Knowledge

Index ellipsoid

Source đź“ť

2867: 2879: 1394:, because he derived it by supposing that light waves were transverse elastic waves, that the medium had three perpendicular directions in which a displacement of a molecule produced a restoring force in exactly the opposite direction, and that the restoring force due to a vector sum of displacements was the vector sum of the restoring forces due to the separate displacements. 111:, whose radius vector (from the origin) in any direction is indeed the refractive index for propagation in that direction; for a birefringent medium, the index surface is the two-sheeted surface whose two radius vectors in any direction have lengths equal to the major and minor semiaxes of the diametral section of the index ellipsoid by a plane 423:
constructed therefrom reduces to a sphere and a spheroid touching at opposite ends of their common axis, which is parallel to that of the index ellipsoid; but the principal axes of the spheroidal index ellipsoid and the spheroidal sheet of the index surface are interchanged. In the well-known case of
1270:
is the length of the radius vector, the equation describes a surface with the property that the major and minor semiaxes of any diametral section have lengths equal to the wave-normal speeds of wavefronts parallel to that section, and the directions of what Fresnel called the "vibrations" (which we
1423:
in 1837. In a previous paper, read in 1833, MacCullagh had called this surface the "surface of refraction" and shown that it is generated by the major and minor semiaxes of a diametral section of an ellipsoid which has principal semiaxes inversely proportional to those of Fresnel's ellipsoid, and
441:
If all three principal semi-axes of the index ellipsoid are equal, it reduces to a sphere: all diametral sections of the index ellipsoid are circular, whence all polarizations are permitted for all directions of propagation, with the same refractive index for all directions, and the index surface
2419:
Yariv & Yeh (1984, pp. 86–7) give an example of the contrary kind, in which the index surface is prolate (Figure 4.4), and the associated index surface (which they call the "normal surface") comprises a sphere and an oblate spheroid touching at the poles. In both examples the
636: 376:(meaning that its principal semiaxes are all unequal), there are two cutting planes for which the diametral section reduces to a circle. For wavefronts parallel to these planes, all polarizations are permitted and have the same refractive index, hence the same wave speed. The directions 1397:
Fresnel soon realized that the ellipsoid constructed on the same principal semi-axes as the surface of elasticity has the same relation to the ray velocities that the surface of elasticity has to the wave-normal velocities. Fresnel's ellipsoid is now called the
2726:
See e.g. Born & Wolf, 2002, pp. 790–801; Jenkins & White, 1976, pp. 559–62; Landau & Lifshitz, 1960, pp. 313–20; Yariv & Yeh, 1984, pp. 69–79; Zernike & Midwinter, 1973, pp. 6–12. Of these, only Yariv & Yeh use
2339: 2228: 354: 1402:. Thus, in modern terms, the ray ellipsoid generates the ray velocities as the index ellipsoid generates the refractive indices. The major and minor semiaxes of the diametral section of the ray ellipsoid are in the permitted directions of the 98:
vector parallel to that semiaxis (and parallel to the wavefront). Thus the direction of propagation (normal to the wavefront) to which each principal refractive index applies is in the plane perpendicular to the associated principal semiaxis.
1228: 2420:
proportions of the extraordinary wavefront expanding from a point source in the crystal are inverse to those of the index surface, because the refractive index is inversely proportional to the normal velocity of the wavefront.
1783: 483: 1517: 2037: 2239: 2105: 67:
whose major and minor semiaxes have lengths equal to the two refractive indices for that orientation of the wavefront, and have the directions of the respective polarizations as expressed by the
1292:) is in velocity space (in which the coordinates have the units of velocity). Whereas the former surface is of the 2nd degree, the latter is of the 4th degree, as may be verified by redefining 1675: 1906:
medium, the result holds only for those combinations of propagation direction and polarization which avoid the anisotropy—that is, for those cases in which the electric displacement vector
1871: 2594:, Ser. 2, vol. 28, pp. 263–79 (March 1825); reprinted as "Extrait du second MĂ©moire sur la double rĂ©fraction" in Fresnel, 1868, pp. 465–78; translated as " 890: 2094: 169: 1019: 968: 1898: 1702: 1633: 1571: 1362: 1067: 239: 730: 704: 2567:
A. Fresnel, "Extrait du SupplĂ©ment au MĂ©moire sur la double rĂ©fraction" (read 13 Jan. 1822 ?), printed in Fresnel, 1868, pp. 335–42; translated as "
1105: 801: 678: 1606: 1544: 1810: 1322: 828: 2442:
That is, the surface whose radius vector in any direction is the wave-normal velocity in that direction. Jenkins & White (1976, pp. 555–6) call this the
1982: 1962: 1942: 1830: 1717: 1268: 910: 760: 742:
is also the refractive index for a wavefront parallel to a diametral section of which the radius vector is major or minor semiaxis. If that wavefront has speed
229: 209: 189: 438:
spheroid touching the sphere at the poles, with an equatorial radius (extraordinary index) equal to the polar radius of the oblate spheroidal index ellipsoid.
