Knowledge

Law of mass action

Source 📝

1881:
pH-buffered, aqueous solution. In more complex environments, where bound particles may be prevented from disassociation by their surroundings, or diffusion is slow or anomalous, the model of mass action does not always describe the behavior of the reaction kinetics accurately. Several attempts have been made to modify the mass action model, but consensus has yet to be reached. Popular modifications replace the rate constants with functions of time and concentration. As an alternative to these mathematical constructs, one school of thought is that the mass action model can be valid in intracellular environments under certain conditions, but with different rates than would be found in a dilute, simple environment .
2613: 2682:
The law of mass action forms the basis of the compartmental model of disease spread in mathematical epidemiology, in which a population of humans, animals or other individuals is divided into categories of susceptible, infected, and recovered (immune). The principle of mass action is at the heart of
1848:
In general many reactions occur with the formation of reactive intermediates, and/or through parallel reaction pathways. However, all reactions can be represented as a series of elementary reactions and, if the mechanism is known in detail, the rate equation for each individual step is given by the
1764:
in Europe until the 1890s). The derivation from the reaction rate expressions is no longer considered to be valid. Nevertheless, Guldberg and Waage were on the right track when they suggested that the driving force for both forward and backward reactions is equal when the mixture is at equilibrium.
1884:
The fact that Guldberg and Waage developed their concepts in steps from 1864 to 1867 and 1879 has resulted in much confusion in the literature as to which equation the law of mass action refers. It has been a source of some textbook errors. Thus, today the "law of mass action" sometimes refers to
1880:
In biochemistry, there has been significant interest in the appropriate mathematical model for chemical reactions occurring in the intracellular medium. This is in contrast to the initial work done on chemical kinetics, which was in simplified systems where reactants were in a relatively dilute,
1472:
is the proportionality constant. Actually, Guldberg and Waage used a more complicated expression which allowed for interaction between A and A', etc. By making certain simplifying approximations to those more complicated expressions, the rate equation could be integrated and hence the equilibrium
1328:
The ratio of the affinity coefficients, k'/k, can be recognized as an equilibrium constant. Turning to the kinetic aspect, it was suggested that the velocity of reaction, v, is proportional to the sum of chemical affinities (forces). In its simplest form this results in the expression
267:
the "chemical affinity" or "reaction force" between A and B did not just depend on the chemical nature of the reactants, as had previously been supposed, but also depended on the amount of each reactant in a reaction mixture. Thus the law of mass action was first stated as follows:
2350: 2827:
Individuals in human or animal populations – unlike molecules in an ideal solution – do not mix homogeneously. There are some disease examples in which this non-homogeneity is great enough such that the outputs of the classical
3002:" … la décomposition du muriate de soude continue donc jusqu'à ce qu'il se soit formé assez de muriate de chaux, parce que l'acide muriatique devant se partager entre les deux bases en raison de leur action, il arrive un terme où leurs forces se balancent." 882: 3004:( … the decomposition of the sodium chloride thus continues until enough calcium chloride is formed, because the hydrochloric acid must be shared between the two bases in the ratio of their action ; it reaches an end at which their forces are balanced.) 614: 2983:
On pp. 404–407, Berthollet mentions that when he accompanied Napoleon on his expedition to Egypt, he (Berthollet) visited Lake Natron and found sodium carbonate along its shores. He realized that this was a product of the reverse of the usual reaction
1751: 1042:
The rate expressions given in Guldberg and Waage's 1864 paper could not be differentiated, so they were simplified as follows. The chemical force was assumed to be directly proportional to the product of the active masses of the reactants.
1031: 160:
independently came to similar conclusions, but was unaware of the earlier work, which prompted Guldberg and Waage to give a fuller and further developed account of their work, in German, in 1879. Van 't Hoff then accepted their priority.
453:, the chemical force driving the forward reaction must be equal to the chemical force driving the reverse reaction. Writing the initial active masses of A,B, A' and B' as p, q, p' and q' and the dissociated active mass at equilibrium as 1098:
This is equivalent to setting the exponents a and b of the earlier theory to one. The proportionality constant was called an affinity constant, k. The equilibrium condition for an "ideal" reaction was thus given the simplified form
1621:. The equilibrium constant, K, was derived by setting the rates of forward and backward reactions to be equal. This also meant that the chemical affinities for the forward and backward reactions are equal. The resultant expression 153:, proposed the law of mass action in 1864. These papers, in Danish, went largely unnoticed, as did the later publication (in French) of 1867 which contained a modified law and the experimental data on which that law was based. 97:
between 1864 and 1879 in which equilibrium constants were derived by using kinetic data and the rate equation which they had proposed. Guldberg and Waage also recognized that chemical equilibrium is a dynamic process in which
749: 1323: 1844:
reactions that may not be concerted reactions. Guldberg and Waage were fortunate in that reactions such as ester formation and hydrolysis, on which they originally based their theory, do indeed follow this rate expression.
272:
When two reactants, A and B, react together at a given temperature in a "substitution reaction," the affinity, or chemical force between them, is proportional to the active masses, and , each raised to a particular power
1876:
expression so that the overall rate equation can be derived from the individual steps. When this is done the equilibrium constant is obtained correctly from the rate equations for forward and backward reaction rates.
1205: 1447: 426:. Active mass was defined in the 1879 paper as "the amount of substance in the sphere of action". For species in solution active mass is equal to concentration. For solids, active mass is taken as a constant. 3255:(Actually we understand by "active mass" only the quantity of substance inside the sphere of action; under otherwise identical conditions, however, the sphere of action can be represented by the unit volume.) 3253:"Eigentlich verstehen wir unter der activen Masse nur die Menge des Stoffes innerhalb der Actionsphäre; unter sonst gleichen Umständen kann aber die Actionsphäre durch die Volumeneinheit repräsentirt werden." 106:. In order to derive the expression of the equilibrium constant appealing to kinetics, the expression of the rate equation must be used. The expression of the rate equations was rediscovered independently by 424: 1592: 2940:
The law of mass action is universal, applicable under any circumstance... The mass action law states that if the system is at equilibrium at a given temperature, then the following ratio is a constant.
2608:{\displaystyle n_{o}p_{o}=\left(N_{C}e^{-{\frac {E_{C}-E_{F}}{k_{\text{B}}T}}}\right)\left(N_{V}e^{-{\frac {E_{F}-E_{V}}{k_{\text{B}}T}}}\right)=N_{C}N_{V}e^{-{\frac {E_{g}}{k_{\text{B}}T}}}=n_{i}^{2}} 262: 2662:
describe dynamics of the predator-prey systems. The rate of predation upon the prey is assumed to be proportional to the rate at which the predators and the prey meet; this rate is evaluated as
2060: 1944: 1940: 337: 1769:
of forward and backward reactions to be equal. The generalisation of the law of mass action, in terms of affinity, to equilibria of arbitrary stoichiometry was a bold and correct conjecture.
