:
Pitch perception. During the listening process, each sound is analysed for a repeating pattern (orange arrows) and the results forwarded to the auditory cortex as a single pitch of a certain height (octave) and chroma (note
1607: 3130:
Levitin, D.J. (1999). Memory for musical attributes. In P.R. Cook (Ed.), Music, cognition, and computerized sound: An introduction to psychoacoustics (pp. 105–127). Cambridge, Massachusetts: The MIT press.
2922: 66: 305:. One fork is hit with a rubberized mallet, causing the second fork to become visibly excited due to the oscillation caused by the periodic change in the pressure and density of the air. This is an 176:
air or other elastic media. In this case, sound is a stimulus. Sound can also be viewed as an excitation of the hearing mechanism that results in the perception of sound. In this case, sound is a
650:
The speed of sound depends on the medium the waves pass through, and is a fundamental property of the material. The first significant effort towards measurement of the speed of sound was made by
2378:
Matthews, M. (1999). Introduction to timbre. In P.R. Cook (Ed.), Music, cognition, and computerized sound: An introduction to psychoacoustic (pp. 79–88). Cambridge, Massachusetts: The MIT press.
2280: 810: 1781:
Duration perception. When a new sound is noticed (Green arrows), a sound onset message is sent to the auditory cortex. When the repeating pattern is missed, a sound offset messages is sent.
693: 329:
of a stereo speaker. The sound source creates vibrations in the surrounding medium. As the source continues to vibrate the medium, the vibrations propagate away from the source at the
64: 1810:
they are presented at the same intensity level. Past around 200 ms this is no longer the case and the duration of the sound no longer affects the apparent loudness of the sound.
880: 1536: 940:
effect, to the sound amplitude, which means there are non-linear propagation effects, such as the production of harmonics and mixed tones not present in the original sound (see
2264: 1484:{\displaystyle L_{\mathrm {p} }=10\,\log _{10}\left({\frac {{p}^{2}}{{p_{\mathrm {ref} }}^{2}}}\right)=20\,\log _{10}\left({\frac {p}{p_{\mathrm {ref} }}}\right){\mbox{ dB}}\,} 1312:
Pa), that is between 101323.6 and 101326.4 Pa. As the human ear can detect sounds with a wide range of amplitudes, sound pressure is often measured as a level on a logarithmic
766: 734: 842: 2207: 1633:
for humans or sometimes it relates to a particular animal. Other species have different ranges of hearing. For example, dogs can perceive vibrations higher than 20 kHz.
1310: 1283: 2827:
Jones, S.; Longe, O.; Pato, M.V. (1998). "Auditory evoked potentials to abrupt pitch and timbre change of complex tones: electrophysiological evidence of streaming?".
372:
wind are moving in the same direction. If the sound and wind are moving in opposite directions, the speed of the sound wave will be decreased by the speed of the wind.
65: 1688:. Furthermore, humans have developed culture and technology (such as music, telephone and radio) that allows them to generate, record, transmit, and broadcast sound. 908: 1613:
The physical reception of sound in any hearing organism is limited to a range of frequencies. Humans normally hear sound frequencies between approximately 20 
2344: 593:, the corresponding wavelengths of sound waves range from 17 m (56 ft) to 17 mm (0.67 in). Sometimes speed and direction are combined as a 642:
approaching the speed of sound. The white halo is formed by condensed water droplets thought to result from a drop in air pressure around the aircraft (see
1579:
attempts to match the response of the human ear to noise and A-weighted sound pressure levels are labeled dBA. C-weighting is used to measure peak levels.
2619: 2722:"The Role of Temporal Fine Structure Processing in Pitch Perception, Masking, and Speech Perception for Normal-Hearing and Hearing-Impaired People" 1845:, in this context, relates to the cognitive separation of auditory objects. In music, texture is often referred to as the difference between 654:. He believed the speed of sound in a particular substance was equal to the square root of the pressure acting on it divided by its density: 3253: 1231: 517:
A 'pressure over time' graph of a 20 ms recording of a clarinet tone demonstrates the two fundamental elements of sound: Pressure and Time.
309:. When an additional piece of metal is attached to a prong, the effect becomes less pronounced as resonance is not achieved as effectively. 2451: 2366:
Kendall, R.A. (1986). The role of acoustic signal partitions in listener categorization of musical phrases. Music Perception, 185–213.
2261: 1572: 3226: 2211: 379:
determines the rate at which sound is attenuated. For many media, such as air or water, attenuation due to viscosity is negligible.
3212: 3577: 1610:" is "yes", and "no", dependent on whether being answered using the physical, or the psychophysical definition, respectively. 1559:
in water. Without a specified reference sound pressure, a value expressed in decibels cannot represent a sound pressure level.
1258:
RMS sound pressure (94 dBSPL) in atmospheric air implies that the actual pressure in the sound wave oscillates between (1 atm
3115: 1545: 475:(in case of transverse waves) of the matter, and the kinetic energy of the displacement velocity of particles of the medium. 417:
Studies has shown that sound waves are able to carry a tiny amount of mass and is surrounded by a weak gravitational field.
2240: 1734: 3304: 2590: 529:
of different frequencies. The bottom waves have higher frequencies than those above. The horizontal axis represents time.
2319: 1822:
Timbre perception, showing how a sound changes over time. Despite a similar waveform, differences over time are evident.
702:
corrected the formula by deducing that the phenomenon of sound travelling is not isothermal, as believed by Newton, but
433:
waves. It requires a medium to propagate. Through solids, however, it can be transmitted as both longitudinal waves and
368:
and pressure of the medium. This relationship, affected by temperature, determines the speed of sound within the medium.
1194: 771: 2654: 2574: 590: 1224: 660: 467:
The energy carried by an oscillating sound wave converts back and forth between the potential energy of the extra
3186: 643: 583: 2616: 634: 143:
range, elicit an auditory percept in humans. In air at atmospheric pressure, these represent sound waves with
3098:
Cariani, Peter; Micheyl, Christophe (2012). "Toward a Theory of Information Processing in Auditory Cortex".
2954:
Massaro, D.W. (1972). "Preperceptual images, processing time, and perceptual units in auditory perception".
2421: 1668:, or earthquake, produces (and is characterized by) its unique sounds. Many species, such as frogs, birds, 949: 2669:
Rosen, Stuart (1992-06-29). "Temporal information in speech: acoustic, auditory and linguistic aspects".
1705:
There are, historically, six experimentally separable ways in which sound waves are analysed. They are:
1641: 1217: 847: 1506: 3416: 2116: 739: 715: 589:
Sound that is perceptible by humans has frequencies from about 20 Hz to 20,000 Hz. In air at
472: 222:, on the other hand, is concerned with the recording, manipulation, mixing, and reproduction of sound. 2389: 1729:. Some of these terms have a standardised definition (for instance in the ANSI Acoustical Terminology 1597:
from its use in physics is that in physiology and psychology, where the term refers to the subject of
815: 3537: 57: 2968: 225:
Applications of acoustics are found in almost all aspects of modern society, subdisciplines include
3592: 1990: 1924: 1540: 1288: 1261: 3472: 3329: 3297: 3250: 383:
When sound is moving through a medium that does not have constant physical properties, it may be
234: 230: 76: 2862:
Nishihara, M.; Inui, K.; Morita, T.; Kodaira, M.; Mochizuki, H.; Otsuru, N.; Kakigi, R. (2014).