1115: 1454: 2230:
indicating that the semiaxes of the index ellipsoid are the square roots of the principal dielectric constants. Substituting these expressions into (
432:, so that one sheet of the index surface is a sphere touching that oblate spheroid at the equator, while the other sheet of the index surface is a 631:{\displaystyle {\frac {\cos ^{2}\xi }{n_{a}^{2}}}+{\frac {\cos ^{2}\eta }{n_{b}^{2}}}+{\frac {\cos ^{2}\zeta }{n_{c}^{2}}}={\frac {1}{n^{2}}}\,,} 171:
denote the principal semiaxes of the index ellipsoid, and choose a Cartesian coordinate system in which these semiaxes are respectively in the
457:
A surface analogous to the index ellipsoid can be defined for the wave speed (normal to the wavefront) instead of the refractive index. Let
1987: 1835: 463:
denote the length of the radius vector from the origin to a general point on the index ellipsoid. Then dividing equation (
2788: 55:). When this ellipsoid is cut through its center by a plane parallel to the wavefront, the resulting intersection (called a 2374: 2546:
Landau & Lifshitz, 1960, p. 321; Yariv & Yeh, 1984, pp. 82–3; Zernike & Midwinter, 1973, p. 12.
2498:
Born & Wolf, 2002, pp. 799–800; Landau & Lifshitz, 1960, p. 320; Yariv & Yeh, 1984, pp. 77–8.
88:
the refractive index for propagation in the direction of that semiaxis, but rather the refractive index for propagation
2840: 2814: 2766:
Born & Wolf, 2002, p. 799; Jenkins & White, 1976, p. 560; Landau & Lifshitz, 1960, p. 320.
1638: 1581:
of the vacuum. For a transparent material medium, we can still reasonably assume that the magnetic permeability is
1444:
the index ellipsoid, however, we can easily relate its parameters to the electromagnetic properties of the medium.
403:
If two of the principal semiaxes of the index ellipsoid are equal (in which case their common length is called the
2866: 2334:{\displaystyle {\frac {x^{2}}{\epsilon _{x}}}+{\frac {y^{2}}{\epsilon _{y}}}+{\frac {z^{2}}{\epsilon _{z}}}=1\,,} 2223:{\displaystyle n_{a}={\sqrt {\epsilon _{x}}}~;~~n_{b}={\sqrt {\epsilon _{y}}}~;~~n_{c}={\sqrt {\epsilon _{z}}}~,} 1574: 2525:
Born & Wolf, 2002, p. 801; Jenkins & White, 1976, pp. 562; Yariv & Yeh, 1984, p. 73.
1918:, as in an isotropic medium. In view of the symmetry of the index ellipsoid, these must be the cases in which 2909: 2697:
L. Fletcher, "The Optical Indicatrix and the Transmission of Light in Crystals" (read 16 June 1891),
2919: 68: 2660:
J. MacCullagh, "Geometrical propositions applied to the wave theory of light" (read 24 June 1833),
839: 380:
to these two planes—that is, the directions of a single wave speed for all polarizations—are called the
2857: 2046: 449:. Cubic crystals exhibit this property as well as amorphous transparent media such as glass and water. 121: 2883: 1440:
Deriving the index ellipsoid and its generating property from electromagnetic theory is non-trivial.
349:{\displaystyle {\frac {x^{2}}{n_{a}^{2}}}+{\frac {y^{2}}{n_{b}^{2}}}+{\frac {z^{2}}{n_{c}^{2}}}=1\,.} 1286:) is in index space (in which the coordinates are dimensionless numbers), the surface described by ( 973: 922: 84:
It follows from the sectioning procedure that each principal semiaxis of the ellipsoid is generally
2904: 2639:
J. MacCullagh, "On the laws of crystalline reflexion and refraction" (read 9 Jan. 1837),
2359: 1876: 1680: 1611: 1549: 1327: 1024: 2794:
A. Fresnel (ed.  H. de Senarmont, E. Verdet, and L. Fresnel), 1868,
2714: 709: 2820:
L.D. Landau and E.M. Lifshitz (tr.  J.B. Sykes & J.S. Bell), 1960,
830:
is the speed of light in a vacuum. For the principal semiaxes of the index ellipsoid, for which
683: 1078: 765: 657: 2702: 1584: 1522: 2685: 1706: 1247: 1390:) might reasonably be called the "normal-velocity ovaloid". Fresnel, however, called it the 1788: 1732: 1476: 1295: 806: 37: 2621:
Fresnel, 1868, pp. 395–6 (written no later than 31 March 1822; see p. 442).
415:(ellipsoid of revolution), and the two optic axes merge, so that the medium is said to be 8: 2706: 1924:
is in the direction of one of the axes. So, denoting the relative permittivities in the
2665: 2644: 1967: 1947: 1927: 1815: 1253: 895: 745: 214: 194: 174: 2429:
Or sometimes it is convenient to use air instead of a vacuum as the reference medium;
2914: 2836: 2810: 2784: 2783:, 7th Ed., Cambridge University Press, 1999 (reprinted with corrections, 2002), 2454:
for the index surface (p. 87) or the corresponding surface for the wave vector
1223:{\displaystyle v^{2}=a^{2}\cos ^{2}\xi +b^{2}\cos ^{2}\eta +c^{2}\cos ^{2}\zeta \,.} 1425: 1420: 733: 434: 52: 33: 2899: 2848: 2799: 429: 2871: 2745: 2732: 2364: 1448: 1403: 1374:. And as the index ellipsoid generates the index surface, so the surface ( 17: 2893: 2354: 45: 2757:
Born & Wolf, 2002, p. 799; Jenkins & White, 1976, p. 560.
1578: 1778:{\displaystyle v=1{\big /}{\sqrt {\mu _{0}\epsilon _{r}\epsilon _{0}}}\,.} 2709:
London: Oxford University Press Warehouse, 1892; reviewed by "R.T.G." in
2236:), we obtain the equation of the index ellipsoid in the alternative form 2669: 2648: 1902: 2480:
Born & Wolf, 2002, p. 799; Yariv & Yeh, 1984, p. 77.
