Knowledge

Carbon nanotube

Source 📝

2782:
chemical imaging, e.g. of cellular release processes with high spatial and temporal resolution. Detection of several target analytes is possible by the spatial arrangement of different SWCNT sensors in arrays or by hyperspectral detection based on monochiral SWCNT sensors that emit at different emission wavelengths. For fluorescence applications, however, optical filters to distinguish between excitation and emission and a NIR-sensitive detector must be used. Standard silicon detectors can also be used if monochiral SWCNTs (extractable by special purification processes) emitting closer to the visible range (800 - 900 nm) are used. In order to avoid susceptibility of optical sensors to fluctuating ambient light, internal references such as SWCNTs that are modified to be non-responsive or stable NIR emitters can be used. An alternative is to measure fluorescence lifetimes instead of fluorescence intensities. Overall, SWCNTs therefore have great potential as building blocks for various biosensors. To render SWCNTs suitable for biosensing, their surface needs to be modified to ensure colloidal stability and provide a handle for biological recognition. Therefore, biosensing and surface modifications (functionalization) are closely related.
3099:. Early scientific studies have indicated that nanoscale particles may pose a greater health risk than bulk materials due to a relative increase in surface area per unit mass. Increase in length and diameter of CNT is correlated to increased toxicity and pathological alterations in lung. The biological interactions of nanotubes are not well understood, and the field is open to continued toxicological studies. It is often difficult to separate confounding factors, and since carbon is relatively biologically inert, some of the toxicity attributed to carbon nanotubes may be instead due to residual metal catalyst contamination. In previous studies, only Mitsui-7 was reliably demonstrated to be carcinogenic, although for unclear/unknown reasons. Unlike many common mineral fibers (such as asbestos), most SWCNTs and MWCNTs do not fit the size and aspect-ratio criteria to be classified as respirable fibers. In 2013, given that the long-term health effects have not yet been measured, NIOSH published a Current Intelligence Bulletin detailing the potential hazards and recommended exposure limit for carbon nanotubes and fibers. The U.S. 2451:(CVD) and high-pressure carbon monoxide disproportionation (HiPCO). Among these arc discharge, laser ablation are batch by batch process, Chemical Vapor Deposition can be used both for batch by batch or continuous processes, and HiPCO is gas phase continuous process. Most of these processes take place in a vacuum or with process gases. The CVD growth method is popular, as it yields high quantity and has a degree of control over diameter, length and morphology. Using particulate catalysts, large quantities of nanotubes can be synthesized by these methods, and industrialisation is well on its way, with several CNT and CNT fibers factory around the world. One problem of CVD processes is the high variability in the nanotube's characteristics The HiPCO process advances in catalysis and continuous growth are making CNTs more commercially viable. The HiPCO process helps in producing high purity single-walled carbon nanotubes in higher quantity. The HiPCO reactor operates at high 2773:(FET) are often used in which the flow of charges within the SWCNTs is measured. The FET structures allow easy on-chip integration and can be parallelized to detect multiple target analytes simultaneously. However, such sensors are more invasive for in vivo applications, as the entire device has to be inserted into the body. Optical detection with semiconducting SWCNTs is based on the radiative recombination of excitons in the near-infrared (NIR) by prior optical (fluorescence) or electrical excitation (electroluminescence). The emission in the NIR enables detection in the biological transparency window, where optical sensor applications benefit from reduced scattering and autofluorescence of biological samples and consequently a high signal-to-noise ratio. Compared to optical sensors in the 2482:
alumina is often also put down on the substrate first. This imparts controllable wetting and good interfacial properties. When the substrate is heated to the growth temperature (~600 to 850 °C), the continuous iron film breaks up into small islands with each island then nucleating a carbon nanotube. The sputtered thickness controls the island size and this in turn determines the nanotube diameter. Thinner iron layers drive down the diameter of the islands and drive down the diameter of the nanotubes grown. The amount of time the metal island can sit at the growth temperature is limited as they are mobile and can merge into larger (but fewer) islands. Annealing at the growth temperature reduces the site density (number of CNT/mm) while increasing the catalyst diameter.
2559:
significantly by free-radical grafting because the large functional molecules facilitate the dispersion of CNTs in a variety of solvents even at a low degree of functionalization. Recently an innovative environmentally friendly approach has been developed for the covalent functionalization of multi-walled carbon nanotubes (MWCNTs) using clove buds. This approach is innovative and green because it does not use toxic and hazardous acids which are typically used in common carbon nanomaterial functionalization procedures. The MWCNTs are functionalized in one pot using a free radical grafting reaction. The clove-functionalized MWCNTs are then dispersed in water producing a highly stable multi-walled carbon nanotube aqueous suspension (nanofluids).
3076: 2114:. This strength results from the covalent sp bonds formed between the individual carbon atoms. In 2000, a multiwalled carbon nanotube was tested to have a tensile strength of 63 GPa (9,100,000 psi). (For illustration, this translates into the ability to endure tension of a weight equivalent to 6,422 kilograms-force (62,980 N; 14,160 lbf) on a cable with cross-section of 1 mm (0.0016 sq in)). Further studies, such as one conducted in 2008, revealed that individual CNT shells have strengths of up to ≈100 GPa (15,000,000 psi), which is in agreement with quantum/atomistic models. Because carbon nanotubes have a low density for a solid of 1.3 to 1.4 g/cm, its 2752:
tailored for selective molecular interactions with a target analyte. The SWCNT represents the transduction unit that converts the interaction into a signal change (optical or electrical). Due to continuous progress in the development of detection strategies, there are numerous examples of the use of SWCNTs as highly sensitive nanosensors (even down to the single molecule level) for a variety of important biomolecules. Examples include the detection of reactive oxygen and nitrogen species, neurotransmitters, other small molecules, lipids, proteins, sugars, DNA/RNA, enzymes as well as bacteria.
2997:
Lalwani et al. have reported a novel radical initiated thermal crosslinking method to fabricated macroscopic, free-standing, porous, all-carbon scaffolds using single- and multi-walled carbon nanotubes as building blocks. These scaffolds possess macro-, micro-, and nano- structured pores and the porosity can be tailored for specific applications. These 3D all-carbon scaffolds/architectures may be used for the fabrication of the next generation of energy storage, supercapacitors, field emission transistors, high-performance catalysis, photovoltaics, and biomedical devices and implants.
2568: 15378: 1719: 1707: 916: 904: 892: 496: 1695: 1683: 928: 1872: 1967:
macroscopic, free-standing, porous, all-carbon scaffolds using single- and multi-walled carbon nanotubes as building blocks. These scaffolds possess macro-, micro-, and nano-structured pores, and the porosity can be tailored for specific applications. These 3D all-carbon scaffolds/architectures may be used for the fabrication of the next generation of energy storage, supercapacitors, field emission transistors, high-performance catalysis, photovoltaics, and biomedical devices, implants, and sensors.
2581:
of interest (thermal, electrical, modulus, creep), one RVE might predict the property better than the alternatives. While the implementation of the ideal model is computationally efficient, they do not represent microstructural features observed in scanning electron microscopy of actual nanocomposites. To incorporate realistic modeling, computer models are also generated to incorporate variability such as waviness, orientation and agglomeration of multiwall or single-wall carbon nanotubes.
512: 3186:
observed a hollow tube, linearly extended with parallel carbon layer faces near the fiber core. This appears to be the observation of multi-walled carbon nanotubes at the center of the fiber. The mass-produced MWCNTs today are strongly related to the VPGCF developed by Endo. In fact, they call it the "Endo-process", out of respect for his early work and patents. In 1979, John Abrahamson presented evidence of carbon nanotubes at the 14th Biennial Conference of Carbon at
284: 1959: 296: 1929: 15291: 14401: 478: 2404:, which transmits 385 W·m·K. An individual SWNT has a room-temperature thermal conductivity lateral to its axis (in the radial direction) of about 1.52 W·m·K, which is about as thermally conductive as soil. Macroscopic assemblies of nanotubes such as films or fibres have reached up to 1500 W·m·K so far. Networks composed of nanotubes demonstrate different values of thermal conductivity, from the level of 2760: 466: 33: 2731: 1944:. The electronic properties of such junctions were first considered theoretically by Lambin et al., who pointed out that a connection between a metallic tube and a semiconducting one would represent a nanoscale heterojunction. Such a junction could therefore form a component of a nanotube-based electronic circuit. The adjacent image shows a junction between two multiwalled nanotubes. 69: 2555:, nitric acid, or a mixture of both) in order to set the carboxylic groups onto the surface of the CNTs as the final product or for further modification by esterification or amination. Free radical grafting is a promising technique among covalent functionalization methods, in which alkyl or aryl peroxides, substituted anilines, and diazonium salts are used as the starting agents. 2122:
addressed by applying high-energy electron irradiation, which crosslinks inner shells and tubes, and effectively increases the strength of these materials to ≈60 GPa for multiwalled carbon nanotubes and ≈17 GPa for double-walled carbon nanotube bundles. CNTs are not nearly as strong under compression. Because of their hollow structure and high aspect ratio, they tend to undergo
1751:; which has some characteristics of nanotubes (such as orbital hybridization, high tensile strength, etc.) — but has no hollow space, and may not be obtainable as a condensed phase. The pair (2,0) would theoretically yield a chain of fused 4-cycles; and (1,1), the limiting "armchair" structure, would yield a chain of bi-connected 4-rings. These structures may not be realizable. 3226:, thus played a role in the discoveries of both multi- and single-wall nanotubes, extending the run of serendipitous discoveries relating to fullerenes. The discovery of nanotubes remains a contentious issue. Many believe that Iijima's report in 1991 is of particular importance because it brought carbon nanotubes into the awareness of the scientific community as a whole. 2095: 45: 592:, and will be perpendicular to the edges of the strip. In the graphene lattice, the atoms can be split into two classes, depending on the directions of their three bonds. Half the atoms have their three bonds directed the same way, and half have their three bonds rotated 180 degrees relative to the first half. The atoms 3119:(REACH) regulations, based on evaluation of the potentially hazardous properties of SWCNT. Based on this registration, SWCNT commercialization is allowed in the EU up to 100 metric tons. Currently, the type of SWCNT registered through REACH is limited to the specific type of single-wall carbon nanotubes manufactured by 2166: 14281: 3209:
Helping to create the initial excitement associated with carbon nanotubes were Iijima's 1991 discovery of multi-walled carbon nanotubes in the insoluble material of arc-burned graphite rods; and Mintmire, Dunlap, and White's independent prediction that if single-walled carbon nanotubes could be made,
3201:
patterns, the authors suggested that their "carbon multi-layer tubular crystals" were formed by rolling graphene layers into cylinders. They speculated that via this rolling, many different arrangements of graphene hexagonal nets are possible. They suggested two such possible arrangements: a circular
3028:
Large quantities of pure CNTs can be made into a freestanding sheet or film by surface-engineered tape-casting (SETC) fabrication technique which is a scalable method to fabricate flexible and foldable sheets with superior properties. Another reported form factor is CNT fiber (a.k.a. filament) by wet
2996:
from the 17th century, possibly helping to account for the legendary strength of the swords made of it. Recently, several studies have highlighted the prospect of using carbon nanotubes as building blocks to fabricate three-dimensional macroscopic (>1mm in all three dimensions) all-carbon devices.
2519:
aqueous phases form spontaneously, and each of the two phases shows a different affinity to CNTs. Partition depends on the solvation energy difference between two similar phases of microscale volumes. By changing the separation system or temperatures, and adding strong oxidants, reductants, or salts,
1966:
Recently, several studies have highlighted the prospect of using carbon nanotubes as building blocks to fabricate three-dimensional macroscopic (>100 nm in all three dimensions) all-carbon devices. Lalwani et al. have reported a novel radical-initiated thermal crosslinking method to fabricate
1774:
single-walled carbon nanotube is about 0.43 nm in diameter. Researchers suggested that it can be either (5,1) or (4,2) SWCNT, but the exact type of the carbon nanotube remains questionable. (3,3), (4,3), and (5,1) carbon nanotubes (all about 0.4 nm in diameter) were unambiguously identified
543:
that turns 60 degrees, alternating left and right, after stepping through each bond. It is also conventional to define an armchair path as one that makes two left turns of 60 degrees followed by two right turns every four steps. On some carbon nanotubes, there is a closed zigzag path that goes around
9263: 3185:
observed hollow tubes of rolled up graphite sheets synthesised by a chemical vapour-growth technique. The first specimens observed would later come to be known as single-walled carbon nanotubes (SWNTs). Endo, in his early review of vapor-phase-grown carbon fibers (VPCF), also reminded us that he had
2755:
Potential future applications include biomedical and environmental applications such as monitoring plant health in agriculture, standoff process control in bioreactors, research/diagnostics of neuronal communication and numerous diseases such as coagulation disorders, diabetes, cancer, microbial and
2580:
model is highly function of the studied mechanical properties. The concept of representative volume element (RVE) is used to determine the appropriate size and configuration of the computer model to replicate the actual behavior of the CNT-reinforced nanocomposite. Depending on the material property
2545:
CNTs are known to have weak dispersibility in many solvents such as water as a consequence of strong intermolecular p–p interactions. This hinders the processability of CNTs in industrial applications. To tackle the issue, various techniques have been developed to modify the surface of CNTs in order
2357:
can be changed, intentionally or unintentionally, to alter the nanotube quality, such as the non-tubular carbon content, structure (chirality) of the produced nanotubes, and structural defects. These features then determine nearly all other significant optical, mechanical, and electrical properties.