2687:, which provide a useful abstraction of disease dynamics. The law of mass action formulation of the SIR model corresponds to the following "quasichemical" system of elementary reactions: 1093: 646:
The third paper of 1864 was concerned with the kinetics of the same equilibrium system. Writing the dissociated active mass at some point in time as x, the rate of reaction was given as
3600: 2057: 2744: 2816: 2773: 887:
The overall rate of conversion is the difference between these rates, so at equilibrium (when the composition stops changing) the two rates of reaction must be equal. Hence
3450: 1980: 1835: 2145: 2103: 2342: 2248: 2211: 2178: 1627: 444: 2302: 2275: 1910: 1874: 1470: 1491: 636: 471: 1509:
In the 1879 paper the assumption that reaction rate was proportional to the product of concentrations was justified microscopically in terms of the frequency of
137:
Two chemists generally expressed the composition of a mixture in terms of numerical values relating the amount of the product to describe the equilibrium state.
2000: 3358: 3420: 760: 479: 1756:
is correct even from the modern perspective, apart from the use of concentrations instead of activities (the concept of chemical activity was developed by
652: 638:
represents the amount of reagents A and B that has been converted into A' and B'. Calculations based on this equation are reported in the second paper.
1524:). It was also proposed that the original theory of the equilibrium condition could be generalised to apply to any arbitrary chemical equilibrium. 3326: 893: 3395: 2919: 62:. Specifically, it implies that for a chemical reaction mixture that is in equilibrium, the ratio between the concentration of reactants and 1105: 1223: 3617: 2824:
A rich system of law of mass action models was developed in mathematical epidemiology by adding components and elementary reactions.
1765:
The term they used for this force was chemical affinity. Today the expression for the equilibrium constant is derived by setting the
348: 3653: 3302: 3472: 3486: 3313: 1530: 3577: 2899: 3461: 3000:↓ and therefore that the final state of a reaction was a state of equilibrium between two opposing processes. From p. 405: 2833: 2684: 1335: 69:
Two aspects are involved in the initial formulation of the law: 1) the equilibrium aspect, concerning the composition of a
2646:
to this quasichemical representation of diffusion. Mass action law for diffusion leads to various nonlinear versions of
3366: 278: 3026: 1510: 3370: 180: 3427: 1772:
The hypothesis that reaction rate is proportional to reactant concentrations is, strictly speaking, only true for
1761: 1493:
could be calculated. The extensive calculations in the 1867 paper gave support to the simplified concept, namely,
1049: 157: 107: 3643: 3337: 3638: 3462:
General Chemistry Online: FAQ: Acids and bases: What is the pH at the equivalence point an HF/NaOH titration?
3383: 3090: 3068: 2009: 1932: 1926: 3046: 3502: 2953: 2711: 20: 3249: 3214: 3095:
Forhandlinger I Videnskabs-selskabet I Christiania (Transactions of the Scientific Society in Christiania)
3073:
Forhandlinger I Videnskabs-selskabet I Christiania (Transactions of the Scientific Society in Christiania)
3051:
Forhandlinger I Videnskabs-selskabet I Christiania (Transactions of the Scientific Society in Christiania)
1217:
etc. are the active masses at equilibrium. In terms of the initial amounts reagents p,q etc. this becomes
3265:
Guggenheim, E.A. (1956). "Textbook errors IX: More About the Laws of Reaction Rates and of Equilibrium".
2891:
Mathematical Models of Chemical Reactions: Theory and Applications of Deterministic and Stochastic Models
2832:
and their simple generalizations like SIS or SEIR, are invalid. For these situations, more sophisticated
2659: 2635: 3648: 3131:
C.M. Guldberg and P. Waage, "Experiments concerning Chemical Affinity"; German translation by Abegg in
122: 2793: 2750: 3341: 3180: 3557: 3146: 1497:
The rate of a reaction is proportional to the product of the active masses of the reagents involved.
3093:[Lecture on the laws of affinity, especially the influence of time on chemical processes]. 2837: 138: 90: 3399: 2927: 1958: 2643: 1782: 16:
Empirical law; a chemical reaction rate is proportional to the product of reactant concentrations
2108: 2066: 1746:{\displaystyle K={\frac {{\left}^{\alpha '}{\left}^{\beta '}\dots }{^{\alpha }^{\beta }\dots }}} 2639: 1936: 2314: 2220: 2183: 2150: 429: 3147:"Application of the Law of Chemical Equilibrium (Law of Mass Action) to Biological Problems" 3109: 2889: 2864: 2849: 2280: 2253: 1888: 1852: 1757: 1455: 450: 150: 118: 114: 103: 74: 55: 43: 3291: 3091:"Foredrag om Lovene for Affiniteten, specielt Tidens Indflydelse paa de kemiske Processer" 1885:
the (correct) equilibrium constant formula, and at other times to the (usually incorrect)
1476: 621: 456: 8: 1773: 86: 63: 59: 3569: 3538: 3518: 2854: 1985: 1952: 1766: 1521: 877:{\displaystyle \left({\frac {dx}{dt}}\right)_{\text{reverse}}=k'(p'+x)^{a'}(q'+x)^{b'}} 126: 3483: 1951:. This constant depends on the thermal energy of the system (i.e. the product of the 609:{\displaystyle \alpha (p-\xi )^{a}(q-\xi )^{b}=\alpha '(p'+\xi )^{a'}(q'+\xi )^{b'}\!} 3573: 3022: 2972: 2895: 2869: 2859: 78: 70: 39: 3542: 3565: 3528: 3274: 3226: 3192: 3161: 3014: 2631: 1517: 1513: 3165: 744:{\displaystyle \left({\frac {dx}{dt}}\right)_{\text{forward}}=k(p-x)^{a}(q-x)^{b}} 3490: 2674:
is the number of predator. This is a typical example of the law of mass action.
446:, a and b were regarded as empirical constants, to be determined by experiment. 3183:[The limit plane: a contribution to our knowledge of ester formation]. 174:
In their first paper, Guldberg and Waage suggested that in a reaction such as
3196: 1776:(reactions with a single mechanistic step), but the empirical rate expression 3632: 3623: 3230: 2647: 2623: 1841: 1618: 1598: 99: 82: 47: 35: 3533: 3506: 1597:
The exponents α, β etc. are explicitly identified for the first time as the
3501: 2309: 754:
Likewise the reverse reaction of A' with B' proceeded at a rate given by
142: 113:
The law is a statement about equilibrium and gives an expression for the
94: 1026:{\displaystyle (p-x)^{a}(q-x)^{b}={\frac {k'}{k}}(p'+x)^{a'}(q'+x)^{b'}} 146: 3278: 2703:(removed individuals, or just recovered ones if we neglect lethality); 2829: 2627: 27: 3071:[Experiment for the determination of the laws of affinity]. 1200:{\displaystyle k_{\text{eq}}_{\text{eq}}=k'_{\text{eq}}_{\text{eq}}} 2003: 3523: 1318:{\displaystyle (p-\xi )(q-\xi )={\frac {k'}{k}}(p'+\xi )(q'+\xi )} 51: 3118:] (in French). Christiania , Norway: Brøgger & Christie. 419:{\displaystyle {\ce {{alcohol}+ acid <=> {ester}+ water}}} 3019:
Affinity and Matter – Elements of Chemical Philosophy 1800–1865
2924:
Chemical reactions, chemical equilibria, and electrochemistry
2006:(the energy separation between conduction and valence bands, 3606:"Guldberg and Waage and the Law of Mass Action", E.W. Lund, 3507:"Quasichemical Models of Multicomponent Nonlinear Diffusion" 3181:"Die Grenzebene, ein Beitrag zur Kenntniss der Esterbildung" 2308:
crystal. Note that the final product is independent of the
1587:{\displaystyle {\text{affinity}}=k^{\alpha }^{\beta }\dots } 1501:
This is an alternative statement of the law of mass action.