419:. As the index ellipsoid reduces to a spheroid, the two-sheeted index 2833:
Optical Waves in Crystals: Propagation and control of laser radiation
442:
merges with the (spherical) index ellipsoid; in short, the medium is
41: 2604: 2577: 2744:
Landau & Lifshitz, 1960, pp. 251–3 (§60). The authors use
2728: 1424:
which MacCullagh later called the "ellipsoid of indices". In 1891,
445: 412: 1512:{\displaystyle c_{0}=1{\big /}{\sqrt {\mu _{0}\epsilon _{0}}}\,,} 425: 64: 48: 2699:
Mineralogical Magazine and Journal of the Mineralogical Society
2599: 2572: 77:. The principal semiaxes of the index ellipsoid are called the 2590:
A. Fresnel, "Extrait d'un Mémoire sur la double réfraction",
2369: 2032:{\displaystyle \epsilon _{x}\;\!,\epsilon _{y},\epsilon _{z}} 392:. Thus, paradoxically, if the index ellipsoid of a medium is 32:) is a geometric construction which concisely represents the 2610:
Bulletin des Sciences par la Société Philomatique de Paris
1900:
as a scalar, which is valid in an isotropic medium. In an
2713:, vol. 46, no. 1199 (20 Oct. 1892), 2852:, New York: Wiley (reprinted Mineola, NY: Dover, 2006). 2798:, Paris: Imprimerie ImpĂ©riale (3 vols., 1866–70), 2571:
of the Supplement to the Memoir on double refraction",
2748:, in which the magnetic permeability of a vacuum is 1. 2664:, vol. 17 (nominally for 1831), pp. 241–63, 2608:, 2022. (An earlier version of this paper appeared in 2096:
denote the refractive indices for these directions of
2855: 2242: 2108: 2049: 1990: 1970: 1950: 1930: 1879: 1838: 1818: 1791: 1720: 1683: 1641: 1614: 1587: 1552: 1525: 1457: 1370:) is generally not an ellipsoid, but another sort of 1330: 1298: 1256: 1118: 1081: 1027: 976: 925: 898: 842: 809: 768: 748: 712: 686: 660: 486: 242: 217: 197: 177: 124: 1380:), by the same process, generates what we call the 231:directions, the equation of the index ellipsoid is 107:The index ellipsoid is not to be confused with the 2446:. Born & Wolf (2002, p. 803) call it the 2333: 2222: 2088: 2031: 1976: 1956: 1936: 1892: 1865: 1824: 1804: 1777: 1696: 1669: 1627: 1600: 1565: 1538: 1511: 1356: 1316: 1262: 1222: 1099: 1061: 1013: 962: 904: 884: 822: 795: 754: 724: 698: 672: 630: 348: 223: 203: 183: 163: 2563: 2561: 2002: 1663: 1435: 40:of light, as functions of the orientation of the 2891: 2654: 2633: 1670:{\displaystyle \epsilon _{r}\epsilon _{0}\;\!,} 2612:, vol. 9, pp. 63–71, May 1822.) 2584: 2558: 2691: 2809:, 4th Ed., New York: McGraw-Hill, 2537:Yariv & Yeh, 1984, pp. 82, 84. 1866:{\displaystyle n={\sqrt {\epsilon _{r}}}\,.} 51:(provided that the crystal does not exhibit 2735:, which change the forms of some equations. 2489:Jenkins & White, 1976, pp. 560–61. 2507:Zernike & Midwinter, 1973, p. 11. 2450:. But Yariv & Yeh (1984) use the term 2001: 1662: 1324:as the components of velocity and putting 2603: 2576: 2516:Landau & Lifshitz, 1960, p. 326. 2433:Zernike & Midwinter, 1973, p. 2. 2341:which explains why it is also called the 2327: 1912:is parallel to the electric field vector 1859: 1771: 1608:(especially at optical frequencies), but 1505: 1216: 624: 428:, for example, the index ellipsoid is an 388:, and the medium is therefore said to be 342: 2662:Transactions of the Royal Irish Academy 2643:, vol. 18 (1839), pp. 31–74, 2641:Transactions of the Royal Irish Academy 2892: 2684:, no. 49 (13 January 1845), 2682:Proceedings of the Royal Irish Academy 1364:, etc.; thus the latter surface ( 2846:F. Zernike and J.E. Midwinter, 1973, 2796:Oeuvres complètes d'Augustin Fresnel 2598:of a memoir on double refraction", 2375:Mathematical descriptions of opacity 1109: 477: 233: 2822:Electrodynamics of Continuous Media 2805:F.A. Jenkins and H.E. White, 1976, 2630:Born & Wolf, 2002, p. 802. 