2241:
and conductivity-enhancing components in composite materials, and many groups are attempting to commercialize highly conducting electrical wire assembled from individual carbon nanotubes. There are significant challenges to be overcome however, such as undesired current saturation under voltage, and
3153:
in 1991. His paper initiated a flurry of excitement and could be credited with inspiring the many scientists now studying applications of carbon nanotubes. Though Iijima has been given much of the credit for discovering carbon nanotubes, it turns out that the timeline of carbon nanotubes goes back
3111:
as background-corrected elemental carbon as an 8-hour time-weighted average (TWA) respirable mass concentration. Although CNT caused pulmonary inflammation and toxicity in mice, exposure to aerosols generated from sanding of composites containing polymer-coated MWCNTs, representative of the actual
2870:
Nanocomposites for aviation, automotive, and renewable energy markets: Modifying resin with just 0.02% single wall carbon nanotubes (SWCNTs) increases electrical conductivity by 276% without compromising the mechanical properties of fiber-reinforced polymers, also improving flexural properties and
2742:
composites, to improve the mechanical, thermal and electrical properties of the bulk product, and as a highly absorptive black paint. Many other applications are under development, including field effect transistors for electronics, high-strength fabrics, biosensors for biomedical and agricultural
2498:
Certain polymers selectively disperse or wrap CNTs of a particular chirality, metallic character or diameter. For example, poly(phenylenevinylenes) disperses CNTs of specific diameters (0.75–0.84 nm) and polyfluorenes are highly selective for semiconducting CNTs. It involves mainly two steps,
2494:
As-synthesized carbon nanotubes typically contain impurities and most importantly different chiralities of carbon nanotubes. Therefore, multiple methods have been developed to purify them including polymer-assisted, density gradient ultracentrifugation (DGU), chromatography and aqueous two-phase
2224:
The rule regarding metallic versus semiconductor behavior has exceptions because curvature effects in small-diameter tubes can strongly influence electrical properties. Thus, a (5,0) SWCNT that should be semiconducting in fact is metallic according to the calculations. Likewise, zigzag and chiral
2121:
Although the strength of individual CNT shells is extremely high, weak shear interactions between adjacent shells and tubes lead to significant reduction in the effective strength of multiwalled carbon nanotubes and carbon nanotube bundles down to only a few GPa. This limitation has been recently
451:
independently discovered that co-vaporising carbon and transition metals such as iron and cobalt could specifically catalyse SWCNT formation. These discoveries triggered research that succeeded in greatly increasing the efficiency of the catalytic production technique, and led to an explosion of
3205:
In 1987, Howard G. Tennent of Hyperion Catalysis was issued a U.S. patent for the production of "cylindrical discrete carbon fibrils" with a "constant diameter between about 3.5 and about 70 nanometers..., length 10 times the diameter, and an outer region of multiple essentially continuous
2768:
The signal change manifests itself in an increase or decrease in the current (electrical) or in a change in the intensity or wavelength of the fluorescence emission (optical). Depending on the type of application, both electrical or optical signal transmission can be advantageous. For sensitive
2532:
Monochiral CNTs have the advantage that they do contain less or no impurities, well-defined non-congested optical spectra. This allows to create for example CNT-based biosensors with higher sensitivity and selectivity. For example, monochiral SWCNTs are necessary for multiplexed and ratiometric
2502:
Density gradient ultracentrifugation is a method based on the density difference of CNTs, so that different components are layered in centrifuge tubes under centrifugal force. Chromatography-based methods include size exclusion (SEC), ion-exchange (IEX) and gel chromatography. For SEC, CNTs are
2481:
are also grown by thermal chemical vapor deposition. A substrate (quartz, silicon, stainless steel, carbon fibers, etc.) is coated with a catalytic metal (Fe, Co, Ni) layer. Typically that layer is iron and is deposited via sputtering to a thickness of 1–5 nm. A 10–50 nm underlayer of
2321:
Crystallographic defects also affect the tube's electrical properties. A common result is lowered conductivity through the defective region of the tube. A defect in metallic armchair-type tubes (which can conduct electricity) can cause the surrounding region to become semiconducting, and single
2313:
In 2021, Michael Strano, the Carbon P. Dubbs Professor of Chemical Engineering at MIT, published department findings on the use of carbon nanotubes to create an electric current. By immersing the structures in an organic solvent, the liquid drew electrons out of the carbon particles. Strano was
3218:
carbon nanotubes by adding transition-metal catalysts to the carbon in an arc discharge. Thess et al. refined this catalytic method by vaporizing the carbon/transition-metal combination in a high-temperature furnace, which greatly improved the yield and purity of the SWNTs and made them widely
2781:
range, the penetration depth in biological tissue is also increased. In addition to the advantage of a contactless readout SWCNTs have excellent photostability, which enables long-term sensor applications. Furthermore, the nanoscale size of SWCNTs allows dense coating of surfaces which enables
2751:
SWCNTs have nanoscale dimensions that fit to the size of biological species. Due to this size compatibility and their large surface-to-volume ratio, they are sensitive to changes in their chemical environment. Through covalent and non-covalent surface functionalization, SWCNTs can be precisely
1891:
model, a single sheet of graphite is rolled in around itself, resembling a scroll of parchment or a rolled newspaper. The interlayer distance in multi-walled nanotubes is close to the distance between graphene layers in graphite, approximately 3.4 Å. The Russian Doll structure is observed more
1858:
There is no consensus on some terms describing carbon nanotubes in the scientific literature: both "-wall" and "-walled" are being used in combination with "single", "double", "triple", or "multi", and the letter C is often omitted in the abbreviation, for example, multi-walled carbon nanotube
2695:
Carbon nanotubes can be functionalized to attain desired properties that can be used in a wide variety of applications. The two main methods of carbon nanotube functionalization are covalent and non-covalent modifications. Because of their apparent hydrophobic nature, carbon nanotubes tend to
2507:
onto chemically functionalized resins packed in an IEX column, so understanding the interaction between CNTs mixtures and resins is important. The first IEX is reported to separate DNA-SWCNTs. Gel chromatography is based on the partition of CNTs between stationary and mobile phase, it's found
2408:
with the thermal conductivity of 0.1 W·m·K to such high values. That is dependent on the amount of contribution to the thermal resistance of the system caused by the presence of impurities, misalignments and other factors. The temperature stability of carbon nanotubes is estimated to be up to
3011:
Single-walled nanotubes are likely candidates for miniaturizing electronics. The most basic building block of these systems is an electric wire, and SWNTs with diameters of an order of a nanometre can be excellent conductors. One useful application of SWNTs is in the development of the first
2558:
Free radical grafting of macromolecules (as the functional group) onto the surface of CNTs can improve the solubility of CNTs compared to common acid treatments which involve the attachment of small molecules such as hydroxyl onto the surface of CNTs. The solubility of CNTs can be improved
9268: 12537: 1892:
commonly. Its individual shells can be described as SWNTs, which can be metallic or semiconducting. Because of statistical probability and restrictions on the relative diameters of the individual tubes, one of the shells, and thus the whole MWNT, is usually a zero-gap metal.
14204: 1994:. In this new material, fullerene-like "buds" are covalently bonded to the outer sidewalls of the underlying carbon nanotube. This hybrid material has useful properties of both fullerenes and carbon nanotubes. In particular, they have been found to be exceptionally good 3020:
using SWCNT FETs was made in 2001. A logic gate requires both a p-FET and an n-FET. Because SWNTs are p-FETs when exposed to oxygen and n-FETs otherwise, it is possible to expose half of an SWNT to oxygen and protect the other half from it. The resulting SWNT acts as a
2485:
The as-prepared carbon nanotubes always have impurities such as other forms of carbon (amorphous carbon, fullerene, etc.) and non-carbonaceous impurities (metal used for catalyst). These impurities need to be removed to make use of the carbon nanotubes in applications.
563:
The zigzag and armchair configurations are not the only structures that a single-walled nanotube can have. To describe the structure of a general infinitely long tube, one should imagine it being sliced open by a cut parallel to its axis, that goes through some atom
2428:
and reduces the thermal conductivity of nanotube structures. Phonon transport simulations indicate that substitutional defects such as nitrogen or boron will primarily lead to the scattering of high-frequency optical phonons. However, larger-scale defects such as
604:
on the cylinder, must be in the same class. It follows that the circumference of the tube and the angle of the strip are not arbitrary, because they are constrained to the lengths and directions of the lines that connect pairs of graphene atoms in the same class.
2217:) nanotubes are metallic, and nanotubes (6,4), (9,1), etc. are semiconducting. Carbon nanotubes are not semimetallic because the degenerate point (the point where the π band meets the π* band, at which the energy goes to zero) is slightly shifted away from the 1915:
The telescopic motion ability of inner shells and their unique mechanical properties will permit the use of multi-walled nanotubes as the main movable arms in upcoming nanomechanical devices. The retraction force that occurs to telescopic motion is caused by the
2352:
properties. Spectroscopic methods offer the possibility of quick and non-destructive characterization of relatively large amounts of carbon nanotubes. There is a strong demand for such characterization from the industrial point of view: numerous parameters of
2225:
SWCNTs with small diameters that should be metallic have a finite gap (armchair nanotubes remain metallic). In theory, metallic nanotubes can carry an electric current density of 4 × 10 A/cm, which is more than 1,000 times greater than those of metals such as
1747:) will describe a molecule that cannot be reasonably called a "tube", and may not even be stable. For example, the structure theoretically described by the pair (1,0) (the limiting "zigzag" type) would be just a chain of carbons. That is a real molecule, the 2816:, resulting in a composite material that is 20% to 30% stronger than other composite materials. It has been used for wind turbines, marine paints and a variety of sports gear such as skis, ice hockey sticks, baseball bats, hunting arrows, and surfboards. 3190:. The conference paper described carbon nanotubes as carbon fibers that were produced on carbon anodes during arc discharge. A characterization of these fibers was given, as well as hypotheses for their growth in a nitrogen atmosphere at low pressures. 8699:
Sadri R, Hosseini M, Kazi SN, Bagheri S, Zubir N, Solangi KH, et al. (October 2017). "A bio-based, facile approach for the preparation of covalently functionalized carbon nanotubes aqueous suspensions and their potential as heat transfer fluids".
1518: 1219: 2911:, as a technology demonstrator for what is possible using CNT technology. CNTs help improve the structural performance of the vessel, resulting in a lightweight 8,000 lb boat that can carry a payload of 15,000 lb over a range of 2,500 miles. 2009:
is a novel hybrid carbon material which traps fullerene inside a carbon nanotube. It can possess interesting magnetic properties with heating and irradiation. It can also be applied as an oscillator during theoretical investigations and predictions.
2051:
Cup-stacked carbon nanotubes (CSCNTs) differ from other quasi-1D carbon structures, which normally behave as quasi-metallic conductors of electrons. CSCNTs exhibit semiconducting behavior because of the stacking microstructure of graphene layers.
2756:
viral infections, testing the efficacy of pharmaceuticals or infection monitoring using smart implants. In industry, SWCNTs are already used as sensors in the detection of gases and odors in the form of an electronic nose or in enzyme screening.
2696:
agglomerate hindering their dispersion in solvents or viscous polymer melts. The resulting nanotube bundles or aggregates reduce the mechanical performance of the final composite. The surface of the carbon nanotubes can be modified to reduce the
1754:
The thinnest carbon nanotube proper is the armchair structure with type (2,2), which has a diameter of 0.3 nm. This nanotube was grown inside a multi-walled carbon nanotube. Assigning of the carbon nanotube type was done by a combination of
2044:-CNT structure is the high surface area three-dimensional framework of the CNTs coupled with the high edge density of graphene. Depositing a high density of graphene foliates along the length of aligned CNTs can significantly increase the total 2318:, but with no wires," and represents a significant breakthrough in the technology. Future applications include powering micro- or nanoscale robots, as well as driving alcohol oxidation reactions, which are important in the chemicals industry. 9258: 1654: 2242:
the much more resistive nanotube-to-nanotube junctions and impurities, all of which lower the electrical conductivity of the macroscopic nanotube wires by orders of magnitude, as compared to the conductivity of the individual nanotubes.
2664:
also offers a certified reference material SWCNT-1 for elemental analysis using neutron activation analysis and inductively coupled plasma mass spectroscopy. NIST RM 8281 is a mixture of three lengths of single-wall carbon nanotube.
2575:
Carbon nanotubes are modelled in a similar manner as traditional composites in which a reinforcement phase is surrounded by a matrix phase. Ideal models such as cylindrical, hexagonal and square models are common. The size of the
2900:
has patented the use of carbon nanotubes for structural health monitoring of composites used in aircraft structures. This technology is hoped to greatly reduce the risk of an in-flight failure caused by structural degradation of
2400:", but good insulators lateral to the tube axis. Measurements show that an individual SWNT has a room-temperature thermal conductivity along its axis of about 3500 W·m·K; compare this to copper, a metal well known for its good 2874:
Additive manufacturing: single wall carbon nanotubes (SWCNTs) are mixed with a suitable printing medium or used as a filler material in the printing process, creating complex structures with enhanced mechanical and electrical
3241:, ~2600-year-old pottery was discovered whose coatings appear to contain carbon nanotubes. The robust mechanical properties of the nanotubes are partially why the coatings have lasted for so many years, say the scientists. 847:. Conversely, for every type there is a hypothetical nanotube. In fact, two nanotubes have the same type if and only if one can be conceptually rotated and translated so as to match the other exactly. Instead of the type ( 2156:
and 6 wt% loadings are the most optimal concentrations, as they provide a good balance between mechanical properties and resilience of mechanical properties against UV exposure for the offshore umbilical sheathing layer.
2550:
with impressive properties that are tunable for a wide range of applications. Chemical routes such as covalent functionalization have been studied extensively, which involves the oxidation of CNTs via strong acids (e.g.
2031:
foliates grown along the sidewalls of multiwalled or bamboo-style CNTs. The foliate density can vary as a function of deposition conditions (e.g., temperature and time) with their structure ranging from a few layers of
2668:
For multiwall carbon nanotubes, ISO/TR 10929 identifies the basic properties and the content of impurities, while ISO/TS 11888 describes morphology using scanning electron microscopy, transmission electron microscopy,
535:
surface, whose vertices are the positions of the carbon atoms. Since the length of the carbon-carbon bonds is fairly fixed, there are constraints on the diameter of the cylinder and the arrangement of the atoms on it.
3045:
only one order of magnitude higher than metallic conductors at 300 K (27 °C; 80 °F). By further optimizing the CNTs and CNT fibers, CNT fibers with improved electrical properties could be developed.
2523:
Despite the progress that has been made to separate and purify CNTs, many challenges remain, such as the growth of chirality-controlled CNTs, so that no further purification is needed, or large-scale purification.
2377:
and optoelectronic memory devices have been realised on ensembles of single-walled carbon nanotubes. Nanotube fluorescence has been investigated for the purposes of imaging and sensing in biomedical applications.
2286:
in carbon nanotubes differs from that of bulk crystalline semiconductors from the same group of the periodic table (e.g., silicon). Graphitic substitution of carbon atoms in the nanotube wall by boron or nitrogen
1908:, leaving "holes" in the structure on the nanotube and thus modifying both its mechanical and electrical properties. In the case of DWNTs, only the outer wall is modified. DWNT synthesis on the gram-scale by the 9091: 5707:
Peng B, Locascio M, Zapol P, Li S, Mielke SL, Schatz GC, et al. (October 2008). "Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements".
2867:
Bitumen and asphalt: The world's first test section of road pavement with single wall carbon nanotubes (SWCNTs) showed a 67% increase in resistance to cracks and ruts, increasing the lifespan of the materials.
1899:
and properties are similar to those of SWNTs but they are more resistant to attacks by chemicals. This is especially important when it is necessary to graft chemical functions to the surface of the nanotubes
9222:
Sahoo P, Tan JB, Zhang ZM, Singh SK, Lu TB (7 March 2018). "Engineering the Surface Structure of Binary/Ternary Ferrite Nanoparticles as High-Performance Electrocatalysts for the Oxygen Evolution Reaction".
3173:
The fact is, Radushkevich and Lukyanovich should be credited for the discovery that carbon filaments could be hollow and have a nanometre-size diameter, that is to say for the discovery of carbon nanotubes.
568:, and then unrolled flat on the plane, so that its atoms and bonds coincide with those of an imaginary graphene sheet—more precisely, with an infinitely long strip of that sheet. The two halves of the atom 7320:
Itkis ME, Perea DE, Niyogi S, Rickard SM, Hamon MA, Hu H, et al. (1 March 2003). "Purity Evaluation of As-Prepared Single-Walled Carbon Nanotube Soot by Use of Solution-Phase Near-IR Spectroscopy".
4582:
Piao Y, Chen CF, Green AA, Kwon H, Hersam MC, Lee CS, et al. (7 July 2011). "Optical and Electrical Properties of Inner Tubes in Outer Wall-Selectively Functionalized Double-Wall Carbon Nanotubes".
2763:
Optical biosensors with SWCNTs. The functionalization of SWCNTs with (bio)polymers leads to nanosensors for various molecules. The interaction with these molecules influences the NIR fluorescence of the
2722:
or halofluorinated by heating while in contact with a fluoroorganic substance, thereby forming partially fluorinated carbons (so-called Fluocar materials) with grafted (halo)fluoroalkyl functionality.
13353:
Susantyoko RA, Karam Z, Alkhoori S, Mustafa I, Wu CH, Almheiri S (2017). "A surface-engineered tape-casting fabrication technique toward the commercialisation of freestanding carbon nanotube sheets".
13380:
Karam Z, Susantyoko RA, Alhammadi A, Mustafa I, Wu CH, Almheiri S (June 2018). "Development of Surface-Engineered Tape-Casting Method for Fabricating Freestanding Carbon Nanotube Sheets Containing Fe
4504:
Sugime H, Esconjauregui S, Yang J, D'Arsié L, Oliver RA, Bhardwaj S, et al. (12 August 2013). "Low temperature growth of ultra-high mass density carbon nanotube forests on conductive supports".
12721: 1879:
Multi-walled nanotubes (MWNTs) consist of multiple rolled layers (concentric tubes) of graphene. There are two models that can be used to describe the structures of multi-walled nanotubes. In the
1344: 7277:
Bronikowski MJ, Willis PA, Colbert DT, Smith KA, Smalley RE (July 2001). "Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study".
2017:(doughnut shape). Nanotori are predicted to have many unique properties, such as magnetic moments 1000 times larger than that previously expected for certain specific radii. Properties such as 1850:
at lower than typical temperatures of 450 °C. The tubes averaged a height of 380 nm and a mass density of 1.6 g cm. The material showed ohmic conductivity (lowest resistance ~22 kΩ).
793:) — correspond to the same arrangement of atoms on the nanotube. That is the case, for example, of the six pairs (1,2), (−2,3), (−3,1), (−1,−2), (2,−3), and (3,−1). In particular, the pairs ( 12948:"Systematic Investigation of the Degradation Properties of Nitrile-Butadiene Rubber/Polyamide Elastomer/Single-Walled Carbon Nanotube Composites in Thermo-Oxidative and Hot Oil Environments" 2894:
Jack Andraka used carbon nanotubes in his pancreatic cancer test. His method of testing won the Intel International Science and Engineering Fair Gordon E. Moore Award in the spring of 2012.
3145:
described the origin of the carbon nanotube. A large percentage of academic and popular literature attributes the discovery of hollow, nanometre-size tubes composed of graphitic carbon to
2245:
Because of its nanoscale cross-section, electrons propagate only along the tube's axis. As a result, carbon nanotubes are frequently referred to as one-dimensional conductors. The maximum
3116: 2508:
semiconducting CNTs are more strongly attracted by gel than metallic CNTs. While it shows potential, the current application is limited to the separation of semiconducting (n,m) species.
13423:
Behabtu N, Young CC, Tsentalovich DE, Kleinerman O, Wang X, Ma AW, et al. (January 2013). "Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity".
2638: 527:
of the relevant sub-lattice, the (n,m) pairs that define non-isomorphic carbon nanotube structures (red dots), and the pairs that define the enantiomers of the chiral ones (blue dots)
2861:
Medical devices: Using single wall carbon nanotubes in medical devices results in no skin contamination, high flexibility, and softness, which are crucial for healthcare aplications.