2566: 3411: 3321: 3235: 2963: 2864:"Echoic memory: Investigation of its temporal resolution by auditory offset cortical responses" 1901:
Approximate frequency ranges corresponding to ultrasound, with rough guide of some applications
468: 446: 442: 430: 211: 20: 3552: 3450: 3354: 2786:
Krumbholz, K.; Patterson, R.; Seither-Preisler, A.; Lammertmann, C.; Lütkenhöner, B. (2003).
2030: 2010: 2000: 1933:
communicate. It can be used to detect volcanic eruptions and is used in some types of music.
1857:, but it can also relate (for example) to a busy cafe; a sound which might be referred to as 1035: 326: 298: 2447: 1769:(random noise spread evenly across octaves) as white noise has more high frequency content. 3008: 2875: 2678: 2495: 2151: 1685: 1119: 893: 699: 616: 346: 266: 1878:
multiple sound sources using a combination of spatial location and timbre identification.
495: 8: 3572: 3482: 3262: 1661: 707: 483: 407: 242: 112: 3223: 3012: 2879: 2682: 2499: 345:
position of the particles over time does not change). During propagation, waves can be
3694: 3658: 3504: 3494: 3455: 3290: 2898: 2863: 2754: 2721: 2559: 2516: 2485: 2473: 2185: 2005: 1980: 1968: 1953: 1912: 1872: 1730: 1726: 1665: 1158: 945: 597: 306: 147:
of 17 meters (56 ft) to 1.7 centimeters (0.67 in). Sound waves above 20 
3367: 2840: 1802:
sounds louder (for the same wave amplitude) than a simpler sound, such as a sine wave.
3628: 3460: 3165: 3157: 3153: 3111: 3043: 3024: 2981: 2903: 2844: 2809: 2759: 2741: 2702: 2694: 2650: 2570: 2521: 2105: 2040: 2020: 2015: 1985: 1681: 1014: 703: 426: 314: 246: 3684: 3638: 3557: 3521: 3489: 3440: 3349: 3149: 3103: 3055: 3016: 2973: 2893: 2883: 2836: 2799: 2749: 2733: 2686: 2642: 2511: 2503: 2299: 2095: 1785: 1710: 1500: 1251: 941: 521: 403: 3267: 1841:
relates to the number of sound sources and the interaction between them. The word
1608:
if a tree falls in a forest and no one is around to hear it, does it make a sound?
936:. The speed of sound is also slightly sensitive, being subject to a second-order 464:
Sound waves may be viewed using parabolic mirrors and objects that produce sound.
398:
The mechanical vibrations that can be interpreted as sound can travel through all
3633: 3587: 3428: 3386: 3257: 3230: 3107: 2888: 2623: 2351: 2287: 2268: 2141: 2090: 2025: 1887: 1838: 1722: 1677: 1602: 1588: 1176: 1053: 607: 573: 454: 434: 399: 318: 254: 195: 140: 28: 2646: 2236: 1765:(random noise spread evenly across all frequencies) sounds higher in pitch than 3689: 3679: 3582: 3567: 3514: 3245: 2136: 2100: 1669: 1571:
weighted so that the measured level matches perceived levels more closely. The
1548: 1245: 1137: 987: 629: 578: 569: 330: 219: 3059: 2804: 2787: 2737: 2594: 2311: 3673: 3547: 3509: 3477: 3432: 3394: 3344: 3339: 3273:
Audio Check: a free collection of audio tests and test tones playable on-line
3161: 2785: 2745: 2698: 2146: 2131: 1754: 1706: 1630: 1255: 937: 639: 250: 226: 160: 108: 3277: 3200: 513: 3542: 3240: 3169: 2907: 2813: 2763: 2690: 2525: 2507: 2416: 2196:
ANSI S1.1-1994. American National Standard: Acoustic Terminology. Sec 3.03.
2121: 1897: 1564: 1101: 919: 651: 611: 458: 390: 238: 202:, sound, ultrasound, and infrasound. A scientist who works in the field of 72: 3224:
Sounds Amazing; a KS3/4 learning resource for sound and waves (uses Flash)
3102:. Springer Handbook of Auditory Research. Vol. 43. pp. 351–390. 3028: 2985: 2848: 2706: 2543:(Fifth ed.). Cambridge, Mass.: The Riverside Press. pp. 950–951. 3562: 3374: 2035: 1797: 1762: 1657: 1626: 1576: 1556: 1552: 1074: 911: 601: 450: 360:
The behavior of sound propagation is generally affected by three things:
354: 325:. The sound waves are generated by a sound source, such as the vibrating 295: 172: 155:
and are not audible to humans. Sound waves below 20 Hz are known as
2788:"Neuromagnetic evidence for a pitch processing center in Heschl's gyrus" 882:, which is also known as the Newton–Laplace equation. In this equation, 333:, thus forming the sound wave. At a fixed distance from the source, the 194:
Acoustics is the interdisciplinary science that deals with the study of
3623: 3613: 3399: 3085:
Kamien, R. (1980). Music: an appreciation. New York: McGraw-Hill. p. 62
2999:
Zwislocki, J.J. (1969). "Temporal summation of loudness: an analysis".
2110: 1929: 1905: 1766: 1698: 1653: 1645: 560: 549: 350: 262: 156: 152: 144: 120: 116: 87: 3213:"Stanford scientists created a sound so loud it instantly boils water" 3020: 2472:
Trachenko, K.; Monserrat, B.; Pickard, C. J.; Brazhkin, V. V. (2020).
1777: 313:
Sound can propagate through a medium such as air, water and solids as
3404: 3334: 3313: 3278:
More Sounds Amazing; a sixth-form learning resource about sound waves
2977: 2126: 1995: 1963: 1948: 1859: 1854: 1850: 1649: 1568: 565: 556: 546: 526: 384: 376: 302: 270: 203: 199: 189: 136: 104: 2637:
Viemeister, Neal F.; Plack, Christopher J. (1993), "Time Analysis",
2300:
Beyond cloning: Harnessing the power of virtual quantum broadcasting
1818: 3499: 3467: 2490: 2064: 1806: 1745: 1714: 1544:. Commonly used reference sound pressures, defined in the standard 594: 438: 338: 334: 37: 2396:. The University of Tennessee, Department of Physics and Astronomy 19:
This article is about audible acoustic waves. For other uses, see
3445: 3144:. Effects of ultrasound and infrasound relevant to human health. 2776:
De Cheveigne, A. (2005). Pitch perception models. Pitch, 169-233.