641: 3603:. P. Waage and C.M. Guldberg; Henry I. Abrash, Translator. 2638:
and quasichemical interactions of particles and defects.
3185:
Berichte der Deutschen Chemischen Gesellschaft zu Berlin
345:
In this context a substitution reaction was one such as
102:
for the forward and backward reactions must be equal at
3239:, no. 104, Wilhelm Engleman, Leipzig, 1899, pp 126-171 1054: 385: 215: 169: 3135:, no. 104, Wilhelm Engleman, Leipzig, 1899, pp 10-125 2796: 2780:
If the immunity is unstable then the transition from
2753: 2714: 2353: 2317: 2283: 2256: 2223: 2186: 2153: 2111: 2069: 2012: 1988: 1961: 1891: 1855: 1785: 1630: 1533: 1479: 1458: 1442:{\displaystyle v=\psi (k(p-x)(q-x)-k'(p'+x)(q'+x))\!} 1338: 1226: 1108: 1052: 896: 763: 655: 624: 482: 459: 432: 351: 281: 183: 2887: 2788:
should be added that closes the cycle (SIRS model):
89:. Both aspects stem from the research performed by 3069:"Forsøg til Bestemmelse af Lovene for Affiniteten" 2810: 2767: 2738: 2607: 2336: 2296: 2269: 2242: 2205: 2172: 2139: 2097: 2051: 1994: 1974: 1904: 1868: 1829: 1745: 1586: 1485: 1464: 1441: 1317: 1199: 1087: 1025: 876: 743: 630: 608: 465: 438: 418: 331: 256: 2213:densities are equal, their density is called the 1438: 1084: 605: 393: 392: 375: 374: 332:{\displaystyle {\text{affinity}}=\alpha ^{a}^{b}} 223: 222: 205: 204: 3630: 2913: 2911: 2618: 3396:"Chemical equilibrium - The Law of Mass Action" 3178: 2981:] (in French). Paris, France: Firmin Didot. 2677: 1915: 257:{\displaystyle {\ce {A + B <=> A' + B'}}} 42:is directly proportional to the product of the 3495: 2920:"Chemical Equilibria - The Law of Mass Action" 1604: 3555: 3237:Ostwalds Klassiker der Exacten Wissenschaften 3212: 3133:Ostwalds Klassiker der Exacten Wissenschaften 3107: 3044: 2908: 1617:, of the 1879 paper can now be recognised as 125:. It can also be derived with the concept of 3562:Computational Modeling of Infectious Disease 1516:, as had been developed for gas kinetics by 121:. In modern chemistry this is derived using 3618:A simple explanation of the mass action law 3511:Mathematical Modelling of Natural Phenomena 2881: 1920: 1088:{\displaystyle {\mbox{affinity}}=\alpha \!} 3264: 2970: 2894:. Manchester University Press. p. 3. 2653: 3532: 3522: 3359:"Recap of Fundamental Acid-Base Concepts" 2731: 642:Dynamic approach to the equilibrium state 3088: 3021:. Gordon and Breach Science Publishers. 54:. It explains and predicts behaviors of 3505:, H.P. Sargsyan and H.A. Wahab (2011). 2052:{\displaystyle E_{g}\equiv E_{C}-E_{V}} 368: 198: 3631: 3624:The Thermodynamic Equilibrium Constant 3208: 3206: 3144: 3127: 3125: 3013: 2739:{\displaystyle {\ce {S + I -> 2I}}} 2147:bands. When the equilibrium electron 3235:Reprinted, with comments by Abegg in 3084: 3082: 3066: 3062: 3060: 3040: 3038: 3007: 1933:implications in semiconductor physics 2706:The list of elementary reactions is 2685:compartmental models in epidemiology 3384:Chemical Equilibria: Basic Concepts 3203: 3122: 2917: 170:The equilibrium state (composition) 13: 3594: 3570:10.1016/b978-0-32-395389-4.00011-6 3367:Washington University in St. Louis 3213:Guldberg, C.M.; Waage, P. (1879). 3111:Études sur les affinités chimiques 3108:Guldberg, C.M.; Waage, P. (1867). 3079: 3057: 3045:Waage, P.; Guldberg, C.M. (1864). 3035: 473:, this equality is represented by 14: 3665: 3324: 3049:[Studies of affinities]. 2811:{\displaystyle {\ce {R -> S}}} 2768:{\displaystyle {\ce {I -> R}}} 3217:[On chemical affinity]. 2951: 1931:The law of mass action also has 3549: 3477: 3466: 3455: 3444: 3413: 3388: 3377: 3351: 3318: 3307: 3296: 3285: 3258: 3242: 3215:"Ueber die chemische Affinität" 3172: 3138: 2888:Péter Érdi; János Tóth (1989). 3338:San Francisco State University 3248:(Guldberg & Waage, 1879), 3116:Studies of chemical affinities 3101: 2964: 2945: 2801: 2758: 2725: 2331: 2318: 2250:as this would be the value of 2237: 2224: 2200: 2187: 2167: 2154: 2134: 2131: 2125: 2112: 2092: 2089: 2083: 2070: 1824: 1818: 1815: 1809: 1728: 1721: 1712: 1705: 1572: 1563: 1554: 1545: 1435: 1432: 1415: 1412: 1395: 1381: 1369: 1366: 1354: 1348: 1312: 1295: 1292: 1275: 1254: 1242: 1239: 1227: 1188: 1176: 1167: 1155: 1135: 1128: 1119: 1112: 1081: 1075: 1072: 1066: 1009: 991: 977: 959: 932: 919: 910: 897: 860: 842: 828: 810: 732: 719: 710: 697: 591: 573: 559: 541: 521: 508: 499: 486: 395: 370: 320: 311: 302: 293: 225: 200: 1: 3558:"Simple compartmental models" 3556:von Csefalvay, Chris (2023), 3473:law of mass action definition 3267:Journal of Chemical Education 3219:Journal für praktische Chemie 3166:10.1152/physrev.1938.18.4.495 2875: 2619:Diffusion in condensed matter 1927:Mass action law (electronics) 151:reversible chemical reactions 3654:Jacobus Henricus van 't Hoff 3564:, Elsevier, pp. 19–91, 3145:McLean, Franklin C. (1938). 