1788: 499:
A "sliced and unrolled" representation of a carbon nanotube as a strip of a graphene molecule, overlaid on a diagram of the full molecule (faint background). The arrow shows the gap
1394: 1099: 13920: 13310:
Martel R, Derycke V, Lavoie C, Appenzeller J, Chan KK, Tersoff J, et al. (December 2001). "Ambipolar electrical transport in semiconducting single-wall carbon nanotubes".
4345:
Wang X, Li Q, Xie J, Jin Z, Wang J, Li Y, et al. (September 2009). "Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates".
6694:
Paul Cherukuri, Sergei M. Bachilo, Silvio H. Litovsky, R. Bruce Weisman (2004). "Near-Infrared Fluorescence Microscopy of Single-Walled Carbon Nanotubes in Phagocytic Cells".
3041:. The electronic properties of individual CNT fibers (i.e. bundle of individual CNT) are governed by the two-dimensional structure of CNTs. The fibers were measured to have a 2837:. It can be used to hang lightweight items such as pictures and decorative items on smooth walls without punching holes in the wall. The carbon nanotube arrays comprising the 12551: 8880:"ISO/TS 10798:2011 – Nanotechnologies – Characterization of single-wall carbon nanotubes using scanning electron microscopy and energy dispersive X-ray spectrometry analysis" 2503:
separated due to the difference in size using a stationary phase with different pore size. As for IEX, the separation is achieved based on their differential adsorption and
1976: 8781:
Stefaniak AB (2017). "Principal Metrics and Instrumentation for Characterization of Engineered Nanomaterials". In Mansfield E, Kaiser DL, Fujita D, Van de Voorde M (eds.).
3210:
they would exhibit remarkable conducting properties. Nanotube research accelerated greatly following the independent discoveries by Iijima and Ichihashi at NEC and Bethune
3141:
The true identity of the discoverers of carbon nanotubes is a subject of some controversy. A 2006 editorial written by Marc Monthioux and Vladimir Kuznetsov in the journal
3987:
Bethune DS, Kiang CH, De Vries MS, Gorman G, Savoy R, Vazquez J, et al. (17 June 1993). "Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls".
2984:
The strength and flexibility of carbon nanotubes makes them of potential use in controlling other nanoscale structures, which suggests they will have an important role in
6212:
Takesue I, Haruyama J, Kobayashi N, Chiashi S, Maruyama S, Sugai T, et al. (February 2006). "Superconductivity in entirely end-bonded multiwalled carbon nanotubes".
2546:
to improve their stability and solubility in water. This enhances the processing and manipulation of insoluble CNTs rendering them useful for synthesizing innovative CNT
12811: 2221:
point in the Brillouin zone because of the curvature of the tube surface, causing hybridization between the σ* and π* anti-bonding bands, modifying the band dispersion.
6516:
Chen J, Perebeinos V, Freitag M, Tsang J, Fu Q, Liu J, et al. (November 2005). "Bright infrared emission from electrically induced excitons in carbon nanotubes".
12094: 9187:
Sahoo P, Shrestha RG, Shrestha LK, Hill JP, Takei T, Ariga K (November 2016). "Surface Oxidized Carbon Nanotubes Uniformly Coated with Nickel Ferrite Nanoparticles".
8815:"ISO/TS 10868:2017 – Nanotechnologies – Characterization of single-wall carbon nanotubes using ultraviolet-visible-near infrared (UV-Vis-NIR) absorption spectroscopy" 3095:(NIOSH) is the leading United States federal agency conducting research and providing guidance on the occupational safety and health implications and applications of 2369:
based on a single nanotube have been produced in the lab. Their unique feature is not the efficiency, which is yet relatively low, but the narrow selectivity in the
2149:
was also performed on single-walled carbon nanotubes. Young's modulus of on the order of several GPa showed that CNTs are in fact very soft in the radial direction.
1577: 1274: 12040: 7356:
Wang L, Pumera M (October 2014). "Residual metallic impurities within carbon nanotubes play a dominant role in supposedly "metal-free" oxygen reduction reactions".
13895: 2864:
Wearable electronics and 5G/6G communication: Electrodes with single wall carbon nanotubes (SWCNTs) exhibit excellent electrochemical properties and flexibility.
1885:
model, sheets of graphite are arranged in concentric cylinders, e.g., a (0,8) single-walled nanotube (SWNT) within a larger (0,17) single-walled nanotube. In the
2002:, the attached fullerene molecules may function as molecular anchors preventing slipping of the nanotubes, thus improving the composite's mechanical properties. 14435:
and Carbon Nanotubes a short video explaining how nanotubes can be made from modified graphite sheets and the three different types of nanotubes that are formed
5988:
Lu X, Chen Z (October 2005). "Curved pi-conjugation, aromaticity, and the related chemistry of small fullerenes (< C60) and single-walled carbon nanotubes".
1246: 12921: 2169:
Band structures computed using a tight binding approximation for (6,0) CNT (zigzag, metallic), (10,2) CNT (semiconducting) and (10,10) CNT (armchair, metallic)
3444:
Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (January 2000). "Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load".
3100: 3092: 14182: 12335:
Noyce SG, Doherty JL, Cheng Z, Han H, Bowen S, Franklin AD (March 2019). "Electronic Stability of Carbon Nanotube Transistors Under Long-Term Bias Stress".
384:) consist of nested single-wall carbon nanotubes in a nested, tube-in-tube structure. Double- and triple-walled carbon nanotubes are special cases of MWCNT. 12661: 2932:
Carbon nanotubes can serve as additives to various structural materials. For instance, nanotubes form a tiny portion of the material(s) in some (primarily
2819: 4809: 13552:
Pyrhönen J, Montonen J, Lindh P, Vauterin J, Otto M (28 February 2015). "Replacing Copper with New Carbon Nanomaterials in Electrical Machine Windings".
12638: 2611:, while ISO/TS 10797 and ISO/TS 10798 establish methods to characterize the morphology and elemental composition of single-wall carbon nanotubes, using 3161:. This discovery was largely unnoticed, as the article was published in Russian, and Western scientists' access to Soviet press was limited during the 1947:
Junctions between nanotubes and graphene have been considered theoretically and studied experimentally. Nanotube-graphene junctions form the basis of
1936:
Junctions between two or more nanotubes have been widely discussed theoretically. Such junctions are quite frequently observed in samples prepared by
6066:
Vasylenko A, Wynn J, Medeiros PV, Morris AJ, Sloan J, Quigley D (2017). "Encapsulated nanowires: Boosting electronic transport in carbon nanotubes".
5927: 14427:. Interactive 3D models of cyclohexane, benzene, graphene, graphite, chiral & non-chiral nanotubes, and C60 Buckyballs - WeCanFigureThisOut.org. 2299:, result in n-type conduction because they donate electrons to the π-electron system of the nanotube. By contrast, π-electron acceptors such as FeCl 6859:
Pop E, Mann D, Wang Q, Goodson K, Dai H (January 2006). "Thermal conductance of an individual single-wall carbon nanotube above room temperature".
4447:
Cheung KY, Segawa Y, Itami K (November 2020). "Synthetic Strategies of Carbon Nanobelts and Related Belt-Shaped Polycyclic Aromatic Hydrocarbons".
2970:
for ATEX requirements and tooling conductive gelcoats for increased safety and efficiency; and heating fiber coatings for infrastructure elements.
1776: 1756: 8743:
Sanei SH, Doles R, Ekaitis T (2019). "Effect of Nanocomposite Microstructure on Stochastic Elastic Properties: An Finite Element Analysis Study".
628:
to two of its nearest atoms with the same bond directions. That is, if one numbers consecutive carbons around a graphene cell with C1 to C6, then
14880: 13484:
Piraux L, Araujo FA, Bui TN, Otto MJ, Issi JP (26 August 2015). "Two-dimensional quantum transport in highly conductive carbon nanotube fibers".
12076: 6737: 4646: 9261:, Zaderko A, Vasyl UA, "Method for carbon materials surface modification by the fluorocarbons and derivatives", issued June 19, 2018 6465:
Misewich JA, Martel R, Avouris P, Tsang JC, Heinze S, Tersoff J (May 2003). "Electrically induced optical emission from a carbon nanotube FET".
5840:
Jensen K, Mickelson W, Kis A, Zettl A (26 November 2007). "Buckling and kinking force measurements on individual multiwalled carbon nanotubes".
5028:
Dimitrakakis GK, Tylianakis E, Froudakis GE (October 2008). "Pillared graphene: a new 3-D network nanostructure for enhanced hydrogen storage".
15602: 14481: 8919: 8819: 5011: 2690: 2626: 2601: 12505: 6161:
Tang ZK, Zhang L, Wang N, Zhang XX, Wen GH, Li GD, et al. (June 2001). "Superconductivity in 4 angstrom single-walled carbon nanotubes".
5789:
Filleter T, Bernal R, Li S, Espinosa HD (July 2011). "Ultrahigh strength and stiffness in cross-linked hierarchical carbon nanotube bundles".
4310:
Zhang R, Zhang Y, Zhang Q, Xie H, Qian W, Wei F (July 2013). "Growth of half-meter long carbon nanotubes based on Schulz-Flory distribution".
412:. In addition, carbon nanotubes can be chemically modified. These properties are expected to be valuable in many areas of technology, such as 13603:"Physicochemical characterization and genotoxicity of the broad class of carbon nanotubes and nanofibers used or produced in U.S. facilities" 11319:"Comparison of electrical and optical transduction modes of DNA-wrapped SWCNT nanosensors for the reversible detection of neurotransmitters" 2073: 11420: 8182:"Recent Advances in Structure Separation of Single-Wall Carbon Nanotubes and Their Application in Optics, Electronics, and Optoelectronics" 5527: 3182: 2646: 14119:
WTEC Panel Report on 'International Assessment of Research and Development of Carbon Nanotube Manufacturing and Applications' Final Report
13184:"Co-axial heterostructures integrating palladium/titanium dioxide with carbon nanotubes for efficient electrocatalytic hydrogen evolution" 2387: 2145:
were performed by several groups to quantitatively measure the radial elasticity of multiwalled carbon nanotubes and tapping/contact mode
13850:"In Vivo Toxicity Assessment of Occupational Components of the Carbon Nanotube Life Cycle To Provide Context to Potential Health Effects" 6428: 5656: 5425:
Wang M, Li CM (January 2010). "An oscillator in a carbon peapod controllable by an external electric field: a molecular dynamics study".
5408: 4226:
Hayashi T, Kim YA, Matoba T, Esaka M, Nishimura K, Tsukada T, et al. (2003). "Smallest Freestanding Single-Walled Carbon Nanotube".
3818:
Wilder JW, Venema LC, Rinzler AG, Smalley RE, Dekker C (1 January 1998). "Electronic structure of atomically resolved carbon nanotubes".
13771:"CDC - NIOSH Numbered Publications: Current Intelligence Bulletins (CIB) - Sorted By Date, Descending Order Without Publication Numbers" 9442:"Single Molecule Detection of Nitric Oxide Enabled by d(AT) 15 DNA Adsorbed to Near Infrared Fluorescent Single-Walled Carbon Nanotubes" 4400:"Synthesis, characterization, and theory of [9]-, [12]-, and [18]cycloparaphenylene: carbon nanohoop structures" 3033:. The fiber is either directly spun from the synthesis pot or spun from pre-made dissolved CNTs. Individual fibers can be turned into a 7192:
Nikolaev P (April 2004). "Gas-phase production of single-walled carbon nanotubes from carbon monoxide: a review of the hipco process".
4565: 3066: 2979: 105: 14454: 13928: 12122:"Molecular-level hybridization of single-walled carbon nanotubes and a copper complex with counterbalanced electrostatic interactions" 11116:"Detection of ovarian cancer via the spectral fingerprinting of quantum-defect-modified carbon nanotubes in serum by machine learning" 7066:
Mingo N, Stewart DA, Broido DA, Srivastava D (2008). "Phonon transmission through defects in carbon nanotubes from first principles".
531:
The structure of an ideal (infinitely long) single-walled carbon nanotube is that of a regular hexagonal lattice drawn on an infinite
9489:"Detection of single-molecule H2O2 signalling from epidermal growth factor receptor using fluorescent single-walled carbon nanotubes" 2478: 2089: 95: 12747: 9000: 8941: 4170: 15329: 14449: 12555: 12461:
Tan CW, Tan KH, Ong YT, Mohamed AR, Zein SH, Tan SH (September 2012). "Energy and environmental applications of carbon nanotubes".
6696: 2303:
or electron-deficient metallocenes function as p-type dopants because they draw π-electrons away from the top of the valence band.
2205:
is a multiple of 3 and n ≠ m, then the nanotube is quasi-metallic with a very small band gap, otherwise the nanotube is a moderate
3008:, isolated (single and multi-wall) CNTs can carry current densities in excess of 1000 MA/cm without electromigration damage. 12702: 10747:"A Paper-Based Near-Infrared Optical Biosensor for Quantitative Detection of Protease Activity Using Peptide-Encapsulated SWCNTs" 4033:
Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, et al. (July 1996). "Crystalline Ropes of Metallic Carbon Nanotubes".
3042: 2879: 326: 13053:
Thomas DJ (June 2018). "Ultrafine graphitised MWCNT nanostructured yarn for the manufacture of electrically conductive fabric".
8847:"ISO/TS 10797:2012 – Nanotechnologies – Characterization of single-wall carbon nanotubes using transmission electron microscopy" 15145: 14455:
WOLFRAM Demonstrations Project: Electronic Structure of a Single-Walled Carbon Nanotube in Tight-Binding Wannier Representation
7672:"Nearly Single-Chirality Single-Walled Carbon Nanotubes Produced via Orthogonal Iterative Density Gradient Ultracentrifugation" 4863:
Menon M, Srivastava D (1 December 1997). "Carbon Nanotube 'T Junctions': Nanoscale Metal-Semiconductor-Metal Contact Devices".
3322: 2331: 100: 11012:"Monitoring the Formation of Fibrin Clots as Part of the Coagulation Cascade Using Fluorescent Single-Walled Carbon Nanotubes" 6920:
Sinha S, Barjami S, Iannacchione G, Schwab A, Muench G (5 June 2005). "Off-axis thermal properties of carbon nanotube films".
3157:
In 1952, L. V. Radushkevich and V. M. Lukyanovich published clear images of 50-nanometre diameter tubes made of carbon in the
13984: 13259: 13032:"Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items - Modern Plastics India" 12812:"Overcoming ESD-Control Flooring Challenges: A Comprehensive Guide to ANSI/ESD S20.20-2021 | FLOOR Trends & Installation" 10284:"An optical nanoreporter of endolysosomal lipid accumulation reveals enduring effects of diet on hepatic macrophages in vivo" 9742:"Stochastic Analysis of Stepwise Fluorescence Quenching Reactions on Single-Walled Carbon Nanotubes: Single Molecule Sensors" 8798: 7238: 1799:
carbon nanotubes grown so far, around 0.5 metre (550 mm) long, was reported in 2013. These nanotubes were grown on
725:, and rolling the strip into a cylinder so as to bring those two points together. If this construction is applied to a pair ( 13662:"Histopathology of the broad class of carbon nanotubes and nanofibers used or produced in U.S. facilities in a murine model" 3340:
This article incorporates public domain text from the National Institute of Environmental Health Sciences (NIEHS) as quoted.
14061: 14043: 13005: 12535:, DeLuca MJ, Felker CJ, Heider D, "System and methods for use in monitoring a structure", published May 3, 2016 9797:"A Ratiometric Sensor Using Single Chirality Near-Infrared Fluorescent Carbon Nanotubes: Application to In Vivo Monitoring" 3864:
Karousis N, Tagmatarchis N, Tasis D (September 2010). "Current progress on the chemical modification of carbon nanotubes".
3619:
Kim P, Shi L, Majumdar A, McEuen PL (November 2001). "Thermal transport measurements of individual multiwalled nanotubes".
1860: 1282: 14118: 8628:"Enhancing Intracellular Optical Performance and Stability of Engineered Nanomaterials via Aqueous Two-Phase Purification" 5323:
Smith BW, Luzzi DE (2000). "Formation mechanism of fullerene peapods and coaxial tubes: a path to large scale synthesis".
15234: 14873: 14279:, Tennent HG, "Carbon fibrils, method for producing same and compositions containing same", issued 1987-05-05 12044: 3219:
available for characterization and application experiments. The arc discharge technique, well known to produce the famed
4716:
Treacy MM, Ebbesen TW, Gibson JM (1996). "Exceptionally high Young's modulus observed for individual carbon nanotubes".
2738:
Carbon nanotubes are currently used in multiple industrial and consumer applications. These include battery components,
14993: 14474: 14450:
WOLFRAM Demonstrations Project: Electronic Band Structure of a Single-Walled Carbon Nanotube by the Zone-Folding Method
8977: 3070: 2891:
Using carbon nanotubes for environmental monitoring due to their active surface area and their ability to absorb gases.