2593:(Fourth ed.). Houghton Mifflin Company. 2000. Archived from 2471: 2054: 1313: 948:
effects are important, the speed of sound is calculated from the
910:
is the density. Thus, the speed of sound is proportional to the
365: 96: 3093: 3091: 1846: 1826: 1718: 1673: 411: 322: 258: 2374: 2372: 2075: 1958: 1691: 1637: 1614: 915: 620:, which is not a characteristic of longitudinal sound waves. 177: 132: 3282: 3272: 3088: 3608: 2426: 2369: 2069: 2060: 542: 425:
Sound is transmitted through gases, plasma, and liquids as
33: 2861: 2591:"The American Heritage Dictionary of the English Language" 525:
Sounds can be represented as a mixture of their component
2726:
Journal of the Association for Research in Otolaryngology
2205: 1618: 698:
This was later proven wrong and the French mathematician
148: 471:(in case of longitudinal waves) or lateral displacement 3140:
Leventhall, Geoff (2007-01-01). "What is infrasound?".
552:, which are characterized by these generic properties: 2362: 2360: 1474: 1509: 1336: 1291: 1264: 896: 850: 818: 774: 742: 718: 663: 2617:
The elements of music: what are they, and who cares?
2474:"Speed of sound from fundamental physical constants" 2448:"Scientists find upper limit for the speed of sound" 2345:
Timbre perception and auditory object identification
437:. Longitudinal sound waves are waves of alternating 139:
lying between about 20 Hz and 20 kHz, the
3041: 2829:
Electroencephalography and Clinical Neurophysiology
2357: 406:. The matter that supports the sound is called the 16:
Vibration that travels via pressure waves in matter
2558: 2415:Nemiroff, R.; Bonnell, J., eds. (19 August 2007). 2339: 2337: 1530: 1483: 1304: 1277: 902: 874: 836: 804: 760: 728: 687: 545:are often simplified to a description in terms of 1680:to produce sound. In some species, these produce 1621:), The upper limit decreases with age. Sometimes 3671: 3001:The Journal of the Acoustical Society of America 2175:. Western Electrical Company. 1969. p. 2.1. 1915:is commonly used for diagnostics and treatment. 805:{\displaystyle c={\sqrt {\gamma \cdot p/\rho }}} 461:at right angle to the direction of propagation. 2636: 2414: 2334: 2173:Fundamentals of Telephone Communication Systems 1733:). More recent approaches have also considered 3097: 2826: 2208:"PACS 2010 Regular Edition—Acoustics Appendix" 600:; wave number and direction are combined as a 3298: 1735:temporal envelope and temporal fine structure 1575:(IEC) has defined several weighting schemes. 1225: 688:{\displaystyle c={\sqrt {\frac {p}{\rho }}}.} 3142:Progress in Biophysics and Molecular Biology 2552: 2550: 706:. He added another factor to the equation— 3305: 3291: 3139: 2920: 1636:As a signal perceived by one of the major 1232: 1218: 394:Spherical compression (longitudinal) waves 3210: 2998: 2967: 2897: 2887: 2803: 2753: 2547: 2541:Sound. In Webster's Collegiate Dictionary 2515: 2489: 1573:International Electrotechnical Commission 1563:Since the human ear does not have a flat 1480: 1426: 1355: 198:in gasses, liquids, and solids including 115:such as a gas, liquid or solid. In human 2281:Can you hear sounds in space? (Beginner) 1896: 1817: 1796: 1776: 1744: 633: 520: 512: 389: 280: 210:, while someone working in the field of 159:. Different animal species have varying 27: 3246:Hearing curves and on-line hearing test 2953: 2641:, Springer New York, pp. 116–154, 2538: 959: 3672: 3044:"Gestalt phenomena in musical texture" 2639:Springer Handbook of Auditory Research 507:Longitudinal and transverse plane wave 3286: 2719: 2668: 2556: 2231: 2229: 1625:refers to only those vibrations with 614:waves, have the additional property, 457:(in solids) are waves of alternating 3263:Conversion of sound units and levels 3241:Introduction to the Physics of Sound 2408: 2113:— sound at extremely low frequencies 1640:, sound is used by many species for 375:The viscosity of the medium. Medium 2387: 1866: 1737:as perceptually relevant analyses. 875:{\displaystyle c={\sqrt {K/\rho }}} 844:, the final equation came up to be 768:, thus coming up with the equation 445:pressure, causing local regions of 364:A complex relationship between the 13: 2322:from the original on 10 April 2014 2243:from the original on 30 April 2015 2226: 1531:{\displaystyle p_{\mathrm {ref} }} 1522: 1519: 1516: 1461: 1458: 1455: 1401: 1398: 1395: 1343: 46: 14: 3706: 3180: 761:{\displaystyle {\sqrt {p/\rho }}} 729:{\displaystyle {\sqrt {\gamma }}} 591:standard temperature and pressure 3654: 3653: 3366: 3154:10.1016/j.pbiomolbio.2006.07.006 2720:Moore, Brian C.J. (2008-10-15). 837:{\displaystyle K=\gamma \cdot p} 494: 482: 410:. Sound cannot travel through a 135:. Only acoustic waves that have 86:Problems playing this file? See 62: 3236:HyperPhysics: Sound and Hearing 3133: 3124: 3079: 3069:from the original on 2015-11-21 3035: 2992: 2947: 2937:from the original on 2013-06-28 2914: 2855: 2820: 2779: 2770: 2713: 2662: 2630: 2609: 2583: 2532: 2465: 2454:from the original on 2020-10-09 2440: 2381: 2206:Acoustical Society of America. 