Knowledge

Neuroethology

Source 📝

531:
toads – "predicted" prey-catching reactions such as snapping. Another approach, called stimulation experiment, was carried out in freely moving toads. Focal electrical stimuli were applied to different regions of the brain, and the toad's response was observed. When the thalamic-pretectal region was stimulated, the toad exhibited escape responses, but when the tectum was stimulated in an area close to prey-selective neurons, the toad engaged in prey catching behavior (Carew 2000). Furthermore, neuroanatomical experiments were carried out where the toad's thalamic-pretectal/tectal connection was lesioned and the resulting deficit noted: the prey-selective properties were abolished both in the responses of prey-selective neurons and in the prey catching behavior. These and other experiments suggest that prey selectivity results from pretecto-tectal influences.
461:
technology allows neuroethologists to attach electrodes to even very sensitive parts of an animal such as its brain while it interacts with its environment. The founders of neuroethology ushered this understanding and incorporated technology and creative experimental design. Since then even indirect technological advancements such as battery-powered and waterproofed instruments have allowed neuroethologists to mimic natural conditions in the lab while they study behaviors objectively. In addition, the electronics required for amplifying neural signals and for transmitting them over a certain distance have enabled neuroscientists to record from behaving animals performing activities in naturalistic environments. Emerging technologies can complement neuroethology, augmenting the feasibility of this valuable perspective of natural neurophysiology.
457:
neuroethology. From the neurophysiology perspective, experiments must be designed for controls and objective rigor, which contrasts with the ethology perspective – that the experiment be applicable to the animal's natural condition, which is uncontrolled, or subject to the dynamics of the environment. An early example of this is when Walter Rudolf Hess developed focal brain stimulation technique to examine a cat's brain controls of vegetative functions in addition to other behaviors. Even though this was a breakthrough in technological abilities and technique, it was not used by many neuroethologists originally because it compromised a cat's natural state, and, therefore, in their minds, devalued the experiments' relevance to real situations.
506:
tail. Likewise, the neighboring fish's electric field was mimicked using another set of electrodes. This experiment allowed neuroethologists to manipulate different discharge frequencies and observe the fish's behavior. From the results, they were able to conclude that the electric field frequency, rather than an internal frequency measure, was used as a reference. This experiment is significant in that not only does it reveal a crucial neural mechanism underlying the behavior but also demonstrates the value neuroethologists place on studying animals in their natural habitats.
522:) and concluded that the animal followed a sequence that consisted of stalking, binocular fixation, snapping, swallowing and mouth-wiping. However, initially, the toad's actions were dependent on specific features of the sensory stimulus: whether it demonstrated worm or anti-worm configurations. It was observed that the worm configuration, which signaled prey, was initiated by movement along the object's long axis, whereas anti-worm configuration, which signaled predator, was due to movement along the short axis. (Zupanc 2004). 347:. Charles Sherrington, who was born in Great Britain in 1857, is famous for his work on the nerve synapse as the site of transmission of nerve impulses, and for his work on reflexes in the spinal cord. His research also led him to hypothesize that every muscular activation is coupled to an inhibition of the opposing muscle. He was awarded a Nobel Prize for his work in 1932 along with Lord Edgar Adrian who made the first physiological recordings of neural activity from single nerve fibers. 3929: 3227: 2776: 2464: 1806: 495:
difference) to that of its own, the fish will avoid having their signals interfere through a behavior known as Jamming Avoidance Response. If the neighbor's frequency is higher than the fish's discharge frequency, the fish will lower its frequency, and vice versa. The sign of the frequency difference is determined by analyzing the "beat" pattern of the incoming interference which consists of the combination of the two fish's discharge patterns.
280:(FAPs): endogenous, instinctive behaviors involving a complex sequence of movements that are triggered ("released") by a certain kind of stimulus. This sequence always proceeds to completion, even if the original stimulus is removed. It is also species-specific and performed by nearly all members. Lorenz constructed his famous "hydraulic model" to help illustrate this concept, as well as the concept of action specific energy, or drives. 181:, and neuroethologists argue that such an approach is limited. This argument is supported by experiments in the auditory system, which show that neural responses to complex sounds, like social calls, can not be predicted by the knowledge gained from studying the responses due to pure tones (one of the non-natural stimuli favored by auditory neurophysiologists). This is because of the non-linearity of the system. 2476: 1818: 25: 535:
latter, for example, the telencephalic caudal ventral striatum is involved in a loop gating the stimulus-response mediation in a manner of directed attention. The telencephalic ventral medial pallium („primordium hippocampi"), however, is involved in loops that either modify prey-selection due to associative learning or specify prey-selection due to non-associative learning, respectively.
2022: 81: 543:
Computational neuroethology (CN or CNE) is concerned with the computer modelling of the neural mechanisms underlying animal behaviors. Together with the term "artificial ethology," the term "computational neuroethology" was first published in literature by Achacoso and Yamamoto in the Spring of 1990,
525:
Ewert and coworkers adopted a variety of methods to study the predator versus prey behavior response. They conducted recording experiments where they inserted electrodes into the brain, while the toad was presented with worm or anti-worm stimuli. This technique was repeated at different levels of the
1340:
Hoyle, G. (1984) The scope of Neuroethology. Behavioural Brain Science 7:367-412. Graham Hoyle put forth a rather narrow definition of the goals and subject matter of neuroethology and links the field to the field of ethology. This is followed by commentaries from many prominent neuroethologists. It
350:
Alan Hodgkin and Andrew Huxley (born 1914 and 1917, respectively, in Great Britain), are known for their collaborative effort to understand the production of action potentials in the giant axons of squid. The pair also proposed the existence of ion channels to facilitate action potential initiation,
460:
When intellectual obstacles like this were overcome, it led to a golden age of neuroethology, by focusing on simple and robust forms of behavior, and by applying modern neurobiological methods to explore the entire chain of sensory and neural mechanisms underlying these behaviors (Zupanc 2004). New
184:
Modern neuroethology is largely influenced by the research techniques used. Neural approaches are necessarily very diverse, as is evident through the variety of questions asked, measuring techniques used, relationships explored, and model systems employed. Techniques utilized since 1984 include the
534:
Ewert and coworkers showed in toads that there are stimulus-response mediating pathways that translate perception (of visual sign stimuli) into action (adequate behavioral responses). In addition there are modulatory loops that initiate, modify or specify this mediation (Ewert 2004). Regarding the
456:
Neuroethologists seek to understand the neural basis of a behavior as it would occur in an animal's natural environment but the techniques for neurophysiological analysis are lab-based, and cannot be performed in the field setting. This dichotomy between field and lab studies poses a challenge for
464:
Another challenge, and perhaps part of the beauty of neuroethology, is experimental design. The value of neuroethological criteria speak to the reliability of these experiments, because these discoveries represent behavior in the environments in which they evolved. Neuroethologists foresee future
447:
through an advanced understanding of animal behavior. Model systems were generalized from the study of simple and related animals to humans. For example, the neuronal cortical space map discovered in bats, a specialized champion of hearing and navigating, elucidated the concept of a computational
530:
to be identified. In focus was the discovery of prey-selective neurons in the optic tectum, whose axons could be traced towards the snapping pattern generating cells in the hypoglossal nucleus. The discharge patterns of prey-selective tectal neurons in response to prey objects – in freely moving
505:
s natural conditions to study how it determined the sign of the frequency difference. They manipulated the fish's discharge by injecting it with curare which prevented its natural electric organ from discharging. Then, an electrode was placed in its mouth and another was placed at the tip of its
494:
is a weakly electric fish that can generate electric discharges through electrocytes in its tail. Furthermore, it has the ability to electrolocate by analyzing the perturbations in its electric field. However, when the frequency of a neighboring fish's current is very close (less than 20 Hz
168:
Often central to addressing questions in neuroethology are comparative methodologies, drawing upon knowledge about related organisms' nervous systems, anatomies, life histories, behaviors and environmental niches. While it is not unusual for many types of neurobiology experiments to give rise to
452:
model. This understanding is translatable to understanding spatial localization in humans, a mammalian relative of the bat. Today, knowledge learned from neuroethology are being applied in new technologies. For example, Randall Beer and his colleagues used algorithms learned from insect walking
386:
The International Society for Neuroethology represents the present discipline of neuroethology, which was founded on the occasion of the NATO-Advanced Study Institute "Advances in Vertebrate Neuroethology" (August 13–24, 1981) organized by J.-P. Ewert, D.J. Ingle and R.R. Capranica, held at the
115:
Neuroethologists hope to uncover general principles of the nervous system from the study of animals with exaggerated or specialized behaviors. They endeavor to understand how the nervous system translates biologically relevant stimuli into natural behavior. For example, many bats are capable of
283:
Niko Tinbergen was born in the Netherlands in 1907 and worked closely with Lorenz in the development of the FAP theory; their studies focused on the egg retrieval response of nesting geese. Tinbergen performed extensive research on the releasing mechanisms of particular FAPs, and used the
185:
use of intracellular dyes, which make maps of identified neurons possible, and the use of brain slices, which bring vertebrate brains into better observation through intracellular electrodes (Hoyle 1984). Currently, other fields toward which neuroethology may be headed include
296:
level, and this question can be thought of in many regards as the keystone question in neuroethology. Tinbergen also emphasized the need for ethologists and neurophysiologists to work together in their studies, a unity that has become a reality in the field of neuroethology.