2661: 2373:
of emission and detection of light and the possibility of its fine-tuning through the nanotube structure. In addition,
143: 12787:"Clear Skies Coatings Presented a Waterborne Conductive Primer & Adhesion Promoter with Graphene Nanotubes - IPCM" 7562:"Selective Dispersion of Single-Walled Carbon Nanotubes with Specific Chiral Indices by Poly( N -decyl-2,7-carbazole)" 2988:
engineering. The highest tensile strength of an individual multi-walled carbon nanotube has been tested to be 63 
2291:
leads to p-type and n-type behavior, respectively, as would be expected in silicon. However, some non-substitutional (
370:, about 100,000 times smaller than the width of a human hair. They can be idealised as cutouts from a two-dimensional 12786: 11674:"Immobilization and Function of nIR-Fluorescent Carbon Nanotube Sensors on Paper Substrates for Fluidic Manipulation" 9060: 9030: 8879: 8846: 8814: 8033:"Separation of Small-Diameter Single-Walled Carbon Nanotubes in One to Three Steps with Aqueous Two-Phase Extraction" 6963:
Koziol KK, Janas D, Brown E, Hao L (1 April 2017). "Thermal properties of continuously spun carbon nanotube fibres".
5620:
Stoner BR, Glass JT (2012). "Carbon nanostructures: a morphological classification for charge density optimization".
5577:
Parker CB, Raut AS, Brown B, Stoner BR, Glass JT (2012). "Three-dimensional arrays of graphenated carbon nanotubes".
3281: 2447:
Techniques have been developed to produce nanotubes in sizeable quantities, including arc discharge, laser ablation,
2238: 12895: 10945:"A fluorescent nanosensor paint detects dopamine release at axonal varicosities with high spatiotemporal resolution" 7113:
Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences
560:. An infinite nanotube that is of one type consists entirely of closed paths of that type, connected to each other. 15105: 2612: 2130: 439:
The predicted properties for SWCNTs were tantalising, but a path to synthesising them was lacking until 1993, when
17: 14151: 9990:"Click-Functionalization of Silanized Carbon Nanotubes: From Inorganic Heterostructures to Biosensing Nanohybrids" 8971: 7774:"High-Resolution Length Sorting and Purification of DNA-Wrapped Carbon Nanotubes by Size-Exclusion Chromatography" 4663:
Cumings J, Zettl A (July 2000). "Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes".
2433:
cause phonon scattering over a wide range of frequencies, leading to a greater reduction in thermal conductivity.
1031:) "armchair" tubes. If two enantiomers are to be considered the same structure, then one may consider only types ( 15587: 9061:"ISO/TS 11888:2017 –Nanotechnologies – Characterization of multiwall carbon nanotubes – Mesoscopic shape factors" 5535: 2908: 2361:
Carbon nanotube optical properties have been explored for use in applications such as for light-emitting diodes (
14804: 14799: 14066:[On the Structure of Carbon Formed During the Thermal Decomposition of Carbon Oxide on an Iron Contact] 12676: 4926:
Ma KL (2011). "Electronic transport properties of junctions between carbon nanotubes and graphene nanoribbons".
4760: 3049:
CNT-based yarns are suitable for applications in energy and electrochemical water treatment when coated with an
2310:
has been reported, although other experiments found no evidence of this, leaving the claim a subject of debate.
14866: 14202:, Koyama T, Endo MT, "Method for Manufacturing Carbon Fibers by a Vapor Phase Process", issued 1983 12772: 10162:
Xu X, Clément P, Eklöf-Österberg J, Kelley-Loughnane N, Moth-Poulsen K, Chávez JL, et al. (11 July 2018).
6654: 2475:
site for the nanotubes to grow, while cheaper iron-based catalysts like Ferrocene can be used for CVD process.
2118:
of up to 48,000 kN·m/kg is the best of known materials, compared to high-carbon steel's 154 kN·m/kg.
2080:
can vary from zero to about 2 eV and the electrical conductivity can show metallic or semiconducting behavior.
217: 12838:"Raman Spectroscopy Unfolds the Fate and Transformation of SWCNTs after Abrasive Wear of Epoxy Floor Coatings" 12646: 11985: 10690:
Kallmyer NE, Abdennadher MS, Agarwal S, Baldwin-Kordick R, Khor RL, Kooistra AS, et al. (23 March 2021).
6733:"Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window" 6567:
Freitag M, Martin Y, Misewich JA, Martel R, Avouris P (2003). "Photoconductivity of Single Carbon Nanotubes".
2604:/TS 10868 describes a measurement method for the diameter, purity, and fraction of metallic nanotubes through 1951:, in which parallel graphene sheets are separated by short nanotubes. Pillared graphene represents a class of 1912:
technique was first proposed in 2003 from the selective reduction of oxide solutions in methane and hydrogen.
15592: 15577: 15295: 15261: 14467: 11627:"Analysis of Multiplexed Nanosensor Arrays Based on Near-Infrared Fluorescent Single-Walled Carbon Nanotubes" 8913: 3187: 2442: 1513:{\displaystyle \alpha \;=\;\arg(n+m/2,\,m{\sqrt {3}}/2)\;=\;\mathop {\mathrm {arc} } \cos {\frac {n+m/2}{c}}} 1214:{\displaystyle c=\left|{\boldsymbol {u}}\right|{\sqrt {(n^{2}+nm+m^{2})}}\approx 246{\sqrt {((n+m)^{2}-nm)}}} 237: 85: 37: 14218:
Abrahamson J, Wiles PG, Rhoades BL (January 1999). "Structure of carbon fibres found on carbon arc anodes".
8143:"Towards monochiral carbon nanotubes: a review of progress in the sorting of single-walled carbon nanotubes" 7560:
Lemasson FA, Strunk T, Gerstel P, Hennrich F, Lebedkin S, Barner-Kowollik C, et al. (2 February 2011).
4490: 1990:
are a newly created material combining two previously discovered allotropes of carbon: carbon nanotubes and
15322: 11421:"Electroluminescence from 4-nitroaryl organic color centers in semiconducting single-wall carbon nanotubes" 7915:"Isolation of Specific Small-Diameter Single-Wall Carbon Nanotube Species via Aqueous Two-Phase Extraction" 6120: 3193:
In 1981, a group of Soviet scientists published the results of chemical and structural characterization of
3132: 3080: 3038: 2616: 2099: 177: 110: 14199: 12836:
Soto Beobide A, Bieri R, Szakács Z, Sparwasser K, Kaitsa IG, Georgiopoulos I, et al. (January 2024).
12239:"Mechanical recycling of CFRPs based on thermoplastic acrylic resin with the addition of carbon nanotubes" 11986:"Near-Infrared Fluorescent Sensors based on Single-Walled Carbon Nanotubes for Life Sciences Applications" 15471: 15352: 14338:
Kokarneswaran M, Selvaraj P, Ashokan T, Perumal S, Sellappan P, Murugan KD, et al. (November 2020).
13031: 12161:
Paleo AJ, Martinez-Rubi Y, Krause B, Pötschke P, Jakubinek MB, Ashrafi B, et al. (13 October 2023).
9988:
Manoharan G, Bösel P, Thien J, Holtmannspötter M, Meingast L, Schmidt M, et al. (25 February 2023).
7913:
Fagan JA, Khripin CY, Silvera Batista CA, Simpson JR, Hároz EH, Hight Walker AR, et al. (May 2014).
7452:"Toward the Extraction of Single Species of Single-Walled Carbon Nanotubes Using Fluorene-Based Polymers" 7154:
Zhou Z (January 2003). "Producing cleaner double-walled carbon nanotubes in a floating catalyst system".
4928: 3198: 2795: 2642: 2024: 319: 12237:
Demski S, Misiak M, Majchrowicz K, Komorowska G, Lipkowski A, Stankiewicz K, et al. (21 May 2024).
5231:
Nasibulin AG, Pikhitsa PV, Jiang H, Brown DP, Krasheninnikov AV, Anisimov AS, et al. (March 2007).
3775:
Hamada N, Sawada SI, Oshiyama A (March 1992). "New one-dimensional conductors: Graphitic microtubules".
3404:
Oberlin A, Endo M, Koyama T (March 1976). "Filamentous growth of carbon through benzene decomposition".
3000:
CNTs are potential candidates for future via and wire material in nano-scale VLSI circuits. Eliminating
15392: 15367: 15266: 15202: 14847: 9923:
Jeong S, Yang D, Beyene AG, Del Bonis-O'Donnell JT, Gest AM, Navarro N, et al. (6 December 2019).
7391:
Eatemadi A, Daraee H, Karimkhanloo H, Kouhi M, Zarghami N, Akbarzadeh A, et al. (13 August 2014).
6453:
Carbon-Based Magnetism: An Overview of the Magnetism of Metal Free Carbon-based Compounds and Materials
4611: 3901:"Therapeutic and diagnostic applications of carbon nanotubes in cancer: recent advances and challenges" 3729: 3497:"An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes" 3104: 2634: 2021:, thermal stability, etc. vary widely depending on the radius of the torus and the radius of the tube. 1067:, which may range from 0 to 30 degrees (inclusive both), is called the "chiral angle" of the nanotube. 757:
before applying the hypothetical reconstruction above. Such a rotation changes the corresponding pair (
14276: 12080: 10888:"Detection and Imaging of the Plant Pathogen Response by Near-Infrared Fluorescent Polyphenol Sensors" 9031:"ISO/TR 10929:2012 – Nanotechnologies – Characterization of multiwall carbon nanotube (MWCNT) samples" 8972:"SWCNT-1: Single-Wall Carbon Nanotube Certified Reference Material – National Research Council Canada" 8286:"Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography" 2499:
sonicate the mixture (CNTs and polymers in solvent), centrifuge and the supernatant are desired CNTs.
15582: 15249: 15209: 13566: 11729:"Hyperspectral Microscopy of Near-Infrared Fluorescence Enables 17-Chirality Carbon Nanotube Imaging" 9860:
Dinarvand M, Neubert E, Meyer D, Selvaggio G, Mann FA, Erpenbeck L, et al. (11 September 2019).
9284: 5932: 4972: 3900: 2686: 2660:
and absorption spectroscopy, scanning electron microscopy, and transmission electron microscopy. The
2657: 2567: 2448: 2292: 2153: 1941: 1917: 1901: 1804: 1764: 192: 90: 11727:
Roxbury D, Jena PV, Williams RM, Enyedi B, Niethammer P, Marcet S, et al. (21 September 2015).
8142: 7727:"Separation of Single-Walled Carbon Nanotubes by 1-Dodecanol-Mediated Size-Exclusion Chromatography" 5877:"Carbon Nanotube Reinforced High Density Polyethylene Materials for Offshore Sheathing Applications" 4685: 4560: 4367: 801:) describe the same nanotube geometry. These redundancies can be avoided by considering only pairs ( 753:
The structure of the nanotube is not changed if the strip is rotated by 60 degrees clockwise around
15417: 15357: 15040: 15025: 15003: 14613: 11317:
Clément P, Ackermann J, Sahin-Solmaz N, Herbertz S, Boero G, Kruss S, et al. (November 2022).
3276: 3115:
As of October 2016, single-wall carbon nanotubes have been registered through the European Union's
2791: 2129:
On the other hand, there was evidence that in the radial direction they are rather soft. The first
1748: 270: 222: 14063:О Структуре Углерода, Образующегося При Термическом Разложении Окиси Углерода На Железном Контакте 10106:"Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics" 9285:"WO16072959 Method for Carbon Materials Surface Modification by the Fluorocarbons and Derivatives" 7819:
Moore KE, Pfohl M, Hennrich F, Chakradhanula VS, Kuebel C, Kappes MM, et al. (22 July 2014).
2958:
car parts for e-painting; automotive primers for cost benefits and better aesthetics of topcoats;
877:, may range from 0 (inclusive) to 60 degrees clockwise (exclusive). If the diagram is drawn with 15597: 15315: 15214: 15187: 13770: 12922:"OCSiAl, Daikin improve fluoropolymer resistance to extreme conditions | European Rubber Journal" 12595:
Zanello LP, Zhao B, Hu H, Haddon RC (March 2006). "Bone cell proliferation on carbon nanotubes".
12058: 11946: 11356:
O'Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, et al. (26 July 2002).
11318: 10047:
Del Bonis-O'Donnell JT, Pinals RL, Jeong S, Thakrar A, Wolfinger RD, Landry MP (8 January 2019).
6693: 3013: 2845: 2770: 2608: 2337: 2146: 2142: 1995: 405: 212: 14410: 10225:
Jena PV, Roxbury D, Galassi TV, Akkari L, Horoszko CP, Iaea DB, et al. (28 November 2017).
9549:
Kruss S, Salem DP, Vuković L, Lima B, Vander Ende E, Boyden ES, et al. (21 February 2017).
8745:
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
7255: 5560: 4087:
Sinnott SB, Andrews R (July 2001). "Carbon Nanotubes: Synthesis, Properties, and Applications".
2802:
components – including flat and riser handlebars, cranks, forks, seatposts, stems and aero bars.
2295:
or adsorbed) dopants introduced into a carbon nanotube, such as alkali metals and electron-rich
15607: 15546: 15507: 15224: 15219: 15192: 14673: 14295:
Krätschmer W, Lamb LD, Fostiropoulos KH, Huffman DR (1990). "Solid C60: a new form of carbon".
13561: 10692:"Inexpensive Near-Infrared Fluorimeters: Enabling Translation of nIR-Based Assays to the Field" 9687:"Real-time detection of wound-induced H2O2 signalling waves in plants with optical nanosensors" 5926:
Laird EA, Kuemmeth F, Steele GA, Grove-Rasmussen K, Nygård J, Flensberg K, et al. (2015).
5359: 4680: 4555: 4362: 3256: 2430: 2283: 2246: 1649:{\displaystyle m={\frac {2c}{\sqrt {3}}}\sin \alpha \quad \quad n=c\cos \alpha -{\frac {m}{2}}} 312: 13660:
Fraser K, Hubbs A, Yanamala N, Mercer RR, Stueckle TA, Jensen J, et al. (December 2021).
13182:
Valenti G, Boni A, Melchionna M, Cargnello M, Nasi L, Bertoni G, et al. (December 2016).
11831:
Selvaggio G, Chizhik A, Nißler R, Kuhlemann l, Meyer D, Vuong L, et al. (20 March 2020).
10576:
Harvey JD, Jena PV, Baker HA, Zerze GH, Williams RM, Galassi TV, et al. (13 March 2017).
7228: 5687: 15556: 15362: 15150: 15013: 14889: 14500: 13958:
Carbon Nanotubes as Platforms for Biosensors with Electrochemical and Electronic Transduction
13848:
Bishop L, Cena L, Orandle M, Yanamala N, Dahm MM, Birch ME, et al. (26 September 2017).
11068: 10821:
Nißler R, Bader O, Dohmen M, Walter SG, Noll C, Selvaggio G, et al. (25 November 2020).
10513:"Bioengineering a glucose oxidase nanosensor for near-infrared continuous glucose monitoring" 10462: 9796: 9311:"Stepwise Quenching of Exciton Fluorescence in Carbon Nanotubes by Single-Molecule Reactions" 7914: 7671: 6801: 4540: 3495:
Sadri R, Ahmadi G, Togun H, Dahari M, Kazi SN, Sadeghinezhad E, et al. (28 March 2014).
3327: 3050: 2888:
Energy dissipation in self-organized nanostructures under the influence of an electric field.
2416:
Crystallographic defects strongly affect the tube's thermal properties. Such defects lead to
227: 12219: 11984:
Boghossian AA, Zhang J, Barone PW, Reuel NF, Kim JH, Heller DA, et al. (18 July 2011).
1357:
where the bonds are strained; and they do not take into account the thickness of the wall.)
1251: 15440: 15197: 15160: 15140: 14551: 14490: 14351: 14304: 14227: 14166: 14027: 13673: 13614: 13601:
Fraser K, Kodali V, Yanamala N, Birch ME, Cena L, Casuccio G, et al. (December 2020).
13493: 13432: 13319: 13284: 13195: 13138: 12604: 12570: 12470: 12417: 12344: 11997: 11844: 11740: 11432: 11369: 10956: 10834: 10758: 10524: 10352: 10175: 10117: 9936: 9873: 9753: 9632: 9562: 9398: 9332: 9153: 9090:
Bekyarova E, Davis M, Burch T, Itkis ME, Zhao B, Sunshine S, et al. (9 October 2004).
8709: 8639: 8626:
Nadeem A, Kindopp A, Wyllie I, Hubert L, Joubert J, Lucente S, et al. (26 July 2023).