387:(either dispersed or focused). 36:produces sound via a vibrating 3042:Cohen, D.; Dubnov, S. (1997), 2565:. Dover Publications. p.  2561:Music, Physics and Engineering 2557:Olson, Harry F. Autor (1967). 2304: 2293: 2274: 2255: 2199: 2190: 2179: 2165: 1676:, have also developed special 922:of the medium to its density. 890:is the velocity of sound, and 402:: gases, liquids, solids, and 1: 3312: 3048:Journal of New Music Research 2841:10.1016/s0168-5597(97)00077-4 2158: 1918: 1892: 1652:, and communication. Earth's 1582: 886:is the elastic bulk modulus, 166: 3108:10.1007/978-1-4614-2314-0_13 2889:10.1371/journal.pone.0106553 2671:Phil. Trans. R. Soc. Lond. B 2422:Astronomy Picture of the Day 2312:"What Does Sound Look Like?" 1881: 1664:, such as fire, rain, wind, 1617:and 20,000 Hz (20  1567:, sound pressures are often 1305:{\displaystyle +{\sqrt {2}}} 1278:{\displaystyle -{\sqrt {2}}} 1254:(RMS) value. For example, 1 950:relativistic Euler equations 534:terms, every sound we hear. 183: 7: 2647:10.1007/978-1-4612-2728-1_4 1936: 1792: 1772: 1601:by the brain. The field of 1593:A distinct use of the term 644:Prandtl–Glauert singularity 10: 3711: 3251:Audio for the 21st Century 2237:"The Propagation of sound" 2117:List of unexplained sounds 1922: 1885: 1870: 1833: 1586: 627: 276: 187: 18: 3649: 3601: 3530: 3427: 3385: 3361: 3320: 3211:Eric Mack (20 May 2019). 3201:Resources in your library 3100:The Human Auditory Cortex 3060:10.1080/09298219708570732 2738:10.1007/s10162-008-0143-x 2318:. YouTube. 9 April 2014. 1813: 1213: 1208: 1190: 1172: 1154: 1133: 1115: 1097: 1070: 1049: 1031: 1010: 983: 971: 966: 171:Sound is defined as "(a) 2271:Northwestern University. 2262:Is there sound in space? 1991:Characteristic impedance 1925:Perception of infrasound 1740: 1541:reference sound pressure 623: 420: 127:of such waves and their 3330:Architectural acoustics 2805:10.1093/cercor/13.7.765 489:Longitudinal plane wave 235:architectural acoustics 231:audio signal processing 77:United States Navy Band 3417:Fletcher–Munson curves 3412:Equal-loudness contour 3322:Acoustical engineering 2691:10.1098/rstb.1992.0070 2539:Webster, Noah (1936). 2508:10.1126/sciadv.abc8662 2394:Elements of Physics II 1902: 1823: 1803: 1782: 1751: 1532: 1485: 1306: 1279: 904: 876: 838: 806: 762: 730: 689: 647: 530: 518: 395: 310: 212:acoustical engineering 107:that propagates as an 51: 41: 21:Sound (disambiguation) 3553:Hermann von Helmholtz 3451:Fundamental frequency 3355:Sympathetic resonance 2615:Burton, R.L. (2015). 2290:. Cornell University. 2072:- subjective loudness 2031:Sound intensity level 2011:Particle displacement 2001:Particle acceleration 1900: 1821: 1800: 1780: 1748: 1533: 1486: 1307: 1280: 1036:Particle displacement 905: 903:{\displaystyle \rho } 877: 839: 807: 763: 731: 690: 637: 524: 516: 501:Transverse plane wave 393: 294:Experiment using two 293: 241:, electro-acoustics, 50: 31: 2956:Psychological Review 2152:Structural acoustics 1660:, and virtually any 1629:that are within the 1507: 1334: 1318:sound pressure level 1289: 1262: 1120:Sound energy density 960:Sound pressure level 894: 848: 816: 772: 740: 716: 661: 441:deviations from the 301:usually at the same 267:underwater acoustics 3573:Werner Meyer-Eppler 3483:Missing fundamental 3013:1969ASAJ...46..431Z 2924:The auditory system 2921:Corwin, J. (2009), 2880:2014PLoSO...9j6553N 2683:1992RSPTB.336..367R 2500:2020SciA....6.8662T 2388:Breinig, Marianne. 2354:. Hearing, 425–461. 2343:Handel, S. (1995). 2078:- unit of frequency 1662:physical phenomenon 1503:sound pressure and 243:environmental noise 216:acoustical engineer 113:transmission medium 3456:Frequency spectrum 3268:Sound calculations 3256:2009-01-23 at the 3229:2012-03-13 at the 2622:2020-05-10 at the 2350:2020-01-10 at the 2286:2017-06-18 at the 2267:2017-10-16 at the 2186:ANSI/ASA S1.1-2013 2006:Particle amplitude 1981:Acoustic impedance 1969:Sound reproduction 1954:Musical instrument 1913:Medical ultrasound 1903: 1873:Sound localization 1824: 1804: 1783: 1752: 1731:ANSI/ASA S1.1-2013 1528: 1481: 1478: 1302: 1275: 1159:Acoustic impedance 967:Sound measurements 956:80,530 mph). 900: 872: 834: 802: 758: 726: 685: 648: 559:, or its inverse, 531: 519: 427:longitudinal waves 396: 315:longitudinal waves 311: 307:acoustic resonance 52: 42: 3667: 3666: 3629:Musical acoustics 3461:harmonic spectrum 3187:Library resources 3117:978-1-4614-2313-3 3021:10.1121/1.1911708 2677:(1278): 367–373. 