399:
techniques have enabled more exacting approaches in an ever-increasing number of animal systems, as size limitations are being dramatically overcome. Survey of the most recent (2007) congress of the ISN meeting symposia topics gives some idea of the field's breadth:
265:(384–342 BC), it was not until the early twentieth century that ethology finally became distinguished from natural science (a strictly descriptive field) and ecology. The main catalysts behind this new distinction were the research and writings of 169:
behavioral questions, many neuroethologists often begin their research programs by observing a species' behavior in its natural environment. Other approaches to understanding nervous systems include the systems identification approach, popular in
133:
that animals' nervous systems have evolved to address problems of sensing and acting in certain environmental niches and that their nervous systems are best understood in the context of the problems they have evolved to solve. In accordance with
245:. Beyond its conceptual contributions, neuroethology makes indirect contributions to advancing human health. By understanding simpler nervous systems, many clinicians have used concepts uncovered by neuroethology and other branches of 120:
which is used for prey capture and navigation. The auditory system of bats is often cited as an example for how acoustic properties of sounds can be converted into a sensory map of behaviorally relevant features of sounds.
366:– are frequently referred to as the "fathers" of neuroethology. Neuroethology did not really come into its own, though, until the 1970s and 1980s, when new, sophisticated experimental methods allowed researchers such as 1060:
Achacoso, Theodore B.; Yamamoto, William S. (1990). "Artificial Ethology and Computational Neuroethology: A Scientific Discipline and Its Subset by Sharpening and Extending the Definition of Artificial Intelligence".
394:
Its membership draws from many research programs around the world; many of its members are students and faculty members from medical schools and neurobiology departments from various universities. Modern advances in
173:. The idea is to stimulate the system using a non-natural stimulus with certain properties. The system's response to the stimulus may be used to analyze the operation of the system. Such an approach is useful for 581:(Model CM-2). Instead of feeding the model retina with idealized input signals, they exposed the simulation to digitized video sequences made underwater, and compared its response with those of real animals. 108:(study of animal behavior in natural conditions). A central theme of neuroethology, which differentiates it from other branches of neuroscience, is its focus on behaviors that have been favored by 208:
Critics of neuroethology might consider it a branch of neuroscience concerned with 'animal trivia'. Though neuroethological subjects tend not to be traditional neurobiological model systems (i.e.
138:, neuroethologists often study animals that are "specialists" in the behavior the researcher wishes to study e.g. honeybees and social behavior, bat echolocation, owl sound localization, etc. 1149: 323:
Although the development of ethology as a distinct discipline was crucial to the advent of neuroethology, equally important was the development of a more comprehensive understanding of
1337:
Ewert J.-P. (2004) Motion perception shapes the visual world of amphibians. In: Prete F.R. (Ed.) Complex Worlds from Simpler Nervous Systems. Cambridge, MA, MIT Press, pp. 117–160
354:
As a result of this pioneering research, many scientists then sought to connect the physiological aspects of the nervous and sensory systems to specific behaviors. These scientists –
950:
Schürg-Pfeiffer, E.; Spreckelsen, C.; Ewert, J.-P. (1993). "Temporal discharge patterns of tectal and medullary neurons chronically recorded during snapping toward prey in toads
567:
CNE systems work within a closed-loop environment; that is, they perceive their (perhaps artificial) environment directly, rather than through human input, as is typical in
465:
advancements through using new technologies and techniques, such as computational neuroscience, neuroendocrinology, and molecular genetics that mimic natural environments.
112:(e.g., finding mates, navigation, locomotion, and predator avoidance) rather than on behaviors that are specific to a particular disease state or laboratory experiment. 1250: 292:
that he believed ethologists should be asking about any given animal behavior; among these is that of the mechanism of the behavior, on a physiological, neural and
1322:
Beer D., Randall, Roy E. Ritzmann, Thomas McKenna (1993) Biological neural networks in invertebrate neuroethology and robotics. Boston : Academic Press.
238:. The discipline of neuroethology has also discovered and explained the only vertebrate behavior for which the entire neural circuit has been described: the 1178:
Yamamoto, William S.; Achacoso, Theodore B. (1992-06-01). "Scaling up the nervous system of Caenorhabditis elegans: Is one ape equal to 33 million worms?".
1393:
Ewert, J.-P. (1976) Neuroethologie: Einführung in die neurophysiologischen Grundlagen des Verhaltens. HT 181. Springer-Verlag Heidelberg, Berlin, New York.
205:. In all this, neuroethologists must use the right level of simplicity to effectively guide research towards accomplishing the goals of neuroethology. 453:
behavior to create robots designed to walk on uneven surfaces (Beer et al.). Neuroethology and technology contribute to one another bidirectionally.
1157: 3161: 145:, a pioneer of neuroethology, when he considers the types of questions central to neuroethology in his 1980 introductory text to the field: 2384: 129:
Neuroethology is an integrative approach to the study of animal behavior that draws upon several disciplines. Its approach stems from the
1002: 226:), neuroethological approaches emphasizing comparative methods have uncovered many concepts central to neuroscience as a whole, such as 3166: 2514: 1390:
Ewert, J.-P. (1980) Neuroethology: An Introduction to the Neurophysiological Fundamentals of Behaviour. Springer-Verlag, New York.
1510: 1369:
Sillar, K.T., Picton, L.P., Heitler, W.J. (2016) The Neuroethology of Predation and Escape. John Wiley & Sons Inc., New York.
1856: 1473: 548:
of C. elegans in 1989, with further publications in 1992. Computational neuroethology was argued for in depth later in 1990 by
3909: 1538: 1041: 1012: 231: 100:
behavior and its underlying mechanistic control by the nervous system. It is an interdisciplinary science that combines both
2761: 1247:
From Animals to Animats: Proceedings of the First International Conference on the Simulation of Adaptive Behaviour (SAB90)
2812: 1555: 683: 527: 3263: 2364: 1421: 1378:
Simmons, P., Young, D. (1999) Nerve Cells and Animal Behaviour. Second Edition. Cambridge University Press, New York.
1230: 387:
University of Kassel in Hofgeismar, Germany (cf. report Trends in Neurosci. 5:141-143,1982). Its first president was
67: 1384:
Camhi J. (1984) Neuroethology: Nerve Cells and the Natural Behavior of Animals. Sinauer Associates, Sunderland Mass.
1381:
Simmons, P., Young, D. (2010) Nerve Cells and Animal Behaviour. Third Edition. Cambridge University Press, New York.
1375:
Carew, T.J. (2000) Behavioral Neurobiology: The Cellular Organization of Natural Behavior. Sinauer, Sunderland Mass.
858:
Suga, N. (1989). "Principles of auditory information-processing derived from neuroethology." J Exp Biol 146: 277–86.
490:
expanded it into a full neuroethology study by examining the series of neural connections that led to the behavior.
201:. The existing field of neural modeling may also expand into neuroethological terrain, due to its practical uses in 35: 3904: 2677: 1245:
D. Cliff (1990) Computational Neuroethology: A provisional manifesto. In J.-A. Meyer and S. W. Wilson (editors):
553: 1328:
Carew, T.J. (2000) Feature analysis in Toads. Behavioral Neurobiology, Sunderland, MA: Sinauer, pp. 95–119.
988:
Zupanc, Günther K.H. (2004). Behavioral Neurobiology an Integrative Approach. Oxford University Press. New York.
486:
sp. In collaboration with T.H. Bullock and colleagues, the behavior was further developed. Finally, the work of
448:
space map. In addition, the discovery of the space map in the barn owl led to the first neuronal example of the
2870: 2507: 1822: 1754: 1331:
Carew, T.J. (2000) Behavioral neurobiology: The Cellular Organization of Natural Behavior, Sinauer Associates.
2756: 2480: 2205: 1478: 289: 1354:
Zupanc, G.K.H. (2004) Behavioral Neurobiology: An Integrative Approach. Oxford University Press: Oxford, UK.
