Knowledge

Beam-powered propulsion

Source πŸ“

2097: 78: 2477: 506:"Laser propulsion as an idea that may produce a revolution in space technology. A single laser facility on the ground can in theory launch single-stage vehicles into low or high earth orbit. The payload can be 20% or 30% of the vehicle take-off weight. It is far more economical in the use of mass and energy than chemical propulsion, and it is far more flexible in putting identical vehicles into a variety of orbits." 484:
integrating it into the propulsion system of a small rocket to produce the first millimeter-wave thermal rocket. Simultaneously, it developed the first high-power cooperative target millimeter-wave beam director and used it to attempt the first millimeter-wave thermal rocket launch. Several launches were attempted, but problems with the beam director could not be resolved before funding ran out in March 2014.
442:" design is a reflective funnel-shaped craft that channels heat from the laser toward the center, using a reflective parabolic surface, causing the laser to explode the air underneath it, generating lift. Reflective surfaces in the craft focus the beam into a ring, where it heats air to a temperature nearly five times hotter than the surface of the Sun, causing the air to expand explosively for thrust. 149:, for instance, the fuel is used only to produce energy, and the air provides the working mass the jet aircraft flies through. In modern jet engines, the amount of air propelled is much more significant than the amount used for energy. However, this is not a solution for the rockets as they quickly climb to altitudes where the air is too thin to be useful as a source of working mass. 516:"The results of the study showed that, with advanced technology, laser rocket system with either a space- or ground-based laser transmitter could reduce the national budget allocated to space transportation by 10 to 345 billion dollars over a 10-year life cycle when compared to advanced chemical propulsion systems (LO 492:
The motivation to develop beam-powered propulsion systems comes from the economic advantages gained due to improved propulsion performance. In the case of beam-powered launch vehicles, better propulsion performance enables some combination of increased payload fraction, increased structural margins,
425:
set a new world's altitude record of 233 feet (71 m) for its 4.8 inch (12.2 cm) diameter, 1.8-ounce (51 g), laser-boosted rocket in a flight lasting 12.7 seconds. Although much of the 8:35 am flight was spent hovering at 230+ feet, the Lightcraft earned a world record for the longest
409:
tanks or an ablative solid in space. By leaving the vehicle's power source on the ground and using the ambient atmosphere as reaction mass for much of its ascent, a lightcraft could deliver a substantial percentage of its launch mass to orbit. It could also potentially be very cheap to manufacture.
167:
Further improvement can be made by removing the energy created by the spacecraft. If the nuclear reactor is left on the ground and its energy is transmitted to the spacecraft, its weight is also removed. The issue then is getting the energy into the spacecraft. This is the idea behind beamed power.
408:
The laser shines on a parabolic reflector on the vehicle's underside, concentrating the light to produce a region of extremely high temperature. The air in this region is heated and expands violently, producing thrust with each pulse of laser light. A lightcraft must provide this gas from onboard
534:
The 1970s-era studies and others since have cited beam director cost as a possible impediment to beam-powered launch systems. A recent cost-benefit analysis estimates that microwave (or laser) thermal rockets would be economical once beam director cost falls below 20 $ /Watt. The current cost of
566:
In 2002 a Japanese group propelled a tiny aluminium airplane by using a laser to vaporize a water droplet clinging to it, and in 2003 NASA researchers flew an 11-ounce (312 g) model airplane with a propeller powered with solar panels illuminated by a laser. It is possible that such beam-powered
258:
In this system, if a high intensity is incident on the solar array, careful design of the panels is necessary to avoid a fall-off in conversion efficiency due to heating effects. John Brophy has analyzed the transmission of laser power to a photovoltaic array powering a high-efficiency electric
578:
from Earth orbit. This is another proposed use of beam-powered propulsion, used on objects not designed to be propelled by it, for example, small pieces of scrap knocked off ("spalled") satellites. The technique works since the laser power ablates one side of the object, giving an impulse that
535:
suitable lasers is <100 $ /Watt and the cost of suitable microwave sources is <$ 5/Watt. Mass production has lowered the production cost of microwave oven magnetrons to <0.01 $ /Watt and some medical lasers to <10 $ /Watt, though these are considered unsuitable for beam directors.
464:
proposed a simpler, nearer-term concept with a rocket containing liquid hydrogen. The propellant is heated in a heat exchanger that the laser beam shines on before leaving the vehicle via a conventional nozzle. This concept can use continuous beam lasers, and the semiconductor lasers are now
483:
proposed a similar system using microwaves. In May 2012, the DARPA/NASA Millimeter-wave Thermal Launch System (MTLS) Project began the first steps toward implementing this idea. The MTLS Project was the first to demonstrate a millimeter-wave absorbent refractory heat exchanger, subsequently
207:
In microwave thermal propulsion, an external microwave beam is used to heat a refractory heat exchanger to >1,500 K, heating a propellant such as hydrogen, methane, or ammonia. This improves the propulsion system's specific impulse and thrust/weight ratio relative to conventional rocket
286:
broadcast power has been practically demonstrated several times (e.g., in Goldstone, California, in 1974). Rectennas are potentially lightweight and can handle high power at high conversion efficiency. However, rectennas must be huge for a significant amount of power to be captured.
434:
using a custom-built, one-megawatt ground-based laser. Such a system would use just about 20 dollars worth of electricity, placing launch costs per kilogram to many times less than current launch costs (which are measured in thousands of dollars).
567:
propulsion could be useful for long-duration high altitude uncrewed aircraft or balloons, perhaps designed to serve – like satellites do today – as communication relays, science platforms, or surveillance platforms.