8362: 8297: 7926: 7628: 7518: 7463: 7404: 7330: 7286: 7163: 7075: 7011: 6972: 6929: 6878: 6817: 6756: 6668: 6617: 6578: 6525: 6474: 6372: 6231: 6170: 6135: 6085: 6032: 5951: 5849: 5798: 5752: 5671: 5629: 5586: 5544: 5492: 5434: 5384: 5332: 5289: 5244: 5185: 5123:
Lalwani G, Gopalan A, D'Agati M, Sankaran JS, Judex S, Qin YX, et al. (October 2015).
5037: 4937: 4872: 4837: 4785: 4725: 4672: 4513: 4354: 4276: 4237: 4200: 4146: 4096: 4042: 3996: 3950: 3827: 3784: 3741: 3694: 3638: 3577: 3508: 3453: 3413: 3367: 3286: 3220: 3194: 3054: 2468: 2401: 2397: 2230: 1896: 393: 352: 265: 187: 148: 128: 12296:"3D-Printable high-mixed-conductivity ionogel composites for soft multifunctional devices" 11794:"Single-Chirality Separation and Optical Properties of (5,4) Single-Wall Carbon Nanotubes" 9685:
Lew TT, Koman VB, Silmore KS, Seo JS, Gordiichuk P, Kwak SY, et al. (15 April 2020).
9551:"High-resolution imaging of cellular dopamine efflux using a fluorescent nanosensor array" 8468:
Nißler R, Kurth L, Li H, Spreinat A, Kuhlemann I, Flavel BS, et al. (27 April 2021).
8351:"Simple and Scalable Gel-Based Separation of Metallic and Semiconducting Carbon Nanotubes" 4131: 3197:
produced by a thermocatalytic disproportionation of carbon monoxide. Using TEM images and
2812:
carbon nano-epoxy resins where carbon nanotubes have been chemically activated to bond to
1807:(CVD) method and represent electrically uniform arrays of single-walled carbon nanotubes. 855:), the structure of a carbon nanotube can be specified by giving the length of the vector 8: 15450: 15254: 15229: 15100: 15057: 14935: 14930: 14910: 12406:"Self-assembled wiggling nano-structures and the principle of maximum entropy production" 11792:
Wei X, Tanaka T, Akizuki N, Miyauchi Y, Matsuda K, Ohfuchi M, et al. (19 May 2016).
10104:
Wong MH, Giraldo JP, Kwak SY, Koman VB, Sinclair R, Lew TT, et al. (February 2017).
9795:
Giraldo JP, Landry MP, Kwak SY, Jain RM, Wong MH, Iverson NM, et al. (August 2015).
9487:
Jin H, Heller DA, Kalbacova M, Kim JH, Zhang J, Boghossian AA, et al. (April 2010).
9440:
Zhang J, Boghossian AA, Barone PW, Rwei A, Kim JH, Lin D, et al. (26 January 2011).
9008: 8949: 8577:
Ackermann J, Stegemann J, Smola T, Reger E, Jung S, Schmitz A, et al. (April 2023).
3301: 3075: 3030: 2951: 2272: 2134: 540: 421: 232: 197: 138: 14406: 14355: 14308: 14231: 14170: 14031: 13677: 13618: 13497: 13436: 13323: 13288: 13199: 13142: 12982: 12947: 12872: 12837: 12722:"Faster charging and more powerful EV batteries boosted by graphene nanotube production" 12608: 12474: 12421: 12348: 12271: 12238: 12195: 12162: 12001: 11848: 11744: 11673: 11436: 11373: 11226:
Ackermann J, Reger E, Jung S, Mohr J, Herbertz S, Seidl K, et al. (February 2024).
11044: 11011: 10960: 10886:
Nißler R, Müller AT, Dohrman F, Kurth L, Li H, Cosio EG, et al. (10 January 2022).
10838: 10762: 10691: 10528: 10511:
Zubkovs V, Wang H, Schuergers N, Weninger A, Glieder A, Cattaneo S, et al. (2022).
10356: 10179: 10163: 10121: 10024: 9989: 9940: 9877: 9861: 9757: 9636: 9620: 9566: 9402: 9336: 9157: 8713: 8668: 8643: 8627: 8516: 8469: 8366: 8301: 7978:"Toward Complete Resolution of DNA/Carbon Nanotube Hybrids by Aqueous Two-Phase Systems" 7930: 7632: 7522: 7467: 7408: 7334: 7290: 7167: 7079: 7015: 6976: 6933: 6882: 6821: 6760: 6672: 6621: 6582: 6529: 6478: 6376: 6235: 6174: 6139: 6089: 6036: 5955: 5853: 5802: 5756: 5675: 5633: 5590: 5548: 5496: 5446: 5438: 5388: 5336: 5293: 5248: 5189: 5076:"Fabrication and Characterization of Three-Dimensional Macroscopic All-Carbon Scaffolds" 5041: 4941: 4898:
Lambin P (1996). "Atomic structure and electronic properties of bent carbon nanotubes".
4876: 4841: 4789: 4729: 4676: 4517: 4358: 4280: 4241: 4204: 4150: 4100: 4046: 4000: 3954: 3941:
Iijima S, Ichihashi T (17 June 1993). "Single-shell carbon nanotubes of 1-nm diameter".
3831: 3788: 3745: 3728:
Tans SJ, Devoret MH, Dai H, Thess A, Smalley RE, Geerligs LJ, et al. (April 1997).
3698: 3642: 3581: 3512: 3457: 3417: 3371: 1904:) to add properties to the CNT. Covalent functionalization of SWNTs will break some C=C 15497: 15271: 14973: 14588: 14570: 14424: 14372: 14339: 14320: 13990: 13820: 13747: 13720: 13696: 13661: 13637: 13602: 13466: 13405: 13216: 13183: 13164: 13107: 13070: 12766: 12486: 12438: 12405: 12368: 11873: 11832: 11769: 11728: 11709: 11579: 11560: 11513: 11401: 11208: 11171:
Metternich JT, Wartmann JA, Sistemich L, Nißler R, Herbertz S, Kruss S (12 July 2023).
11148: 11115: 10987: 10944: 10920: 10887: 10863: 10822: 10789: 10746: 10727: 10667: 10634: 10610: 10577: 10553: 10438: 10405: 10381: 10340: 10339:
Bisker G, Dong J, Park HD, Iverson NM, Ahn J, Nelson JT, et al. (8 January 2016).
10316: 10283: 10259: 10226: 10207: 10081: 10048: 9965: 9924: 9905: 9842: 9722: 9664: 9593: 9550: 9521: 9488: 9364: 9322: 9240: 9204: 9169: 9122: 9001:"RM 8281 – Single-Wall Carbon Nanotubes (Dispersed, Three Length-Resolved Populations)" 8760: 8681: 8552: 8445: 8412: 8326: 8285: 8214: 8181: 8123: 8087: 8068: 8013: 7958: 7707: 7597: 7507:"Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers" 7427: 7392: 7302: 7136: 7111:
Endo M (October 2004). "Applications of carbon nanotubes in the twenty-first century".
6945: 6902: 6868: 6841: 6779: 6746: 6732: 6549: 6498: 6406: 6393: 6360: 6341: 6301: 6274: 6255: 6221: 6194: 6101: 6075: 6023:
Hong S, Myung S (April 2007). "Nanotube electronics: a flexible approach to mobility".
5967: 5941: 5903: 5876: 5822: 5602: 5458: 5400: 5374: 5305: 5208: 5173: 5149: 5124: 5100: 5075: 5003: 4953: 4801: 4775: 4741: 4638: 4472: 4424: 4399: 4112: 4066: 4012: 3966: 3843: 3757: 3662: 3628: 3601: 3567: 3531: 3496: 3477: 3383: 3296: 3291: 3271: 2925: 2904: 2897: 2630: 2620: 2594: 2464: 2405: 2349: 1999: 1895:
Double-walled carbon nanotubes (DWNTs) form a special class of nanotubes because their
1887: 1815: 1760: 1231: 657: 167: 14239: 11357: 10943:
Elizarova S, Chouaib AA, Shaib A, Hill B, Mann F, Brose N, et al. (31 May 2022).
9310: 7821:"Separation of Double-Walled Carbon Nanotubes by Size Exclusion Column Chromatography" 7175: 7052: 6361:"Solvent-induced electrochemistry at an electrically asymmetric carbon Janus particle" 5764: 5556: 5396: 5344: 4267:(February 2008). "Smallest carbon nanotube assigned with atomic resolution accuracy". 4188: 552:. If the tube is instead encircled by a closed armchair path, it is said to be of the 15072: 14968: 14950: 14377: 14178: 13994: 13980: 13877: 13869: 13752: 13701: 13642: 13519:
Liu F, Wagterveld RM, Gebben B, Otto MJ, Biesheuvel PM, Hamelers HV (November 2014).
13458: 13409: 13335: 13255: 13221: 13156: 13111: 13074: 12987: 12969: 12877: 12859: 12620: 12443: 12360: 12317: 12276: 12258: 12200: 12182: 12163:"Carbon Nanotube–Polyurethane Composite Sheets for Flexible Thermoelectric Materials" 12143: 12121: 12021: 12013: 11966: 11927: 11919: 11898:"Near-Infrared Fluorescence Lifetime Imaging of Biomolecules with Carbon Nanotubes**" 11878: 11860: 11813: 11774: 11756: 11713: 11701: 11693: 11654: 11646: 11607: 11599: 11552: 11517: 11505: 11497: 11489: 11450: 11393: 11385: 11338: 11249: 11212: 11200: 11192: 11153: 11135: 11096: 11088: 11049: 11031: 10992: 10974: 10925: 10907: 10868: 10850: 10794: 10776: 10731: 10719: 10711: 10672: 10654: 10615: 10597: 10558: 10540: 10490: 10482: 10443: 10425: 10386: 10368: 10321: 10303: 10264: 10246: 10199: 10191: 10141: 10133: 10086: 10068: 10029: 10011: 9970: 9952: 9909: 9897: 9889: 9834: 9826: 9777: 9769: 9726: 9714: 9706: 9668: 9656: 9648: 9598: 9580: 9526: 9508: 9469: 9461: 9422: 9414: 9356: 9348: 9244: 9208: 9173: 9114: 8794: 8764: 8725: 8685: 8673: 8655: 8608: 8600: 8556: 8544: 8536: 8497: 8489: 8450: 8432: 8386: 8378: 8331: 8313: 8266: 8258: 8219: 8201: 8162: 8127: 8115: 8107: 8060: 8052: 8017: 8005: 7997: 7962: 7950: 7942: 7895: 7887: 7848: 7840: 7801: 7793: 7754: 7746: 7699: 7691: 7652: 7644: 7589: 7581: 7542: 7534: 7487: 7479: 7432: 7373: 7234: 7209: 7128: 6949: 6894: 6833: 6784: 6713: 6635: 6541: 6490: 6410: 6398: 6345: 6306: 6259: 6247: 6186: 6048: 6005: 5971: 5908: 5814: 5768: 5725: 5606: 5508: 5450: 5262: 5213: 5154: 5105: 5053: 4995: 4957: 4912: 4849: 4828: 4698: 4630: 4476: 4464: 4429: 4380: 4327: 4292: 4162: 4058: 3920: 3881: 3847: 3800: 3710: 3685:
Mintmire JW, Dunlap BI, White CT (February 1992). "Are fullerene tubules metallic?".
3654: 3593: 3536: 3469: 3425: 3266: 2959: 2654: 2605: 2393: 2341: 2307: 2115: 2106:
Carbon nanotubes are the strongest and stiffest materials yet discovered in terms of
1948: 621: 539:
In the study of nanotubes, one defines a zigzag path on a graphene-like lattice as a
433: 300: 207: 15377: 13470: 12490: 12372: 11793: 11564: 11405: 10282:
Galassi TV, Jena PV, Shah J, Ao G, Molitor E, Bram Y, et al. (3 October 2018).
10211: 10049:"Chemometric Approaches for Developing Infrared Nanosensors To Image Anthracyclines" 9862:"Near-Infrared Imaging of Serotonin Release from Cells with Fluorescent Nanosensors" 9846: 9686: 9126: 8072: 7601: 7140: 6906: 6845: 6606:"Bolometric infrared photoresponse of suspended single-walled carbon nanotube films" 6553: 6502: 6198: 6105: 5462: 5404: 5309: 5007: 4805: 4642: 4116: 4070: 3666: 3481: 2943:
IBM expected carbon nanotube transistors to be used on Integrated Circuits by 2020.
2629:
SRM 2483 is a soot of single-wall carbon nanotubes used as a reference material for
711:
on the graphene lattice, cutting a strip of the latter along lines perpendicular to
15523: 15239: 15155: 15115: 14827: 14757: 14663: 14367: 14359: 14324: 14312: 14235: 14174: 14035: 13970: 13962: 13861: 13849: 13828: 13800: 13795:
Howard J (April 2013). "Occupational exposure to carbon nanotubes and nanofibers".
13742: 13732: 13691: 13681: 13632: 13622: 13571: 13532: 13501: 13448: 13440: 13397: 13362: 13327: 13292: 13247: 13211: 13203: 13168: 13146: 13097: 13062: 12977: 12959: 12867: 12849: 12612: 12478: 12433: 12425: 12352: 12307: 12266: 12250: 12190: 12174: 12133: 12005: 11958: 11909: 11868: 11852: 11805: 11764: 11748: 11685: 11638: 11626: 11591: 11544: 11481: 11469: 11440: 11377: 11330: 11239: 11184: 11143: 11127: 11080: 11039: 11023: 10982: 10964: 10915: 10899: 10858: 10842: 10784: 10766: 10703: 10662: 10646: 10605: 10589: 10548: 10532: 10474: 10433: 10417: 10376: 10360: 10311: 10295: 10254: 10238: 10183: 10125: 10076: 10060: 10019: 10001: 9960: 9944: 9881: 9816: 9808: 9761: 9698: 9640: 9588: 9570: 9516: 9500: 9453: 9406: 9368: 9340: 9232: 9196: 9161: 9106: 8786: 8752: 8717: 8663: 8647: 8590: 8528: 8481: 8440: 8424: 8370: 8321: 8305: 8250: 8209: 8193: 8154: 8099: 8044: 8032: 7989: 7934: 7879: 7868:"DNA-Controlled Partition of Carbon Nanotubes in Polymer Aqueous Two-Phase Systems" 7832: 7785: 7738: 7711: 7683: 7636: 7573: 7526: 7471: 7422: 7412: 7365: 7338: 7306: 7294: 7201: 7171: 7120: 7091: 7083: 7048: 7019: 6980: 6937: 6886: 6825: 6808: 6774: 6764: 6705: 6676: 6625: 6586: 6533: 6482: 6388: 6380: 6333: 6296: 6286: 6239: 6178: 6143: 6093: 6040: 5997: 5959: 5898: 5888: 5857: 5826: 5806: 5760: 5717: 5679: 5637: 5594: 5552: 5500: 5480: 5442: 5392: 5340: 5297: 5252: 5203: 5193: 5144: 5136: 5095: 5087: 5045: 4987: 4945: 4908: 4880: 4845: 4793: 4745: 4733: 4690: 4622: 4592: 4521: 4456: 4419: 4411: 4372: 4319: 4284: 4245: 4208: 4154: 4104: 4050: 4016: 4004: 3970: 3958: 3912: 3873: 3835: 3792: 3761: 3749: 3702: 3646: 3605: 3585: 3526: 3516: 3461: 3421: 3387: 3375: 3108: 3005: 3001: 2778: 2674: 2650: 2534: 2315: 2234: 2107: 389: 13331: 12387:"Publications on carbon nanotube applications including scaffold microfabrication" 11532: 11468:
Li MK, Riaz A, Wederhake M, Fink K, Saha A, Dehm S, et al. (23 August 2022).
8349:
Tanaka T, Jin H, Miyata Y, Fujii S, Suga H, Naitoh Y, et al. (8 April 2009).
6243: 5641: 5504: 4761:"Theoretical analysis of telescopic oscillations in multi-walled carbon nanotubes" 4158: 3916: 3650: 3555: 3202:
arrangement (armchair nanotube); and a spiral, helical arrangement (chiral tube).
507:
on one edge of the strip would fit in the opposite edge, as the strip is rolled up
44: 15492: 15090: 14978: 14963: 14712: 14668: 14634: 14340:"Discovery of carbon nanotubes in sixth century BC potteries from Keeladi, India" 14039: 14012: 13721:"Assessment of the Carcinogenicity of Carbon Nanotubes in the Respiratory System" 13537: 13520: 12356: 11689: 10707: 10463:"Reversible Control of Carbon Nanotube Aggregation for a Glucose Affinity Sensor" 10299: 10187: 9885: 9644: 9619:
Wu H, Nißler R, Morris V, Herrmann N, Hu P, Jeon SJ, et al. (8 April 2020).
9385:
Heller I, Janssens AM, Männik J, Minot ED, Lemay SG, Dekker C (1 February 2008).