2555:Born & Wolf, 2002, p. 805. 411:index), the ellipsoid reduces to a 396:axial, the medium itself is called 13: 2731:; the others use the lesser-known 1832:, we obtain the refractive index: 1714:), so that the wave speed becomes 1280:Whereas the surface described by ( 1075:) and canceling the common factor 885:{\displaystyle n_{a},n_{b},n_{c},} 14: 2931: 2089:{\displaystyle n_{a},n_{b},n_{c}} 1271:now recognize as oscillations of 1069:. Making these substitutions in ( 164:{\displaystyle n_{a},n_{b},n_{c}} 2877: 2865: 2592:Annales de Chimie et de Physique 407:index, and the third length the 2773: 2760: 2751: 2738: 2720: 2675: 2624: 2615: 2549: 2540: 2436: 2423: 2413: 2528: 2519: 2510: 2501: 2492: 2483: 2474: 2400: 2387: 2041:principal dielectric constants 1573:are respectively the magnetic 1436:Electromagnetic interpretation 1014:{\displaystyle n_{b}=c_{0}/b,} 963:{\displaystyle n_{a}=c_{0}/a,} 102: 1: 2826:Course of Theoretical Physics 2467: 1893:{\displaystyle \epsilon _{r}} 1697:{\displaystyle \epsilon _{r}} 1628:{\displaystyle \epsilon _{0}} 1566:{\displaystyle \epsilon _{0}} 1357:{\displaystyle \cos \xi =x/v} 1246:This equation was derived by 1062:{\displaystyle n_{c}=c_{0}/c} 79:principal refractive indices 7: 2831:A. Yariv and P. Yeh, 1984, 2779:M. Born and E. Wolf, 2002, 2348: 2232: 1386: 1376: 1366: 1288: 1282: 1236: 1071: 725:{\displaystyle \cos \zeta } 644: 465: 362: 92:to that semiaxis, with the 10: 2936: 2828:), London: Pergamon Press. 1707:relative permittivity 1428:called this ellipsoid the 1384:. Hence the surface ( 736:of the radius vector. But 699:{\displaystyle \cos \eta } 452: 372:If the index ellipsoid is 2406:Or, in older literature, 2393:Or, in older literature, 1100:{\displaystyle c_{0}^{2}} 796:{\displaystyle n=c_{0}/v} 673:{\displaystyle \cos \xi } 30:dielectric ellipsoid 2849:Applied Nonlinear Optics 2380: 2360:Complex refractive index 1712:dielectric constant 1601:{\displaystyle \mu _{0}} 1539:{\displaystyle \mu _{0}} 2800:vol. 2 (1868) 2444:normal-velocity surface 1873:This derivation treats 1430:optical indicatrix 1382:normal-velocity surface 34:refractive indices 26:optical indicatrix 2807:Fundamentals of Optics 2672:, at p. 260. 2335: 2224: 2090: 2043:), and recalling that 2033: 1978: 1958: 1938: 1894: 1867: 1826: 1806: 1779: 1698: 1671: 1629: 1602: 1567: 1540: 1513: 1358: 1318: 1264: 1224: 1101: 1063: 1015: 964: 919:respectively, so that 906: 886: 824: 797: 756: 734:direction cosines 726: 700: 674: 632: 350: 225: 205: 185: 165: 61:diametral section 2651:, at p. 38. 2336: 2225: 2091: 2034: 1979: 1959: 1939: 1895: 1868: 1827: 1807: 1805:{\displaystyle c_{0}} 1780: 1699: 1672: 1630: 1603: 1568: 1541: 1514: 1426:Lazarus Fletcher 1421:James MacCullagh 1392:surface of elasticity 1359: 1319: 1317:{\displaystyle x,y,z} 1265: 1248:Augustin-Jean Fresnel 1225: 1102: 1064: 1016: 965: 907: 887: 825: 823:{\displaystyle c_{0}} 798: 757: 727: 701: 675: 633: 351: 226: 206: 186: 166: 69:electric displacement 53:optical rotation 2910:Polarization (waves) 2781:Principles of Optics 2240: 2106: 2047: 1988: 1968: 1948: 1928: 1877: 1836: 1816: 1789: 1718: 1681: 1639: 1635:must be replaced by 1612: 1585: 1550: 1523: 1455: 1328: 1296: 1254: 1250:in January 1822. If 1116: 1079: 1025: 974: 923: 896: 840: 807: 766: 746: 710: 684: 658: 484: 430:oblate spheroid 240: 215: 195: 175: 122: 57:central section 28:or sometimes as the 22:index ellipsoid 2835:, New York: Wiley, 2733:Gaussian units 2452:normal surface 2448:normal surface 1404:electric field 1096: 601: 561: 521: 333: 301: 269: 115:to that direction. 