2699:(infected individuals), and 2678:In mathematical epidemiology 2636:ensemble of elementary jumps 1975:{\displaystyle k_{\text{B}}} 1916:Applications to other fields 1760:, in the 1870s, but was not 117:, a quantity characterizing 108:Jacobus Henricus van 't Hoff 34:is the proposition that the 21:Mass action (disambiguation) 7: 3601:Studies Concerning Affinity 2843: 2695:(susceptible individuals), 2061:effective density of states 1830:{\displaystyle r_{f}=k_{f}} 1605:Modern statement of the law 1599:stoichiometric coefficients 10: 3670: 3221:. 2nd series (in German). 3179:van 't Hoff, J.H. (1877). 3047:"Studier over Affiniteten" 2979:Essay on chemical statics 2974:Essai de statique chimique 2691:The list of components is 2140:{\displaystyle (N_{C}(T))} 2098:{\displaystyle (N_{V}(T))} 1924: 132: 123:equilibrium thermodynamics 18: 3197:10.1002/cber.187701001185 2971:Berthollet, C.L. (1803). 2838:reaction-diffusion models 2683:the transmission term of 1609:The affinity constants, k 3231:10.1002/prac.18790190111 2660:Lotka–Volterra equations 1921:In semiconductor physics 139:Cato Maximilian Guldberg 3334:Geochemistry — GEOL 480 3089:Guldberg, C.M. (1864). 2670:is the number of prey, 2654:In mathematical ecology 2644:absolute reaction rates 2337:{\displaystyle (E_{F})} 2243:{\displaystyle (n_{i})} 2206:{\displaystyle (p_{o})} 2173:{\displaystyle (n_{o})} 1504: 1037: 439:{\displaystyle \alpha } 164: 147:Claude Louis Berthollet 3484:Lab 4 – Slow Manifolds 3314:The Law of Mass Action 2812: 2769: 2740: 2642:applied his theory of 2609: 2338: 2298: 2271: 2244: 2207: 2174: 2141: 2099: 2053: 1996: 1976: 1906: 1870: 1840:is also applicable to 1831: 1747: 1588: 1487: 1466: 1443: 1319: 1201: 1089: 1027: 878: 745: 632: 610: 467: 440: 420: 333: 258: 81:aspect concerning the 3644:Equilibrium chemistry 3534:10.1051/mmnp/20116509 3154:Physiological Reviews 3097:(in Danish): 111–120. 2813: 2770: 2741: 2610: 2339: 2299: 2297:{\displaystyle p_{o}} 2272: 2270:{\displaystyle n_{o}} 2245: 2208: 2175: 2142: 2100: 2054: 1997: 1977: 1907: 1905:{\displaystyle r_{f}} 1871: 1869:{\displaystyle r_{f}} 1832: 1748: 1589: 1488: 1467: 1465:{\displaystyle \psi } 1444: 1320: 1202: 1090: 1028: 879: 746: 633: 611: 468: 441: 421: 334: 259: 3639:History of chemistry 2865:Equilibrium constant 2860:Disequilibrium ratio 2850:Chemical equilibrium 2834:compartmental models 2794: 2751: 2712: 2351: 2315: 2281: 2254: 2221: 2184: 2151: 2109: 2067: 2010: 1986: 1959: 1889: 1853: 1783: 1774:elementary reactions 1758:Josiah Willard Gibbs 1628: 1531: 1486:{\displaystyle \xi } 1477: 1456: 1336: 1224: 1106: 1050: 894: 761: 653: 631:{\displaystyle \xi } 622: 480: 466:{\displaystyle \xi } 457: 430: 349: 279: 181: 119:chemical equilibrium 115:equilibrium constant 104:chemical equilibrium 87:elementary reactions 19:For other uses, see 3075:(in Danish): 92–94. 3053:(in Danish): 35–45. 2958:Defects in Crystals 2604: 1982:, and temperature, 381: 211: 60:dynamic equilibrium 3489:2007-11-17 at the 3292:Law of Mass Action 3067:Waage, P. (1864). 2855:Chemical potential 2808: 2765: 2736: 2605: 2590: 2334: 2294: 2267: 2240: 2203: 2170: 2137: 2095: 2049: 2002:), as well as the 1992: 1972: 1953:Boltzmann constant 1902: 1866: 1827: 1767:chemical potential 1743: 1601:for the reaction. 1584: 1522:Boltzmann equation 1483: 1462: 1439: 1315: 1197: 1085: 1058: 1023: 874: 741: 628: 606: 463: 436: 416: 400: 329: 254: 230: 127:chemical potential 32:law of mass action 3649:Chemical kinetics 3579:978-0-323-95389-4 3327:"Acids and Bases" 3279:10.1021/ed033p544 3015:Levere, Trevor H. 2954:"Mass Action Law" 2930:on 3 October 2018 2901:978-0-7190-2208-1 2870:Reaction quotient 2806: 2800: 2763: 2757: 2734: 2724: 2718: 2583: 2576: 2516: 2509: 2442: 2435: 1995:{\displaystyle T} 1969: 1939:, the product of 1741: 1569: 1551: 1537: 1273: 1194: 1173: 1141: 1125: 1057: 957: 796: 787: 688: 679: 414: 407: 402: 363: 356: 317: 299: 285: 248: 237: 232: 193: 187: 100:rates of reaction 40:chemical reaction 3661: 3589: 3588: 3587: 3586: 3553: 3547: 3546: 3536: 3526: 3499: 3493: 3481: 3475: 3470: 3464: 3459: 3453: 3448: 3442: 3441: 3439: 3438: 3432: 3426:. Archived