3863: 3204: 2900: 2359: 2180: 1468: 911:
Ewert, J. -P.; Borchers, H. -W. (1974). "Antwort von retinalen Ganglienzellen bei freibeweglichen Kröten (
571:
systems. For example, Barlow et al. developed a time-dependent model for the retina of the horseshoe crab
518:(Ewert 1974; see also 2004). He began by observing the natural prey-catching behavior of the common toad ( 2982: 2399: 1503: 1419:
Leslie Brothers & Brian Ring (1992), "A neuroethological framework for the representation of minds",
1372:
Zupanc, G.K.H. (2004) Behavioral Neurobiology an Integrative Approach. Oxford University Press, New York.
407:
Influences of higher processing centers in active sensing (primates, owls, electric fish, rodents, frogs)
2065: 257:
Neuroethology owes part of its existence to the establishment of ethology as a unique discipline within
3183: 2932: 1926: 1849: 1759: 1744: 755: 479: 242: 186: 3075: 1351:
Pfluger, H.-J. and R. Menzel (1999) Neuroethology, its roots and future. J Comp Physiol A 185:389-392.
1325:
Camhi, J.M. (1984) Neuroethology: Nerve cells and the Natural behavior of Animals, Sinauer Associates.
593:– nocturnal flight navigation and prey capture; location of objects using echo returns of its own call 2927: 2779: 2552: 2500: 2394: 2369: 2238: 1560: 276:
Konrad Lorenz was born in Austria in 1903, and is widely known for his contribution of the theory of
3963: 3724: 3197: 2880: 2751: 2746: 2333: 2308: 2233: 2140: 2045: 1941: 1764: 45: 1334:
Ewert, J.-P. (1974) The neural basis of visually guided behavior. Scientific American 230(3):34-42
3594: 3359: 2855: 2647: 2170: 1881: 1876: 1617: 657: 568: 210: 284:
bill-pecking behavior of baby herring gulls as his model system. This led to the concept of the
3953: 3014: 2977: 2967: 2912: 2860: 2805: 2602: 2597: 2587: 2165: 2155: 1946: 1901: 1810: 1774: 1533: 1496: 616: 216: 1402:
Roeder, K.D. (1967) Nerve Cells and Insect Behavior. Harvard University Press, Cambridge Mass.
590: 515: 3888: 3798: 3256: 2725: 2652: 2562: 2468: 2228: 2223: 2030: 1921: 1842: 1590: 1483: 1408:., Hamilton, W.J. (1966) Mechanisms of Animal Behavior. John Wiley & Sons Inc., New York. 1112:
Achacoso, Theodore B.; Fernandez, Victor; Nguyen, Duc C.; Yamamoto, William S. (1989-11-08).
305: 662: 312:
conditions, ethology sought to categorize and analyze the natural behaviors of animals in a
3749: 3577: 3120: 2885: 2845: 2840: 2542: 2537: 2449: 2200: 2040: 2011: 1906: 1667: 1600: 1580: 1575: 1399:(1976) Cellular Basis of Behavior: An Introduction to Behavioral Neurobiology. W.H. Freeman 700: 285: 277: 135: 3883: 3661: 3130: 1348:
is controlled by two separate motor pathways. The Journal of Neuroscience. 13(5):1862-1878
8: 3914: 3843: 3744: 3636: 3619: 3211: 2992: 2715: 2710: 2630: 2592: 2343: 2243: 2120: 2090: 2075: 1734: 1672: 1622: 788: 749: 604: 487: 388: 371: 332: 320:
behaviors, and seeks to mimic the natural context as much as possible in the laboratory.
117: 85: 1657: 793: 375: 155:
How is information about a stimulus acquired, stored and recalled by the nervous system?
142: 3835: 3729: 3283: 3125: 2917: 2895: 2875: 2700: 2684: 2662: 2567: 2557: 2419: 2313: 2253: 1976: 1956: 1697: 1627: 1595: 1570: 1446: 1134: 1113: 1094: 1030: 971: 932: 893: 691: 578: 227: 194: 190: 152:
How are environmental stimuli in the external world represented in the nervous system?
3958: 3816: 3695: 3626: 3614: 3230: 2937: 2905: 2798: 2672: 2667: 2625: 2338: 2273: 2248: 2100: 2060: 1718: 1438: 1226: 1203: 1195: 1191: 1121: 1086: 1078: 1037: 1008: 885: 449: 109: 16:
Study of animal behavior and its underlying mechanistic control by the nervous system
1456: 1098: 975: 936: 80: 3932: 3858: 3249: 3190: 3135: 3002: 2835: 2657: 2642: 2572: 2523: 2379: 2263: 2190: 2105: 1986: 1936: 1784: 1779: 1692: 1450: 1430: 1300: 1187: 1129: 1070: 963: 924: 897: 877: 803: 722: 653: 367: 363: 431:
Hormonal actions in brain and behavior (rodents, primates, fish, frogs, and birds)
391:. The society has met every three years since its first meeting in Tokyo in 1986. 3821: 3756: 3553: 3528: 3332: 3145: 3085: 3070: 3055: 3040: 3009: 2962: 2705: 2547: 2439: 2434: 2429: 2424: 2318: 2258: 2195: 2110: 2070: 2055: 2006: 1996: 1951: 1749: 1652: 1647: 1260:
M. A. Arbib (1987) Levels of Modeling of Mechanisms of Visually Guided Behavior.
783: 773: 726: 639: 610: 564:
computational model of neural mechanisms for visual guidance in frogs and toads.
396: 359: 355: 1114:"Computer Representation of the Synaptic Connectivity of Caenorhabditis Elegans" 827:
Hoyle, G. (1984) The scope of Neuroethology. The Behavioral and Brain Sciences.
514:
The recognition of prey and predators in the toad was first studied in depth by
164:
How can the ontogenetic development of behavior be related to neural mechanisms?
44:
The references used may be made clearer with a different or consistent style of
3853: 3848: 3709: 3690: 3609: 3489: 3347: 3327: 3304: 3110: 3065: 3060: 2942: 2850: 2609: 2404: 2374: 2303: 2278: 2268: 2115: 2095: 2085: 1971: 1891: 1769: 1642: 1637: 1585: 1223:
Intelligence as Adaptive Behavior: An experiment in computational neuroethology
768: 715: 669: 627: 572: 410:
Animal signaling plasticity over many time scales (electric fish, frogs, birds)
313: 270: 49: 1434: 734:– escape and startle behaviors, aggression and formation of social hierarchies 3947: 3873: 3868: 3771: 3683: 3651: 3604: 3543: 3403: 3384: 3353: 3299: 3115: 3105: 3100: 3095: 3024: 2865: 2328: 2323: 2185: 2175: 2135: 1981: 1916: 1911: 1632: 1565: 1199: 1125: 1082: 808: 778: 623: 557: 344: 328: 266: 239: 3739: 3678: 3673: 3533: 3479: 3474: 3393: 3374: 3369: 3140: 3090: 3050: 3019: 2972: 2720: 2635: 2414: 2409: 2293: 2125: 2050: 2001: 1991: 1966: 1961: 1931: 1865: 1789: 1739: 1677: 1442: 1405: 1118:
Proceedings of the Annual Symposium on Computer Application in Medical Care
889: 798: 696: 549: 478:
In 1963, Akira Watanabe and Kimihisa Takeda discovered the behavior of the
340: 336: 324: 246: 235: 101: 1479:
https://web.archive.org/web/20071006201121/http://www.tamie.org/insect.png
1305: 1288: 1207: 1090: 1074: 881: 647: 643: 378:, and others to study the neural circuits underlying verifiable behavior. 327:. Contributors to this new understanding were the Spanish Neuroanatomist, 3786: 3666: 3656: 3484: 3469: 3453: 3409: 3389: 3364: 3342: 3337: 3318: 3308: 3080: 3045: 2577: 2283: 2130: 1713: 1682: 1662: 1396: 646:"Image processing in the toad's visual system: behavior, brain function, 301: 222: 198: 170: 3878: 3646: 3599: 3548: 3513: 3459: 3443: 3423: 3418: 3414: 3323: 2741: 2444: 2145: 1687: 1273:
D. Cliff (2003) Neuroethology, Computational. In M. A. Arbib (editor):
967: 928: 746:– learning, navigation, vision, olfaction, flight, aggression, foraging 687: 545: 444: 309: 3734: 3586: 3448: 3429: 3398: 3312: 2389: 2080: 1457:
Günther K. H. Zupanc (2010), Neuroethology, Scholarpedia, 5(10):5306.
1387:
Guthrie, D.M. (1980) Neuroethology: An Introduction. Wiley, New York.
1289:"The Neural Network of the Limulus Retina: From Computer to Behavior" 743: 599: 425:
Contributions of genes to behavior (Drosophila, honeybees, zebrafish)
293: 262: 178: 404:
Comparative aspects of spatial memory (rodents, birds, humans, bats)
316:. Similarly, neuroethology asks questions about the neural bases of 3776: 3563: 3558: 3538: 3523: 3518: 3508: 3438: 3433: 3379: 2952: 2947: 2922: 2821: 2492: 2298: 1550: 731: 633: 596: 202: 105: 1287:
Barlow, Robert B.; Prakash, Ramkrishna; Solessio, Eduardo (1993).