193:
Since a laser can heat propellant to extremely high temperatures, this potentially greatly improves the efficiency of a rocket, as exhaust velocity is proportional to the square root of the temperature. Normal
198:
have an exhaust speed limited by the fixed amount of energy in the propellants, but beamed propulsion systems have no particular theoretical limit (although, in practice, there are temperature limits).
340:, and the laser or microwave antenna has to have good pointing stability so that the craft can tilt its sails fast enough to follow the center of the beam. This gets more important when going from 430:'s first test flight of his rocket design. Increasing the laser power to 100 kilowatts will enable flights up to a 30-kilometer altitude. They aim to accelerate a one-kilogram microsatellite into 329:
Forward proposed pushing a sail with a microwave beam in a later paper. This has the advantage that the sail need not be a continuous surface. Forward tagged his proposal for an ultralight sail "
771:
G. A. Landis, "Optics and Materials Considerations for a Laser-Propelled Lightsail", paper IAA-89-664, the 40th International Astronautical Federation Congress, MΓ‘laga, Spain, Oct. 7-12, 1989 (
134:
machines; they use mass ejected from the rocket to provide momentum to the rocket. Momentum is the product of mass and velocity, so rockets generally attempt to put as much velocity into their
729: 417:
Early in the morning of 2 October 2000 at the High Energy Laser Systems Test Facility (HELSTF), Lightcraft Technologies, Inc. (LTI) with the help of Franklin B. Mead of the U.S.
1354: 142:
is required. In a conventional rocket, the fuel is chemically combined to provide the energy, and the resulting fuel products, the ash or exhaust, are used as the working mass.
179:
or a laser beam from a fixed installation. This permits the spacecraft to leave its power source at home, saving significant amounts of mass and greatly improving performance.
1217: 1289: 333:". A later analysis by Landis suggested that the Starwisp concept as initially proposed by Forward would not work, but variations on the proposal might be implemented. 1206:
Parkin, K. L. G., et al. (2002). A Microwave-Thermal Thruster for Ultra Low-Cost Launch of Microsatellites, Jet Propulsion Center, California Institute of Technology.
378:
Another beam-pushed concept uses pellets or projectiles of ordinary matter. A stream of pellets from a stationary mass-driver is "reflected" by the spacecraft, cf.
1121:
Kare, J. T. (1992). Development of Laser-Driven Heat Exchanger Rocket for Ground to-Orbit Launch. Washington, DC International Astronautical Federation Congress.
1150: 426:
ever laser-powered free flight and the greatest "air time" (i.e., launch-to-landing/recovery) from a light-propelled object. This is comparable to
2133: 1431: 2264: 1827: 1945: 405:
is a vehicle currently under development that uses an external pulsed source of laser or maser energy to provide power for producing thrust.
662: 348:
and when going from a fly-by mission to a landing mission to a return mission. The laser or the microwave sender would probably be a large
1239: 1566: 687: 236: 1351: 375:
has proposed a variant to this whereby a "beam" of small laser accelerated light sails would transfer momentum to a magsail vehicle.
1843: 352:
of small devices that get their energy directly from solar radiation. The size of the array negates the need for a lens or mirror.
95: 1225: 2331: 1297: 1106: 974: 819: 360: 2420: 2126: 1424: 208:
propulsion. For example, hydrogen can provide a specific impulse of 700–900 seconds and a thrust/weight ratio of 50-150.
1021: 947: 1748: 164:
was carried out in the 1960s, but environmental concerns and rising costs led to the ending of most of these programs.
30:
that uses energy beamed to the spacecraft from a remote power plant to provide energy. The beam is typically either a
1822: 1175: 268: 117: 247:. Usually, these schemes assume either solar panels or an onboard reactor. However, both power sources are heavy. 152:
Rockets can carry their working mass and use other energy sources. The problem is finding an energy source with a
2503: 2119: 1848: 1713: 1417: 791: 615: 99: 2481: 2447: 2259: 1952: 1807: 1776: 1771: 418: 1139: 2292: 579:
changes the eccentricity of the object's orbit. The orbit would then intersect the atmosphere and burn up.
1371: 64:
Other than launching to orbit, applications for moving around the world quickly have also been proposed.
2452: 2388: 1394: 427: 371:
jet. Landis proposed a particle beam pushed sail in 1989, and analyzed in more detail in a 2004 paper.