from 3425: 3417: 3411: 3410: 3408: 3407: 3398:. Archived from 3392: 3386: 3381: 3375: 3374: 3369:. Archived from 3355: 3349: 3348: 3346: 3340:. Archived from 3331: 3322: 3316: 3311: 3305: 3300: 3294: 3289: 3283: 3282: 3262: 3256: 3246: 3240: 3234: 3210: 3201: 3200: 3176: 3170: 3169: 3151: 3142: 3136: 3129: 3120: 3119: 3105: 3099: 3098: 3086: 3077: 3076: 3064: 3055: 3054: 3042: 3033: 3032: 3011: 3005: 2982: 2968: 2962: 2961: 2949: 2943: 2942: 2937: 2935: 2926:. Archived from 2915: 2906: 2905: 2885: 2817: 2815: 2814: 2809: 2807: 2804: 2798: 2774: 2772: 2771: 2766: 2764: 2761: 2755: 2745: 2743: 2742: 2737: 2735: 2732: 2722: 2716: 2632:condensed matter 2614: 2612: 2611: 2606: 2603: 2598: 2586: 2585: 2584: 2582: 2578: 2577: 2574: 2567: 2566: 2557: 2547: 2546: 2537: 2536: 2524: 2520: 2519: 2518: 2517: 2515: 2511: 2510: 2507: 2500: 2499: 2498: 2486: 2485: 2475: 2465: 2464: 2450: 2446: 2445: 2444: 2443: 2441: 2437: 2436: 2433: 2426: 2425: 2424: 2412: 2411: 2401: 2391: 2390: 2373: 2372: 2363: 2362: 2343: 2341: 2340: 2335: 2330: 2329: 2303: 2301: 2300: 2295: 2293: 2292: 2276: 2274: 2273: 2268: 2266: 2265: 2249: 2247: 2246: 2241: 2236: 2235: 2217:carrier density 2212: 2210: 2209: 2204: 2199: 2198: 2179: 2177: 2176: 2171: 2166: 2165: 2146: 2144: 2143: 2138: 2124: 2123: 2104: 2102: 2101: 2096: 2082: 2081: 2058: 2056: 2055: 2050: 2048: 2047: 2035: 2034: 2022: 2021: 2001: 1999: 1998: 1993: 1981: 1979: 1978: 1973: 1971: 1970: 1967: 1935:. Regardless of 1911: 1909: 1908: 1903: 1901: 1900: 1875: 1873: 1872: 1867: 1865: 1864: 1836: 1834: 1833: 1828: 1808: 1807: 1795: 1794: 1752: 1750: 1749: 1744: 1742: 1740: 1736: 1735: 1720: 1719: 1703: 1699: 1698: 1697: 1688: 1687: 1683: 1669: 1668: 1667: 1658: 1657: 1653: 1638: 1593: 1591: 1590: 1585: 1580: 1579: 1570: 1567: 1562: 1561: 1552: 1549: 1538: 1535: 1492: 1490: 1489: 1484: 1471: 1469: 1468: 1463: 1448: 1446: 1445: 1440: 1425: 1405: 1394: 1324: 1322: 1321: 1316: 1305: 1285: 1274: 1269: 1261: 1206: 1204: 1203: 1198: 1196: 1195: 1192: 1186: 1175: 1174: 1171: 1165: 1154: 1143: 1142: 1139: 1127: 1126: 1123: 1094: 1092: 1091: 1086: 1059: 1055: 1032: 1030: 1029: 1024: 1022: 1021: 1020: 1001: 990: 989: 988: 969: 958: 953: 945: 940: 939: 918: 917: 883: 881: 880: 875: 873: 872: 871: 852: 841: 840: 839: 820: 809: 798: 797: 794: 792: 788: 786: 778: 770: 750: 748: 747: 742: 740: 739: 718: 717: 690: 689: 686: 684: 680: 678: 670: 662: 637: 635: 634: 629: 615: 613: 612: 607: 604: 603: 602: 583: 572: 571: 570: 551: 540: 529: 528: 507: 506: 472: 470: 469: 464: 445: 443: 442: 437: 425: 423: 422: 417: 415: 412: 408: 405: 403: 401: 399: 398: 391: 383: 382: 380: 373: 365: 361: 357: 354: 338: 336: 335: 330: 328: 327: 318: 315: 310: 309: 300: 297: 286: 283: 263: 261: 260: 255: 253: 252: 246: 241: 235: 233: 231: 229: 228: 221: 213: 212: 210: 203: 195: 191: 185: 91:Cato M. Guldberg 3669: 3668: 3664: 3663: 3662: 3660: 3659: 3658: 3629: 3628: 3597: 3595:Further reading 3592: 3584: 3582: 3580: 3554: 3550: 3500: 3496: 3491:Wayback Machine 3482: 3478: 3471: 3467: 3460: 3456: 3449: 3445: 3436: 3434: 3430: 3423: 3419: 3418: 3414: 3405: 3403: 3394: 3393: 3389: 3382: 3378: 3357: 3356: 3352: 3344: 3329: 3323: 3319: 3312: 3308: 3301: 3297: 3290: 3286: 3273:(11): 544–545. 3263: 3259: 3247: 3243: 3211: 3204: 3177: 3173: 3149: 3143: 3139: 3130: 3123: 3106: 3102: 3087: 3080: 3065: 3058: 3043: 3036: 3029: 3012: 3008: 2999: 2995: 2991: 2987: 2969: 2965: 2950: 2946: 2933: 2931: 2916: 2909: 2902: 2886: 2882: 2878: 2846: 2840:may be useful. 2836:or distributed 2797: 2795: 2792: 2791: 2754: 2752: 2749: 2748: 2715: 2713: 2710: 2709: 2680: 2656: 2621: 2599: 2594: 2573: 2569: 2568: 2562: 2558: 2556: 2552: 2548: 2542: 2538: 2532: 2528: 2506: 2502: 2501: 2494: 2490: 2481: 2477: 2476: 2474: 2470: 2466: 2460: 2456: 2455: 2451: 2432: 2428: 2427: 2420: 2416: 2407: 2403: 2402: 2400: 2396: 2392: 2386: 2382: 2381: 2377: 2368: 2364: 2358: 2354: 2352: 2349: 2348: 2325: 2321: 2316: 2313: 2312: 2288: 2284: 2282: 2279: 2278: 2261: 2257: 2255: 2252: 2251: 2231: 2227: 2222: 2219: 2218: 2194: 2190: 2185: 2182: 2181: 2161: 2157: 2152: 2149: 2148: 2119: 2115: 2110: 2107: 2106: 2105:and conduction 2077: 2073: 2068: 2065: 2064: 2063:in the valence 2043: 2039: 2030: 2026: 2017: 2013: 2011: 2008: 2007: 1987: 1984: 1983: 1966: 1962: 1960: 1957: 1956: 1929: 1923: 1918: 1896: 1892: 1890: 1887: 1886: 1860: 1856: 1854: 1851: 1850: 1803: 1799: 1790: 1786: 1784: 1781: 1780: 1731: 1727: 1715: 1711: 1704: 1690: 1689: 1676: 1672: 