3573: 3272: 2987: 737: 707: 258: 161:
How is behavior coordinated and controlled by the nervous system?
1488: 1418: 3499: 1834: 1544: 1111: 949: 630:, expectation generators, and spike timing dependent plasticity 626:– navigation, communication, Jamming Avoidance Response (JAR), 419:
Optimal function of sensory systems (flies, moths, frogs, fish)
174: 130: 97: 261:. Although animal behavior had been studied since the time of 3793: 3781: 3766: 3761: 2890: 868:
Bullock, T. H. (1999). "Neuroethology has pregnant agendas".
677: 656:– influence of various circadian controlled behaviors by the 141:
The scope of neuroethological inquiry might be summarized by
96:
is the evolutionary and comparative approach to the study of
672:– C-start escape response and underwater directional hearing 351:
and were awarded the Nobel Prize in 1963 for their efforts.
2997: 2790: 3241: 2021: 840:
Ewert, P. (1980) Neuroethology. Springer-Verlag. New York.
636:
auditory spatial map – nocturnal prey location and capture
849:
Camhi, J. (1984) Neuroethology. Sinauer. Sunderland Mass.
1277:. Second Edition. MIT Press Bradford Books. pp. 737–741. 620:); song learning as a model for human speech development 422:
Neuronal complexity in behavior (insects, computational)
158:
How is a behavioral pattern encoded by neural networks?
249:
to develop treatments for devastating human diseases.
1344:
Metzner, W. (1993) The Jamming avoidance response in
1286: 498:
Neuroethologists performed several experiments under
711:
sea hares – learning and memory in startle response
428:
Eye and head movement (crustaceans, humans, robots)
1029: 556:both of whom acknowledged the strong influence of 509: 304:, which studies animals' reactions to non-natural 1150:"Ay's Neuroanatomy of C. Elegans for Computation" 1027: 3945: 1484:Collected Neuroethology articles in Scholarpedia 1275:The Handbook of Brain Theory and Neural Networks 1177: 1059: 690:, and spatial navigation in chasing behavior of 1220: 413:Song production and learning in passerine birds 177:systems, but the nervous system is notoriously 1249:. MIT Press Bradford Books, 1991, pp. 29–39. 538: 443:Neuroethology can help create advancements in 3257: 3162:Association for the Study of Animal Behaviour 2806: 2508: 1850: 1504: 1000: 910: 473: 89:in bats is one model system in neuroethology. 2385:Intraoperative neurophysiological monitoring 438: 642:– discrimination of prey versus predator – 3264: 3250: 3167:International Society for Applied Ethology 2813: 2799: 2515: 2501: 1857: 1843: 1511: 1497: 996: 994: 1304: 1133: 1036:. Oxford University Press. p. 1291. 665:– mate attraction and corollary discharge 68:Learn how and when to remove this message 675:Fly – Microscale directional hearing in 149:How are stimuli detected by an organism? 79: 1469:International Society for Neuroethology 991: 867: 381: 288:. Tinbergen is also well known for his 3946: 1214: 740:fish – aggression and attack behaviors 544:based on their pioneering work on the 41:numerous sources not properly notated. 3245: 2794: 2496: 1838: 1492: 2522: 2475: 1817: 1063:Perspectives in Biology and Medicine 684:sex differences of the visual system 18: 956:Journal of Comparative Physiology A 870:Journal of Comparative Physiology A 13: 1358: 756:More Model Systems and Information 331:(born in 1852), and physiologists 104:(study of the nervous system) and 14: 3975: 2365:Development of the nervous system 1518: 1462: 1422:Journal of Cognitive Neuroscience 1262:The Behavioral and Brain Sciences 1180:Computers and Biomedical Research 917:Journal of Comparative Physiology 3928: 3927: 3647:Mammalian anatomy and morphology 3226: 3225: 2775: 2774: 2474: 2463: 2462: 2020: 1864: 1816: 1805: 1804: 1048:Computational neuroethology cne. 584: 23: 1561:Central pattern generator (CPG) 1280: 1267: 1254: 1239: 1171: 1142: 1105: 1053: 1021: 526:visual system and also allowed 510:Feature analysis in toad vision 468: 434:Cognition in insects (honeybee) 2871:Bee learning and communication 1755:Frog hearing and communication 1341:makes for fascinating reading. 982: 943: 904: 861: 852: 843: 834: 821: 1: 2757:Neuroscience and intelligence 2206:Social cognitive neuroscience 1007:. MIT Press. pp. 13–14. 815: 614:) and white-crowned sparrow ( 124: 2820: 2181:Molecular cellular cognition 1363: 1192:10.1016/0010-4809(92)90043-A 7: 3271: 2400:Neurodevelopmental disorder 2375:Neural network (biological) 2370:Neural network (artificial) 1412: 761: 725:– olfactory imprinting and 539:Computational neuroethology 10: 3980: 1927:Computational neuroscience 1760:Infrared sensing in snakes 1745:Jamming avoidance response 1316: 1028:Margaret A. Boden (2006). 480:jamming avoidance response 474:Jamming avoidance response 252: 243:jamming avoidance response 187:computational neuroscience 3923: 3897: 3834: 3809: 3717: 3708: 3635: 3585: 3572: 3498: 3292: 3279: 3221: 3175: 3154: 3033: 2928:Evolutionary neuroscience 2828: 2770: 2734: 2693: 2618: 2553:Cognitive bias in animals 2530: 2458: 2395:Neurodegenerative disease 2352: 2239:Evolutionary neuroscience 2214: 2154: 2029: 2018: 1890: 1872: 1800: 1727: 1706: 1610: 1526: 1435:10.1162/jocn.1992.4.2.107 752:– navigational mechanisms 439:Application to technology 2881:Behavioral endocrinology 2752:Encephalization quotient 2747:Brain-to-body mass ratio 2360:Brain–computer interface 2309:Neuromorphic engineering 2234:Educational neuroscience 2141:Nutritional neuroscience 2046:Clinical neurophysiology 1942:Integrative neuroscience 1765:Caridoid escape reaction 1221:Randall D. Beer (1990). 3360:Biological anthropology 3076:Irenäus Eibl-Eibesfeldt 2856:Animal sexual behaviour 2171:Behavioral neuroscience 1618:Theodore Holmes Bullock 1474:Topics in Neuroethology 658:suprachiasmatic nucleus 648:artificial neuronal net 39:. The reason given is: 3015:Tool use by non-humans 2968:Philosophical ethology 2913:Comparative psychology 2861:Animal welfare science 2598:Tool use by non-humans 2588:Observational learning 2166:Affective neuroscience 1947:Molecular neuroscience 1902:Behavioral epigenetics 1775:Surface wave detection 1001:Stan Franklin (1998). 