Knowledge

Hayflick limit

Source 📝

247: 211:, Moorhead was able to distinguish between male and female cells in culture. The experiment proceeded as follows: Hayflick mixed equal numbers of normal human male fibroblasts that had divided many times (cells at the 40th population doubling) with female fibroblasts that had divided fewer times (cells at the 15th population doubling). Unmixed cell populations were kept as controls. After 20 doublings of the mixed culture, only female cells remained. 199:
to find that the atypical cell cultures had all been cultured to approximately their 40th doubling while younger cultures never exhibited the same problems. Furthermore, conditions were similar between the younger and older cultures he observed—same culture medium, culture containers, and technician. This led him to doubt that the manifestations were due to contamination or technical error.
182:-activation nutrient, would have been capable of staving off replicative senescence, or even possibly reversing it. Cultures not containing telomerase-active pluripotent stem cells would have been populated with telomerase-inactive cells, which would have been subject to the 50 ± 10 mitosis event limit until 20: 250:
The typical normal human fetal cell will divide between 50 and 70 times before experiencing senescence. As the cell divides, the telomeres on the ends of chromosomes shorten. The Hayflick limit is the limit on cell replication imposed by the shortening of telomeres with each division. This end stage
198:
had developed an unusual appearance and that cell division had slowed. Initially, he brushed this aside as an anomaly caused by contamination or technical error. However, he later observed other cell cultures exhibiting similar manifestations. Hayflick checked his research notebook and was surprised
318:
during a normal postnatal lifespan. In addition, it has been suggested that no inverse correlation exists between the replicative capacity of normal human cell strains and the age of the human donor from which the cells were derived, as previously argued. It is now clear that at least some of these
233:
Hayflick describes three phases in the life of normal cultured cells. At the start of his experiment he named the primary culture "phase one". Phase two is defined as the period when cells are proliferating; Hayflick called this the time of "luxuriant growth". After months of doubling the cells
322:
Comparisons of different species indicate that cellular replicative capacity may correlate primarily with species body mass, but more likely to species lifespan. Thus, the limited capacity of cells to replicate in culture may be directly relevant to the overall physical aging of an organism.
267:
are unable to be copied and are lost. This occurs due to the uneven nature of DNA replication, where leading and lagging strands are not replicated symmetrically. The telomeric region of DNA does not code for any protein; it is simply a repeated code on the end region of linear eukaryotic
170:
of chickens may have been re-added to the culture daily. This would have easily allowed the cultivation of new, fresh cells in the culture, so there was not an infinite reproduction of the original cells. It has been speculated that Carrel knew about this error, but he never admitted it.
220:
were unlikely explanations as to why cell division ceased in the older cells, and proved that unless the virus or artifact could distinguish between male and female cells (which it could not) then the cessation of normal cell replication was governed by an internal counting mechanism.
202:
Hayflick next set out to prove that the cessation of normal cell replicative capacity that he observed was not the result of viral contamination, poor culture conditions or some unknown artifact. Hayflick teamed with
215:
ceased in the unmixed control cultures at the anticipated times; when the male control culture stopped dividing, only female cells remained in the mixed culture. This suggested that technical errors or contaminating
224:
These results disproved Carrel's immortality claims and established the Hayflick limit as a credible biological theory. Unlike Carrel's experiment, Hayflick's have been successfully repeated by other scientists.
166:
However, other scientists have been unable to replicate Carrel's results, and they are suspected to be due to an error in experimental procedure. To provide required nutrients,
303:
Hayflick suggested that his results in which normal cells have a limited replicative capacity may have significance for understanding human aging at the cellular level.
268:
chromosomes. After many divisions, the telomeres reach a critical length and the cell becomes senescent. It is at this point that a cell has reached its Hayflick limit.
116:
Hayflick interpreted his discovery to be aging at the cellular level. The aging of cell populations appears to correlate with the overall physical aging of an organism.
271:
Hayflick was the first to report that only cancer cells are immortal. This could not have been demonstrated until he had demonstrated that normal cells are mortal.
894:
Olovnikov, A. M. (1971). "Принцип маргинотомии в матричном синтезе полинуклеотидов" [Principles of marginotomy in template synthesis of polynucleotides].