2041:Sound power level 2021:Sound energy flux 2016:Particle velocity 1986:Acoustic velocity 1975:Sound measurement 1565:spectral response 1477: 1467: 1414: 1300: 1273: 1242: 1241: 1195:Transmission loss 1015:Particle velocity 870: 800: 756: 724: 680: 679: 291: 247:musical acoustics 214:may be called an 75:performed by the 67: 3702: 3657: 3656: 3558:Carleen Hutchins 3490:Combination tone 3377: 3370: 3350:String vibration 3307: 3300: 3293: 3284: 3283: 3220: 3174: 3173: 3137: 3131: 3128: 3122: 3121: 3095: 3086: 3083: 3077: 3076: 3075: 3074: 3068: 3039: 3033: 3032: 2996: 2990: 2989: 2978:10.1037/h0032264 2971: 2951: 2945: 2944: 2943: 2942: 2936: 2929: 2918: 2912: 2911: 2901: 2891: 2859: 2853: 2852: 2824: 2818: 2817: 2807: 2783: 2777: 2774: 2768: 2767: 2757: 2717: 2711: 2710: 2666: 2660: 2659: 2634: 2628: 2613: 2607: 2606: 2604: 2602: 2597:on June 25, 2008 2587: 2581: 2580: 2564: 2554: 2545: 2544: 2536: 2530: 2529: 2519: 2493: 2484:(41): eabc8662. 2478:Science Advances 2469: 2463: 2462: 2460: 2459: 2444: 2438: 2437: 2435: 2433: 2412: 2406: 2405: 2403: 2401: 2385: 2379: 2376: 2367: 2364: 2355: 2341: 2332: 2331: 2329: 2327: 2308: 2302: 2297: 2291: 2278: 2272: 2259: 2253: 2252: 2250: 2248: 2233: 2224: 2223: 2221: 2219: 2210:. Archived from 2203: 2197: 2194: 2188: 2183: 2177: 2176: 2169: 1867:Spatial location 1727:spatial location 1672:and terrestrial 1642:detecting danger 1537: 1535: 1534: 1529: 1527: 1526: 1525: 1501:root-mean-square 1490: 1488: 1487: 1482: 1479: 1475: 1472: 1468: 1466: 1465: 1464: 1445: 1436: 1435: 1419: 1415: 1413: 1412: 1407: 1406: 1405: 1404: 1386: 1385: 1380: 1374: 1365: 1364: 1348: 1347: 1346: 1311: 1309: 1308: 1303: 1301: 1296: 1284: 1282: 1281: 1276: 1274: 1269: 1252:root mean square 1234: 1227: 1220: 1204: 1201: 1193: 1186: 1183: 1175: 1168: 1165: 1157: 1150: 1144: 1136: 1129: 1126: 1118: 1111: 1108: 1100: 1093: 1081: 1073: 1066: 1060: 1052: 1045: 1042: 1034: 1027: 1021: 1013: 1006: 994: 986: 964: 963: 942:parametric array 935: 909: 907: 906: 901: 881: 879: 878: 873: 871: 866: 858: 843: 841: 840: 835: 811: 809: 808: 803: 801: 796: 782: 767: 765: 764: 759: 757: 752: 744: 735: 733: 732: 727: 725: 720: 712:—and multiplied 694: 692: 691: 686: 681: 672: 671: 610:, also known as 608:Transverse waves 527:Sinusoidal waves 498: 486: 455:transverse waves 435:transverse waves 292: 196:mechanical waves 69: 68: 58:Drum - Cadence A 49: 3710: 3709: 3705: 3704: 3703: 3701: 3700: 3699: 3670: 3669: 3668: 3663: 3645: 3597: 3588:D. Van Holliday 3526: 3495:Mersenne's laws 3429:Audio frequency 3423: 3387:Psychoacoustics 3381: 3380: 3373: 3359: 3316: 3311: 3258:Wayback Machine 3231:Wayback Machine 3207: 3206: 3205: 3195: 3194: 3190: 3183: 3178: 3177: 3138: 3134: 3129: 3125: 3118: 3096: 3089: 3084: 3080: 3072: 3070: 3066: 3040: 3036: 3007:(2B): 431–441. 2997: 2993: 2969:10.1.1.468.6614 2952: 2948: 2940: 2938: 2934: 2927: 2919: 2915: 2860: 2856: 2825: 2821: 2792:Cerebral Cortex 2784: 2780: 2775: 2771: 2718: 2714: 2667: 2663: 2657: 2635: 2631: 2624:Wayback Machine 2614: 2610: 2600: 2598: 2589: 2588: 2584: 2577: 2555: 2548: 2537: 2533: 2470: 2466: 2457: 2455: 2446: 2445: 2441: 2431: 2429: 2413: 2409: 2399: 2397: 2386: 2382: 2377: 2370: 2365: 2358: 2352:Wayback Machine 2342: 2335: 2325: 2323: 2310: 2309: 2305: 2298: 2294: 2288:Wayback Machine 2279: 2275: 2269:Wayback Machine 2260: 2256: 2246: 2244: 2235: 2234: 2227: 2217: 2215: 2204: 2200: 2195: 2191: 2184: 2180: 2171: 2170: 2166: 2161: 2156: 2142:Sound synthesis 2091:Acoustic theory 2026:Sound impedance 1939: 1927: 1921: 1895: 1890: 1888:Audio frequency 1884: 1875: 1869: 1836: 1816: 1795: 1775: 1743: 1603:psychoacoustics 1591: 1589:Psychoacoustics 1585: 1515: 1514: 1510: 1508: 1505: 1504: 1473: 1454: 1453: 1449: 1444: 1440: 1431: 1427: 1408: 1394: 1393: 1389: 1388: 1387: 1381: 1376: 1375: 1373: 1369: 1360: 1356: 1342: 1341: 1337: 1335: 1332: 1331: 1326: 1295: 1290: 1287: 1286: 1285:Pa) and (1 atm 1268: 1263: 1260: 1259: 1238: 1209: 1202: 1199: 1191: 1184: 1181: 1177:Audio frequency 1173: 1166: 1163: 1155: 1145: 1142: 1134: 1127: 1124: 1116: 1109: 1106: 1098: 1092: 1082: 1079: 1071: 1061: 1058: 1054:Sound intensity 1050: 1043: 1040: 1032: 1022: 1019: 1011: 1005: 995: 992: 984: 979: 974: 962: 927: 895: 892: 891: 862: 857: 849: 846: 845: 817: 814: 813: 792: 781: 773: 770: 769: 748: 743: 741: 738: 737: 719: 717: 714: 713: 670: 662: 659: 658: 632: 626: 511: 510: 509: 508: 504: 503: 502: 499: 491: 490: 487: 423: 400:forms of matter 357:by the medium. 319:transverse wave 281: 279: 255:psychoacoustics 192: 186: 169: 141:audio frequency 123:, sound is the 93: 92: 84: 82: 81: 80: 79: 70: 63: 60: 53: 47: 24: 17: 12: 11: 5: 3708: 3698: 3697: 3692: 3687: 3682: 3665: 3664: 3662: 3661: 3650: 3647: 3646: 3644: 3643: 3642: 3641: 3636: 3626: 3621: 3616: 3611: 3605: 3603: 3602:Related topics 3599: 3598: 3596: 3595: 3590: 3585: 3583:Joseph Sauveur 3580: 3575: 3570: 3568:Marin Mersenne 3565: 3560: 3555: 3550: 3545: 3540: 3534: 3532: 3528: 3527: 3525: 3524: 3519: 3518: 3517: 3507: 3502: 3497: 3492: 3487: 3486: 3485: 3480: 3475: 3465: 3464: 3463: 3453: 3448: 3443: 3437: 3435: 3425: 3424: 3422: 3421: 3420: 3419: 3409: 3408: 3407: 3402: 3391: 3389: 3383: 3382: 3379: 3378: 3371: 3363: 3362: 3360: 3358: 3357: 3352: 3347: 3342: 3337: 3332: 3326: 3324: 3318: 3317: 3310: 3309: 3302: 3295: 3287: 3281: 3280: 3275: 3270: 3265: 3260: 3248: 3243: 3238: 3233: 3221: 3204: 3203: 3197: 3196: 3185: 3184: 3182: 3181:External links 3179: 3176: 3175: 3148:(1): 130–137. 