1671: 1670: 1660: 1659: 1646: 1642: 1641: 1640: 1639: 1637: 1629: 1626: 1625: 1616: 1612: 1607: 1575: 1571: 1566: 1557: 1553: 1548: 1534: 1532: 1529: 1528: 1507: 1478: 1475: 1474: 1457: 1454: 1453: 1418: 1398: 1387: 1337: 1334: 1333: 1298: 1278: 1262: 1260: 1225: 1222: 1221: 1216: 1212: 1191: 1187: 1179: 1170: 1166: 1158: 1147: 1138: 1134: 1122: 1118: 1107: 1104: 1103: 1053: 1051: 1048: 1047: 1040: 1013: 1012: 1008: 994: 981: 980: 976: 962: 946: 944: 935: 931: 913: 909: 895: 892: 891: 864: 863: 859: 845: 832: 831: 827: 813: 802: 793: 779: 771: 769: 765: 764: 762: 759: 758: 735: 731: 713: 709: 685: 671: 663: 661: 657: 656: 654: 651: 650: 644: 623: 620: 619: 595: 594: 590: 576: 563: 562: 558: 544: 533: 524: 520: 502: 498: 481: 478: 477: 458: 455: 454: 431: 428: 427: 404: 394: 387: 386: 384: 376: 369: 367: 366: 364: 353: 352: 350: 347: 346: 323: 319: 314: 305: 301: 296: 282: 280: 277: 276: 245: 234: 224: 217: 216: 214: 206: 199: 197: 196: 194: 184: 182: 179: 178: 172: 167: 149:'s ideas about 135: 24: 17: 12: 11: 5: 3667: 3657: 3656: 3651: 3646: 3641: 3627: 3626: 3621: 3620:. H. Motulsky. 3615: 3604: 3596: 3593: 3591: 3590: 3578: 3548: 3517:(5): 184–262. 3494: 3476: 3465: 3454: 3443: 3412: 3387: 3376: 3373:on 2012-02-06. 3350: 3347:on 2006-09-21. 3317: 3306: 3295: 3284: 3257: 3241: 3202: 3171: 3160:(4): 495–523. 3137: 3121: 3100: 3078: 3056: 3034: 3027: 3006: 2997: 2996:→ 2NaCl + CaCO 2993: 2989: 2985: 2963: 2952:Föll, Helmut. 2944: 2918:Chieh, Chung. 2907: 2900: 2879: 2877: 2874: 2873: 2872: 2867: 2862: 2857: 2852: 2845: 2842: 2822: 2821: 2820: 2819: 2803: 2778: 2777: 2776: 2760: 2746: 2730: 2727: 2721: 2704: 2679: 2676: 2655: 2652: 2620: 2617: 2616: 2615: 2602: 2597: 2593: 2589: 2581: 2572: 2565: 2561: 2555: 2551: 2545: 2541: 2535: 2531: 2527: 2523: 2514: 2505: 2497: 2493: 2489: 2484: 2480: 2473: 2469: 2463: 2459: 2454: 2449: 2440: 2431: 2423: 2419: 2415: 2410: 2406: 2399: 2395: 2389: 2385: 2380: 2376: 2371: 2367: 2361: 2357: 2333: 2328: 2324: 2320: 2291: 2287: 2264: 2260: 2239: 2234: 2230: 2226: 2202: 2197: 2193: 2189: 2169: 2164: 2160: 2156: 2136: 2133: 2130: 2127: 2122: 2118: 2114: 2094: 2091: 2088: 2085: 2080: 2076: 2072: 2046: 2042: 2038: 2033: 2029: 2025: 2020: 2016: 1991: 1965: 1949:at equilibrium 1947:is a constant 1945:hole densities 1925:Main article: 1922: 1919: 1917: 1914: 1912:rate formula. 1899: 1895: 1863: 1859: 1838: 1837: 1826: 1823: 1820: 1817: 1814: 1811: 1806: 1802: 1798: 1793: 1789: 1754: 1753: 1739: 1734: 1730: 1726: 1723: 1718: 1714: 1710: 1707: 1702: 1696: 1693: 1686: 1682: 1679: 1675: 1666: 1663: 1656: 1652: 1649: 1645: 1636: 1633: 1619:rate constants 1614: 1610: 1606: 1603: 1595: 1594: 1583: 1578: 1574: 1565: 1560: 1556: 1547: 1544: 1541: 1506: 1503: 1499: 1498: 1482: 1461: 1450: 1449: 1437: 1434: 1431: 1428: 1424: 1421: 1417: 1414: 1411: 1408: 1404: 1401: 1397: 1393: 1390: 1386: 1383: 1380: 1377: 1374: 1371: 1368: 1365: 1362: 1359: 1356: 1353: 1350: 1347: 1344: 1341: 1326: 1325: 1314: 1311: 1308: 1304: 1301: 1297: 1294: 1291: 1288: 1284: 1281: 1277: 1272: 1268: 1265: 1259: 1256: 1253: 1250: 1247: 1244: 1241: 1238: 1235: 1232: 1229: 1214: 1210: 1208: 1207: 1190: 1185: 1182: 1178: 1169: 1164: 1161: 1157: 1153: 1150: 1146: 1137: 1133: 1130: 1121: 1117: 1114: 1111: 1096: 1095: 1083: 1080: 1077: 1074: 1071: 1068: 1065: 1062: 1039: 1036: 1035: 1034: 1019: 1016: 1011: 1007: 1004: 1000: 997: 993: 987: 984: 979: 975: 972: 968: 965: 961: 956: 952: 949: 943: 938: 934: 930: 927: 924: 921: 916: 912: 908: 905: 902: 899: 885: 884: 870: 867: 862: 858: 855: 851: 848: 844: 838: 835: 830: 826: 823: 819: 816: 812: 808: 805: 801: 791: 785: 782: 777: 774: 768: 752: 751: 738: 734: 730: 727: 724: 721: 716: 712: 708: 705: 702: 699: 696: 693: 683: 677: 674: 669: 666: 660: 643: 640: 627: 617: 616: 601: 598: 593: 589: 586: 582: 579: 575: 569: 566: 561: 557: 554: 550: 547: 543: 539: 536: 532: 527: 523: 519: 516: 513: 510: 505: 501: 497: 494: 491: 488: 485: 462: 435: 411: 397: 390: 379: 372: 360: 343: 342: 341: 340: 326: 322: 313: 308: 304: 295: 292: 289: 265: 264: 251: 244: 240: 227: 220: 209: 202: 190: 171: 168: 166: 163: 145:, building on 134: 131: 83:rate equations 48:concentrations 15: 9: 6: 4: 3: 2: 3666: 3655: 3652: 3650: 3647: 3645: 3642: 3640: 3637: 3636: 3634: 3625: 3622: 3619: 3616: 3613: 3609: 3605: 3602: 3599: 3598: 3581: 3575: 3571: 3567: 3563: 3559: 3552: 3544: 3540: 3535: 3530: 3525: 3520: 3516: 3512: 3508: 3504: 3498: 3492: 3488: 3485: 3480: 3474: 3469: 3463: 3458: 3452: 3447: 3433:on 2007-06-15 3429: 3422: 3421:"Indiana.edu" 3416: 3402:on 2010-02-01 3401: 3397: 3391: 3385: 3380: 3372: 3368: 3364: 3363:Chemistry 152 3360: 3354: 3343: 3339: 3335: 3328: 3325:Leech, Mary. 3321: 3315: 3310: 3304: 3299: 3293: 3288: 3280: 3276: 3272: 3268: 3261: 3254: 3251: 3245: 3238: 3232: 3228: 3224: 3220: 3216: 3209: 3207: 3198: 3194: 3190: 3187:(in German). 