617:Zonotrichia leucophrys 90: 3889:Alfred Russel Wallace 3799:Water vascular system 2726:Pain in invertebrates 2563:Comparative cognition 2229:Cultural neuroscience 2224:Consumer neuroscience 2066:Neurogastroenterology 1922:Cellular neuroscience 1591:Anti-Hebbian learning 1075:10.1353/pbm.1990.0020 882:10.1007/s003590050389 703:response to bat calls 278:fixed action patterns 232:coincidence detection 83: 3750:Cellular respiration 3121:William Homan Thorpe 2886:Behavioural genetics 2846:Animal consciousness 2841:Animal communication 2543:Animal consciousness 2538:Animal communication 2201:Sensory neuroscience 2041:Behavioral neurology 2012:Systems neuroscience 1668:Bernhard Hassenstein 1601:Ultrasound avoidance 1576:Fixed action pattern 1539:Coincidence detector 701:ultrasound avoidance 382:Modern neuroethology 286:supernormal stimulus 3915:Timeline of zoology 3844:Karl Ernst von Baer 3745:Respiratory pigment 3620:Mineralized tissues 2876:Behavioural ecology 2716:Pain in crustaceans 2711:Pain in cephalopods 2593:Primate archaeology 2344:Social neuroscience 2244:Global neurosurgery 2121:Neurorehabilitation 2091:Neuro-ophthalmology 2076:Neurointensive care 1907:Behavioral genetics 1735:Animal echolocation 1673:Werner E. Reichardt 1623:Walter Heiligenberg 1306:10.1093/icb/33.1.66 789:Theodore H. Bullock 628:corollary discharge 605:Taeniopygia guttata 389:Theodore H. Bullock 372:Walter Heiligenberg 333:Charles Sherrington 318:naturally occurring 3730:Respiratory system 3718:General physiology 3615:Connective tissues 3205:Behavioral Ecology 3126:Nikolaas Tinbergen 2918:Emotion in animals 2896:Cognitive ethology 2701:Pain in amphibians 2568:Emotion in animals 2558:Cognitive ethology 2420:Neuroimmune system 2314:Neurophenomenology 2254:Neural engineering 1977:Neuroendocrinology 1957:Neural engineering 1698:Fernando Nottebohm 1596:Sound localization 1571:Lateral inhibition 1293:American Zoologist 1225:. Academic Press. 968:10.1007/BF00212701 952:Bufo bufo spinosus 929:10.1007/BF00694501 692:Fannia canicularis 579:Connection Machine 574:Limulus polyphemus 228:lateral inhibition 195:neuroendocrinology 191:molecular genetics 91: 3941: 3940: 3884:Jakob von Uexküll 3830: 3829: 3817:Insect physiology 3710:Animal physiology 3704: 3703: 3696:Insect morphology 3627:Molecular anatomy 3600:Epithelial tissue 3578:Animal morphology 3239: 3238: 3131:Jakob von Uexküll 2901:Comfort behaviour 2788: 2787: 2762:Number of neurons 2735:Relation to brain 2490: 2489: 2339:Paleoneurobiology 2274:Neuroepistemology 2249:Neuroanthropology 2215:Interdisciplinary 2101:Neuropharmacology 2061:Neuroepidemiology 1832: 1831: 1719:Slice preparation 1581:Krogh's Principle 1556:Feature detection 1043:978-0-19-924144-6 1014:978-0-262-56109-9 750:Monarch butterfly 528:feature detectors 482:in the knifefish 416:Primate sociality 136:Krogh's principle 110:natural selection 78: 77: 70: 3971: 3931: 3930: 3859:Jean-Henri Fabre 3715: 3714: 3583: 3582: 3266: 3259: 3252: 3243: 3242: 3229: 3228: 3191:Animal Cognition 3184:Animal Behaviour 3136:Wolfgang Wickler 2836:Animal cognition 2815: 2808: 2801: 2792: 2791: 2778: 2777: 2524:Animal cognition 2517: 2510: 2503: 2494: 2493: 2478: 2477: 2466: 2465: 2380:Detection theory 2264:Neurocriminology 2191:Neurolinguistics 2106:Neuroprosthetics 2024: 1987:Neuroinformatics 1937:Imaging genetics 1859: 1852: 1845: 1836: 1835: 1820: 1819: 1808: 1807: 1785:Mechanoreception 1780:Electroreception 1693:Masakazu Konishi 1658:Jörg-Peter Ewert 1513: 1506: 1499: 1490: 1489: 1453: 1311: 1310: 1308: 1284: 1278: 1271: 1265: 1258: 1252: 1243: 1237: 1236: 1218: 1212: 1211: 1175: 1169: 1168: 1166: 1165: 1156:. Archived from 1146: 1140: 1139: 1137: 1109: 1103: 1102: 1057: 1051: 1050: 1035: 1025: 1019: 1018: 1004:Artificial Minds 998: 989: 986: 980: 979: 947: 941: 940: 908: 902: 901: 865: 859: 856: 850: 847: 841: 838: 832: 825: 804:Masakazu Konishi 794:Jörg-Peter Ewert 727:thyroid hormones 654:Circadian rhythm 591:Bat echolocation 562:Rana Computatrix 516:Jörg-Peter Ewert 504: 376:Jörg-Peter Ewert 368:Masakazu Konishi 364:Theodore Bullock 143:Jörg-Peter Ewert 73: 66: 62: 59: 53: 27: 26: 19: 3979: 3978: 3974: 3973: 3972: 3970: 3969: 3968: 3964:Neurophysiology 3944: 3943: 3942: 3937: 3919: 3893: 3826: 3822:Fish physiology 3805: 3757:Vascular system 3700: 3638: 3631: 3605:Muscular tissue 3576: 3568: 3554:Platyhelminthes 3529:Xenacoelomorpha 3494: 3333:Lepidopterology 3288: 3275: 3270: 3240: 3235: 3217: 3171: 3150: 3146:Solly Zuckerman 3086:Karl von Frisch 3071:Richard Dawkins 3056:John B. Calhoun 3041:Patrick Bateson 3029: 2963:Pain in animals 2824: 2819: 2789: 2784: 2766: 2730: 2706:Pain in animals 2689: 2614: 2548:Animal language 2526: 2521: 2491: 2486: 2454: 2440:Neurotechnology 2435:Neuroplasticity 2430:Neuromodulation 2425:Neuromanagement 2348: 2319:Neurophilosophy 2216: 2210: 2196:Neuropsychology 2157: 2150: 2111:Neuropsychiatry 2071:Neuroimmunology 2056:Neurocardiology 2032: 2025: 2016: 2007:Neurophysiology 1997:Neuromorphology 1952:Neural decoding 1893: 1886: 1868: 1863: 1833: 1828: 1796: 1750:Vision in toads 1723: 1702: 1653:Erich von Holst 1648:Karl von Frisch 1606: 1522: 1517: 1465: 1415: 1366: 1361: 1359:Further reading 1319: 1314: 1285: 1281: 1272: 1268: 1259: 1255: 1244: 1240: 1233: 1219: 1215: 1176: 1172: 1163: 1161: 1148: 1147: 1143: 1110: 1106: 1058: 1054: 1044: 1032:Mind as machine 1026: 1022: 1015: 999: 992: 987: 983: 948: 944: 909: 905: 866: 862: 857: 853: 848: 844: 839: 835: 826: 822: 818: 813: 784:Erich von Holst 774:Karl von Frisch 764: 611:Serinus canaria 602:– zebra finch ( 587: 541: 512: 502: 488:W. Heiligenberg 476: 471: 441: 397:neurophysiology 384: 360:Erich von Holst 356:Karl von Frisch 308:in artificial, 255: 127: 74: 63: 57: 54: 43: 34:has an unclear 28: 24: 17: 12: 11: 5: 3977: 3967: 3966: 3961: 3956: 3939: 3938: 3936: 3935: 3924: 3921: 3920: 3918: 3917: 3912: 3907: 3901: 3899: 3895: 3894: 3892: 3891: 3886: 3881: 3876: 3871: 3866: 3861: 3856: 3854:Charles Darwin 3851: 3849:Georges Cuvier 3846: 3840: 3838: 3832: 3831: 3828: 3827: 3825: 3824: 3819: 3813: 3811: 3807: 3806: 3804: 3803: 3802: 3801: 3796: 3791: 3790: 3789: 3784: 3779: 3769: 3764: 3754: 3753: 3752: 3747: 3742: 3737: 3732: 3721: 3719: 3712: 3706: 3705: 3702: 3701: 3699: 3698: 3693: 