3132: 3123: 3116: 3087: 3078: 3054:(4): 277–314, 3034: 2991: 2962:(2): 124–145. 2946: 2913: 2874:(8): e106553. 2854: 2835:(2): 131–142. 2819: 2798:(7): 765–772. 2778: 2769: 2732:(4): 399–406. 2712: 2661: 2655: 2629: 2608: 2582: 2575: 2546: 2531: 2464: 2439: 2417:"A Sonic Boom" 2407: 2390:"Polarization" 2380: 2368: 2356: 2333: 2303: 2292: 2273: 2254: 2225: 2214:on 14 May 2013 2198: 2189: 2178: 2163: 2162: 2160: 2157: 2155: 2154: 2149: 2144: 2139: 2137:Sonic weaponry 2134: 2129: 2124: 2119: 2114: 2108: 2103: 2101:Doppler effect 2098: 2093: 2087: 2086: 2084: 2080: 2079: 2073: 2067: 2058: 2051: 2050: 2048: 2044: 2043: 2038: 2033: 2028: 2023: 2018: 2013: 2008: 2003: 1998: 1993: 1988: 1983: 1977: 1976: 1972: 1971: 1966: 1961: 1956: 1951: 1945: 1944: 1940: 1938: 1935: 1920: 1917: 1894: 1891: 1883: 1880: 1871:Main article: 1868: 1865: 1835: 1832: 1815: 1812: 1794: 1791: 1774: 1771: 1742: 1739: 1587:Main article: 1584: 1581: 1561: 1560: 1524: 1521: 1518: 1513: 1492: 1491: 1471: 1463: 1460: 1457: 1452: 1448: 1443: 1439: 1434: 1430: 1425: 1422: 1418: 1411: 1403: 1400: 1397: 1392: 1384: 1379: 1372: 1368: 1363: 1359: 1354: 1351: 1345: 1340: 1327:is defined as 1324: 1299: 1294: 1272: 1267: 1246:Sound pressure 1240: 1239: 1237: 1236: 1229: 1222: 1214: 1211: 1210: 1206: 1205: 1197: 1188: 1187: 1179: 1170: 1169: 1161: 1152: 1151: 1140: 1138:Sound exposure 1131: 1130: 1122: 1113: 1112: 1104: 1095: 1094: 1090: 1077: 1068: 1067: 1056: 1047: 1046: 1038: 1029: 1028: 1017: 1008: 1007: 1003: 990: 988:Sound pressure 981: 980: 977: 975: 973:Characteristic 972: 969: 968: 961: 958: 899: 869: 865: 861: 856: 853: 833: 830: 827: 824: 821: 799: 795: 791: 788: 785: 780: 777: 755: 751: 747: 723: 696: 695: 684: 678: 675: 669: 666: 630:Speed of sound 628:Main article: 625: 622: 587: 586: 581: 579:Speed of sound 576: 570:sound pressure 563: 506: 505: 500: 493: 492: 488: 481: 480: 479: 478: 477: 429:, also called 422: 419: 381: 380: 373: 369: 331:speed of sound 317:and also as a 278: 275: 220:audio engineer 188:Main article: 185: 182: 168: 165: 161:hearing ranges 83: 71: 61: 56: 55: 54: 45: 44: 43: 15: 9: 6: 4: 3: 2: 3707: 3696: 3693: 3691: 3688: 3686: 3683: 3681: 3678: 3677: 3675: 3660: 3652: 3651: 3648: 3640: 3637: 3635: 3632: 3631: 3630: 3627: 3625: 3622: 3620: 3617: 3615: 3612: 3610: 3607: 3606: 3604: 3600: 3594: 3591: 3589: 3586: 3584: 3581: 3579: 3578:Lord Rayleigh 3576: 3574: 3571: 3569: 3566: 3564: 3561: 3559: 3556: 3554: 3551: 3549: 3548:Ernst Chladni 3546: 3544: 3541: 3539: 3536: 3535: 3533: 3529: 3523: 3520: 3516: 3513: 3512: 3511: 3510:Standing wave 3508: 3506: 3503: 3501: 3498: 3496: 3493: 3491: 3488: 3484: 3481: 3479: 3478:Inharmonicity 3476: 3474: 3471: 3470: 3469: 3466: 3462: 3459: 3458: 3457: 3454: 3452: 3449: 3447: 3444: 3442: 3439: 3438: 3436: 3434: 3430: 3426: 3418: 3415: 3414: 3413: 3410: 3406: 3403: 3401: 3398: 3397: 3396: 3393: 3392: 3390: 3388: 3384: 3376: 3372: 3369: 3365: 3364: 3356: 3353: 3351: 3348: 3346: 3345:Soundproofing 3343: 3341: 3340:Reverberation 3338: 3336: 3333: 3331: 3328: 3327: 3325: 3323: 3319: 3315: 3308: 3303: 3301: 3296: 3294: 3289: 3288: 3285: 3279: 3276: 3274: 3271: 3269: 3266: 3264: 3261: 3259: 3255: 3252: 3249: 3247: 3244: 3242: 3239: 3237: 3234: 3232: 3228: 3225: 3222: 3218: 3214: 3209: 3208: 3202: 3199: 3198: 3193: 3188: 3171: 3167: 3163: 3159: 3155: 3151: 3147: 3143: 3136: 3127: 3119: 3113: 3109: 3105: 3101: 3094: 3092: 3082: 3065: 3061: 3057: 3053: 3049: 3045: 3038: 3030: 3026: 3022: 3018: 3014: 3010: 3006: 3002: 2995: 2987: 2983: 2979: 2975: 2970: 2965: 2961: 2957: 2950: 2933: 2926: 2925: 2917: 2909: 2905: 2900: 2895: 2890: 2885: 2881: 2877: 2873: 2869: 2865: 2858: 2850: 2846: 2842: 2838: 2834: 2830: 2823: 2815: 2811: 2806: 2801: 2797: 2793: 2789: 2782: 2773: 2765: 2761: 2756: 2751: 2747: 2743: 2739: 2735: 2731: 2727: 2723: 2716: 2708: 2704: 2700: 2696: 2692: 2688: 2684: 2680: 2676: 2672: 2665: 2658: 2656:9781461276449 2652: 2648: 2644: 2640: 2633: 2625: 2621: 2618: 2612: 2596: 2592: 2586: 2578: 2576:9780486217697 2572: 2568: 2563: 2562: 2553: 2551: 2542: 2535: 2527: 2523: 2518: 2513: 2509: 2505: 2501: 2497: 2492: 2487: 2483: 2479: 2475: 2468: 2453: 2449: 2443: 2428: 2424: 2423: 2418: 2411: 2395: 2391: 2384: 2375: 2373: 2363: 2361: 2353: 2349: 2346: 2340: 2338: 2321: 2317: 2313: 2307: 2301: 2296: 2289: 2285: 2282: 2277: 2270: 2266: 2263: 2258: 2242: 2238: 2232: 2230: 2213: 2209: 2202: 2193: 2187: 2182: 2174: 2168: 2164: 2153: 2150: 2148: 2147:Soundproofing 2145: 2143: 2140: 2138: 2135: 2133: 2132:Reverberation 2130: 2128: 2125: 2123: 2120: 2118: 2115: 2112: 2109: 2107: 2104: 2102: 