171:
With beamed propulsion, one can leave the power source stationary on the ground and directly (or via a
161: 336:
The beam has to have a large diameter so that only a small portion of the beam misses the sail due to
2435: 2395: 1907: 1766: 145:
There is no particular reason why the same fuel has to be used for both energy and momentum. In the
2297: 2254: 2249: 2157: 1940: 1699: 1673: 1615: 1599: 1589: 460:
in which the propellant is heated by energy provided by an external laser beam. In 1992, the late
244: 57:
of power beamed to a vehicle per kg of payload while it is being accelerated to permit it to reach
1872: 1006: 788:
G. A. Landis, "Small Laser-Pushed Lightsail Interstellar Probe: A Study of Parameter Variations",
588: 2400: 2373: 2216: 1969: 1924: 1912: 1892: 1658: 1620: 1594: 1126: 1046: 666: 88: 47: 1086: 306:
was initially proposed by G. Marx but first analyzed in detail, and elaborated on, by physicist
2410: 2405: 2378: 2179: 2047: 1897: 1797: 1539: 610: 494: 705: 2513: 2508: 2336: 2226: 2142: 1632: 1625: 1440: 595: 552: 379: 341: 153: 27: 945:, paper AIAA-2000-3337, 36th Joint Propulsion Conference, Huntsville AL, July 17–19, 2000. ( 2383: 2346: 2326: 1743: 1738: 1642: 1556: 1122: 908: 844: 776: 563:. The rectenna converted microwave power into electricity, allowing the helicopter to fly. 364: 239:, in which electrical energy is used by an electrically powered rocket engine, such as an 8: 2440: 2415: 2287: 2194: 1902: 1887: 1802: 1689: 1668: 1637: 605: 345: 311: 264: 138:
as possible, thereby minimizing the needed working mass. To accelerate the working mass,
1404: 912: 848: 2457: 2101: 2067: 2032: 1338: 808: 319: 251: 1251: 1098: 2096: 2062: 2017: 1917: 1817: 1519: 1493: 1102: 924: 860: 856: 815: 681: 307: 2425: 2341: 2244: 2082: 2072: 2022: 1728: 1481: 1270: 1247: 1094: 942: 916: 852: 711: 544: 382:. The spacecraft neither needs energy nor reaction mass for propulsion of its own. 368: 227:. This produces a very high acceleration compared to microwave-pushed sails alone. 188: 882: 1694: 1498: 1464: 1358: 1319: 772: 480: 431: 216: 195: 157: 58: 2430: 2204: 2199: 2027: 1962: 1663: 1503: 474: 457: 451: 172: 39: 38:
beam, and it is either pulsed or continuous. A continuous beam lends itself to
1388: 1040: 755:
R. L. Forward, "Roundtrip Interstellar Travel Using Laser-Pushed lightsails,"
641: 2497: 2462: 2174: 2037: 1957: 1812: 1781: 1561: 1551: 1546: 1469: 1459: 1066: 951: 928: 864: 498: 356: 212: 1274: 2366: 2239: 2209: 2189: 2166: 2042: 2001: 1974: 1733: 1529: 1524: 899:
Forward, Robert L. (1985). "Starwisp - An ultra-light interstellar probe".
883:
Directed Energy For Relativistic Propulsion and Interstellar Communications
575: 349: 323: 240: 135: 1182: 835:
Andrews, Dana G. (1994). "Cost considerations for interstellar missions".
730:
A Breakthrough Propulsion Architecture for Interstellar Precursor Missions
2361: 2356: 2184: 2057: 2052: 1858: 907:(3). American Institute of Aeronautics and Astronautics (AIAA): 345–350. 571: 461: 422: 372: 337: 2111: 1409: 1399: 707:
The Microwave Thermal Thruster and Its Application to the Launch Problem
511:
This promise was quantified in a 1978 Lockheed Study conducted for NASA:
16:
Mechanism where confined high-speed particles confer energy to a vehicle
2321: 2271: 2077: 1534: 548: 439: 396: 315: 299: 224: 220: 146: 102: in this section. Unsourced material may be challenged and removed. 43: 1010:, Final Report, NASA Institute for Advanced Concepts, 31 December 2001 715: 2351: 1007:
High-acceleration Micro-scale Laser Sails for Interstellar Propulsion
948:"American Institute of Aeronautics and Astronautics - Meeting Papers" 556: 295:
A beam could also provide impulse by directly "pushing" on the sail.
283: 31: 1140:"Modular Laser Launch Architecture: Analysis and Beam Module Design" 1074: 920: 77: 46:. In contrast, a pulsed beam lends itself to ablative thrusters and 1091:
Orbit-Raising and Maneuvering Propulsion: Research Status and Needs
560: 330: 275: 131: 54: 23: 318:
by not carrying fuel. Further analysis of the concept was done by
1853: 1486: 620: 600: 260: 1476: 1454: 139: 1240:"Microwave-Powered Rockets Would Slash Cost of Reaching Orbit" 805: 501:, succinctly articulates the promise of beam-powered launch: 250:
Beamed propulsion in the form of a laser can send power to a
176: 35: 1218:"NASA Exploring Laser Beams to Zap Rockets Into Outer Space" 53:
The rule of thumb that is usually quoted is that it takes a
592: 1067:"Concepts and status of laser-supported rocket propulsion" 22:, also known as directed energy propulsion, is a class of 1042:
LightCraft Launch Oct 2000 - laserbeam powered propulsion
742:
G. Marx, "Interstellar Vehicle Propelled by Laser Beam,"
1372:"NASA Armstrong Fact Sheet: Beamed Laser Power for UAVs" 828: 943:
Microwave Pushed Interstellar Sail: Starwisp Revisited"
991:
G. A. Landis, "Interstellar Flight by Particle Beam,"
160:
can compete in this regard, and considerable work on
796:, No. 4, pp. 149-154 (1997); Paper IAA-95-4.1.1.02, 643:
Progress in beamed energy propulsion | Kevin Parkin
259:propulsion system as a means of accomplishing high 235:Some proposed spacecraft propulsion mechanisms use 223:of propellant trapped in the material of a massive 1361:Descriptive Note : Final rept. Jun 64-Apr 65 1352:EXPERIMENTAL AIRBORNE MICROWAVE SUPPORTED PLATFORM 807: 274:A microwave beam could be used to send power to a 2495: 975:"Interstellar Flight by Particle Beam Revisited" 302:to reflect a laser beam. This concept, called a 733:, NASA, March 30, 2018. Accessed Nov. 18, 2019. 497:'s 1977 study of laser propulsion, authored by 1137: 538: 355:Another beam-pushed concept would be to use a 2127: 1425: 1022:"'Smart Pellets' and Interstellar Propulsion" 806:Eugene Mallove & Gregory Matloff (1989). 363:to divert a beam of charged particles from a 1320:"Final Report. Laser Rocket System Analysis" 1287: 767: 765: 639: 1267:Microwave Thermal Propulsion - Final Report 892: 468: 175:) heat propellant on the spacecraft with a 2476: 2134: 2120: 1432: 1418: 782: 749: 237:electrically powered spacecraft propulsion 2141: 1439: 762: 156:that competes with chemical fuels. Small 118:Learn how and when to remove this message 1844:Atmosphere-breathing electric propulsion 887:J. British Interplanetary Soc., Vol. 68, 699: 697: 1019: 972: 898: 834: 445: 202: 2496: 2332:Differential technological development 1400:Fine-Tuning the Interstellar Lightsail 1264: 1176:"HX Laser Launch: It's Steamship Time" 1038: 710:, California Institute of Technology, 703: 686:: CS1 maint: archived copy as title ( 230: 2115: 1413: 1317: 1215: 694: 529: 465:cost-effective for this application. 1390:NASA video on Laser Drive Propulsion 1073:, Vol. 21, No. 1 (1984), pp. 70-79. 100:adding citations to reliable sources 71: 2421:Future-oriented technology analysis 1324:Lockheed Missiles and Space Company 385: 211:A variation, developed by brothers 182: 13: 1749:Field-emission electric propulsion 1336: 757:J. Spacecraft and Rockets, Vol. 21 14: 2525: 1823:Microwave electrothermal thruster 1405:How Stuff Works: light-propulsion 1382: 1252:10.1038/scientificamerican1215-33 1216:Patel, Prachi (25 January 2011). 1138:Jordin T. Kare (March 24, 2004). 1099:10.2514/5.9781600865633.0129.0148 1075:https://dx.doi.org/10.2514/3.8610 1071:Journal of Spacecraft and Rockets 901:Journal of Spacecraft and Rockets 290: 269:NASA Innovative Advanced Concepts 2475: 2095: 1288:Dyson, Freeman; Perkins (1977). 973:Gilster, Paul (April 18, 2005). 314:that would avoid extremely high 76: 1364: 1345: 1330: 1311: 1281: 1258: 1232: 1209: 1200: 1168: 1156:from the original on 2022-10-09 1131: 1115: 1079: 1059: 1049:from the original on 2021-12-11 1032: 1020:Gilster, Paul (July 16, 2014). 1013: 998: 985: 966: 935: 871: 87:needs additional citations for 1953:Pulsed nuclear thermal rocketβ€Ž 1849:High Power Electric Propulsion 1290:"JASON Laser Propulsion Study" 995:, No. 11, 931-934 (Dec. 2004). 814:. John Wiley & Sons, Inc. 799: 792:British Interplanetary Society 736: 721: 655: 633: 616:Project Forward (interstellar) 1: 2448:Technology in science fiction 1808:Helicon double-layer thruster 1777:Electrodeless plasma thruster 1772:Magnetoplasmadynamic thruster 626: 574:" has been proposed to sweep 419:Air Force Research Laboratory 390: 280:microwave electric propulsion 67: 2293:Laser communication in space 889:No. 5/6, May, 2015, pp. 172. 