24:(also known as the 2920:Optical mineralogy 2884:History of science 2705:(Dec. 1891); 2331: 2220: 2086: 2029: 1974: 1954: 1934: 1890: 1863: 1822: 1802: 1775: 1694: 1667: 1625: 1598: 1563: 1536: 1509: 1417:index surface 1400:ray ellipsoid 1354: 1314: 1260: 1220: 1097: 1082: 1059: 1011: 960: 902: 882: 820: 793: 752: 722: 696: 670: 628: 587: 547: 507: 382:binormal axes 346: 319: 287: 255: 221: 201: 181: 161: 109:index surface 2789:978-0-521-64222-4 2319: 2292: 2265: 2216: 2212: 2186: 2183: 2177: 2173: 2147: 2144: 2138: 2134: 1977:{\displaystyle z} 1957:{\displaystyle y} 1937:{\displaystyle x} 1857: 1825:{\displaystyle v} 1769: 1710:(also called the 1577:and the electric 1503: 1263:{\displaystyle v} 1244: 1243: 905:{\displaystyle v} 836:takes the values 755:{\displaystyle v} 652: 651: 622: 602: 562: 522: 370: 369: 334: 302: 270: 224:{\displaystyle z} 204:{\displaystyle y} 184:{\displaystyle x} 46:doubly-refractive 2927: 2882: 2881: 2880: 2870: 2869: 2861: 2824:(vol. 8 of 2767: 2764: 2758: 2755: 2749: 2742: 2736: 2724: 2718: 2703:pp. 278–388 2695: 2689: 2679: 2673: 2658: 2652: 2637: 2631: 2628: 2622: 2619: 2613: 2607: 2588: 2582: 2580: 2565: 2556: 2553: 2547: 2544: 2538: 2532: 2526: 2523: 2517: 2514: 2508: 2505: 2499: 2496: 2490: 2487: 2481: 2478: 2461: 2459: 2440: 2434: 2427: 2421: 2417: 2411: 2404: 2398: 2391: 2340: 2338: 2337: 2332: 2320: 2318: 2317: 2308: 2307: 2298: 2293: 2291: 2290: 2281: 2280: 2271: 2266: 2264: 2263: 2254: 2253: 2244: 2229: 2227: 2226: 2221: 2214: 2213: 2211: 2210: 2201: 2196: 2195: 2184: 2181: 2175: 2174: 2172: 2171: 2162: 2157: 2156: 2145: 2142: 2136: 2135: 2133: 2132: 2123: 2118: 2117: 2101: 2095: 2093: 2092: 2087: 2085: 2084: 2072: 2071: 2059: 2058: 2038: 2036: 2035: 2030: 2028: 2027: 2015: 2014: 2000: 1999: 1983: 1981: 1980: 1975: 1963: 1961: 1960: 1955: 1943: 1941: 1940: 1935: 1923: 1917: 1911: 1899: 1897: 1896: 1891: 1889: 1888: 1872: 1870: 1869: 1864: 1858: 1856: 1855: 1846: 1831: 1829: 1828: 1823: 1811: 1809: 1808: 1803: 1801: 1800: 1784: 1782: 1781: 1776: 1770: 1768: 1767: 1758: 1757: 1748: 1747: 1738: 1736: 1735: 1703: 1701: 1700: 1695: 1693: 1692: 1676: 1674: 1673: 1668: 1661: 1660: 1651: 1650: 1634: 1632: 1631: 1626: 1624: 1623: 1607: 1605: 1604: 1599: 1597: 1596: 1572: 1570: 1569: 1564: 1562: 1561: 1545: 1543: 1542: 1537: 1535: 1534: 1518: 1516: 1515: 1510: 1504: 1502: 1501: 1492: 1491: 1482: 1480: 1479: 1467: 1466: 1411: 1363: 1361: 1360: 1355: 1350: 1323: 1321: 1320: 1315: 1276: 1269: 1267: 1266: 1261: 1238: 1229: 1227: 1226: 1221: 1209: 1208: 1199: 1198: 1180: 1179: 1170: 1169: 1151: 1150: 1141: 1140: 1128: 1127: 1110: 1106: 1104: 1103: 1098: 1095: 1090: 1068: 1066: 1065: 1060: 1055: 1050: 1049: 1037: 1036: 1020: 1018: 1017: 1012: 1004: 999: 998: 986: 985: 969: 967: 966: 961: 953: 948: 947: 935: 934: 918: 912:take the values 911: 909: 908: 903: 891: 889: 888: 883: 878: 877: 865: 864: 852: 851: 835: 829: 827: 826: 821: 819: 818: 802: 800: 799: 794: 789: 784: 783: 761: 759: 758: 753: 741: 731: 729: 728: 723: 705: 703: 702: 697: 679: 677: 676: 671: 646: 637: 635: 634: 629: 623: 621: 620: 608: 603: 600: 595: 586: 579: 578: 568: 563: 560: 555: 546: 539: 538: 528: 523: 520: 515: 506: 499: 498: 488: 478: 474: 462: 364: 355: 353: 352: 347: 335: 332: 327: 318: 317: 308: 303: 300: 295: 286: 285: 276: 271: 268: 263: 254: 253: 244: 234: 230: 228: 227: 222: 210: 208: 207: 202: 190: 188: 187: 182: 170: 168: 167: 162: 160: 159: 147: 146: 134: 133: 97: 76: 2935: 2934: 2930: 2929: 2928: 2926: 2925: 2924: 2905:Physical optics 2890: 2889: 2888: 2878: 2876: 2864: 2856: 2776: 2771: 2770: 2765: 2761: 2756: 2752: 2743: 2739: 2725: 2721: 2701:, vol. 9, 2696: 2692: 2680: 2676: 2659: 2655: 2638: 2634: 2629: 2625: 2620: 2616: 2589: 2585: 2566: 2559: 2554: 2550: 2545: 2541: 2533: 2529: 2524: 2520: 2515: 