3186: 3182: 3175: 3167: 3163: 3159: 3155: 3148: 3141: 3134: 3128: 3126: 3117: 3113: 3112: 3104: 3096: 3092: 3085: 3083: 3074: 3070: 3063: 3061: 3052: 3048: 3041: 3039: 3030: 3028:2-88124-583-8 3024: 3020: 3016: 3010: 3003: 2980: 2976: 2975: 2967: 2959: 2955: 2948: 2941: 2929: 2925: 2921: 2914: 2912: 2903: 2897: 2893: 2892: 2884: 2880: 2871: 2868: 2866: 2863: 2861: 2858: 2856: 2853: 2851: 2848: 2847: 2841: 2839: 2835: 2831: 2825: 2790: 2789: 2787: 2783: 2779: 2747: 2728: 2719: 2708: 2707: 2705: 2702: 2698: 2694: 2690: 2689: 2688: 2686: 2675: 2673: 2669: 2665: 2661: 2651: 2649: 2645: 2641: 2637: 2633: 2629: 2625: 2624:Yakov Frenkel 2600: 2595: 2591: 2587: 2579: 2570: 2563: 2559: 2553: 2549: 2543: 2539: 2533: 2529: 2525: 2521: 2512: 2503: 2495: 2491: 2487: 2482: 2478: 2471: 2467: 2461: 2457: 2452: 2447: 2438: 2429: 2421: 2417: 2413: 2408: 2404: 2397: 2393: 2387: 2383: 2378: 2374: 2369: 2365: 2359: 2355: 2347: 2346: 2345: 2326: 2322: 2311: 2307: 2289: 2285: 2262: 2258: 2232: 2228: 2216: 2195: 2191: 2162: 2158: 2128: 2120: 2116: 2086: 2078: 2074: 2062: 2044: 2040: 2036: 2031: 2027: 2023: 2018: 2014: 2005: 1989: 1963: 1954: 1950: 1946: 1942: 1938: 1934: 1928: 1913: 1897: 1893: 1882: 1878: 1861: 1857: 1846: 1843: 1821: 1812: 1804: 1800: 1796: 1791: 1787: 1779: 1778: 1777: 1775: 1770: 1768: 1763: 1759: 1737: 1732: 1724: 1716: 1708: 1700: 1694: 1691: 1684: 1680: 1677: 1673: 1664: 1661: 1654: 1650: 1647: 1643: 1634: 1631: 1624: 1623: 1622: 1620: 1602: 1600: 1581: 1576: 1558: 1542: 1539: 1527: 1526: 1525: 1523: 1519: 1515: 1512: 1502: 1496: 1495: 1494: 1480: 1459: 1429: 1426: 1422: 1419: 1409: 1406: 1402: 1399: 1391: 1388: 1384: 1378: 1375: 1372: 1363: 1360: 1357: 1351: 1345: 1342: 1339: 1332: 1331: 1330: 1309: 1306: 1302: 1299: 1289: 1286: 1282: 1279: 1270: 1266: 1263: 1257: 1251: 1248: 1245: 1236: 1233: 1230: 1220: 1219: 1218: 1183: 1180: 1162: 1159: 1151: 1148: 1144: 1131: 1115: 1109: 1102: 1101: 1100: 1078: 1069: 1063: 1060: 1046: 1045: 1044: 1017: 1014: 1005: 1002: 998: 995: 985: 982: 973: 970: 966: 963: 954: 950: 947: 941: 936: 928: 925: 922: 914: 906: 903: 900: 890: 889: 888: 868: 865: 856: 853: 849: 846: 836: 833: 824: 821: 817: 814: 806: 803: 799: 789: 783: 780: 775: 772: 766: 757: 756: 755: 736: 728: 725: 722: 714: 706: 703: 700: 694: 691: 681: 675: 672: 667: 664: 658: 649: 648: 647: 639: 625: 599: 596: 587: 584: 580: 577: 567: 564: 555: 552: 548: 545: 537: 534: 530: 525: 517: 514: 511: 503: 495: 492: 489: 483: 476: 475: 474: 460: 452: 447: 433: 409: 388: 377: 358: 324: 306: 290: 287: 275: 274: 271: 270: 269: 249: 242: 238: 218: 207: 188: 177: 176: 175: 162: 159: 154: 152: 148: 144: 140: 130: 128: 124: 120: 116: 111: 109: 105: 101: 96: 92: 88: 84: 80: 76: 72: 67: 66:is constant. 65: 61: 57: 53: 49: 45: 41: 37: 33: 29: 22: 3611: 3607: 3583:, retrieved 3561: 3551: 3514: 3510: 3497: 3479: 3468: 3457: 3451:Berkeley.edu 3446: 3435:. Retrieved 3428:the original 3415: 3404:. Retrieved 3400:the original 3390: 3379: 3371:the original 3362: 3353: 3342:the original 3333: 3320: 3309: 3298: 3287: 3270: 3266: 3260: 3252: 3244: 3236: 3222: 3218: 3188: 3184: 3174: 3157: 3153: 3140: 3132: 3115: 3110: 3103: 3094: 3072: 3050: 3018: 3009: 3001: 2978: 2973: 2966: 2957: 2947: 2939: 2932:. Retrieved 2928:the original 2923: 2890: 2883: 2826: 2823: 2785: 2781: 2700: 2696: 2692: 2681: 2671: 2667: 2663: 2657: 2640:Henry Eyring 2626:represented 2622: 2305: 2214: 1948: 1930: 1883: 1879: 1847: 1842:second order 1839: 1771: 1762:widely known 1755: 1608: 1596: 1508: 1500: 1451: 1327: 1209: 1097: 1041: 886: 753: 645: 618: 448: 344: 266: 173: 155: 136: 112: 68: 31: 25: 3610:., (1965), 3608:J. Chem. Ed 3503:A.N. Gorban 3191:: 669–678. 2630:process in 2310:Fermi level 1511:independent 451:equilibrium 158:van 't Hoff 143:Peter Waage 95:Peter Waage 77:and 2) the 75:equilibrium 73:mixture at 3633:Categories 3614:, 548-550. 3585:2023-03-02 3437:2007-07-12 3406:2007-07-12 3225:: 69–114. 