857:10.1016/0094-5765(94)90272-0 759:, pp 187-195 (Mar-Apr. 1989) 551:equipped with a combination 487: 456:A laser thermal rocket is a 7: 1339:"Microwave Thermal Rockets" 1294:Stanford Research Institute 704:Parkin, Kevin L.G. (2006), 640:Breakthrough (2018-05-29), 582: 539:Non-spacecraft applications 10: 2530: 2453:Technology readiness level 2389:Technological unemployment 1093:. 1984. pp. 129–148. 1087:"Laser Thermal Propulsion" 1065:H. Krier and R. J. Glumb. 472: 449: 412: 394: 256:Laser electric propulsion. 186: 162:nuclear thermal propulsion 42:, photonic thrusters, and 2471: 2436:Technological singularity 2396:Technological convergence 2314: 2280: 2225: 2165: 2156: 2149: 2093: 2010: 1989: 1933: 1880: 1871: 1836: 1790: 1767:Pulsed inductive thruster 1759: 1721: 1712: 1682: 1651: 1608: 1582: 1575: 1512: 1447: 993:Acta Astronautica, Vol 55 547:demonstrated a miniature 2298:Orbital propellant depot 2255:Plasma propulsion engine 2250:Nuclear pulse propulsion 1941:Nuclear pulse propulsion 1700:Electric-pump-fed engine 1600:Hybrid-propellant rocket 1590:Liquid-propellant rocket 843:. Elsevier BV: 357–365. 469:Microwave thermal rocket 245:plasma propulsion engine 48:pulse detonation engines 2401:Technological evolution 2374:Exploratory engineering 2235:Beam-powered propulsion 2217:Reusable launch vehicle 1997:Beam-powered propulsion 1970:Fission-fragment rocket 1925:Nuclear photonic rocket 1893:Nuclear electric rocket 1659:Staged combustion cycle 1595:Solid-propellant rocket 810:The Starflight Handbook 746:, July 1966, pp. 22-23. 524:) of equal capability." 322:, Mallove and Matloff, 310:in 1989 as a method of 304:laser-pushed lightsail, 298:One example is using a 267:precursor mission in a 20:Beam-powered propulsion 2411:Technology forecasting 2406:Technological paradigm 2379:Proactionary principle 2180:Non-rocket spacelaunch 2048:Non-rocket spacelaunch 1898:Nuclear thermal rocket 1798:Pulsed plasma thruster 1357:March 2, 2010, at the 1265:Parkin, Kevin (2017). 611:List of laser articles 527: 509: 2504:Spacecraft propulsion 2337:Disruptive innovation 2143:Emerging technologies 1714:Electrical propulsion 1441:Spacecraft propulsion 1039:Myrabo (2007-06-27), 596:Centennial Challenges 513: 503: 342:interplanetary travel 154:power-to-weight ratio 28:spacecraft propulsion 2384:Technological change 2327:Collingridge dilemma 1946:Antimatter-catalyzed 1744:Hall-effect thruster 1557:Solar thermal rocket 1246:. December 1, 2015. 589:Beam Power Challenge 446:Laser thermal rocket 365:particle accelerator 263:missions such as an 219:, is to use thermal 203:Microwave propulsion 96:improve this article 2441:Technology scouting 2416:Accelerating change 2288:Interstellar travel 1888:Direct Fusion Drive 1803:Vacuum arc thruster 1690:Pressure-fed engine 1669:Gas-generator cycle 1576:Chemical propulsion 1513:Physical propulsion 1244:Scientific American 1127:1992wadc.iafcQY...K 913:1985JSpRo..22..345F 849:1994AcAau..34..357A 606:Thinned-array curse 346:interstellar travel 326:Lubin, and others. 312:interstellar travel 231:Electric propulsion 2458:Technology roadmap 2102:Spaceflight portal 2068:Reactionless drive 2033:Aerogravity assist 1873:Nuclear propulsion 1318:Jones, W. (1979). 530:Beam director cost 493:and fewer stages. 252:photovoltaic panel 2491: 2490: 2310: 2309: 2306: 2305: 2109: 2108: 2063:Atmospheric entry 2018:Orbital mechanics 1985: 1984: 1867: 1866: 1818:Resistojet rocket 1708: 1707: 1683:Intake mechanisms 1616:Liquid propellant 1520:Cold gas thruster 1108:978-0-915928-82-8 837:Acta Astronautica 821:978-0-471-61912-3 716:10.7907/T337-T709 481:Kevin L.G. Parkin 308:Robert L. Forward 128: 127: 120: 2521: 2479: 2478: 2426:Horizon scanning 2342:Ephemeralization 2260:Helicon thruster 2245:Laser propulsion 2163: 2162: 2154: 2153: 2136: 2129: 2122: 2113: 2112: 2099: 2083:Alcubierre drive 2073:Field propulsion 2023:Orbital maneuver 2011:Related concepts 1878: 1877: 1729:Colloid thruster 1719: 1718: 1580: 1579: 1482:Specific impulse 1434: 1427: 1420: 1411: 1410: 1391: 1376: 1375: 1368: 1362: 1349: 1343: 1342: 1334: 1328: 1327: 1315: 1309: 1308: 1306: 1305: 1296:. Archived from 1285: 1279: 1278: 1275:2060/20170009162 1262: 1256: 1255: 1236: 1230: 1229: 1224:. Archived from 1213: 1207: 1204: 1198: 1197: 1195: 1193: 1188:on July 24, 2011 1187: 1181:. Archived from 1180: 