2511: 2506: 2502: 2497: 2493: 2488: 2484: 2479: 2475: 2470: 2465: 2464: 2455: 2441: 2437: 2428: 2424: 2418: 2414: 2405: 2401: 2392: 2388: 2383: 2351: 2313: 2309: 2303: 2299: 2297: 2286: 2282: 2276: 2272: 2270: 2259: 2255: 2249: 2245: 2243: 2241: 2238: 2237: 2206: 2202: 2200: 2191: 2187: 2167: 2163: 2161: 2152: 2148: 2128: 2124: 2122: 2113: 2109: 2107: 2104: 2103: 2102:, we must have 2097: 2080: 2076: 2067: 2063: 2054: 2050: 2048: 2045: 2044: 2039:(the so-called 2023: 2019: 2010: 2006: 1995: 1991: 1989: 1986: 1985: 1969: 1966: 1965: 1949: 1946: 1945: 1929: 1926: 1925: 1919: 1913: 1907: 1884: 1880: 1878: 1875: 1874: 1851: 1847: 1845: 1837: 1834: 1833: 1817: 1814: 1813: 1796: 1792: 1790: 1787: 1786: 1763: 1759: 1753: 1749: 1743: 1739: 1737: 1731: 1730: 1719: 1716: 1715: 1688: 1684: 1682: 1679: 1678: 1656: 1652: 1646: 1642: 1640: 1637: 1636: 1619: 1615: 1613: 1610: 1609: 1592: 1588: 1586: 1583: 1582: 1557: 1553: 1551: 1548: 1547: 1530: 1526: 1524: 1521: 1520: 1497: 1493: 1487: 1483: 1481: 1475: 1474: 1462: 1458: 1456: 1453: 1452: 1451:in a vacuum is 1438: 1407: 1346: 1329: 1326: 1325: 1297: 1294: 1293: 1272: 1255: 1252: 1251: 1204: 1200: 1194: 1190: 1175: 1171: 1165: 1161: 1146: 1142: 1136: 1132: 1123: 1119: 1117: 1114: 1113: 1091: 1086: 1080: 1077: 1076: 1051: 1045: 1041: 1032: 1028: 1026: 1023: 1022: 1000: 994: 990: 981: 977: 975: 972: 971: 949: 943: 939: 930: 926: 924: 921: 920: 913: 897: 894: 893: 873: 869: 860: 856: 847: 843: 841: 838: 837: 831: 814: 810: 808: 805: 804: 785: 779: 775: 767: 764: 763: 747: 744: 743: 737: 711: 708: 707: 685: 682: 681: 659: 656: 655: 616: 612: 607: 596: 591: 574: 570: 569: 567: 556: 551: 534: 530: 529: 527: 516: 511: 494: 490: 489: 487: 485: 482: 481: 470: 458: 455: 328: 323: 313: 309: 307: 296: 291: 281: 277: 275: 264: 259: 249: 245: 243: 241: 238: 237: 216: 213: 212: 196: 193: 192: 176: 173: 172: 155: 151: 142: 138: 129: 125: 123: 120: 119: 105: 93: 72: 36:and associated 12: 11: 5: 2933: 2923: 2922: 2917: 2912: 2907: 2902: 2887: 2886: 2874: 2854: 2853: 2844: 2829: 2818: 2803: 2792: 2775: 2772: 2769: 2768: 2759: 2750: 2746:Gaussian units 2737: 2719: 2715:pp. 581–2 2690: 2686:pp. 49–51 2674: 2653: 2632: 2623: 2614: 2583: 2557: 2548: 2539: 2527: 2518: 2509: 2500: 2491: 2482: 2472: 2471: 2469: 2466: 2463: 2462: 2435: 2422: 2412: 2399: 2385: 2384: 2382: 2379: 2378: 2377: 2372: 2367: 2365:Crystal optics 2362: 2357: 2350: 2347: 2330: 2326: 2323: 2316: 2312: 2306: 2302: 2296: 2289: 2285: 2279: 2275: 2269: 2262: 2258: 2252: 2248: 2219: 2209: 2205: 2199: 2194: 2190: 2180: 2170: 2166: 2160: 2155: 2151: 2141: 2131: 2127: 2121: 2116: 2112: 2083: 2079: 2075: 2070: 2066: 2062: 2057: 2053: 2026: 2022: 2018: 2013: 2009: 2005: 1998: 1994: 1984:directions by 1973: 1953: 1933: 1887: 1883: 1862: 1854: 1850: 1844: 1841: 1821: 1799: 1795: 1774: 1766: 1762: 1756: 1752: 1746: 1742: 1734: 1729: 1726: 1723: 1691: 1687: 1666: 1659: 1655: 1649: 1645: 1622: 1618: 1595: 1591: 1560: 1556: 1533: 1529: 1508: 1500: 1496: 1490: 1486: 1478: 1473: 1470: 1465: 1461: 1449:speed of light 1437: 1434: 1419:was coined by 1353: 1349: 1345: 1342: 1339: 1336: 1333: 1313: 1310: 1307: 1304: 1301: 1259: 1242: 1241: 1232: 1230: 1219: 1215: 1212: 1207: 1203: 1197: 1193: 1189: 1186: 1183: 1178: 1174: 1168: 1164: 1160: 1157: 1154: 1149: 1145: 1139: 1135: 1131: 1126: 1122: 1094: 1089: 1085: 1058: 1054: 1048: 1044: 1040: 1035: 1031: 1010: 1007: 1003: 997: 993: 989: 984: 980: 959: 956: 952: 946: 942: 938: 933: 929: 901: 881: 876: 872: 868: 863: 859: 855: 850: 846: 817: 813: 792: 788: 782: 778: 774: 771: 751: 721: 718: 715: 695: 692: 689: 669: 666: 663: 650: 649: 640: 638: 627: 619: 615: 611: 606: 599: 594: 590: 585: 582: 577: 573: 566: 559: 554: 