3691:Spider anatomy 3688: 3687: 3686: 3676: 3671: 3670: 3669: 3664: 3659: 3654: 3643: 3641: 3639:and morphology 3633: 3632: 3630: 3629: 3624: 3623: 3622: 3617: 3612: 3610:Nervous tissue 3607: 3602: 3591: 3589: 3580: 3574:Animal anatomy 3570: 3569: 3567: 3566: 3561: 3556: 3551: 3546: 3541: 3536: 3531: 3526: 3521: 3516: 3511: 3505: 3503: 3496: 3495: 3493: 3492: 3490:Zooarchaeology 3487: 3482: 3477: 3472: 3467: 3462: 3457: 3451: 3446: 3441: 3436: 3427: 3421: 3412: 3407: 3401: 3396: 3387: 3382: 3377: 3372: 3367: 3362: 3357: 3351: 3348:Orthopterology 3345: 3340: 3335: 3330: 3328:Coleopterology 3321: 3316: 3305:Arthropodology 3302: 3296: 3294: 3290: 3289: 3287: 3286: 3280: 3277: 3276: 3269: 3268: 3261: 3254: 3246: 3237: 3236: 3234: 3233: 3222: 3219: 3218: 3216: 3215: 3208: 3201: 3198:Animal Welfare 3194: 3187: 3179: 3177: 3173: 3172: 3170: 3169: 3164: 3158: 3156: 3152: 3151: 3149: 3148: 3143: 3138: 3133: 3128: 3123: 3118: 3113: 3111:Desmond Morris 3108: 3103: 3098: 3093: 3088: 3083: 3078: 3073: 3068: 3066:Marian Dawkins 3063: 3061:Charles Darwin 3058: 3053: 3048: 3043: 3037: 3035: 3031: 3030: 3028: 3027: 3022: 3017: 3012: 3007: 3006: 3005: 3000: 2995: 2990: 2980: 2975: 2970: 2965: 2960: 2955: 2950: 2945: 2943:Human ethology 2940: 2935: 2930: 2925: 2920: 2915: 2910: 2909: 2908: 2898: 2893: 2888: 2883: 2878: 2873: 2868: 2863: 2858: 2853: 2851:Animal culture 2848: 2843: 2838: 2832: 2830: 2826: 2825: 2818: 2817: 2810: 2803: 2795: 2786: 2785: 2783: 2782: 2771: 2768: 2767: 2765: 2764: 2759: 2754: 2749: 2744: 2738: 2736: 2732: 2731: 2729: 2728: 2723: 2718: 2713: 2708: 2703: 2697: 2695: 2691: 2690: 2688: 2687: 2682: 2681: 2680: 2670: 2665: 2660: 2655: 2650: 2645: 2640: 2639: 2638: 2633: 2622: 2620: 2616: 2615: 2613: 2612: 2610:Vocal learning 2607: 2606: 2605: 2595: 2590: 2585: 2580: 2575: 2570: 2565: 2560: 2555: 2550: 2545: 2540: 2534: 2532: 2528: 2527: 2520: 2519: 2512: 2505: 2497: 2488: 2487: 2485: 2484: 2472: 2459: 2456: 2455: 2453: 2452: 2450:Self-awareness 2447: 2442: 2437: 2432: 2427: 2422: 2417: 2412: 2407: 2405:Neurodiversity 2402: 2397: 2392: 2387: 2382: 2377: 2372: 2367: 2362: 2356: 2354: 2350: 2349: 2347: 2346: 2341: 2336: 2331: 2326: 2321: 2316: 2311: 2306: 2304:Neuromarketing 2301: 2296: 2291: 2286: 2281: 2279:Neuroesthetics 2276: 2271: 2269:Neuroeconomics 2266: 2261: 2256: 2251: 2246: 2241: 2236: 2231: 2226: 2220: 2218: 2212: 2211: 2209: 2208: 2203: 2198: 2193: 2188: 2183: 2178: 2173: 2168: 2162: 2160: 2152: 2151: 2149: 2148: 2143: 2138: 2133: 2128: 2123: 2118: 2116:Neuroradiology 2113: 2108: 2103: 2098: 2096:Neuropathology 2093: 2088: 2086:Neuro-oncology 2083: 2078: 2073: 2068: 2063: 2058: 2053: 2048: 2043: 2037: 2035: 2027: 2026: 2019: 2017: 2015: 2014: 2009: 2004: 1999: 1994: 1989: 1984: 1979: 1974: 1972:Neurochemistry 1969: 1964: 1959: 1954: 1949: 1944: 1939: 1934: 1929: 1924: 1919: 1914: 1909: 1904: 1898: 1896: 1888: 1887: 1885: 1884: 1879: 1873: 1870: 1869: 1862: 1861: 1854: 1847: 1839: 1830: 1829: 1827: 1826: 1814: 1801: 1798: 1797: 1795: 1794: 1793: 1792: 1782: 1777: 1772: 1770:Vocal learning 1767: 1762: 1757: 1752: 1747: 1742: 1737: 1731: 1729: 1725: 1724: 1722: 1721: 1716: 1710: 1708: 1704: 1703: 1701: 1700: 1695: 1690: 1685: 1680: 1675: 1670: 1665: 1660: 1655: 1650: 1645: 1643:Donald Kennedy 1640: 1638:Donald Griffin 1635: 1630: 1628:Niko Tinbergen 1625: 1620: 1614: 1612: 1608: 1607: 1605: 1604: 1598: 1593: 1588: 1586:Hebbian theory 1583: 1578: 1573: 1568: 1563: 1558: 1553: 1548: 1541: 1536: 1530: 1528: 1524: 1523: 1516: 1515: 1508: 1501: 1493: 1487: 1486: 1481: 1476: 1471: 1464: 1463:External links 1461: 1460: 1459: 1454: 1429:(2): 107–118, 1414: 1411: 1410: 1409: 1403: 1400: 1394: 1391: 1388: 1385: 1382: 1379: 1376: 1373: 1370: 1365: 1362: 1360: 1357: 1356: 1355: 1352: 1349: 1342: 1338: 1335: 1332: 1329: 1326: 1323: 1318: 1315: 1313: 1312: 1279: 1266: 1253: 1238: 1231: 1213: 1186:(3): 279–291. 1170: 1141: 1104: 1069:(3): 379–390. 1052: 1042: 1020: 1013: 990: 981: 962:(3): 363–376. 942: 923:(2): 117–130. 903: 876:(4): 291–295. 860: 851: 842: 833: 819: 817: 814: 812: 811: 806: 801: 796: 791: 786: 781: 776: 771: 769:Niko Tinbergen 765: 763: 760: 759: 758: 753: 747: 741: 735: 729: 719: 718:and navigation 716:spatial memory 712: 704: 694: 673: 670:Mauthner cells 666: 660: 651: 637: 631: 621: 594: 586: 583: 540: 537: 511: 508: 475: 472: 470: 467: 440: 437: 436: 435: 432: 429: 426: 423: 420: 417: 414: 411: 408: 405: 383: 380: 290:four questions 271:Niko Tinbergen 254: 251: 166: 165: 162: 159: 156: 153: 150: 126: 123: 76: 75: 36:citation style 31: 29: 22: 15: 9: 6: 4: 3: 2: 3976: 3965: 3962: 3960: 3957: 3955: 3954:Neuroethology 3952: 3951: 3949: 3934: 3926: 3925: 3922: 3916: 3913: 3911: 3908: 3906: 3903: 3902: 3900: 3896: 3890: 3887: 3885: 3882: 3880: 3877: 3875: 3874:Konrad Lorenz 3872: 3870: 3869:Carl Linnaeus 3867: 3865: 3864:William Kirby 3862: 3860: 3857: 3855: 3852: 3850: 3847: 3845: 3842: 3841: 3839: 3837: 3833: 3823: 3820: 3818: 3815: 3814: 3812: 3808: 3800: 3797: 3795: 3792: 3788: 3785: 3783: 3780: 3778: 3775: 3774: 3773: 3772:Blood vessels 3770: 3768: 3765: 3763: 3760: 3759: 3758: 3755: 3751: 3748: 3746: 3743: 3741: 3738: 3736: 3733: 3731: 3728: 3727: 3726: 3723: 3722: 3720: 3716: 3713: 3711: 3707: 3697: 3694: 3692: 3689: 3685: 3684:Shark anatomy 3682: 3681: 3680: 3677: 3675: 3672: 3668: 3665: 3663: 3660: 3658: 3655: 3653: 3650: 3649: 3648: 3645: 3644: 3642: 3640: 3634: 3628: 3625: 3621: 3618: 3616: 3613: 3611: 3608: 3606: 3603: 3601: 3598: 3597: 3596: 3593: 3592: 3590: 3588: 3584: 3581: 3579: 3575: 3571: 3565: 3562: 3560: 3557: 3555: 3552: 3550: 3547: 3545: 3544:Aschelminthes 3542: 3540: 3537: 3535: 3532: 3530: 3527: 3525: 3522: 3520: 3517: 3515: 3512: 3510: 3507: 3506: 3504: 3501: 3497: 3491: 3488: 3486: 3483: 3481: 3478: 3476: 3473: 3471: 3468: 3466: 3465:Neuroethology 3463: 3461: 3458: 3455: 3452: 3450: 3447: 3445: 3442: 3440: 3437: 3435: 3431: 3428: 3425: 3422: 3420: 3416: 3413: 3411: 3408: 3405: 3404:Testudinology 3402: 3400: 3397: 3395: 3391: 3388: 3386: 3385:Helminthology 3383: 3381: 3378: 3376: 3373: 3371: 3368: 3366: 3363: 3361: 3358: 3355: 3354:Myriapodology 3352: 3349: 3346: 3344: 3341: 3339: 3336: 3334: 3331: 3329: 3325: 3322: 3320: 3317: 