194:
Hayflick first became suspicious of Carrel's claims while working in a lab at the Wistar Institute. Hayflick noticed that one of his cultures of embryonic human
155:
are immortal, and that the lack of continuous cell replication was due to ignorance on how best to cultivate the cells". He claimed to have cultivated
287:. This enzyme extends telomeres, preventing the telomeres of cancer cells from shortening and giving them infinite replicative potential. A proposed 974:
Wright WE, Shay JW (2000). "Telomere dynamics in cancer progression and prevention: Fundamental differences in human and mouse telomere biology".
1488: 204: 259:
The Hayflick limit has been found to correlate with the length of the telomeric region at the end of chromosomes. During the process of
1402: 288: 319:
variable results are attributable to the mosaicism of cell replication numbers at different body sites where cells were taken.
1321: 1122:
Harley, Calvin B.; Futcher, A. Bruce; Greider, Carol W. (1990). "Telomeres shorten during ageing of human fibroblasts".
1347: 1183: 751: 742:
Hayflick, L (19 May 2016). "Unlike Aging, Longevity is Sexually Determined". In Bengtson, VL; Settersten, RA (eds.).
1468: 1524: 1367: 1357: 1022:"Relationship between donor age and the replicative lifespan of human cells in culture: a reevaluation" 896: 1412: 295:
that would prevent the restoration of the telomere, allowing the cell to die like other body cells.
1314: 68: 368:"Quantifying replicative senescence as a tumor suppressor pathway and a target for cancer therapy" 1514: 1387: 1478: 1438: 342: 110: 1397: 1382: 1483: 1131: 1033: 932: 379: 167: 8: 1519: 1458: 1362: 1307: 272: 252: 235: 183: 102: 1135: 1037: 936: 485:
Hayflick L, Moorhead PS (1961). "The serial cultivation of human diploid cell strains".
383: 366:
Rodriguez-Brenes, Ignacio A.; Wodarz, Dominik; Komarova, Natalia L. (December 9, 2015).
163:(which typically live 5 to 10 years) and to have kept the culture growing for 34 years. 1283: 1258: 1245: 1207: 1167: 1155: 1110: 999: 956: 876: 828: 803: 716: 691: 640: 615: 596: 451: 442: 426: 402: 367: 1098: 1509: 1473: 1428: 1288: 1237: 1179: 1147: 1114: 1102: 1061: 1056: 1021: 991: 948: 905: 868: 864: 833: 784: 747: 721: 676: 645: 588: 546: 542: 502: 498: 456: 407: 119: 1249: 1003: 880: 207:
for the definitive experiment to eliminate these as causative factors. As a skilled
174:
Also, it has been theorized that the cells Carrel used were young enough to contain
1407: 1392: 1377: 1278: 1270: 1227: 1159: 1139: 1094: 1051: 1041: 983: 960: 940: 860: 823: 815: 776: 711: 703: 672: 635: 627: 600: 580: 538: 529:
Hayflick L. (1965). "The limited in vitro lifetime of human diploid cell strains".
494: 446: 438: 397: 387: 314:
is far greater than the number of replication events experienced by non-stem cells
292: 83: 79: 819: 1299: 571:
Shay, JW; Wright, WE (October 2000). "Hayflick, his limit, and cellular ageing".
260: 1463: 1232: 1215: 1211: 208: 152: 1216:"Homologous Recombination Generates T-Loop-Sized Deletions at Human Telomeres" 851:
Olovnikov AM (1996). "Telomeres, telomerase and aging: Origin of the theory".
707: 1503: 1193:
Gavrilov LA, Gavrilova NS (1993). "How many cell divisions in 'old' cells?".
1175: 1046: 212: 144: 106: 72: 944: 1443: 1292: 1259:"Telomere Rapid Deletion Regulates Telomere Length in Arabidopsis thaliana" 1241: 1106: 995: 837: 780: 649: 592: 550: 506: 460: 411: 311: 175: 98: 87: 64: 1151: 1065: 952: 909: 872: 788: 725: 1274: 631: 276: 195: 156: 148: 804:"Telomere biology: Rationale for diagnostics and therapeutics in cancer" 1453: 1352: 1339: 1330: 307: 284: 179: 140: 48: 28: 392: 306:
It has been reported that the limited replicative capability of human
1143: 923:
Feng F; et al. (1995). "The RNA component of human telomerase".
584: 337: 246: 78:
The concept of the Hayflick limit was advanced by American anatomist
19: 264: 44: 32: 1085:
Watts, Geoff (2011). "Leonard Hayflick and the limits of ageing".