9272: 9165: 8651: 8532: 8485: 7506: 7393:"Carbon nanotubes: properties, synthesis, purification, and medical applications" 6806:(2005). "Near-infrared optical sensors based on single-walled carbon nanotubes". 6359:
Liu AT, Kunai Y, Cottrill AL, Kaplan A, Zhang G, Kim H, et al. (June 2021).
5683: 5280:
Smith BW, Monthioux M, Luzzi DE (1998). "Encapsulated C-60 in carbon nanotubes".
5091: 5074:
Lalwani G, Kwaczala AT, Kanakia S, Patel SC, Judex S, Sitharaman B (March 2013).
4949: 4694: 4212: 4054: 3465: 3261: 2918: 2838: 2805: 2460: 2138: 2111: 2018: 1881: 14083: 13125:
Reibold M, Paufler P, Levin AA, Kochmann W, Pätzke N, Meyer DC (November 2006).
11595: 11172: 10064: 9309:
Cognet L, Tsyboulski DA, Rocha JD, Doyle CD, Tour JM, Weisman RB (8 June 2007).
8103: 7977: 7230:
Nanomedicine Design of Particles, Sensors, Motors, Implants, Robots, and Devices
6984: 4884: 4826:
Chernozatonskii LA (1992). "Carbon nanotube connectors and planar jungle gyms".
3796: 3589: 588:
will correspond to the circumference of the cylinder that went through the atom
15533: 15502: 15455: 15407: 15338: 15244: 15110: 15052: 15030: 14809: 14618: 14582: 14363: 14125: 13686: 13627: 13505: 12254: 12138: 11962: 11856: 11334: 11131: 10846: 10823:"Remote near infrared identification of pathogens with multiplexed nanosensors" 10650: 9141: 8721: 7617:"Enrichment of Single-Walled Carbon Nanotubes by Diameter in Density Gradients" 7087: 7024: 6999: 6803: 6384: 6279:
Proceedings of the National Academy of Sciences of the United States of America
6097: 5861: 3706: 3084: 2993: 2985: 2937: 2577: 2425: 2060:
Many properties of single-walled carbon nanotubes depend significantly on the (
1987: 1980: 1871: 1349:
also in picometres. (These formulas are only approximate, especially for small
429: 288: 202: 14444: 13966: 13588: 13251: 13066: 12529: 12482: 12312: 12295: 11470:"Electroluminescence from Single-Walled Carbon Nanotubes with Quantum Defects" 11114:
Kim M, Chen C, Wang P, Mulvey JJ, Yang Y, Wun C, et al. (17 March 2022).
10421: 10006: 9702: 9200: 8790: 6941: 6429:"MIT Engineers Have Discovered a Completely New Way of Generating Electricity" 6147: 5963: 5893: 5528:"Carbon nanotube structures: Molecular dynamics simulation at realistic limit" 2279: 15571: 15476: 15397: 15276: 15045: 14998: 14920: 14842: 14696: 14595: 14561: 14430: 13873: 13833: 13805: 13575: 13242:
Lienig J, Thiele M (2018). "Mitigating Electromigration in Physical Design".
12973: 12863: 12321: 12262: 12186: 12147: 12017: 11923: 11864: 11833:"Exfoliated near infrared fluorescent silicate nanosheets for (bio)photonics" 11817: 11809: 11760: 11697: 11650: 11603: 11556: 11493: 11454: 11389: 11253: 11196: 11139: 11092: 11035: 10978: 10911: 10854: 10780: 10715: 10658: 10601: 10544: 10486: 10429: 10372: 10307: 10250: 10195: 10137: 10072: 10015: 9956: 9893: 9830: 9773: 9741: 9710: 9652: 9584: 9512: 9465: 9441: 9418: 9386: 9352: 9118: 9092:"Chemically Functionalized Single-Walled Carbon Nanotubes as Ammonia Sensors" 8659: 8604: 8540: 8493: 8436: 8382: 8350: 8317: 8262: 8238: 8205: 8166: 8111: 8056: 8001: 7946: 7891: 7867: 7844: 7820: 7797: 7773: 7750: 7726: 7695: 7648: 7616: 7585: 7561: 7538: 7483: 7451: 3178: 3136: 3096: 2885:
Using carbon nanotubes as a scaffold for diverse microfabrication techniques.
2834: 2711:
The surface of carbon nanotubes can be chemically modified by coating spinel
2552: 2206: 2178: 2006: 1718: 1706: 989:). This operation corresponds to mirroring the unrolled strip about the line 915: 903: 891: 495: 425: 409: 401: 397: 255: 246: 182: 133: 60: 13865: 13737: 13444: 11642: 11548: 11485: 11381: 11069:"Optical Nanosensors for Real-Time Feedback on Insulin Secretion by β-Cells" 10969: 10745:
Shumeiko V, Paltiel Y, Bisker G, Hayouka Z, Shoseyov O (14 September 2020).
10593: 10242: 9621:"Monitoring Plant Health with Near-Infrared Fluorescent H 2 O 2 Nanosensors" 9575: 9344: 8517:"Prospects of Fluorescent Single-Chirality Carbon Nanotube-Based Biosensors" 8048: 7417: 6769: 6630: 6605: 6537: 6486: 6291: 6182: 3521: 15445: 15412: 15180: 15095: 15008: 14832: 14381: 13881: 13756: 13705: 13646: 13521:"Carbon nanotube yarns as strong flexible conductive capacitive electrodes" 13462: 13401: 13339: 13225: 13160: 12991: 12881: 12624: 12532: 12447: 12364: 12280: 12204: 12178: 12120:
Kim MJ, Kim H, Kim J, Lee YJ, Lee W, Hwang JY, et al. (28 June 2024).
12025: 12009: 11970: 11931: 11914: 11897: 11896:
Sistemich L, Galonska P, Stegemann J, Ackermann J, Kruss S (12 June 2023).
11882: 11778: 11705: 11658: 11611: 11509: 11397: 11342: 11244: 11227: 11204: 11157: 11100: 11084: 11053: 11027: 10996: 10929: 10903: 10872: 10798: 10723: 10676: 10619: 10562: 10494: 10478: 10447: 10390: 10325: 10268: 10203: 10145: 10105: 10090: 10033: 9974: 9948: 9901: 9838: 9812: 9781: 9718: 9660: 9602: 9530: 9473: 9426: 9360: 9236: 8729: 8677: 8612: 8595: 8578: 8548: 8501: 8454: 8428: 8390: 8335: 8270: 8223: 8197: 8119: 8064: 8009: 7954: 7938: 7899: 7852: 7805: 7758: 7703: 7687: 7656: 7593: 7546: 7530: 7491: 7436: 7377: 7213: 7132: 7124: 6898: 6837: 6788: 6717: 6659: 6639: 6569: 6545: 6494: 6402: 6310: 6251: 6190: 6052: 6009: 5912: 5818: 5810: 5772: 5729: 5721: 5512: 5454: 5266: 5217: 5158: 5125:"Porous three-dimensional carbon nanotube scaffolds for tissue engineering" 5109: 5057: 4999: 4702: 4634: 4468: 4460: 4433: 4384: 4331: 4296: 4264: 4228: 4166: 4108: 3924: 3885: 3804: 3714: 3658: 3597: 3540: 3473: 3146: 3037:. Apart from its strength and flexibility, the main advantage is making an 2963: 2933: 2857:
Applications of nanotubes in development in academia and industry include:
2841:
leave no residue after removal and can stay sticky in extreme temperatures.
2719: 2712: 2511:
ATPE uses two water-soluble polymers such as polyethylene glycol (PEG) and
2345: 1937: 1819: 1694: 1682: 927: 440: 158: 13102: 13089: 12964: 9504: 9387:"Identifying the Mechanism of Biosensing with Carbon Nanotube Transistors" 9068: 9038: 8887: 8854: 8824: 6275:"Superconducting characteristics of 4-A carbon nanotube-zeolite composite" 6044: 5257: 5232: 4062: 2495:
extraction (ATPE). These methods have been reviewed in multiple articles.
835:(exclusive). It can be verified that every nanotube has exactly one pair ( 15551: 15528: 15435: 15175: 15170: 15062: 14940: 14925: 14915: 14794: 14773: 14516: 12854: 11188: 10689: 10046: 9821: 7993: 7279:
Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films
7205: 6873: 6730: 6226: 5379: 4973:"The structure of junctions between carbon nanotubes and graphene shells" 4900: 3633: 3572: 3311: 2516: 2452: 2296: 2045: 1905: 413: 172: 14858: 13207: 11945:
Kruss S, Hilmer AJ, Zhang J, Reuel NF, Mu B, Strano MS (December 2013).
10364: 10161: 8470:"Sensing with Chirality-Pure Near-Infrared Fluorescent Carbon Nanotubes" 8088:"Chirality Pure Carbon Nanotubes: Growth, Sorting, and Characterization" 5598: 5140: 3358:
Iijima S (7 November 1991). "Helical microtubules of graphitic carbon".
2715:
by hydrothermal synthesis and can be used for water oxidation purposes.
2165: 883:
horizontal, the latter is the tilt of the strip away from the vertical.
511: 388:
Carbon nanotubes can exhibit remarkable properties, such as exceptional
15135: 15020: 14459: 14013:"Who should be given the credit for the discovery of carbon nanotubes?" 13975: 13366: 11580:"Carbon Nanomaterials for Biological Imaging and Nanomedicinal Therapy" 10536: 10512: 8309: 8158: 7369: 5198: 4991: 4189:"From mesoscale to nanoscale mechanics in single-wall carbon nanotubes" 3558:(May 2000). "Unusually high thermal conductivity of carbon nanotubes". 3306: 3251: 3234: 3057:
material. Pyrhönen et al. (2015) have built a motor using CNT winding.
3017: 2823: 2697: 2670: 2504: 2472: 2370: 2366: 2152:
It was reported in 2020, that CNT-filled polymer nanocomposites with 4
1847: 970: 13453: 12703:"IBM Expects Nanotube Transistor Computer Chips Ready Soon After 2020" 12616: 12429: 11752: 11501: 11445: 11358:"Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes" 10771: 9922: 9765: 9457: 9410: 9110: 8756: 8374: 8254: 7883: 7836: 7789: 7742: 7640: 7577: 7475: 7342: 7298: 7096: 6890: 6709: 6680: 6590: 6273:
Lortz R, Zhang Q, Shi W, Ye JT, Ye JT, Qiu C, et al. (May 2009).
6001: 5049: 4797: 4596: 4525: 4415: 4376: 4323: 4288: 4249: 3877: 1958: 997:
that makes an angle of 30 degrees clockwise from the direction of the
404:
of the bonds between carbon atoms. Some SWCNT structures exhibit high
283: 15165: 14983: 14728: 14546: 14440:
Learning module for Bandstructure of Carbon Nanotubes and Nanoribbons
14316: 13296: 10578:"A carbon nanotube reporter of microRNA hybridization events in vivo" 10129: 8180:
Wei X, Li S, Wang W, Zhang X, Zhou W, Xie S, et al. (May 2022).
6829: 6337: 4737: 4626: 4548:
International Journal of Emerging Technology and Advanced Engineering
4008: 3962: 3753: 3379: 2955: 2830: 2809: 2677:
analysis. ISO/TS 10798 is also valid for multiwall carbon nanotubes.
2590: 2547: 2374: 2174: 2069: 2048:
per unit of nominal area as compared to other carbon nanostructures.
1991: 1822:. Other small molecule carbon nanotubes have been synthesized since. 1787: 1225: 946: 367: 348: 119: 14439: 13275:
Dekker C (May 1999). "Carbon Nanotubes as Molecular Quantum Wires".
13151: 13126: 11316: 11173:"Near-Infrared Fluorescent Biosensors Based on Covalent DNA Anchors" 11067:
Ehrlich R, Hendler-Neumark A, Wulf V, Amir D, Bisker G (July 2021).
5743:
Collins PG, Avouris P (December 2000). "Nanotubes for electronics".
3117:
Registration, Evaluation, Authorization and Restriction of Chemicals
1952: 1928: 15082: 15067: 14988: 14837: 14678: 14541: 14535: 14337: 14124:(Report). World Technology Evaluation Center (WTEC). Archived from 13956: 12386: 12095:"Nanotube solution for medical devices approved to enter EU market" 11895: 10633:
Harvey JD, Baker HA, Ortiz MV, Kentsis A, Heller DA (24 May 2019).
8579:"High Sensitivity Near-Infrared Imaging of Fluorescent Nanosensors" 7256:"The state-of-the-art science and applications of carbon nanotubes" 7254:
Takeuchi K, Hayashi T, Kim YA, Fujisawa K, Endo M (February 2014).
6080: 3898: 3230: 3162: 2701: 2520:
the partition of CNTs species into the two phases can be adjusted.
2456: 2123: 2077: 2041: 2037: 2033: 2028: 1835: 729:,0), the result is a zigzag nanotube, with closed zigzag paths of 2 705:, one can reverse this theoretical operation by drawing the vector 532: 371: 347:) is a tube made of carbon with a diameter in the nanometre range ( 260: 14294: 13961:(Thesis). Springer Theses. Springer Heidelberg. pp. xx, 208. 13422: 12835: 12639:"Legendary Swords' Sharpness, Strength From Nanotubes, Study Says" 10227:"A Carbon Nanotube Optical Reporter Maps Endolysosomal Lipid Flux" 9987: 9925:"High-throughput evolution of near-infrared serotonin nanosensors" 9327: 8031:
Li H, Gordeev G, Garrity O, Reich S, Flavel BS (28 January 2019).
7912: 6751: 5946: 5925: 5301: 4780: 4503: 4398:
Jasti R, Bhattacharjee J, Neaton JB, Bertozzi CR (December 2008).
3839: 1932:
Transmission electron microscope image of carbon nanotube junction
295: 15307: 14958: 14789: 14510: 12236: 11170: 11009: 8411:
Ackermann J, Metternich JT, Herbertz S, Kruss S (25 April 2022).
5122: 4130:
Zhao X, Liu Y, Inoue S, Suzuki T, Jones RO, Ando Y (March 2004).
3316: 2967: 2928:, carbon nanotubes have been used as scaffolding for bone growth. 2799: 2739: 2705: 2512: 1800: 1543:); a function that is available in many programming languages as 1016: 909:
Chiral nanotube of the (1,3) type, mirror image of the (3,1) type
13244:
Fundamentals of Electromigration-Aware Integrated Circuit Design
12160: 11672:
Salem DP, Gong X, Liu AT, Akombi K, Strano MS (7 January 2020).
11355: 8410: 8086:
Yang F, Wang M, Zhang D, Yang J, Zheng M, Li Y (11 March 2020).
7039:
Thostenson E, Li C, Chou T (2005). "Nanocomposites in context".
5875:
Okolo C, Rafique R, Iqbal SS, Saharudin MS, Inam F (June 2020).
5655:
Liu Q, Ren W, Chen ZG, Yin L, Li F, Cong H, et al. (2009).
4397: 2278:
Because of the role of the π-electron system in determining the
741:), one obtains an armchair tube, with closed armchair paths of 4 13921:"REACH Registration Completed for Single-Wall Carbon Nanotubes" 13379: 11830: 11267: 11010:
Gerstman E, Hendler-Neumark A, Wulf V, Bisker G (10 May 2023).
7818: 7390: 6211: 5027: 3120: 2962:; electrically conductive lining coatings for tanks and pipes; 2947: 2421: 2420:
scattering, which in turn increases the relaxation rate of the
2417: 2410: 2288: 2226: 1843: 1839: 417: 13352: 13309: 13181: 13055:
The International Journal of Advanced Manufacturing Technology
12531: 11066: 9859: 9189:
Journal of Inorganic and Organometallic Polymers and Materials
6919: 6455:, Tatiana Makarova and Fernando Palacio (eds.), Elsevier, 2006 3206:
layers of ordered carbon atoms and a distinct inner core...."
3025:
logic gate with both p- and n-type FETs in the same molecule.
843:) that satisfies those conditions, which is called the tube's 477: 13551: 11292: 10510: 9142:"Intrinsic hydrophilic character of carbon nanotube networks" 7559: 7276: 4612:"Gram-scale CCVD synthesis of double-walled carbon nanotubes" 4541:"A review on Carbon nano-tubes – A new era of nanotechnology" 3238: 2813: 2759: 2571:
Computer simulated microstructures with agglomeration regions
2126:
when placed under compressive, torsional, or bending stress.
2014: 1814:
carbon nanotube can be considered to be the organic compound
32: 14152:"Filamentous growth of carbon through benzene decomposition" 10744: 10164:"Reconfigurable Carbon Nanotube Multiplexed Sensing Devices" 8576: 7725:
Flavel BS, Kappes MM, Krupke R, Hennrich F (23 April 2013).
7065: 7000:"Thermal conductivity of carbon nanotube networks: a review" 5172:
Noyce SG, Vanfleet RR, Craighead HG, Davis RC (March 2019).