3314: 3310: 3306: 3303: 3301: 3300:Anthrozoology 3298: 3297: 3295: 3291: 3285: 3282: 3281: 3278: 3274: 3267: 3262: 3260: 3255: 3253: 3248: 3247: 3244: 3232: 3224: 3223: 3220: 3214: 3213: 3209: 3207: 3206: 3202: 3200: 3199: 3195: 3193: 3192: 3188: 3186: 3185: 3181: 3180: 3178: 3174: 3168: 3165: 3163: 3160: 3159: 3157: 3153: 3147: 3144: 3142: 3139: 3137: 3134: 3132: 3129: 3127: 3124: 3122: 3119: 3117: 3116:Thomas Sebeok 3114: 3112: 3109: 3107: 3106:Konrad Lorenz 3104: 3102: 3101:Julian Huxley 3099: 3097: 3096:Heini Hediger 3094: 3092: 3089: 3087: 3084: 3082: 3079: 3077: 3074: 3072: 3069: 3067: 3064: 3062: 3059: 3057: 3054: 3052: 3049: 3047: 3044: 3042: 3039: 3038: 3036: 3032: 3026: 3025:Zoomusicology 3023: 3021: 3018: 3016: 3013: 3011: 3008: 3004: 3001: 2999: 2996: 2994: 2991: 2989: 2986: 2985: 2984: 2981: 2979: 2976: 2974: 2971: 2969: 2966: 2964: 2961: 2959: 2958:Neuroethology 2956: 2954: 2951: 2949: 2946: 2944: 2941: 2939: 2936: 2934: 2931: 2929: 2926: 2924: 2921: 2919: 2916: 2914: 2911: 2907: 2904: 2903: 2902: 2899: 2897: 2894: 2892: 2889: 2887: 2884: 2882: 2879: 2877: 2874: 2872: 2869: 2867: 2866:Anthrozoology 2864: 2862: 2859: 2857: 2854: 2852: 2849: 2847: 2844: 2842: 2839: 2837: 2834: 2833: 2831: 2827: 2823: 2816: 2811: 2809: 2804: 2802: 2797: 2796: 2793: 2781: 2773: 2772: 2769: 2763: 2760: 2758: 2755: 2753: 2750: 2748: 2745: 2743: 2740: 2739: 2737: 2733: 2727: 2724: 2722: 2719: 2717: 2714: 2712: 2709: 2707: 2704: 2702: 2699: 2698: 2696: 2692: 2686: 2683: 2679: 2676: 2675: 2674: 2671: 2669: 2666: 2664: 2661: 2659: 2656: 2654: 2651: 2649: 2646: 2644: 2641: 2637: 2634: 2632: 2629: 2628: 2627: 2624: 2623: 2621: 2617: 2611: 2608: 2604: 2601: 2600: 2599: 2596: 2594: 2591: 2589: 2586: 2584: 2583:Neuroethology 2581: 2579: 2576: 2574: 2571: 2569: 2566: 2564: 2561: 2559: 2556: 2554: 2551: 2549: 2546: 2544: 2541: 2539: 2536: 2535: 2533: 2529: 2525: 2518: 2513: 2511: 2506: 2504: 2499: 2498: 2495: 2483: 2482: 2473: 2471: 2470: 2461: 2460: 2457: 2451: 2448: 2446: 2443: 2441: 2438: 2436: 2433: 2431: 2428: 2426: 2423: 2421: 2418: 2416: 2413: 2411: 2408: 2406: 2403: 2401: 2398: 2396: 2393: 2391: 2388: 2386: 2383: 2381: 2378: 2376: 2373: 2371: 2368: 2366: 2363: 2361: 2358: 2357: 2355: 2351: 2345: 2342: 2340: 2337: 2335: 2334:Neurotheology 2332: 2330: 2329:Neurorobotics 2327: 2325: 2324:Neuropolitics 2322: 2320: 2317: 2315: 2312: 2310: 2307: 2305: 2302: 2300: 2297: 2295: 2292: 2290: 2289:Neuroethology 2287: 2285: 2282: 2280: 2277: 2275: 2272: 2270: 2267: 2265: 2262: 2260: 2257: 2255: 2252: 2250: 2247: 2245: 2242: 2240: 2237: 2235: 2232: 2230: 2227: 2225: 2222: 2221: 2219: 2213: 2207: 2204: 2202: 2199: 2197: 2194: 2192: 2189: 2187: 2186:Motor control 2184: 2182: 2179: 2177: 2176:Chronobiology 2174: 2172: 2169: 2167: 2164: 2163: 2161: 2159: 2153: 2147: 2144: 2142: 2139: 2137: 2136:Neurovirology 2134: 2132: 2129: 2127: 2124: 2122: 2119: 2117: 2114: 2112: 2109: 2107: 2104: 2102: 2099: 2097: 2094: 2092: 2089: 2087: 2084: 2082: 2079: 2077: 2074: 2072: 2069: 2067: 2064: 2062: 2059: 2057: 2054: 2052: 2049: 2047: 2044: 2042: 2039: 2038: 2036: 2034: 2028: 2023: 2013: 2010: 2008: 2005: 2003: 2000: 1998: 1995: 1993: 1990: 1988: 1985: 1983: 1982:Neurogenetics 1980: 1978: 1975: 1973: 1970: 1968: 1965: 1963: 1960: 1958: 1955: 1953: 1950: 1948: 1945: 1943: 1940: 1938: 1935: 1933: 1930: 1928: 1925: 1923: 1920: 1918: 1917:Brain-reading 1915: 1913: 1912:Brain mapping 1910: 1908: 1905: 1903: 1900: 1899: 1897: 1895: 1889: 1883: 1880: 1878: 1875: 1874: 1871: 1867: 1860: 1855: 1853: 1848: 1846: 1841: 1840: 1837: 1825: 1824: 1815: 1813: 1812: 1803: 1802: 1799: 1791: 1788: 1787: 1786: 1783: 1781: 1778: 1776: 1773: 1771: 1768: 1766: 1763: 1761: 1758: 1756: 1753: 1751: 1748: 1746: 1743: 1741: 1738: 1736: 1733: 1732: 1730: 1726: 1720: 1717: 1715: 1712: 1711: 1709: 1705: 1699: 1696: 1694: 1691: 1689: 1686: 1684: 1681: 1679: 1676: 1674: 1671: 1669: 1666: 1664: 1661: 1659: 1656: 1654: 1651: 1649: 1646: 1644: 1641: 1639: 1636: 1634: 1633:Konrad Lorenz 1631: 1629: 1626: 1624: 1621: 1619: 1616: 1615: 1613: 1609: 1602: 1599: 1597: 1594: 1592: 1589: 1587: 1584: 1582: 1579: 1577: 1574: 1572: 1569: 1567: 1566:NMDA receptor 1564: 1562: 1559: 1557: 1554: 1552: 1549: 1547: 1546: 1542: 1540: 1537: 1535: 1532: 1531: 1529: 1525: 1521: 1520:Neuroethology 1514: 1509: 1507: 1502: 1500: 1495: 1494: 1491: 1485: 1482: 1480: 1477: 1475: 1472: 1470: 1467: 1466: 1458: 1455: 1452: 1448: 1444: 1440: 1436: 1432: 1428: 1424: 1423: 1417: 1416: 1407: 1404: 1401: 1398: 1395: 1392: 1389: 1386: 1383: 1380: 1377: 1374: 1371: 1368: 1367: 1353: 1350: 1347: 1343: 1339: 1336: 1333: 1330: 1327: 1324: 1321: 1320: 1307: 1302: 1298: 1294: 1290: 1283: 1276: 1270: 1263: 1257: 1251: 1248: 1242: 1234: 1232:0-12-084730-2 1228: 1224: 1217: 1209: 1205: 1201: 1197: 1193: 1189: 1185: 1181: 1174: 1160:on 2019-10-15 1159: 1155: 1151: 1145: 1136: 1131: 1127: 1123: 1119: 1115: 1108: 1100: 1096: 1092: 1088: 1084: 1080: 1076: 1072: 1068: 1064: 1056: 1049: 1045: 1039: 1034: 1033: 1024: 1016: 1010: 1006: 1005: 997: 995: 985: 977: 973: 969: 965: 961: 957: 953: 946: 938: 934: 930: 926: 922: 918: 914: 907: 899: 895: 891: 887: 883: 879: 875: 871: 864: 855: 846: 837: 830: 824: 820: 810: 809:Martin Giurfa 807: 805: 802: 800: 797: 795: 792: 790: 787: 785: 782: 780: 779:Konrad Lorenz 777: 775: 772: 770: 767: 766: 757: 754: 751: 748: 745: 742: 739: 736: 733: 730: 728: 724: 720: 717: 713: 710: 709: 705: 702: 698: 697:Noctuid moths 695: 693: 689: 685: 681: 679: 674: 671: 667: 664: 661: 659: 655: 652: 649: 645: 641: 638: 635: 632: 629: 625: 624:Electric fish 622: 619: 618: 613: 612: 607: 606: 601: 598: 595: 592: 589: 588: 585:Model systems 582: 580: 576: 575: 570: 565: 563: 559: 558:Michael Arbib 555: 551: 547: 536: 532: 529: 523: 521: 517: 507: 501: 496: 493: 489: 485: 481: 466: 462: 458: 454: 451: 446: 433: 430: 427: 424: 421: 418: 415: 412: 409: 406: 403: 402: 401: 398: 392: 390: 379: 377: 373: 369: 365: 361: 357: 352: 348: 346: 345:Andrew Huxley 342: 338: 334: 330: 329:Ramon y Cajal 326: 321: 319: 315: 314:field setting 311: 307: 303: 298: 295: 291: 287: 281: 279: 274: 272: 268: 267:Konrad Lorenz 264: 260: 250: 248: 244: 241: 240:electric fish 237: 233: 229: 225: 224: 219: 