987: 315: 217: 160: 1020:
Cristofalo VJ, Allen RG, Pignolo RJ, Martin BG, Beck JC (1998).
238:", where cell replication rate slows before halting altogether. 1433: 746:(Third ed.). Springer Publishing Company. pp. 31–52. 332: 280: 40: 36: 365: 1448: 94: 91: 1019: 139:
Prior to Leonard Hayflick's discovery, it was believed that
347: 151:-winning surgeon, had stated "that all cells explanted in 1192: 1166: 24: 1205: 737: 735: 484: 97:
cell population will divide between 40 and 60 times in
922: 802:
Rousseau, Philippe; Autexier, Chantal (October 2015).
732: 663:
Witkowski JA (1985). "The myth of cell immortality".
234:
eventually reach phase three, a phenomenon he named "
1121: 613: 425:
Petersen, Thomas; Niklason, Laura (September 2007).
90:, Pennsylvania. Hayflick demonstrated that a normal 31:
lie horizontally between the two spiraling strands.
767:Watson JD (1972). "Origin of concatemeric T7 DNA". 263:of a chromosome, small segments of DNA within each 124:
Intrinsic Mutagenesis: A Genetic Approach to Ageing
1329: 973: 1172:The Biology of Life Span: A Quantitative Approach 134: 1501: 801: 424: 1489:Strategies for engineered negligible senescence 143:cells had an unlimited potential to replicate. 1015: 1013: 524: 522: 520: 518: 516: 480: 478: 476: 474: 472: 470: 105:phase. This finding refuted the contention by 1315: 1256: 427:"Cellular Lifespan and Regenerative Medicine" 122:coined the name "Hayflick limit" in his book 850: 689: 662: 186:occurs as described in Hayflick's findings. 1010: 528: 513: 467: 189: 23:Animation of the structure of a section of 1322: 1308: 570: 566: 564: 562: 560: 1403:Reliability theory of aging and longevity 1282: 1231: 1055: 1045: 893: 827: 766: 715: 639: 450: 401: 391: 71:human cell population will divide before 16:Limit to divisions of a normal human cell 741: 245: 18: 616:"Age and multiplication of fibroblasts" 557: 178:, which, if supplied with a supporting 1502: 1257:Watson, J. M.; Shippen, D. E. (2006). 1303: 1084: 573:Nature Reviews Molecular Cell Biology 298: 13: 1348:Antagonistic pleiotropy hypothesis 1078: 443:10.1016/j.biomaterials.2007.05.012 241: 63:, is the number of times a normal 14: 1536: 1469:List of longest-living organisms 967: 916: 887: 844: 795: 760: 1263:Molecular and Cellular Biology 1178:: Harwood Academic Publisher. 683: 656: 607: 418: 359: 228: 135:The belief in cell immortality 1: 1099:10.1016/S0140-6736(11)60908-2 820:10.1080/15476286.2015.1081329 744:Handbook of Theories of Aging 692:"Dr. Carrel's immortal cells" 614:Carrel A, Ebeling AH (1921). 353: 1368:Free-radical theory of aging 1026:Proc. Natl. Acad. Sci. U.S.A 865:10.1016/0531-5565(96)00005-8 677:10.1016/0968-0004(85)90076-3 543:10.1016/0014-4827(65)90211-9 499:10.1016/0014-4827(61)90192-6 7: 1195:Int. J. Geriatr. Psychiatry 326: 291:is the usage of telomerase 10: 1541: 1358:DNA damage theory of aging 1233:10.1016/j.cell.2004.10.011 897:Doklady Akademii Nauk SSSR 129: 1421: 1413:Stem cell theory of aging 1338: 1168:Gavrilov LA, Gavrilova NS 708:10.1017/S0025727300040126 1047:10.1073/pnas.95.18.10614 279:due to expression of an 190:Experiment and discovery 1388:Network theory of aging 945:10.1126/science.7544491 275:does not occur in most 1479:Regeneration (biology) 1439:Biological immortality 781:10.1038/newbio239197a0 343:Biological immortality 256: 176:pluripotent stem cells 109:that normal cells are 52: 1398:Programmed cell death 1383:Negligible senescence 690:Witkowski JA (1980). 