1172: 1166: 1165: 1163: 1161: 1155: 1144: 1135: 1129: 1119: 1113: 1112: 1083: 1077: 1063: 1057: 1056: 1055: 1054: 1036: 1030: 1029: 1017: 1011: 1002: 996: 989: 983: 982: 970: 964: 962: 960: 959: 950:. Archived from 939: 933: 932: 896: 890: 875: 869: 868: 832: 826: 825: 813: 803: 797: 786: 780: 769: 760: 753: 747: 744:Nature, Vol. 211 740: 734: 725: 719: 718: 701: 692: 691: 685: 677: 675: 674: 665:. Archived from 659: 653: 652: 651: 650: 637: 559:device called a 545:William C. Brown 386:Proposed systems 196:chemical rockets 189:Laser propulsion 183:Laser propulsion 158:nuclear reactors 123: 116: 112: 109: 103: 80: 72: 2529: 2528: 2524: 2523: 2522: 2520: 2519: 2518: 2494: 2493: 2492: 2487: 2467: 2302: 2276: 2221: 2145: 2140: 2110: 2105: 2089: 2006: 1981: 1929: 1863: 1832: 1786: 1760:Electromagnetic 1755: 1704: 1695:Pump-fed engine 1678: 1647: 1604: 1571: 1508: 1499:Rocket equation 1465:Reaction engine 1443: 1438: 1389: 1385: 1380: 1379: 1370: 1369: 1365: 1359:Wayback Machine 1350: 1346: 1337:Parkin, Kevin. 1335: 1331: 1316: 1312: 1303: 1301: 1286: 1282: 1263: 1259: 1238: 1237: 1233: 1214: 1210: 1205: 1201: 1191: 1189: 1185: 1178: 1174: 1173: 1169: 1159: 1157: 1153: 1142: 1136: 1132: 1120: 1116: 1109: 1085: 1084: 1080: 1064: 1060: 1052: 1050: 1037: 1033: 1026:Centauri Dreams 1018: 1014: 1003: 999: 990: 986: 979:Centauri Dreams 971: 967: 957: 955: 946: 941:G. A. Landis, " 940: 936: 921:10.2514/3.25754 897: 893: 876: 872: 833: 829: 822: 804: 800: 787: 783: 770: 763: 754: 750: 741: 737: 726: 722: 702: 695: 679: 678: 672: 670: 663:"Archived copy" 661: 660: 656: 648: 646: 638: 634: 629: 585: 541: 532: 523: 519: 490: 477: 471: 454: 448: 432:low Earth orbit 415: 399: 393: 388: 293: 233: 217:Gregory Benford 205: 191: 185: 124: 113: 107: 104: 93: 81: 70: 59:low Earth orbit 40:thermal rockets 17: 12: 11: 5: 2527: 2517: 2516: 2511: 2506: 2489: 2488: 2486: 2485: 2472: 2469: 2468: 2466: 2465: 2460: 2455: 2450: 2445: 2444: 2443: 2438: 2433: 2428: 2423: 2418: 2408: 2403: 2398: 2393: 2392: 2391: 2381: 2376: 2371: 2370: 2369: 2364: 2359: 2354: 2344: 2339: 2334: 2329: 2324: 2318: 2316: 2312: 2311: 2308: 2307: 2304: 2303: 2301: 2300: 2295: 2290: 2284: 2282: 2278: 2277: 2275: 2274: 2269: 2268: 2267: 2262: 2252: 2247: 2242: 2237: 2231: 2229: 2223: 2222: 2220: 2219: 2214: 2213: 2212: 2207: 2205:Space fountain 2202: 2200:Space elevator 2197: 2192: 2187: 2177: 2171: 2169: 2160: 2151: 2147: 2146: 2139: 2138: 2131: 2124: 2116: 2107: 2106: 2094: 2091: 2090: 2088: 2087: 2086: 2085: 2080: 2070: 2065: 2060: 2055: 2050: 2045: 2040: 2035: 2030: 2028:Gravity assist 2025: 2020: 2014: 2012: 2008: 2007: 2005: 2004: 1999: 1993: 1991: 1990:External power 1987: 1986: 1983: 1982: 1980: 1979: 1978: 1977: 1967: 1966: 1965: 1963:Bussard ramjet 1955: 1950: 1949: 1948: 1937: 1935: 1931: 1930: 1928: 1927: 1922: 1921: 1920: 1915: 1910: 1905: 1895: 1890: 1884: 1882: 1875: 1869: 1868: 1865: 1864: 1862: 1861: 1856: 1851: 1846: 1840: 1838: 1834: 1833: 1831: 1830: 1825: 1820: 1815: 1810: 1805: 1800: 1794: 1792: 1791:Electrothermal 1788: 1787: 1785: 1784: 1779: 1774: 1769: 1763: 1761: 1757: 1756: 1754: 1753: 1752: 1751: 1746: 1741: 1731: 1725: 1723: 1716: 1710: 1709: 1706: 1705: 1703: 1702: 1697: 1692: 1686: 1684: 1680: 1679: 1677: 1676: 1671: 1666: 1664:Expander cycle 1661: 1655: 1653: 1649: 1648: 1646: 1645: 1640: 1635: 1633:Monopropellant 1630: 1629: 1628: 1623: 1612: 1610: 1606: 1605: 1603: 1602: 1597: 1592: 1586: 1584: 1577: 1573: 1572: 1570: 1569: 1564: 1559: 1554: 1549: 1544: 1543: 1542: 1532: 1527: 1522: 1516: 1514: 1510: 1509: 1507: 1506: 1504:Thermal rocket 1501: 1496: 1491: 1490: 1489: 1484: 1474: 1473: 1472: 1467: 1457: 1451: 1449: 1445: 1444: 1437: 1436: 1429: 1422: 1414: 1408: 1407: 1402: 1397: 1384: 1383:External links 1381: 1378: 1377: 1363: 1344: 1329: 1310: 1280: 1257: 1231: 1228:on 2011-01-27. 