3083:
image of bundles of multiwalled carbon nanotube piercing an
2730: 861:(that is, the circumference of the nanotube), and the angle 465: 13124: 12059:"Carbon nanotube tape stays sticky in extreme temperatures" 11228:"Smart Slides for Optical Monitoring of Cellular Processes" 9139: 6566: 6065: 5657:"Semiconducting properties of cup-stacked carbon nanotubes" 5481:"Colossal paramagnetic moments in metallic carbon nanotori" 5230: 5171: 5073: 3034: 2914: 2388:
Thermal transport in nanostructures § Carbon nanotubes
1909: 572:
will end up on opposite edges of the strip, over two atoms
68: 14259:
Proceedings of the Academy of Sciences of the USSR. Metals
13127:"Materials: carbon nanotubes in an ancient Damascus sabre" 12554:. ReinforcedPlastics.com. 19 February 2009. Archived from 11983: 9308: 9140:
Stando G, Łukawski D, Lisiecki F, Janas D (January 2019).
7976:
Lyu M, Meany B, Yang J, Li Y, Zheng M (26 December 2019).
7724: 7253: 6515: 6464: 5874: 4970: 4609: 3986: 3899:
Sharma M, Alessandro P, Cheriyamundath S, Lopus M (2024).
3817: 3730:"Individual single-wall carbon nanotubes as quantum wires" 1975: 13847: 13821:"ccupational exposure to carbon nanotubes and nanofibers" 13659: 13600: 11726: 10942: 9439: 9384: 9186: 8625: 5784: 5782: 5736: 3863: 3150: 2989: 2362: 2094: 448: 444: 355:. Two broad classes of carbon nanotubes are recognized: 11791: 10885: 10224: 9740:
Jin H, Heller DA, Kim JH, Strano MS (10 December 2008).
9089: 8698: 5788: 4971:
Harris PJ, Suarez-Martinez I, Marks NA (December 2016).
2013:
In theory, a nanotorus is a carbon nanotube bent into a
921:
Nanotube of the (2,2) type, the narrowest "armchair" one
14445:
Selection of free-download articles on carbon nanotubes
13518: 10820: 10632: 10403: 9105:(51). Washington, D.C.: ACS Publications: 19717–19720. 8283: 7319: 5839: 3439: 3437: 3435: 2966:
with improved heat and oil aging stability; conductive
2774: 452:
work to characterise and find applications for SWCNTs.
14217: 12726:
Electric & Hybrid Vehicle Technology International
12552:"Pirahna USV built using nano-enhanced carbon prepreg" 11225: 10404:
Kim J, Campbell AS, de Ávila BE, Wang J (April 2019).
9618: 8514: 7505:
Nish A, Hwang JY, Doig J, Nicholas RJ (October 2007).
6731:
Kevin Welsher, Sarah P. Sherlock, Hongjie Dai (2011).
6603: 6358: 5779: 5360:"Dynamic friction force in a carbon peapod oscillator" 4610:
Flahaut E, Bacsa R, Peigney A, Laurent C (June 2003).
4089:
Critical Reviews in Solid State and Materials Sciences
3494: 2878:
Utilizing carbon nanotubes as the channel material of
933:
Nanotube of the (3,0) type, the narrowest "zigzag" one
685:
are integers. And, conversely, each pair of integers (
640:
be the vector from C1 to C5. Then, for any other atom
12506:"Jack Andraka, the Teen Prodigy of Pancreatic Cancer" 12403: 11944: 11625:
Dong J, Salem DP, Sun JH, Strano MS (24 April 2018).
11578:
Hong G, Diao S, Antaris AL, Dai H (14 October 2015).
11419:
Xu B, Wu X, Kim M, Wang P, Wang Y (28 January 2021).
10341:"Protein-targeted corona phase molecular recognition" 10338: 9794: 9548: 9486: 8515:
Nißler R, Ackermann J, Ma C, Kruss S (19 July 2022).
8467: 8284:
Liu H, Nishide D, Tanaka T, Kataura H (10 May 2011).
8030: 7504: 6604:
Itkis ME, Borondics F, Yu A, Haddon RC (April 2006).
5576: 4225: 3101:
National Institute for Occupational Safety and Health
3093:
National Institute for Occupational Safety and Health
2133:
observation of radial elasticity suggested that even
1675:
Tube types that are "degenerate" for being too narrow
1580: 1397: 1339:{\displaystyle d\approx 78.3{\sqrt {((n+m)^{2}-nm)}}} 1285: 1254: 1234: 1102: 27:
Allotropes of carbon with a cylindrical nanostructure
12946:
Liu G, Wang H, Ren T, Chen Y, Liu S (January 2024).
12334: 12220:"Applications of nanomaterials in highway pavements" 10575: 10103: 8942:"SRM 2483 – Single-Wall Carbon Nanotubes (Raw Soot)" 8348: 3774: 3618: 3432: 2718:
In addition, the surface of carbon nanotubes can be
1920:
between shells, and its value is about 1.5 nN.
1834:
of CNTs was achieved in 2013, grown on a conductive
1739:
are too small, the structure described by the pair (
432:(including nanomedicine), and other applications of 13589:
Carbon Nanotube Yarn Rotates Electric Motors at LUT
13483: 12594: 12226:(2(2), 23–29) – via Atatürk University Press. 11533:"Near-infrared fluorophores for biomedical imaging" 11467: 9257: 9005:
U.S. National Institute of Standards and Technology
8946:
U.S. National Institute of Standards and Technology
6962: 6652: 5706: 5525: 5279: 4715: 4032: 3727: 3684: 14010: 11671: 11624: 11577: 9739: 9684: 9221: 8776: 8774: 8572: 8570: 8568: 8566: 8406: 8404: 8402: 8400: 6858: 6802:Paul W. Barone, Seunghyun Baik, Daniel A. Heller, 6160: 6121:"Electronic and transport properties of nanotubes" 6118: 4758: 4309: 4129: 3443: 3053:. Also, CNT-based yarns could replace copper as a 2040:-like. The fundamental advantage of an integrated 1648: 1512: 1338: 1268: 1240: 1213: 1003:vector (that is, with the direction of the vector 14198: 14149: 13718: 13006:"BÜFA releases line of novel conductive gelcoats" 12404:Belkin A, Hubler A, Bezryadin A (February 2015). 11113: 10281: 8742: 8239:"Enrichment of Single Chirality Carbon Nanotubes" 8085: 7614: 5116: 5064: 4581: 4491:"Densest array of carbon nanotubes grown to date" 4446: 4262: 3553: 3403: 2852: 2273:conductance of a single ballistic quantum channel 1863:uses single-wall or multi-wall in its documents. 15569: 12460: 12293: 11947:"Carbon nanotubes as optical biomedical sensors" 10635:"HIV Detection via a Carbon Nanotube RNA Sensor" 7771: 7450:Chen F, Wang B, Chen Y, Li LJ (1 October 2007). 7187: 7185: 7038: 5919: 5478: 5129:Journal of Biomedical Materials Research. Part A 5069: 5067: 3859: 3857: 3229:In 2020, during an archaeological excavation of 2973: 2527: 2396:along the tube, exhibiting a property known as " 2322:monatomic vacancies induce magnetic properties. 1777:high-resolution transmission electron microscopy 1757:high-resolution transmission electron microscopy 940: 817:≥ 0; that is, where the direction of the vector 14288: 10949:Proceedings of the National Academy of Sciences 10816: 10814: 10812: 10810: 10808: 10506: 10504: 10406:"Wearable biosensors for healthcare monitoring" 9555:Proceedings of the National Academy of Sciences 9380: 9378: 8783:Metrology and Standardization of Nanotechnology 8771: 8563: 8397: 7615:Arnold MS, Stupp SI, Hersam MC (1 April 2005). 7226: 6738:Proceedings of the National Academy of Sciences 6324:Bockrath M (1 March 2006). "The weakest link". 6272: 4862: 4825: 4819: 3940: 2950:have found use in long lasting, faster charged 1953:three-dimensional carbon nanotube architectures 13554:International Review of Electrical Engineering 12945: 12659: 11530: 9544: 9542: 9540: 9065:International Organization for Standardization 9035:International Organization for Standardization 8920:National Institute of Standards and Technology 8907: 8905: 8884:International Organization for Standardization 8851:International Organization for Standardization 8820:International Organization for Standardization 8413:"Biosensing with Fluorescent Carbon Nanotubes" 8179: 7975: 7865: 7772:Huang X, Mclean RS, Zheng M (1 October 2005). 7449: 6422: 6420: 5742: 5479:Liu L, Guo GY, Jayanthi CS, Wu SY (May 2002). 4086: 2833:") is often commercially sold as double-sided 2691:Selective chemistry of single-walled nanotubes 2237:. Carbon nanotubes are thus being explored as 777:). It follows that many possible positions of 15323: 14874: 14475: 13954: 12748:"Graphene Nanotubes Make Polyamide Paintable" 11531:Hong G, Antaris AL, Dai H (10 January 2017). 7182: 5654: 5357: 4132:"Smallest carbon nanotube is 3 a in diameter" 3854: 3165:. Monthioux and Kuznetsov mentioned in their 2785: 2619:respectively, coupled with energy dispersive 1923: 1070: 320: 48:Rotating single-walled zigzag carbon nanotube 14059: 13525:Colloid and Interface Science Communications 13241: 12294:Nechausov S, Miriyev A (15 September 2024). 12119: 10805: 10501: 10460: 9680: 9678: 9375: 7260:Nanosystems: Physics, Chemistry, Mathematics 6997: 5983: 5981: 5021: 4662: 4344: 4338: 2798:, using CNT technology in a number of their 2647:inductively coupled plasma mass spectroscopy 2173:Unlike graphene, which is a two-dimensional 14112: 14110: 14108: 14106: 14104: 13950: 13948: 13946: 13237: 13235: 11418: 9614: 9612: 9537: 8902: 7669: 7147: 7104: 6417: 5619: 5474: 5472: 5174:"High surface-area carbon microcantilevers" 4186: 3680: 3678: 3676: 2936:) baseball bats, golf clubs, car parts, or 2392:All nanotubes are expected to be very good 544:the tube. One says that the tube is of the 15330: 15316: 15290: 14881: 14867: 14482: 14468: 14275: 14150:Oberlin A, Endo M, Koyama T (March 1976). 14006: 14004: 13927:. PCI Mag. 16 October 2016. Archived from 12719: 12065:. American Chemical Society. 10 July 2019. 11268:"Smart Nanotubes - Gas sensor development" 10157: 10155: 8236: 7866:Ao G, Khripin CY, Zheng M (23 July 2014). 7355: 6653:Star A, Lu Y, Bradley K, Grüner G (2004). 5702: 5700: 5322: 4082: 4080: 3982: 3980: 3936: 3934: 3214:at IBM of methods to specifically produce 3112:end-product, did not exert such toxicity. 3107:(RELs) of 1 μg/m for carbon nanotubes and 3067:Health and safety hazards of nanomaterials 2980:Potential applications of carbon nanotubes 2907:has also built a 54' maritime vessel, the 2533:sensing schemes, enhanced sensitivity of 2177:, carbon nanotubes are either metallic or 2137:can deform two adjacent nanotubes. Later, 2027:are a relatively new hybrid that combines 1842:surface that was coated with co-catalysts 1724:Possibly degenerate chiral tube type (2,1) 1461: 1457: 1405: 1401: 374:sheet rolled up to form a hollow cylinder. 327: 313: 14888: 14371: 14011:Monthioux M, Kuznetsov VL (August 2006). 13974: 13832: 13804: 13799:. No. 65. DHHS (NIOSH) Publication. 13746: 13736: 13695: 13685: 13636: 13626: 13565: 13536: 13452: 13215: 13150: 13101: 13087: 12981: 12963: 12896:"Graphene goes industrial without a bang" 12871: 12853: 12662:"Nanotechnology: A Guide to Nano-Objects" 12437: 12311: 12270: 12194: 12137: 12079:. nanoScience instruments. Archived from 11913: 11872: 11768: 11444: 11243: 11147: 11043: 10986: 10968: 10919: 10862: 10788: 10770: 10666: 10609: 10552: 10461:Barone PW, Strano MS (11 December 2006). 10437: 10380: 10315: 10258: 10080: 10023: 10005: 9964: 9820: 9675: 9592: 9574: 9520: 9326: 8780: 8667: 8594: 8444: 8325: 8213: 7426: 7416: 7194:Journal of Nanoscience and Nanotechnology 7095: 7023: 6872: 6778: 6768: 6750: 6687: 6629: 6392: 6300: 6290: 6225: 6079: 6022: 5978: 5945: 5902: 5892: 5378: 5256: 5224: 5207: 5197: 5148: 5099: 4779: 4684: 4585:The Journal of Physical Chemistry Letters 4559: 4423: 4366: 3632: 3571: 3530: 3520: 3353: 3351: 3349: 3004:reliability concerns that plague today's 2479:Vertically aligned carbon nanotube arrays 2471:as a catalyst. These catalysts provide a 2314:quoted as saying, "This allows you to do 2090:Mechanical properties of carbon nanotubes 1435: 14489: 14101: 13943: 13232: 12043:. European Plastics News. Archived from 11177:Journal of the American Chemical Society 9609: 9446:Journal of the American Chemical Society 8702:Journal of Colloid and Interface Science 8243:Journal of the American Chemical Society 7982:Journal of the American Chemical Society 7872:Journal of the American Chemical Society 7566:Journal of the American Chemical Society 7191: 6697:Journal of the American Chemical Society 6655:"Nanotube Optoelectronic Memory Devices" 6323: 5469: 4404:Journal of the American Chemical Society 4219: 4028: 4026: 3673: 3074: 2880:carbon nanotube field-effect transistors 2758: 2729: 2680: 2566: 2164: 2093: 1974: 1957: 1927: 1870: 1786: 1015:). The only types of nanotubes that are 510: 494: 43: 40:image of a single-walled carbon nanotube 31: 14425:Nanocarbon: From Graphene to Buckyballs 14252: 14001: 13388:Nanoparticles for Flexible Batteries". 12568: 12328: 11902:Angewandte Chemie International Edition 10892:Angewandte Chemie International Edition 10467:Angewandte Chemie International Edition 10152: 8874: 8872: 8417:Angewandte Chemie International Edition 6724: 6426: 5928:"Quantum Transport in Carbon Nanotubes" 5697: 4077: 3977: 3931: 3811: 3399: 3397: 3159:Journal of Physical Chemistry Of Russia 2822:synthesizes carbon nanotubes to create 2249:of a single-walled carbon nanotube is 2 1114: 1083:one can also compute the circumference 624:vectors that connect the graphene atom 483:Armchair nanotube, configuration (4, 4) 14: 15570: 15146:Differential technological development 14116: 13913: 13794: 13719:Barbarino M, Giordano A (March 2021). 13274: 13052: 12032: 11016:ACS Applied Materials & Interfaces 8785:. Wiley-VCH Verlag. pp. 151–174. 6795: 6119:Charlier JC, Blase X, Roche S (2007). 5987: 5526:Huhtala M, Kuronen A, Kaski K (2002). 5424: 5165: 4964: 4897: 4891: 3357: 3346: 3323:Optical properties of carbon nanotubes 2332:Optical properties of carbon nanotubes 1875:Triple-walled armchair carbon nanotube 455: 15603:Discovery and invention controversies 15311: 14862: 14463: 12745: 12588: 12038: 8914:"Carbon Nanotube Reference Materials" 8911: 8140: 6913: 4856: 4303: 4023: 3768: 2181:along the tubular axis. For a given ( 1970: 1712:Degenerate "armchair" tube type (1,1) 1667: 1531:) is the clockwise angle between the 634:can be the vector from C1 to C3, and 471:Zigzag nanotube, configuration (8, 0) 14255:Izvestiya Akademii Nauk SSSR Metally 14188:from the original on 9 October 2022. 14053: 14049:from the original on 9 October 2022. 12700: 12217: 8869: 7227:Schulz MJ, Shanov VN, Yun Y (2009). 7153: 7110: 6509: 6458: 5414:from the original on 9 October 2022. 5017:from the original on 9 October 2022. 4815:from the original on 9 October 2022. 4652:from the original on 9 October 2022. 4571:from the original on 9 October 2022. 4483: 4176:from the original on 9 October 2022. 3547: 3394: 3060: 2540: 1861:International Standards Organization 1087:, which is the length of the vector 600:, which correspond to the same atom 15235:Future-oriented technology analysis 11798:The Journal of Physical Chemistry C 7670:Green AA, Hersam MC (17 May 2011). 