249: 126:, published in 1974. 22: 1484:Rejuvenation (aging) 1275:10.1128/MCB.02059-06 632:10.1084/jem.34.6.599 289:treatment for cancer 168:embryonic stem cells 1525:Cellular senescence 1459:Indefinite lifespan 1363:Evolution of ageing 1333:(biology of ageing) 1208:Smogorzewska, Agata 1136:1990Natur.345..458H 1038:1998PNAS...9510614C 937:1995Sci...269.1236F 931:(5228): 1236–1241. 665:Trends Biochem. Sci 384:2015NatSR...517660R 273:Cellular senescence 253:cellular senescence 184:cellular senescence 159:from the hearts of 61:Hayflick phenomenon 1206:Wang, Richard C.; 769:Nature New Biology 372:Scientific Reports 257: 101:before entering a 53: 1497: 1496: 1474:Maximum life span 1429:Adaptive mutation 814:(10): 1078–1082. 437:(26): 3751–3756. 393:10.1038/srep17660 120:Macfarlane Burnet 1532: 1408:Selection shadow 1393:Plant senescence 1378:Immunosenescence 1324: 1317: 1310: 1301: 1300: 1296: 1286: 1253: 1235: 1202: 1189: 1163: 1144:10.1038/345458a0 1130:(6274): 458–60. 1118: 1070: 1069: 1059: 1049: 1017: 1008: 1007: 971: 965: 964: 920: 914: 913: 904:(6): 1496–1499. 891: 885: 884: 848: 842: 841: 831: 799: 793: 792: 764: 758: 757: 739: 730: 729: 719: 687: 681: 680: 660: 654: 653: 643: 611: 605: 604: 585:10.1038/35036093 568: 555: 554: 526: 511: 510: 482: 465: 464: 454: 422: 416: 415: 405: 395: 363: 299:Organismal aging 84:Wistar Institute 82:in 1961, at the 80:Leonard Hayflick 1540: 1539: 1535: 1534: 1533: 1531: 1530: 1529: 1500: 1499: 1498: 1493: 1417: 1334: 1328: 1212:De Lange, Titia 1186: 1081: 1079:Further reading 1075: 1073: 1032:(18): 10614–9. 1018: 1011: 976:Nature Medicine 972: 968: 921: 917: 892: 888: 849: 845: 800: 796: 775:(94): 197–201. 765: 761: 754: 740: 733: 688: 684: 661: 657: 612: 608: 569: 558: 527: 514: 483: 468: 423: 419: 364: 360: 356: 329: 301: 261:DNA replication 244: 242:Telomere length 231: 192: 137: 132: 17: 12: 11: 5: 1538: 1528: 1527: 1522: 1517: 1515:Life extension 1512: 1495: 1494: 1492: 1491: 1486: 1481: 1476: 1471: 1466: 1464:Life extension 1461: 1456: 1451: 1446: 1441: 1436: 1431: 1425: 1423: 1422:Related topics 1419: 1418: 1416: 1415: 1410: 1405: 1400: 1395: 1390: 1385: 1380: 1375: 1373:Hayflick limit 1370: 1365: 1360: 1355: 1350: 1344: 1342: 1336: 1335: 1327: 1326: 1319: 1312: 1304: 1298: 1297: 1269:(5): 1706–15. 1254: 1203: 1190: 1184: 1164: 1119: 1093:(9783): 2075. 1080: 1077: 1072: 1071: 1009: 982:(8): 849–851. 966: 915: 886: 859:(4): 443–448. 843: 794: 759: 752: 731: 702:(2): 129–142. 682: 671:(7): 258–260. 655: 626:(6): 599–606. 606: 556: 537:(3): 614–636. 512: 493:(3): 585–621. 