550: 545: 542: 537: 533: 526: 519: 514: 510: 505: 502: 497: 493: 454: 451: 368: 367: 358: 356: 345: 341: 338: 331: 326: 322: 316: 312: 306: 299: 294: 290: 284: 280: 274: 267: 262: 258: 252: 248: 220: 200: 180: 158: 154: 150: 145: 141: 137: 132: 128: 104: 101: 18:crystal optics 9: 6: 4: 3: 2: 2932: 2921: 2918: 2916: 2913: 2911: 2908: 2906: 2903: 2901: 2898: 2897: 2895: 2885: 2875: 2873: 2868: 2863: 2862: 2859: 2851: 2850: 2845: 2842: 2841:0-471-09142-1 2838: 2834: 2830: 2827: 2823: 2819: 2816: 2815:0-07-032330-5 2812: 2808: 2804: 2801: 2797: 2793: 2790: 2786: 2782: 2778: 2777: 2763: 2754: 2747: 2741: 2734: 2730: 2729:SI units 2723: 2716: 2712: 2708: 2704: 2700: 2694: 2687: 2683: 2678: 2671: 2667: 2663: 2657: 2650: 2646: 2642: 2636: 2627: 2618: 2611: 2606: 2601: 2597: 2593: 2587: 2579: 2574: 2570: 2564: 2562: 2552: 2543: 2536: 2531: 2522: 2513: 2504: 2495: 2486: 2477: 2473: 2460:(p. 73). 2458: 2453: 2449: 2445: 2439: 2432: 2426: 2416: 2409: 2403: 2396: 2390: 2386: 2376: 2373: 2371: 2368: 2366: 2363: 2361: 2358: 2356: 2355:Birefringence 2353: 2352: 2346: 2344: 2328: 2324: 2321: 2314: 2310: 2304: 2300: 2294: 2287: 2283: 2277: 2273: 2267: 2260: 2256: 2250: 2246: 2235: 2234: 2217: 2207: 2203: 2197: 2192: 2188: 2178: 2168: 2164: 2158: 2153: 2149: 2139: 2129: 2125: 2119: 2114: 2110: 2100: 2081: 2077: 2073: 2068: 2064: 2060: 2055: 2051: 2042: 2024: 2020: 2016: 2011: 2007: 2003: 1996: 1992: 1971: 1951: 1931: 1922: 1916: 1910: 1905: 1904: 1885: 1881: 1860: 1852: 1848: 1842: 1839: 1819: 1797: 1793: 1772: 1764: 1760: 1754: 1750: 1744: 1740: 1727: 1724: 1721: 1713: 1709: 1708: 1689: 1685: 1664: 1657: 1653: 1647: 1643: 1620: 1616: 1593: 1589: 1580: 1576: 1558: 1554: 1531: 1527: 1506: 1498: 1494: 1488: 1484: 1471: 1468: 1463: 1459: 1450: 1445: 1443: 1433: 1431: 1427: 1422: 1418: 1413: 1410: 1405: 1401: 1395: 1393: 1389: 1388: 1383: 1379: 1378: 1373: 1369: 1368: 1351: 1347: 1343: 1340: 1337: 1334: 1331: 1311: 1308: 1305: 1302: 1299: 1291: 1290: 1285: 1284: 1278: 1275: 1257: 1249: 1240: 1233: 1231: 1217: 1213: 1210: 1205: 1201: 1195: 1191: 1187: 1184: 1181: 1176: 1172: 1166: 1162: 1158: 1155: 1152: 1147: 1143: 1137: 1133: 1129: 1124: 1120: 1112: 1111: 1108: 1092: 1087: 1083: 1074: 1073: 1056: 1052: 1046: 1042: 1038: 1033: 1029: 1008: 1005: 1001: 995: 991: 987: 982: 978: 957: 954: 950: 944: 940: 936: 931: 927: 916: 899: 879: 874: 870: 866: 861: 857: 853: 848: 844: 834: 815: 811: 790: 786: 780: 776: 772: 769: 749: 740: 735: 719: 716: 713: 693: 690: 687: 667: 664: 661: 648: 641: 639: 625: 617: 613: 609: 604: 597: 592: 588: 583: 580: 575: 571: 564: 557: 552: 548: 543: 540: 535: 531: 524: 517: 512: 508: 503: 500: 495: 491: 480: 479: 476: 473: 468: 467: 461: 450: 448: 447: 439: 437: 436: 431: 427: 422: 418: 414: 410: 409:extraordinary 406: 401: 399: 395: 391: 387: 383: 379: 375: 366: 359: 357: 343: 339: 336: 329: 324: 320: 314: 310: 304: 297: 292: 288: 282: 278: 272: 265: 260: 256: 250: 246: 236: 235: 232: 218: 198: 178: 156: 152: 148: 143: 139: 135: 130: 126: 116: 114: 110: 100: 96: 91: 90:perpendicular 87: 82: 80: 75: 70: 66: 62: 58: 54: 50: 47: 43: 39: 38:polarizations 35: 31: 27: 23: 19: 2847: 2832: 2825: 2821: 2806: 2795: 2780: 2774:Bibliography 2762: 2753: 2740: 2722: 2710: 2698: 2693: 2681: 2677: 2661: 2656: 2640: 2635: 2626: 2617: 2609: 2595: 2591: 2586: 2568: 2551: 2542: 2534: 2530: 2521: 2512: 2503: 2494: 2485: 2476: 2456: 2451: 2447: 2443: 2438: 2430: 2425: 2415: 2407: 2402: 2394: 2389: 2342: 2231: 2098: 2040: 1920: 1914: 1908: 1901: 1711: 1705: 1579:permittivity 1575:permeability 1446: 1441: 1439: 1429: 1416: 1414: 1408: 1399: 1396: 1391: 1385: 1381: 1375: 1371: 1365: 1287: 1281: 1279: 1273: 1245: 1234: 1107:, we obtain 1070: 914: 832: 738: 653: 642: 471: 464: 459: 456: 443: 440: 433: 420: 416: 408: 404: 402: 397: 393: 389: 385: 381: 377: 373: 371: 360: 117: 112: 108: 106: 94: 89: 85: 83: 78: 73: 60: 56: 29: 25: 21: 15: 2345:ellipsoid. 