218: 213: 212: 206: 204: 200: 196: 192: 188: 182: 180: 176: 172: 163: 160: 157: 154: 151: 148: 147: 146: 144: 139: 137: 132: 122: 119: 113: 111: 107: 103: 99: 95: 94:Neuroethology 88: 87: 82: 72: 69: 61: 51: 47: 42: 38: 37: 32:This article 30: 21: 20: 3740:Gas exchange 3679:Fish anatomy 3674:Bird anatomy 3534:Ambulacraria 3480:Paleozoology 3475:Parasitology 3464: 3394:Batrachology 3375:Ethnozoology 3370:Cnidariology 3210: 3203: 3196: 3189: 3182: 3141:E. O. Wilson 3091:Jane Goodall 3051:Donald Broom 3020:Zoosemiotics 2973:Sociobiology 2957: 2721:Pain in fish 2619:Intelligence 2582: 2479: 2467: 2415:Neuroimaging 2410:Neurogenesis 2294:Neurohistory 2288: 2259:Neurobiotics 2158:neuroscience 2126:Neurosurgery 2051:Epileptology 2033:neuroscience 2002:Neurophysics 1992:Neurometrics 1967:Neurobiology 1962:Neuroanatomy 1932:Connectomics 1866:Neuroscience 1821: 1809: 1790:Lateral line 1740:Waggle dance 1678:Eric Knudsen 1543: 1519: 1426: 1420: 1397:Kandel, E.R. 1345: 1296: 1292: 1282: 1274: 1269: 1261: 1256: 1246: 1241: 1222: 1216: 1183: 1179: 1173: 1162:. Retrieved 1158:the original 1153: 1144: 1117: 1107: 1066: 1062: 1055: 1047: 1031: 1023: 1003: 984: 959: 955: 951: 945: 920: 916: 912: 906: 873: 869: 863: 854: 845: 836: 828: 823: 799:Eric Knudsen 706: 676: 663:Cricket song 615: 609: 603: 573: 566: 561: 550:Randall Beer 542: 533: 524: 519: 513: 499: 497: 491: 483: 477: 469:Case studies 463: 459: 455: 442: 393: 385: 353: 349: 341:Alan Hodgkin 337:Edgar Adrian 325:neuroscience 322: 317: 299: 282: 275: 256: 247:neuroscience 236:sensory maps 221: 215: 209: 207: 183: 167: 140: 128: 118:echolocation 114: 102:neuroscience 93: 92: 86:Echolocation 84: 64: 55: 40: 33: 3910:Post-Darwin 3787:Capillaries 3725:Respiration 3485:Planktology 3470:Ornithology 3454:Primatology 3410:Ichthyology 3390:Herpetology 3365:Bryozoology 3343:Myrmecology 3338:Melittology 3319:Carcinology 3309:Arachnology 3081:Dian Fossey 3046:Marc Bekoff 3034:Ethologists 2578:Mirror test 2284:Neuroethics 2131:Neurotology 1714:Patch clamp 1683:Eric Kandel 1663:Franz Huber 1534:Feedforward 1346:Eigenmannia 1264:10:407–465. 1120:: 330–334. 640:Toad vision 608:), canary ( 500:Eigenmannia 492:Eigenmannia 484:Eigenmannia 302:behaviorism 223:Danio rerio 199:epigenetics 171:engineering 3948:Categories 3905:Pre-Darwin 3879:Thomas Say 3836:Zoologists 3810:By species 3549:Arthropoda 3514:Ctenophora 3460:Nematology 3444:Felinology 3424:Teuthology 3419:Conchology 3415:Malacology 3324:Entomology 2983:Structures 2978:Stereotypy 2742:Brain size 2648:Cephalopod 2603:sea otters 2445:Neurotoxin 2146:Psychiatry 1688:Nobuo Suga 1603:in insects 1164:2019-10-16 831:: 367–412. 816:References 688:Bibionidae 554:Dave Cliff 546:connectome 445:technology 310:laboratory 217:C. elegans 211:Drosophila 125:Philosophy 58:March 2024 50:footnoting 3735:Breathing 3587:Histology 3449:Hippology 3430:Mammalogy 3399:Ophiology 3313:Acarology 3212:Behaviour 3155:Societies 2993:Honeycomb 2531:Cognition 2390:Neurochip 2156:Cognitive 2081:Neurology 1406:Marler, P 1364:Textbooks 1299:: 66–78. 1200:0010-4809 1154:CRC Press 1126:0195-4210 1083:1529-8795 913:Bufo bufo 744:Honey bee 600:bird song 520:Bufo bufo 294:molecular 263:Aristotle 179:nonlinear 3959:Ethology 3933:Category 3777:Arteries 3662:Elephant 3637:Anatomy 3564:Annelida 3559:Mollusca 3539:Chordata 3524:Cnidaria 3519:Placozoa 3509:Porifera 3439:Cynology 3434:Cetology 3380:Ethology 3293:Branches 3231:Category 3176:Journals 3003:Instinct 2953:Learning 2948:Instinct 2923:Ethogram 2906:Grooming 2829:Branches 2822:Ethology 2780:Category 2663:Elephant 2653:Cetacean 2469:Category 2353:Concepts 2299:Neurolaw 2031:Clinical 1811:Category 1551:Instinct 1527:Concepts 1443:23967887 1413:Articles 1099:13002088 976:41990022 937:11003900 890:10555265 762:See also 732:Crayfish 680:ochracea 634:Barn owl 450:Jeffress 203:robotics 106:ethology 46:citation 3898:History 3595:Tissues 3284:Outline 3273:Zoology 2933:Feeding 2678:Hominid 2673:Primate 2636:talking 2481:Commons 1894:science 1882:History 1877:Outline 1823:Commons 1728:Systems 1707:Methods 1451:6607487 1317:Sources 1208:1611892 1135:2245716 1091:2188211 898:5194095 738:Cichlid 721:Salmon 708:Aplysia 552:and by 306:stimuli 300:Unlike 259:zoology 253:History 3502:groups 3500:Animal 2631:Pigeon 2573:Insect 2217:fields 1611:People 1545:Umwelt 1449:  1441:  1229:  1206:  1198:  1132:  1124:  1097:  1089:  1081:  1040:  1011:  974:  935:  915:L.)". 896:  888:  723:homing 714:Rat – 597:Oscine 362:, and 343:, and 234:, and 175:linear 131:theory 98:animal 3794:Heart 3782:Veins 3767:Lymph 3762:Blood 3652:Human 3010:Swarm 2938:Hover 2891:Breed 2685:Swarm 1892:Basic 1447:S2CID 1095:S2CID 972:S2CID 933:S2CID 894:S2CID 678:Ormia 668:Fish 644:Video 577:on a 503:' 220:, or 2998:Nest 2988:Hive 2694:Pain 2668:Fish 2626:Bird 1439:PMID 1227:ISBN 1204:PMID 1196:ISSN 1122:ISSN 1087:PMID 1079:ISSN 1038:ISBN 1009:ISBN 886:PMID 269:and 197:and 48:and 3667:Cat 3657:Dog 2658:Dog 2643:Cat 1431:doi 1301:doi 1188:doi 1130:PMC 1071:doi 964:doi 960:173 954:". 925:doi 878:doi 874:185 686:in 560:'s 3950:: 1445:, 1437:, 1425:, 1297:33 1295:. 1291:. 1202:. 1194:. 1184:25 1182:. 1152:. 1128:. 1116:. 1093:. 1085:. 1077:. 1067:33 1065:. 1046:. 993:^ 970:. 958:. 931:. 921:92 919:. 892:. 884:. 872:. 699:– 682:, 569:AI 374:, 370:, 358:, 339:, 335:, 273:. 230:, 214:, 193:, 189:, 3456:) 3432:( 3426:) 3417:( 3406:) 3392:( 3356:) 3350:) 3326:( 3315:) 3311:( 3307:( 3265:e 3258:t 3251:v 2814:e 2807:t 2800:v 2516:e 2509:t 2502:v 1858:e 1851:t 1844:v 1512:e 1505:t 1498:v 1433:: 1427:4 1309:. 1303:: 1235:. 1210:. 1190:: 1167:. 1138:. 1101:. 1073:: 1017:. 978:. 966:: 939:. 927:: 900:. 880:: 829:7 650:" 71:) 65:( 60:) 56:( 52:.

Index

citation style
citation
footnoting
Learn how and when to remove this message

Echolocation
animal
neuroscience
ethology
natural selection
echolocation
theory
Krogh's principle
Jörg-Peter Ewert
engineering
linear
nonlinear
computational neuroscience
molecular genetics
neuroendocrinology
epigenetics
robotics
Drosophila
C. elegans
Danio rerio
lateral inhibition
coincidence detection
sensory maps
electric fish
jamming avoidance response

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.