466: 417: 357: 355: 352: 351: 350: 345: 340: 335: 328: 325: 300: 297: 243: 240: 230: 227: 209:cytogeneticist 191: 188: 153:tissue culture 136: 133: 131: 128: 69:differentiated 57:Hayflick limit 15: 9: 6: 4: 3: 2: 1537: 1526: 1523: 1521: 1518: 1516: 1513: 1511: 1508: 1507: 1505: 1490: 1487: 1485: 1482: 1480: 1477: 1475: 1472: 1470: 1467: 1465: 1462: 1460: 1457: 1455: 1452: 1450: 1447: 1445: 1442: 1440: 1437: 1435: 1432: 1430: 1427: 1426: 1424: 1420: 1414: 1411: 1409: 1406: 1404: 1401: 1399: 1396: 1394: 1391: 1389: 1386: 1384: 1381: 1379: 1376: 1374: 1371: 1369: 1366: 1364: 1361: 1359: 1356: 1354: 1351: 1349: 1346: 1345: 1343: 1341: 1337: 1332: 1325: 1320: 1318: 1313: 1311: 1306: 1305: 1302: 1294: 1290: 1285: 1280: 1276: 1272: 1268: 1264: 1260: 1255: 1251: 1247: 1243: 1239: 1234: 1229: 1226:(3): 355–68. 1225: 1221: 1217: 1213: 1209: 1204: 1200: 1196: 1191: 1187: 1185:3-7186-4983-7 1181: 1177: 1173: 1169: 1165: 1161: 1157: 1153: 1149: 1145: 1141: 1137: 1133: 1129: 1125: 1120: 1116: 1112: 1108: 1104: 1100: 1096: 1092: 1088: 1083: 1082: 1076: 1067: 1063: 1058: 1053: 1048: 1043: 1039: 1035: 1031: 1027: 1023: 1016: 1014: 1005: 1001: 997: 993: 989: 988:10.1038/78592 985: 981: 977: 970: 962: 958: 954: 950: 946: 942: 938: 934: 930: 926: 919: 911: 907: 903: 899: 898: 890: 882: 878: 874: 870: 866: 862: 858: 854: 853:Exp. Gerontol 847: 839: 835: 830: 825: 821: 817: 813: 809: 805: 798: 790: 786: 782: 778: 774: 770: 763: 755: 753:9780826129420 749: 745: 738: 736: 727: 723: 718: 713: 709: 705: 701: 697: 693: 686: 678: 674: 670: 666: 659: 651: 647: 642: 637: 633: 629: 625: 621: 617: 610: 602: 598: 594: 590: 586: 582: 578: 574: 567: 565: 563: 561: 552: 548: 544: 540: 536: 532: 531:Exp. Cell Res 525: 523: 521: 519: 517: 508: 504: 500: 496: 492: 488: 481: 479: 477: 475: 473: 471: 462: 458: 453: 448: 444: 440: 436: 432: 428: 421: 413: 409: 404: 399: 394: 389: 385: 381: 377: 373: 369: 362: 358: 349: 346: 344: 341: 339: 336: 334: 331: 330: 324: 320: 317: 313: 309: 304: 296: 294: 290: 286: 282: 278: 274: 269: 266: 262: 254: 248: 239: 237: 226: 222: 219: 214: 213:Cell division 210: 206: 205:Paul Moorhead 200: 197: 187: 185: 181: 177: 172: 169: 164: 162: 158: 154: 150: 146: 145:Alexis Carrel 142: 127: 125: 121: 117: 114: 112: 108: 107:Alexis Carrel 104: 100: 96: 93: 89: 85: 81: 76: 74: 73:cell division 70: 66: 62: 58: 50: 46: 42: 38: 34: 30: 26: 21: 1444:CGK733 fraud 1372: 1266: 1262: 1223: 1219: 1198: 1194: 1171: 1127: 1123: 1090: 1086: 1074: 1029: 1025: 979: 975: 969: 928: 924: 918: 901: 895: 889: 856: 852: 846: 811: 807: 797: 772: 768: 762: 743: 699: 695: 685: 668: 664: 658: 623: 619: 609: 576: 572: 534: 530: 490: 487:Exp Cell Res 486: 434: 431:Biomaterials 430: 420: 375: 371: 361: 321: 312:cell culture 310:observed in 305: 302: 277:cancer cells 270: 258: 251:is known as 232: 223: 201: 193: 173: 165: 138: 123: 118: 115: 99:cell culture 88:Philadelphia 77: 60: 56: 54: 808:RNA Biology 620:J. Exp. Med 579:(1): 72–6. 308:fibroblasts 229:Cell phases 196:fibroblasts 157:fibroblasts 149:Nobel prize 1520:Senescence 1504:Categories 1454:DNA repair 1353:Catabiosis 1340:Senescence 1331:Senescence 1087:The Lancet 354:References 348:HeLa cells 293:inhibitors 285:telomerase 236:senescence 180:telomerase 141:vertebrate 103:senescence 49:phosphorus 1201:(6): 528. 