1903:anisotropic 103:Terminology 2894:Categories 2468:References 2343:dielectric 762:, we have 444:optically 386:optic axes 118:If we let 2707:reprinted 2311:ϵ 2284:ϵ 2257:ϵ 2204:ϵ 2165:ϵ 2126:ϵ 2021:ϵ 2008:ϵ 1993:ϵ 1882:ϵ 1849:ϵ 1785:Dividing 1761:ϵ 1751:ϵ 1741:μ 1686:ϵ 1654:ϵ 1644:ϵ 1617:ϵ 1590:μ 1555:ϵ 1528:μ 1495:ϵ 1485:μ 1415:The term 1338:ξ 1335:⁡ 1214:ζ 1211:⁡ 1185:η 1182:⁡ 1156:ξ 1153:⁡ 720:ζ 717:⁡ 694:η 691:⁡ 668:ξ 665:⁡ 584:ζ 581:⁡ 544:η 541:⁡ 504:ξ 501:⁡ 446:isotropic 42:wavefront 2915:Surfaces 2670:30078792 2649:30078974 2349:See also 803:, where 732:are the 417:uniaxial 413:spheroid 405:ordinary 374:triaxial 63:) is an 2872:Physics 2858:Portals 2605:5442206 2602::  2596:Extrait 2581:, 2022. 2578:5886692 2575::  2569:Extrait 2408:uniaxal 1704:is the 1406:vector 1372:ovaloid 970:  453:History 435:prolate 426:calcite 421:surface 400:axial. 390:biaxial 71:vector 65:ellipse 49:crystal 44:, in a 2900:Optics 2839:  2813:  2787:  2711:Nature 2668:  2647:  2600:Zenodo 2573:Zenodo 2395:biaxal 2215:  2185:  2182:  2176:  2146:  2143:  2137:  1964:, and 1677:where 1519:where 706:, and 654:where 475:gives 378:normal 211:, and 113:normal 20:, the 2666:JSTOR 2645:JSTOR 2381:Notes 2370:D-DIA 1442:Given 915:a,b,c 469:) by 2837:ISBN 2811:ISBN 2785:ISBN 1546:and 1447:The 1021:and 892:let 2535:Cf. 2431:cf. 1812:by 1332:cos 1277:). 1202:cos 1173:cos 1144:cos 714:cos 688:cos 662:cos 572:cos 532:cos 492:cos 394:tri 384:or 86:not 59:or 16:In 2896:: 2560:^ 1944:, 1432:. 1412:. 680:, 398:bi 191:, 81:. 2860:: 2843:. 2817:. 2802:. 2791:. 2717:. 2688:. 2457:k 2410:. 2397:. 2329:, 2325:1 2322:= 2315:z 2305:2 2301:z 2295:+ 2288:y 2278:2 2274:y 2268:+ 2261:x 2251:2 2247:x 2233:1 2218:, 2208:z 2198:= 2193:c 2189:n 2179:; 2169:y 2159:= 2154:b 2150:n 2140:; 2130:x 2120:= 2115:a 2111:n 2099:D 2082:c 2078:n 2074:, 2069:b 2065:n 2061:, 2056:a 2052:n 2025:z 2017:, 2012:y 2004:, 1997:x 1972:z 1952:y 1932:x 1921:D 1915:E 1909:D 1886:r 1861:. 1853:r 1843:= 1840:n 1820:v 1798:0 1794:c 1773:. 1765:0 1755:r 1745:0 1733:/ 1728:1 1725:= 1722:v 1690:r 1665:, 1658:0 1648:r 1621:0 1594:0 1559:0 1532:0 1507:, 1499:0 1489:0 1477:/ 1472:1 1469:= 1464:0 1460:c 1409:E 1387:3 1377:3 1367:3 1352:v 1348:/ 1344:x 1341:= 1312:z 1309:, 1306:y 1303:, 1300:x 1289:3 1283:1 1274:D 1258:v 1239:) 1237:3 1235:( 1218:. 1206:2 1196:2 1192:c 1188:+ 1177:2 1167:2 1163:b 1159:+ 1148:2 1138:2 1134:a 1130:= 1125:2 1121:v 1093:2 1088:0 1084:c 1072:2 1057:c 1053:/ 1047:0 1043:c 1039:= 1034:c 1030:n 1009:, 1006:b 1002:/ 996:0 992:c 988:= 983:b 979:n 958:, 955:a 951:/ 945:0 941:c 937:= 932:a 928:n 917:, 900:v 880:, 875:c 871:n 867:, 862:b 858:n 854:, 849:a 845:n 833:n 816:0 812:c 791:v 787:/ 781:0 777:c 773:= 770:n 750:v 739:n 647:) 645:2 643:( 626:, 618:2 614:n 610:1 605:= 598:2 593:c 589:n 576:2 565:+ 558:2 553:b 549:n 536:2 525:+ 518:2 513:a 509:n 496:2 472:n 466:1 460:n 365:) 363:1 361:( 344:. 340:1 337:= 330:2 325:c 321:n 315:2 311:z 305:+ 298:2 293:b 289:n 283:2 279:y 273:+ 266:2 261:a 257:n 251:2 247:x 219:z 199:y 179:x 157:c 153:n 149:, 144:b 140:n 136:, 131:a 127:n 95:D 74:D

Index

crystal optics
refractive indices
polarizations
wavefront
doubly-refractive
crystal
optical rotation
ellipse
electric displacement
spheroid
calcite
oblate spheroid
prolate
isotropic
1
direction cosines
2
Augustin-Jean Fresnel
1
3
3
3
3
electric field
James MacCullagh
Lazarus Fletcher
speed of light
permeability
permittivity
relative permittivity

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