2099: 2097: 2094: 2092: 2089: 2088: 2085: 2082: 2081: 2077: 2074: 2071: 2068: 2066: 2062: 2059: 2056: 2053: 2052: 2049: 2046: 2045: 2042: 2039: 2037: 2034: 2032: 2029: 2027: 2024: 2022: 2019: 2017: 2014: 2012: 2009: 2007: 2004: 2002: 1999: 1997: 1994: 1992: 1989: 1987: 1984: 1982: 1979: 1978: 1974: 1973: 1970: 1967: 1965: 1962: 1960: 1957: 1955: 1952: 1950: 1947: 1946: 1943:Sound sources 1942: 1941: 1934: 1931: 1926: 1916: 1914: 1910: 1907: 1899: 1889: 1879: 1874: 1864: 1862: 1861: 1856: 1852: 1848: 1844: 1840: 1839:Sonic texture 1831: 1828: 1820: 1811: 1808: 1799: 1790: 1787: 1779: 1770: 1768: 1764: 1761:For example: 1759: 1756: 1747: 1738: 1736: 1732: 1728: 1724: 1723:sonic texture 1720: 1716: 1712: 1708: 1703: 1700: 1696: 1693: 1689: 1687: 1683: 1679: 1675: 1671: 1667: 1663: 1659: 1655: 1651: 1647: 1643: 1639: 1634: 1632: 1631:hearing range 1628: 1624: 1620: 1616: 1611: 1609: 1604: 1600: 1596: 1590: 1580: 1578: 1574: 1570: 1566: 1558: 1555:in air and 1 1554: 1550: 1547: 1543: 1542: 1511: 1502: 1498: 1494: 1493: 1469: 1450: 1446: 1441: 1437: 1432: 1428: 1423: 1420: 1416: 1409: 1390: 1382: 1377: 1370: 1366: 1361: 1357: 1352: 1349: 1338: 1330: 1329: 1328: 1323: 1319: 1315: 1297: 1292: 1270: 1265: 1257: 1253: 1248: 1247: 1235: 1230: 1228: 1223: 1221: 1216: 1215: 1212: 1207: 1198: 1196: 1189: 1180: 1178: 1171: 1162: 1160: 1153: 1148: 1141: 1139: 1132: 1123: 1121: 1114: 1105: 1103: 1096: 1089: 1085: 1078: 1076: 1069: 1064: 1057: 1055: 1048: 1039: 1037: 1030: 1025: 1018: 1016: 1009: 1002: 998: 991: 989: 982: 976: 970: 965: 957: 953: 951: 947: 943: 939: 934: 930: 923: 921: 917: 913: 897: 889: 885: 867: 863: 859: 854: 851: 831: 828: 825: 822: 819: 797: 793: 789: 786: 783: 778: 775: 753: 749: 745: 721: 711: 710: 705: 701: 682: 676: 673: 667: 664: 657: 656: 655: 653: 645: 641: 636: 631: 621: 619: 618: 613: 609: 605: 603: 599: 596: 592: 585: 582: 580: 577: 575: 571: 567: 564: 562: 558: 555: 554: 553: 551: 548: 544: 539: 535: 528: 523: 515: 497: 485: 476: 474: 470: 465: 462: 460: 456: 452: 448: 444: 440: 436: 432: 428: 418: 415: 413: 409: 405: 401: 392: 388: 386: 378: 374: 370: 367: 363: 362: 361: 358: 356: 352: 348: 344: 340: 336: 332: 328: 324: 320: 316: 308: 304: 300: 297: 274: 272: 268: 264: 260: 256: 252: 251:noise control 248: 244: 240: 236: 232: 228: 227:aeroacoustics 223: 221: 217: 213: 209: 205: 201: 197: 191: 181: 179: 174: 164: 162: 158: 154: 151:are known as 150: 146: 142: 138: 134: 130: 126: 122: 118: 114: 110: 109:acoustic wave 106: 102: 98: 91: 89: 78: 74: 73:Drum cadences 59: 39: 35: 30: 26: 22: 3618: 3593:Thomas Young 3543:Jens Blauert 3531:Acousticians 3216: 3191: 3145: 3141: 3135: 3126: 3099: 3081: 3071:, retrieved 3051: 3047: 3037: 3004: 3000: 2994: 2959: 2955: 2949: 2939:, retrieved 2923: 2916: 2871: 2867: 2857: 2832: 2828: 2822: 2795: 2791: 2781: 2772: 2729: 2725: 2715: 2674: 2670: 2664: 2638: 2632: 2611: 2599:. Retrieved 2595:the original 2585: 2560: 2540: 2534: 2481: 2477: 2467: 2456:. Retrieved 2442: 2430:. Retrieved 2420: 2410: 2398:. Retrieved 2393: 2383: 2324:. Retrieved 2315: 2306: 2295: 2276: 2257: 2245:. Retrieved 2216:. Retrieved 2212:the original 2201: 2192: 2181: 2172: 2167: 2122:Musical tone 2063:- perceived 1928: 1911: 1904: 1876: 1858: 1842: 1837: 1825: 1805: 1784: 1760: 1753: 1704: 1697: 1690: 1635: 1622: 1612: 1598: 1594: 1592: 1562: 1539: 1496: 1321: 1317: 1244: 1243: 1146: 1102:Sound energy 1087: 1083: 1062: 1023: 1000: 996: 954: 946:relativistic 932: 931:= 331 + 0.6 928: 924: 920:bulk modulus 887: 883: 708: 697: 652:Isaac Newton 649: 617:polarization 615: 606: 588: 540: 536: 532: 466: 463: 459:shear stress 424: 416: 397: 382: 359: 342: 312: 296:tuning forks 239:bioacoustics 224: 215: 207: 193: 170: 128: 124: 100: 94: 85: 25: 3563:Franz Melde 3538:John Backus 3522:Subharmonic 3375:Spectrogram 2036:Sound power 1763:white noise 1627:frequencies 1577:A-weighting 1316:scale. The 1075:Sound power 912:square root 602:wave vector 550:plane waves 469:compression 451:rarefaction 447:compression 443:equilibrium 431:compression 299:oscillating 208:acoustician 173:Oscillation 145:wavelengths 137:frequencies 3674:Categories 3624:Ultrasound 3614:Infrasound 3400:Bark scale 3073:2015-11-19 2941:2013-04-06 2491:2004.04818 2458:2020-10-09 2159:References 2111:Infrasound 1930:Infrasound 1923:See also: 1919:Infrasound 1906:Ultrasound 1893:Ultrasound 1886:See also: 1767:pink noise 1699:Soundscape 1654:atmosphere 1646:navigation 1599:perception 1583:Perception 938:anharmonic 638:U.S. Navy 561:wavelength 547:sinusoidal 355:attenuated 263:ultrasound 167:Definition 157:infrasound 153:ultrasound 129:perception 121:psychology 117:physiology 111:through a 88:media help 3695:Acoustics 3505:Resonance 3405:Mel scale 3335:Monochord 3314:Acoustics 3162:0079-6107 2964:CiteSeerX 2746:1525-3961 2699:0962-8436 2127:Resonance 2057:, decibel 1996:Mel scale 1964:Sound box 1949:Earphones 1882:Frequency 