1115:205963134 696:Med. Hist 378:: 17660. 338:Apoptosis 51:: orange. 47:: white, 43:: green, 1510:Genetics 1293:17189431 1250:10686288 1242:15507207 1214:(2004). 1176:New York 1170:(1991). 1107:21684371 1004:20339035 996:10932210 881:26381790 838:26291128 650:19868581 593:11413492 551:14315085 507:13905658 461:17574669 412:26647820 327:See also 265:telomere 161:chickens 111:immortal 45:hydrogen 35:: blue, 33:Nitrogen 1284:1820464 1160:1145492 1152:2342578 1132:Bibcode 1066:9724752 1034:Bibcode 961:9440710 953:7544491 933:Bibcode 925:Science 910:5158754 873:9415101 829:4829327 789:4507727 726:6990125 717:1082700 641:2128071 601:6821048 452:2706083 403:4673423 380:Bibcode 316:in vivo 283:called 218:viruses 130:History 75:stops. 65:somatic 39:: red, 1434:Ageing 1291:  1281:  1248:  1240:  1182:  1158:  1150:  1124:Nature 1113:  1105:  1064:  1054:  1002:  994:  959:  951:  908:  879:  871:  836:  826:  787:  750:  724:  714:  648:  638:  599:  591:  549:  505:  459:  449:  410:  400:  333:Ageing 281:enzyme 41:carbon 37:oxygen 27:. The 1449:Death 1246:S2CID 1156:S2CID 1111:S2CID 1057:27943 1000:S2CID 957:S2CID 877:S2CID 597:S2CID 95:fetal 92:human 59:, or 29:bases 1289:PMID 1238:PMID 1220:Cell 1180:ISBN 1148:PMID 1103:PMID 1062:PMID 992:PMID 949:PMID 906:PMID 869:PMID 834:PMID 785:PMID 748:ISBN 722:PMID 646:PMID 589:PMID 547:PMID 503:PMID 457:PMID 408:PMID 147:, a 55:The 1279:PMC 1271:doi 1228:doi 1224:119 1140:doi 1128:345 1095:doi 1091:377 1052:PMC 1042:doi 984:doi 941:doi 929:269 902:201 861:doi 824:PMC 816:doi 777:doi 773:239 712:PMC 704:doi 673:doi 636:PMC 628:doi 581:doi 539:doi 495:doi 447:PMC 439:doi 398:PMC 388:doi 86:in 25:DNA 1506:: 1287:. 1277:. 1267:27 1265:. 1261:. 1244:. 1236:. 1222:. 1218:. 1210:; 1197:. 1174:. 1154:. 1146:. 1138:. 1126:. 1109:. 1101:. 1089:. 1060:. 1050:. 1040:. 1030:95 1028:. 1024:. 1012:^ 998:. 990:. 978:. 955:. 947:. 939:. 927:. 900:. 875:. 867:. 857:31 855:. 832:. 822:. 812:12 810:. 806:. 783:. 771:. 734:^ 720:. 710:. 700:24 698:. 694:. 669:10 667:. 644:. 634:. 624:34 622:. 618:. 595:. 587:. 575:. 559:^ 545:. 535:37 533:. 515:^ 501:. 491:25 489:. 469:^ 455:. 445:. 435:28 433:. 429:. 406:. 396:. 386:. 374:. 370:. 113:. 67:, 1323:e 1316:t 1309:v 1295:. 1273:: 1252:. 1230:: 1199:8 1188:. 1162:. 1142:: 1134:: 1117:. 1097:: 1068:. 1044:: 1036:: 1006:. 986:: 980:6 963:. 943:: 935:: 912:. 883:. 863:: 840:. 818:: 791:. 779:: 756:. 728:. 706:: 679:. 675:: 652:. 630:: 603:. 583:: 577:1 553:. 541:: 509:. 497:: 463:. 441:: 414:. 390:: 382:: 376:5 255:.

Index


DNA
bases
Nitrogen
oxygen
carbon
hydrogen
phosphorus
somatic
differentiated
cell division
Leonard Hayflick
Wistar Institute
Philadelphia
human
fetal
cell culture
senescence
Alexis Carrel
immortal
Macfarlane Burnet
vertebrate
Alexis Carrel
Nobel prize
tissue culture
fibroblasts
chickens
embryonic stem cells
pluripotent stem cells
telomerase

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.