1208: 1199: 1167: 1130: 1114: 1107: 1078: 1058: 1031: 1012: 997: 984: 965: 934: 891: 870: 827: 820: 798: 781: 761: 748: 735: 720: 693: 654: 631: 630: 628: 625: 624: 623: 618: 613: 608: 603: 598: 584: 581: 540: 537: 531: 528: 521: 517: 489: 486: 475:Thermal rocket 473:Main article: 470: 467: 458:thermal rocket 452:Thermal rocket 450:Main article: 447: 444: 428:Robert Goddard 414: 411: 395:Main article: 392: 389: 387: 384: 292: 291:Direct impulse 289: 232: 229: 225:microwave sail 204: 201: 187:Main article: 184: 181: 173:heat exchanger 126: 125: 84: 82: 75: 69: 66: 15: 9: 6: 4: 3: 2: 2526: 2515: 2512: 2510: 2507: 2505: 2502: 2501: 2499: 2484: 2483: 2474: 2473: 2470: 2464: 2463:Transhumanism 2461: 2459: 2456: 2454: 2451: 2449: 2446: 2442: 2439: 2437: 2434: 2432: 2429: 2427: 2424: 2422: 2419: 2417: 2414: 2413: 2412: 2409: 2407: 2404: 2402: 2399: 2397: 2394: 2390: 2387: 2386: 2385: 2382: 2380: 2377: 2375: 2372: 2368: 2365: 2363: 2360: 2358: 2355: 2353: 2350: 2349: 2348: 2345: 2343: 2340: 2338: 2335: 2333: 2330: 2328: 2325: 2323: 2320: 2319: 2317: 2313: 2299: 2296: 2294: 2291: 2289: 2286: 2285: 2283: 2279: 2273: 2270: 2266: 2263: 2261: 2258: 2257: 2256: 2253: 2251: 2248: 2246: 2243: 2241: 2238: 2236: 2233: 2232: 2230: 2228: 2224: 2218: 2215: 2211: 2208: 2206: 2203: 2201: 2198: 2196: 2193: 2191: 2188: 2186: 2183: 2182: 2181: 2178: 2176: 2175:Fusion rocket 2173: 2172: 2170: 2168: 2164: 2161: 2159: 2158:Space science 2155: 2152: 2148: 2144: 2137: 2132: 2130: 2125: 2123: 2118: 2117: 2114: 2104: 2103: 2098: 2092: 2084: 2081: 2079: 2076: 2075: 2074: 2071: 2069: 2066: 2064: 2061: 2059: 2056: 2054: 2051: 2049: 2046: 2044: 2041: 2039: 2038:Oberth effect 2036: 2034: 2031: 2029: 2026: 2024: 2021: 2019: 2016: 2015: 2013: 2009: 2003: 2000: 1998: 1995: 1994: 1992: 1988: 1976: 1973: 1972: 1971: 1968: 1964: 1961: 1960: 1959: 1958:Fusion rocket 1956: 1954: 1951: 1947: 1944: 1943: 1942: 1939: 1938: 1936: 1932: 1926: 1923: 1919: 1916: 1914: 1911: 1909: 1906: 1904: 1901: 1900: 1899: 1896: 1894: 1891: 1889: 1886: 1885: 1883: 1881:Closed system 1879: 1876: 1874: 1870: 1860: 1857: 1855: 1852: 1850: 1847: 1845: 1842: 1841: 1839: 1835: 1829: 1826: 1824: 1821: 1819: 1816: 1814: 1813:Arcjet rocket 1811: 1809: 1806: 1804: 1801: 1799: 1796: 1795: 1793: 1789: 1783: 1782:Plasma magnet 1780: 1778: 1775: 1773: 1770: 1768: 1765: 1764: 1762: 1758: 1750: 1747: 1745: 1742: 1740: 1737: 1736: 1735: 1732: 1730: 1727: 1726: 1724: 1722:Electrostatic 1720: 1717: 1715: 1711: 1701: 1698: 1696: 1693: 1691: 1688: 1687: 1685: 1681: 1675: 1674:Tap-off cycle 1672: 1670: 1667: 1665: 1662: 1660: 1657: 1656: 1654: 1650: 1644: 1643:Tripropellant 1641: 1639: 1636: 1634: 1631: 1627: 1624: 1622: 1619: 1618: 1617: 1614: 1613: 1611: 1607: 1601: 1598: 1596: 1593: 1591: 1588: 1587: 1585: 1581: 1578: 1574: 1568: 1565: 1563: 1562:Photon rocket 1560: 1558: 1555: 1553: 1552:Magnetic sail 1550: 1548: 1547:Electric sail 1545: 1541: 1538: 1537: 1536: 1533: 1531: 1528: 1526: 1523: 1521: 1518: 1517: 1515: 1511: 1505: 1502: 1500: 1497: 1495: 1492: 1488: 1485: 1483: 1480: 1479: 1478: 1475: 1471: 1470:Reaction mass 1468: 1466: 1463: 1462: 1461: 1460:Rocket engine 1458: 1456: 1453: 1452: 1450: 1446: 1442: 1435: 1430: 1428: 1423: 1421: 1416: 1415: 1412: 1406: 1403: 1401: 1398: 1396: 1392: 1387: 1386: 1374:. 2015-03-31. 1373: 1367: 1360: 1356: 1353: 1348: 1340: 1333: 1325: 1321: 1314: 1300:on 2016-12-20 1299: 1295: 1291: 1284: 1276: 1272: 1268: 1261: 1253: 1249: 1245: 1241: 1235: 1227: 1223: 1219: 1212: 1203: 1184: 1177: 1171: 1152: 1148: 1147:niac.usra.edu 1141: 1134: 1128: 1124: 1118: 1110: 1104: 1100: 1096: 1092: 1088: 1082: 1076: 1072: 1068: 1062: 1048: 1044: 1043: 1035: 1027: 1023: 1016: 1009: 1008: 1001: 994: 988: 980: 976: 969: 954:on 2007-02-17 953: 949: 944: 938: 930: 926: 922: 918: 914: 910: 906: 902: 895: 888: 884: 880: 874: 866: 862: 858: 854: 850: 846: 842: 838: 831: 823: 817: 812: 811: 802: 795: 793: 785: 778: 774: 768: 766: 758: 752: 745: 739: 732: 731: 727:John Brophy, 724: 717: 713: 709: 708: 700: 698: 689: 683: 669:on 2011-09-28 668: 664: 658: 645: 644: 636: 632: 622: 619: 617: 614: 612: 609: 607: 604: 602: 599: 597: 594: 591:– one of the 590: 587: 586: 580: 577: 573: 568: 564: 562: 558: 554: 550: 546: 536: 526: 525: 512: 508: 507: 502: 500: 499:Freeman Dyson 496: 485: 482: 476: 466: 463: 459: 453: 443: 441: 436: 433: 429: 424: 420: 410: 406: 404: 398: 383: 381: 376: 374: 370: 366: 362: 358: 357:magnetic sail 353: 351: 347: 343: 339: 334: 332: 327: 325: 321: 317: 313: 309: 305: 301: 296: 288: 285: 281: 277: 272: 270: 266: 262: 257: 253: 248: 246: 242: 238: 228: 226: 222: 218: 214: 213:James Benford 209: 200: 197: 190: 180: 178: 