1860:cacophony 1855:homophony 1851:polyphony 1650:predation 1569:frequency 1551:, are 20 1549:S1.1-1994 1438:⁡ 1367:⁡ 1320:(SPL) or 1266:− 898:ρ 868:ρ 829:⋅ 826:γ 798:ρ 787:⋅ 784:γ 754:ρ 722:γ 704:adiabatic 677:ρ 584:Direction 574:Intensity 566:Amplitude 557:Frequency 385:refracted 377:viscosity 351:refracted 347:reflected 327:diaphragm 303:frequency 271:vibration 204:acoustics 200:vibration 190:Acoustics 184:Acoustics 178:sensation 125:reception 105:vibration 3659:Category 3500:Overtone 3468:Harmonic 3254:Archived 3227:Archived 3170:16934315 3064:archived 2932:archived 2908:25170608 2868:PLOS ONE 2814:12816892 2764:18855069 2620:Archived 2526:33036979 2452:Archived 2348:Archived 2320:Archived 2284:Archived 2265:Archived 2241:Archived 2065:loudness 1937:See also 1807:Loudness 1793:Loudness 1786:Duration 1773:Duration 1715:loudness 1711:duration 1476: dB 812:. Since 595:velocity 453:, while 439:pressure 339:velocity 335:pressure 38:membrane 3685:Hearing 3446:Formant 3029:5804115 3009:Bibcode 2986:5024158 2899:4149571 2876:Bibcode 2849:9566626 2755:2580810 2707:1354376 2679:Bibcode 2601:May 20, 2517:7546695 2496:Bibcode 2432:26 June 2400:4 March 2326:9 April 2247:26 June 2083:General 1843:texture 1834:Texture 1674:mammals 1499:is the 1314:decibel 1086:, SWL, 999:, SPL, 978:Symbols 918:of the 914:of the 700:Laplace 404:plasmas 366:density 343:average 277:Physics 131:by the 97:physics 3639:Violin 3473:Series 3189:about 3168:  3160:  3114:  3027:  2984:  2966:  2906:  2896:  2847:  2812:  2762:  2752:  2744:  2705:  2697:  2653:  2573:  2524:  2514:  2218:22 May 1847:unison 1827:Timbre 1814:Timbre 1750:name). 1719:timbre 1686:speech 1678:organs 1670:marine 1638:senses 1495:where 1200:  1192:  1182:  1174:  1164:  1156:  1143:  1135:  1125:  1117:  1107:  1099:  1080:  1072:  1059:  1051:  1044:δ 1041:  1033:  1020:  1012:  993:  985:  944:). If 640:F/A-18 598:vector 541:Sound 473:strain 412:vacuum 408:medium 323:solids 269:, and 259:speech 206:is an 3690:Waves 3680:Sound 3634:Piano 3619:Sound 3433:pitch 3395:Pitch 3192:Sound 3067:(PDF) 2935:(PDF) 2928:(PDF) 2486:arXiv 2047:Units 1959:Sonar 1755:Pitch 1741:Pitch 1725:and 1707:pitch 1692:Noise 1658:water 1623:sound 1595:sound 1538:is a 1149:, SEL 1065:, SIL 1026:, SVL 916:ratio 709:gamma 624:Speed 612:shear 543:waves 421:Waves 353:, or 218:. An 133:brain 103:is a 101:sound 3609:Echo 3515:Node 3441:Beat 3431:and 3217:CNET 3166:PMID 3158:ISSN 3112:ISBN 3025:PMID 2982:PMID 2904:PMID 2845:PMID 2810:PMID 2760:PMID 2742:ISSN 2703:PMID 2695:ISSN 2651:ISBN 2627:Inc. 2603:2010 2571:ISBN 2522:PMID 2434:2015 2427:NASA 2402:2024 2328:2014 2249:2015 2220:2013 2106:Echo 2096:Beat 2070:phon 2061:sone 1853:and 1684:and 1682:song 1666:surf 1546:ANSI 449:and 119:and 34:drum 3150:doi 3104:doi 3056:doi 3017:doi 2974:doi 2894:PMC 2884:doi 2837:doi 2833:108 2800:doi 2750:PMC 2734:doi 2687:doi 2675:336 2643:doi 2567:249 2512:PMC 2504:doi 2316:NPR 1619:kHz 1557:μPa 1553:μPa 1429:log 1358:log 736:by 572:or 321:in 265:, 149:kHz 95:In 3676:: 3215:. 3164:. 3156:. 3146:93 3110:. 3090:^ 3062:, 3052:26 3050:, 3046:, 3023:. 3015:. 3005:46 3003:. 2980:. 2972:. 2960:79 2958:. 2930:, 2902:. 2892:. 2882:. 2870:. 2866:. 2843:. 2831:. 2808:. 2796:13 2794:. 2790:. 2758:. 2748:. 2740:. 2728:. 2724:. 2701:. 2693:. 2685:. 2673:. 2649:, 2569:. 2549:^ 2520:. 2510:. 2502:. 2494:. 2480:. 2476:. 2450:. 2425:. 2419:. 2392:. 2371:^ 2359:^ 2336:^ 2314:. 2239:. 2228:^ 2076:Hz 2055:dB 1863:. 1849:, 1721:, 1717:, 1713:, 1709:, 1656:, 1648:, 1644:, 1615:Hz 1433:10 1424:20 1362:10 1353:10 1256:Pa 1203:TL 1185:AF 1091:WA 1004:PA 952:. 646:). 604:. 568:, 414:. 349:, 337:, 273:. 261:, 257:, 253:, 249:, 245:, 237:, 233:, 229:, 180:. 163:. 99:, 32:A 3306:e 3299:t 3292:v 3219:. 3172:. 3152:: 3120:. 3106:: 3058:: 3031:. 3019:: 3011:: 2988:. 2976:: 2910:. 2886:: 2878:: 2872:9 2851:. 2839:: 2816:. 2802:: 2766:. 2736:: 2730:9 2709:. 2689:: 2681:: 2645:: 2605:. 2579:. 2528:. 2506:: 2498:: 2488:: 2482:6 2461:. 2436:. 2404:. 2330:. 2251:. 2222:. 1523:f 1520:e 1517:r 1512:p 1497:p 1470:) 1462:f 1459:e 1456:r 1451:p 1447:p 1442:( 1421:= 1417:) 1410:2 1402:f 1399:e 1396:r 1391:p 1383:2 1378:p 1371:( 1350:= 1344:p 1339:L 1325:p 1322:L 1298:2 1293:+ 1271:2 1233:e 1226:t 1219:v 1167:Z 1147:E 1128:w 1110:W 1088:L 1084:P 1063:I 1024:v 1001:L 997:p 933:T 929:v 888:c 884:K 864:/ 860:K 855:= 852:c 832:p 823:= 820:K 794:/ 790:p 779:= 776:c 750:/ 746:p 683:. 674:p 668:= 665:c 90:. 40:. 23:.

Index

Sound (disambiguation)

drum
membrane
Drum - Cadence A
Drum cadences
United States Navy Band
media help
physics
vibration
acoustic wave
transmission medium
physiology
psychology
brain
frequencies
audio frequency
wavelengths
kHz
ultrasound
infrasound
hearing ranges
Oscillation
sensation
Acoustics
mechanical waves
vibration
acoustics
acoustical engineering
audio engineer

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.