2876:References 2648:Fick's law 1514:collisions 44:activities 3524:1012.2908 2830:SIR model 2802:⟶ 2759:⟶ 2726:⟶ 2628:diffusion 2554:− 2488:− 2472:− 2414:− 2398:− 2215:intrinsic 2180:and hole 2037:− 2024:≡ 1738:… 1733:β 1717:α 1701:… 1692:β 1662:α 1582:… 1577:β 1559:α 1520:in 1872 ( 1518:Boltzmann 1481:ξ 1473:quantity 1460:ψ 1385:− 1376:− 1361:− 1346:ψ 1310:ξ 1290:ξ 1252:ξ 1249:− 1237:ξ 1234:− 1064:α 926:− 904:− 726:− 704:− 626:ξ 588:ξ 556:ξ 535:α 518:ξ 515:− 496:ξ 493:− 484:α 461:ξ 434:α 396:⇀ 389:− 378:− 371:↽ 291:α 226:⇀ 219:− 208:− 201:↽ 56:solutions 52:reactants 28:chemistry 3543:18961678 3487:Archived 3017:(1971). 2844:See also 2666:, where 2004:band gap 1941:electron 1695:′ 1681:′ 1665:′ 1651:′ 1536:affinity 1423:′ 1403:′ 1392:′ 1303:′ 1283:′ 1267:′ 1184:′ 1163:′ 1152:′ 1056:affinity 1018:′ 999:′ 986:′ 967:′ 951:′ 869:′ 850:′ 837:′ 818:′ 807:′ 600:′ 581:′ 568:′ 549:′ 538:′ 284:affinity 250:′ 239:′ 156:In 1877 71:reaction 64:products 2934:21 July 2306:perfect 795:reverse 687:forward 355:alcohol 133:History 79:kinetic 50:of the 3576:  3541:  3303:SC.edu 3250:p. 71: 3025:  2992:+ CaCl 2898:  2634:as an 2059:) and 1937:doping 1452:where 30:, the 3539:S2CID 3519:arXiv 3431:(PDF) 3424:(PDF) 3345:(PDF) 3330:(PDF) 3150:(PDF) 3114:[ 2977:[ 2304:in a 1613:and k 413:water 406:ester 38:of a 3574:ISBN 3023:ISBN 2936:2019 2896:ISBN 2658:The 2277:and 1943:and 1505:1879 1038:1867 362:acid 165:1864 141:and 93:and 85:for 36:rate 3566:doi 3529:doi 3275:doi 3227:doi 3193:doi 3162:doi 2784:to 1033:... 449:At 58:in 46:or 26:In 3635:: 3612:42 3572:, 3560:, 3537:. 3527:. 3513:. 3509:. 3365:. 3361:. 3336:. 3332:. 3271:33 3269:. 3223:19 3205:^ 3189:10 3158:18 3156:. 3152:. 3124:^ 3081:^ 3059:^ 3037:^ 2988:CO 2984:Na 2956:. 2938:. 2922:. 2910:^ 2664:xy 2650:. 2344:: 1955:, 1215:eq 1213:, 1211:eq 1193:eq 1172:eq 1140:eq 1124:eq 129:. 110:. 3568:: 3545:. 3531:: 3521:: 3515:6 3440:. 3409:. 3281:. 3277:: 3233:. 3229:: 3199:. 3195:: 3168:. 3164:: 3031:. 2998:3 2994:2 2990:3 2986:2 2960:. 2904:. 2818:. 2805:S 2799:R 2786:S 2782:R 2775:. 2762:R 2756:I 2733:I 2729:2 2723:I 2720:+ 2717:S 2701:R 2697:I 2693:S 2672:y 2668:x 2601:2 2596:i 2592:n 2588:= 2580:T 2575:B 2571:k 2564:g 2560:E 2550:e 2544:V 2540:N 2534:C 2530:N 2526:= 2522:) 2513:T 2508:B 2504:k 2496:V 2492:E 2483:F 2479:E 2468:e 2462:V 2458:N 2453:( 2448:) 2439:T 2434:B 2430:k 2422:F 2418:E 2409:C 2405:E 2394:e 2388:C 2384:N 2379:( 2375:= 2370:o 2366:p 2360:o 2356:n 2332:) 2327:F 2323:E 2319:( 2290:o 2286:p 2263:o 2259:n 2238:) 2233:i 2229:n 2225:( 2201:) 2196:o 2192:p 2188:( 2168:) 2163:o 2159:n 2155:( 2135:) 2132:) 2129:T 2126:( 2121:C 2117:N 2113:( 2093:) 2090:) 2087:T 2084:( 2079:V 2075:N 2071:( 2045:V 2041:E 2032:C 2028:E 2019:g 2015:E 1990:T 1968:B 1964:k 1898:f 1894:r 1862:f 1858:r 1825:] 1822:B 1819:[ 1816:] 1813:A 1810:[ 1805:f 1801:k 1797:= 1792:f 1788:r 1729:] 1725:B 1722:[ 1713:] 1709:A 1706:[ 1685:] 1678:B 1674:[ 1655:] 1648:A 1644:[ 1635:= 1632:K 1615:− 1611:+ 1573:] 1568:B 1564:[ 1555:] 1550:A 1546:[ 1543:k 1540:= 1436:) 1433:) 1430:x 1427:+ 1420:q 1416:( 1413:) 1410:x 1407:+ 1400:p 1396:( 1389:k 1382:) 1379:x 1373:q 1370:( 1367:) 1364:x 1358:p 1355:( 1352:k 1349:( 1343:= 1340:v 1313:) 1307:+ 1300:q 1296:( 1293:) 1287:+ 1280:p 1276:( 1271:k 1264:k 1258:= 1255:) 1246:q 1243:( 1240:) 1231:p 1228:( 1189:] 1181:B 1177:[ 1168:] 1160:A 1156:[ 1149:k 1145:= 1136:] 1132:B 1129:[ 1120:] 1116:A 1113:[ 1110:k 1082:] 1079:B 1076:[ 1073:] 1070:A 1067:[ 1061:= 1015:b 1010:) 1006:x 1003:+ 996:q 992:( 983:a 978:) 974:x 971:+ 964:p 960:( 955:k 948:k 942:= 937:b 933:) 929:x 923:q 920:( 915:a 911:) 907:x 901:p 898:( 866:b 861:) 857:x 854:+ 847:q 843:( 834:a 829:) 825:x 822:+ 815:p 811:( 804:k 800:= 790:) 784:t 781:d 776:x 773:d 767:( 737:b 733:) 729:x 723:q 720:( 715:a 711:) 707:x 701:p 698:( 695:k 692:= 682:) 676:t 673:d 668:x 665:d 659:( 597:b 592:) 585:+ 578:q 574:( 565:a 560:) 553:+ 546:p 542:( 531:= 526:b 522:) 512:q 509:( 504:a 500:) 490:p 487:( 410:+ 359:+ 339:. 325:b 321:] 316:B 312:[ 307:a 303:] 298:A 294:[ 288:= 247:B 243:+ 236:A 192:B 189:+ 186:A 23:.

Index

Mass action (disambiguation)
chemistry
rate
chemical reaction
activities
concentrations
reactants
solutions
dynamic equilibrium
products
reaction
equilibrium
kinetic
rate equations
elementary reactions
Cato M. Guldberg
Peter Waage
rates of reaction
chemical equilibrium
Jacobus Henricus van 't Hoff
equilibrium constant
chemical equilibrium
equilibrium thermodynamics
chemical potential
Cato Maximilian Guldberg
Peter Waage
Claude Louis Berthollet
reversible chemical reactions
van 't Hoff
equilibrium

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.