174: 169: 165: 163: 159: 155: 150: 148: 143: 141: 137: 133: 122: 119: 111: 108:December 2022 101: 97: 91: 90: 85:This section 83: 79: 74: 73: 65: 62: 60: 56: 51: 49: 45: 41: 37: 33: 29: 25: 21: 2514:Force lasers 2509:Space access 2480: 2367:Robot ethics 2240:Ion thruster 2234: 2210:Space tether 2190:Orbital ring 2100: 2043:Space launch 1996: 1975:Fission sail 1903:Radioisotope 1734:Ion thruster 1652:Power cycles 1638:Bipropellant 1530:Steam rocket 1525:Water rocket 1366: 1347: 1332: 1323: 1313: 1302:. Retrieved 1298:the original 1293: 1283: 1266: 1260: 1243: 1234: 1226:the original 1221: 1211: 1202: 1190:. Retrieved 1183:the original 1170: 1158:. Retrieved 1146: 1133: 1117: 1090: 1081: 1070: 1061: 1051:, retrieved 1041: 1034: 1025: 1015: 1005: 1004:J. T. Kare, 1000: 992: 987: 978: 968: 956:. Retrieved 952:the original 937: 904: 900: 894: 886: 878: 873: 840: 836: 830: 809: 801: 789: 784: 756: 751: 743: 738: 728: 723: 706: 671:. Retrieved 667:the original 657: 647:, retrieved 642: 635: 576:space debris 569: 565: 542: 533: 515: 514: 510: 505: 504: 491: 478: 455: 437: 416: 407: 402: 400: 377: 354: 350:phased array 335: 328: 303: 297: 294: 279: 273: 265:interstellar 255: 249: 241:ion thruster 234: 210: 206: 192: 170: 166: 151: 144: 136:working mass 130:Rockets are 129: 114: 105: 94:Please help 89:verification 86: 63: 52: 19: 18: 2431:Moore's law 2362:Neuroethics 2357:Cyberethics 2185:Mass driver 2058:Aerocapture 2053:Aerobraking 1934:Open system 1918:"Lightbulb" 1859:Mass driver 1609:Propellants 1540:Diffractive 572:laser broom 462:Jordin Kare 423:Leik Myrabo 380:mass driver 373:Jordin Kare 338:diffraction 316:mass ratios 44:light sails 2498:Categories 2322:Automation 2272:Solar sail 2227:Propulsion 2078:Warp drive 1908:Salt-water 1626:Hypergolic 1535:Solar sail 1304:2016-12-08 1192:August 11, 1053:2016-12-08 958:2007-02-28 877:P. Lubin, 777:full paper 673:2009-08-31 649:2018-06-07 627:References 549:helicopter 440:lightcraft 438:Myrabo's " 403:lightcraft 397:Lightcraft 391:Lightcraft 300:solar sail 221:desorption 147:jet engine 68:Background 2352:Bioethics 1621:Cryogenic 929:0022-4650 865:0094-5765 794:, Vol. 50 557:rectifier 488:Economics 479:In 2002, 361:MMPP sail 284:Microwave 271:project. 32:microwave 1913:Gas core 1448:Concepts 1355:Archived 1269:. NASA. 1222:Fox News 1160:July 19, 1151:Archived 1047:archived 773:abstract 682:cite web 583:See also 561:rectenna 543:In 1964 331:Starwisp 276:rectenna 132:momentum 55:megawatt 24:aircraft 2195:Skyhook 2002:Tethers 1854:MagBeam 1739:Gridded 1494:Staging 1487:Delta-v 1395:YouTube 1123:Bibcode 909:Bibcode 845:Bibcode 621:DEEP-IN 601:MagBeam 553:antenna 413:Testing 324:Andrews 261:delta-V 2347:Ethics 2315:Topics 2265:VASIMR 2167:Launch 2150:Fields 1828:VASIMR 1477:Thrust 1455:Rocket 1105:  927:  863:  818:  369:plasma 320:Landis 140:energy 2281:Other 1837:Other 1583:State 1186:(PDF) 1179:(PDF) 1154:(PDF) 1143:(PDF) 879:et al 495:JASON 177:maser 36:laser 34:or a 2482:List 1567:WINE 1194:2010 1162:2016 1103:ISBN 925:ISSN 861:ISSN 816:ISBN 688:link 593:NASA 555:and 421:and 278:for 254:for 215:and 1393:on 1271:hdl 1248:doi 1095:doi 917:doi 885:," 881:, " 853:doi 790:J. 712:doi 570:A " 520:-LH 367:or 359:or 344:to 243:or 98:by 26:or 2500:: 1322:. 1292:. 1242:. 1220:. 1149:. 1145:. 1101:. 1089:. 1069:, 1045:, 1024:. 977:. 923:. 915:. 905:22 903:. 859:. 851:. 841:34 839:. 775:)( 764:^ 696:^ 684:}} 680:{{ 401:A 282:. 61:. 50:. 2135:e 2128:t 2121:v 1433:e 1426:t 1419:v 1341:. 1326:. 1307:. 1277:. 1273:: 1254:. 1250:: 1196:. 1164:. 1125:: 1111:. 1097:: 1028:. 981:. 963:) 961:. 931:. 919:: 911:: 867:. 855:: 847:: 824:. 779:) 714:: 690:) 676:. 522:2 518:2 121:) 115:( 110:) 106:( 92:.

Index

aircraft
spacecraft propulsion
microwave
laser
thermal rockets
light sails
pulse detonation engines
megawatt
low Earth orbit

verification
improve this article
adding citations to reliable sources
Learn how and when to remove this message
momentum
working mass
energy
jet engine
power-to-weight ratio
nuclear reactors
nuclear thermal propulsion
heat exchanger
maser
Laser propulsion
chemical rockets
James Benford
Gregory Benford
desorption
microwave sail
electrically powered spacecraft propulsion

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