6852: 4538: 3721: 3123:, which submitted the application. 2769:measurement of electronic changes, 2233:, current densities are limited by 2068:) type, and this dependence is non- 1818:, which was synthesized in 2008 by 1700:Degenerate "zigzag" tube type (2,0) 1688:Degenerate "zigzag" tube type (1,0) 733:atoms. If it is applied to a pair ( 24: 15337: 14994:High-temperature superconductivity 13090:"Sharpest cut from nanotube sword" 12503: 12041:"Amroy aims to become nano-leader" 4925: 4919: 3612: 3071:Toxicology of carbon nanomaterials 2662:Canadian National Research Council 2600:For single-wall carbon nanotubes, 1662: 1470: 1467: 1464: 693:) defines a possible position for 25: 15619: 14392: 7053:10.1016/j.compscitech.2004.11.003 7041:Composites Science and Technology 5765:10.1038/scientificamerican1200-62 5358:Su H, Goddard WA, Zhao Y (2006). 4759:Zavalniuk V, Marchenko S (2011). 3282:Carbon nanotubes in photovoltaics 2992:. Carbon nanotubes were found in 2280:electronic properties of graphene 1659:which must evaluate to integers. 897:Chiral nanotube of the (3,1) type 548:or configuration, or simply is a 15376: 15289: 15106:Self-reconfiguring modular robot 14399: 14331: 14269: 14246: 14211: 14192: 14143: 13888: 13841: 13813: 13788: 13763: 13712: 13653: 13594: 13582: 13545: 13512: 13477: 13416: 13373: 13355:Journal of Materials Chemistry A 13346: 13303: 13268: 13175: 13118: 13081: 13046: 13024: 12998: 12939: 12914: 12888: 12829: 12804: 12779: 12739: 12713: 12694: 12653: 12631: 12562: 12544: 12523: 12497: 12454: 12397: 12379: 12287: 12230: 12211: 12154: 12113: 12087: 12069: 12051: 11977: 11938: 11889: 11824: 11785: 11720: 11665: 11618: 11571: 11524: 11461: 11412: 11349: 11310: 11285: 11260: 11219: 11164: 11107: 11060: 11003: 10936: 10879: 10738: 10683: 10626: 10569: 10454: 10397: 10332: 10275: 10218: 10097: 10040: 9981: 9916: 9853: 9788: 9733: 9480: 9433: 9302: 9277: 9251: 9215: 9180: 9133: 9083: 9053: 9023: 8993: 8964: 8934: 8839: 8807: 8736: 8692: 8619: 8508: 8461: 8342: 8277: 8237:Zheng M, Semke ED (1 May 2007). 8230: 8173: 8134: 8079: 8024: 7969: 7906: 7859: 6922:Journal of Nanoparticle Research 5233:"A novel hybrid carbon material" 4493:. KurzweilAI. 27 September 2013. 3016:(FET). The first intermolecular 2639:prompt gamma activation analysis 2613:transmission electron microscopy 2597:available for carbon nanotubes. 2131:transmission electron microscope 2102:image of carbon nanotube bundles 1717: 1705: 1693: 1681: 1380:are related to the type indices 926: 914: 902: 890: 490: 476: 464: 366:) have diameters around 0.5–2.0 294: 282: 67: 14517:Lonsdaleite (hexagonal diamond) 12926:www.european-rubber-journal.com 12463:Environmental Chemistry Letters 7812: 7765: 7718: 7663: 7608: 7553: 7498: 7443: 7384: 7349: 7313: 7270: 7247: 7220: 7059: 7032: 6998:Kumanek B, Janas D (May 2019). 6991: 6956: 6646: 6597: 6560: 6446: 6352: 6317: 6266: 6205: 6154: 6112: 6059: 6016: 5868: 5833: 5648: 5613: 5570: 5536:Computer Physics Communications 5519: 5418: 5351: 5316: 5273: 4752: 4709: 4656: 4603: 4575: 4532: 4497: 4440: 4391: 4256: 4180: 4123: 3892: 2909:Piranha Unmanned Surface Vessel 2743:applications, and many others. 2725: 2489: 2197:, the nanotube is metallic; if 1866: 1614: 1613: 580:of the graphene. The line from 55:Part of a series of articles on 14999:High-temperature superfluidity 13390:Advanced Engineering Materials 13246:. Springer. pp. 138–140. 12720:Billington J (4 August 2022). 12660:Gullapalli S, Wong MS (2011). 11951:Advanced Drug Delivery Reviews 10288:Science Translational Medicine 3488: 3103:has determined non-regulatory 2917:is using carbon nanotubes for 2853:Applications under development 2794:have been in partnership with 2633:, and was characterized using 2413:and about 750 °C in air. 2354: 1454: 1412: 1331: 1313: 1300: 1297: 1206: 1188: 1175: 1172: 1159: 1124: 360:Single-walled carbon nanotubes 13: 1: 15262:Technology in science fiction 14240:10.1016/S0008-6223(99)00199-2 14076:Journal of Physical Chemistry 13827:. No. 65. 14 July 2020. 13825:Current Intelligence Bulletin 13797:Current Intelligence Bulletin 13666:Particle and Fibre Toxicology 13607:Particle and Fibre Toxicology 13332:10.1103/PhysRevLett.87.256805 12669:Chemical Engineering Progress 12571:"EUV Pellicles Finally Ready" 11537:Nature Biomedical Engineering 11323:Biosensors and Bioelectronics 11232:Advanced Functional Materials 11120:Nature Biomedical Engineering 10582:Nature Biomedical Engineering 8147:Materials Chemistry Frontiers 7176:10.1016/S0008-6223(03)00336-1 6244:10.1103/PhysRevLett.96.057001 5642:10.1016/j.diamond.2012.01.034 5622:Diamond and Related Materials 5557:10.1016/S0010-4655(02)00432-0 5505:10.1103/PhysRevLett.88.217206 5447:10.1088/0957-4484/21/3/035704 5345:10.1016/S0009-2614(00)00307-9 4449:Chemistry: A European Journal 4159:10.1103/PhysRevLett.92.125502 3917:10.1080/1061186X.2024.2309575 3651:10.1103/PhysRevLett.87.215502 3334: 3319:(nanotube modelling software) 3188:Pennsylvania State University 2974:Potential/Future applications 2921:in semiconductor lithography. 2871:delaying thermal degradation. 2826:ultra-absorptive black paint. 2746: 2708:through chemical attachment. 2528:Advantages of monochiral CNTs 2443:Synthesis of carbon nanotubes 2336:Carbon nanotubes have useful 2160: 2083: 2055: 1803:substrates using an improved 941:Chirality and mirror symmetry 378:Multi-walled carbon nanotubes 38:scanning tunneling microscopy 14179:10.1016/0022-0248(76)90115-9 14040:10.1016/j.carbon.2006.03.019 13538:10.1016/j.colcom.2015.02.001 12357:10.1021/acs.nanolett.8b03986 12300:Chemical Engineering Journal 11690:10.1021/acs.analchem.9b03756 10708:10.1021/acs.analchem.0c03732 10300:10.1126/scitranslmed.aar2680 10188:10.1021/acs.nanolett.8b00856 9886:10.1021/acs.nanolett.9b02865 9645:10.1021/acs.nanolett.9b05159 9166:10.1016/j.apsusc.2018.08.206 8652:10.1021/acs.nanolett.3c01727 8533:10.1021/acs.analchem.2c01321 8486:10.1021/acs.analchem.1c00168 8141:Janas D (21 December 2017). 7004:Journal of Materials Science 5684:10.1016/j.carbon.2008.11.005 5092:10.1016/j.carbon.2012.10.035 4913:10.1016/0379-6779(96)80097-x 4850:10.1016/0375-9601(92)90978-u 4695:10.1126/science.289.5479.602 4213:10.1016/j.carbon.2017.07.036 4055:10.1126/science.273.5274.483 3466:10.1126/science.287.5453.637 3426:10.1016/0022-0248(76)90115-9 3133:Timeline of carbon nanotubes 3081:scanning electron microscope 3039:electrically conducting yarn 2617:scanning electron microscopy 2584: 2436: 2100:scanning electron microscopy 2025:Graphenated carbon nanotubes 1023:,0) "zigzag" tubes and the ( 981:), which is different from ( 447:, and Bethune and others at 424:(replacing or complementing 7: 14253:Missing (1982). "Missing". 12643:news.nationalgeographic.com 12569:LaPedus M (22 March 2021). 12218:Tiza MT (6 December 2022). 11596:10.1021/acs.chemrev.5b00008 10065:10.1021/acs.biochem.8b00926 8104:10.1021/acs.chemrev.9b00835 6985:10.1016/j.physe.2016.12.011 5397:10.1088/0957-4484/17/22/026 4929:European Physical Journal B 4885:10.1103/physrevlett.79.4453 3797:10.1103/PhysRevLett.68.1579 3590:10.1103/PhysRevLett.84.4613 3244: 3105:recommended exposure limits 2829:"Gecko tape" (also called " 2796:Zyvex Performance Materials 2643:neutron activation analysis 2562: 2036:(< 10) to thicker, more 1853: 1779:inside double-walled CNTs. 1775:using aberration-corrected 10: 15624: 15393:Electromagnetic propulsion 15267:Technology readiness level 15203:Technological unemployment 14848:Aggregated diamond nanorod 14364:10.1038/s41598-020-76720-z 13687:10.1186/s12989-021-00440-z 13628:10.1186/s12989-020-00392-w 13506:10.1103/PhysRevB.92.085428 12771:: CS1 maint: url-status ( 12746:Moore S (31 August 2020). 12675:(5): 28–32. Archived from 12255:10.1038/s41598-024-62594-y 12167:ACS Applied Nano Materials 12139:10.1038/s43246-024-00548-7 11963:10.1016/j.addr.2013.07.015 11857:10.1038/s41467-020-15299-5 11425:Journal of Applied Physics 11335:10.1016/j.bios.2022.114642 11132:10.1038/s41551-022-00860-y 10847:10.1038/s41467-020-19718-5 10651:10.1021/acssensors.9b00025 8722:10.1016/j.jcis.2017.03.051 7397:Nanoscale Research Letters 7088:10.1103/PhysRevB.77.033418 7025:10.1007/s10853-019-03368-0 6385:10.1038/s41467-021-23038-7 6098:10.1103/PhysRevB.95.121408 5862:10.1103/PhysRevB.76.195436 4950:10.1140/epjb/e2011-20313-9 3707:10.1103/PhysRevLett.68.631 3501:Nanoscale Research Letters 3130: 3126: 3064: 2977: 2786:Other current applications 2684: 2635:thermogravimetric analysis 2455:900-1100 °C and high 2440: 2385: 2381: 2329: 2325: 2087: 1924:Junctions and crosslinking 1825: 1071:Circumference and diameter 865:between the directions of 15542: 15516: 15485: 15464: 15428: 15385: 15374: 15345: 15285: 15250:Technological singularity 15210:Technological convergence 15128: 15081: 15026:Multi-function structures 14949: 14903: 14896: 14818: 14748: 14687: 14654: 14646:(cyclo[18]carbon) 14604: 14525: 14497: 14159:Journal of Crystal Growth 13967:10.1007/978-3-642-31421-6 13252:10.1007/978-3-319-73558-0 13067:10.1007/s00170-017-1320-z 12575:Semiconductor Engineering 12483:10.1007/s10311-012-0356-4 12313:10.1016/j.cej.2024.153759 10422:10.1038/s41587-019-0045-y 10007:10.3390/molecules28052161 9703:10.1038/s41477-020-0632-4 9271:17 September 2018 at the 9201:10.1007/s10904-016-0365-z 8978:National Research Council 8791:10.1002/9783527800308.ch8 6942:10.1007/s11051-005-8382-9 6427:Trafton A (7 June 2021). 6148:10.1103/RevModPhys.79.677 6128:Reviews of Modern Physics 5964:10.1103/RevModPhys.87.703 5933:Reviews of Modern Physics 5894:10.3390/molecules25132960 3905:Journal of Drug Targeting 3406:Journal of Crystal Growth 2687:Carbon nanotube chemistry 2658:fluorescence spectroscopy 2463:as the carbon source and 2449:chemical vapor deposition 1942:chemical vapor deposition 1918:Lennard-Jones interaction 1805:chemical vapor deposition 1782: 1765:density functional theory 1093:, which turns out to be: 973:(mirror image) has type ( 15418:Momentum exchange tether 15041:Molecular nanotechnology 15004:Linear acetylenic carbon 14630:(cyclo[6]carbon) 14614:Linear acetylenic carbon 14062: 14060:Radushkevich LV (1952). 13955:Pacios Pujadó M (2012). 13834:10.26616/NIOSHPUB2013145 13806:10.26616/NIOSHPUB2013145 13576:10.15866/iree.v10i1.5253 12126:Communications Materials 12039:Pagni J (5 March 2010). 11810:10.1021/acs.jpcc.6b03257 8912:Fagan J (5 March 2009). 3277:Carbon nanotube computer 3154:much further than 1991. 3137:Fullerene § History 3085:alveolar epithelial cell 3014:field-effect transistors 2792:Easton-Bell Sports, Inc. 2771:field-effect transistors 2700:and improve interfacial 2655:UV-visible-near infrared 1563:, one can get the type ( 748: 271:Nanocrystalline material 247:Nanostructured materials 15215:Technological evolution 15188:Exploratory engineering 14082:: 88–95. Archived from 14072:Журнал Физической Химии 13866:10.1021/acsnano.7b03038 13738:10.3390/cancers13061318 13445:10.1126/science.1228061 13312:Physical Review Letters 13010:www.compositesworld.com 12900:www.compositesworld.com 11643:10.1021/acsnano.8b00980 11549:10.1038/s41551-016-0010 11486:10.1021/acsnano.2c03083 11382:10.1126/science.1072631 10970:10.1073/pnas.2202842119 10594:10.1038/s41551-017-0041 10243:10.1021/acsnano.7b04743 9576:10.1073/pnas.1613541114 9345:10.1126/science.1141316 9146:Applied Surface Science 8049:10.1021/acsnano.8b09579 7418:10.1186/1556-276X-9-393 7358:Chemical Communications 6770:10.1073/pnas.1014501108 6631:10.1126/science.1125695 6538:10.1126/science.1119177 6487:10.1126/science.1081294 6292:10.1073/pnas.0813162106 6214:Physical Review Letters 6183:10.1126/science.1060470 5485:Physical Review Letters 4865:Physical Review Letters 4768:Low Temperature Physics 4619:Chemical Communications 4506:Applied Physics Letters 4187:Torres-Dias AC (2017). 4139:Physical Review Letters 3777:Physical Review Letters 3687:Physical Review Letters 3621:Physical Review Letters 3560:Physical Review Letters 3522:10.1186/1556-276X-9-151 2846:atomic force microscope 2609:absorption spectroscopy 2147:atomic force microscopy 2143:atomic force microscope 1795:The observation of the 1051:> 0. Then the angle 785:— that is, many pairs ( 406:electrical conductivity 351:). They are one of the 15588:Transparent electrodes 15547:Non-rocket spacelaunch 15508:Konstantin Tsiolkovsky 15225:Technology forecasting 15220:Technological paradigm 15193:Proactionary principle 14674:Carbide-derived carbon 14556:(buckminsterfullerene) 13402:10.1002/adem.201701019 12816:www.floortrendsmag.com 12179:10.1021/acsanm.3c03247 12010:10.1002/cssc.201100070 11915:10.1002/anie.202300682 11245:10.1002/adfm.202309064 11085:10.1002/smll.202101660 11028:10.1021/acsami.3c00828 10904:10.1002/anie.202108373 10479:10.1002/anie.200603138 9949:10.1126/sciadv.aay3771 9813:10.1002/smll.201403276 9237:10.1002/cctc.201701790 8596:10.1002/smll.202206856 8429:10.1002/anie.202112372 8198:10.1002/advs.202200054 7939:10.1002/adma.201304873 7688:10.1002/adma.201100034 7531:10.1038/nnano.2007.290 7125:10.1098/rsta.2004.1437 5811:10.1002/adma.201100547 5722:10.1038/nnano.2008.211 4461:10.1002/chem.202002316 4109:10.1080/20014091104189 3257:Carbide-derived carbon 3224:on a preparative scale 3175: 3088: 2765: 2735: 2572: 2247:electrical conductance 2209:. Thus, all armchair ( 2170: 2103: 2076:). In particular, the 1984: 1963: 1933: 1876: 1792: 1650: 1535:-axis and the vector ( 1514: 1376:and the circumference 1340: 1270: 1269:{\displaystyle c/\pi } 1242: 1215: 823:lies between those of 717:through its endpoints 528: 508: 49: 41: 15557:Megascale engineering 15151:Disruptive innovation 15014:Metamaterial cloaking 14890:Emerging technologies 13188:Nature Communications 13103:10.1038/news061113-11 12965:10.3390/polym16020226 12707:MIT Technology Review 11837:Nature Communications 10827:Nature Communications 10345:Nature Communications 9505:10.1038/nnano.2010.24 9493:Nature Nanotechnology 8290:Nature Communications 7511:Nature Nanotechnology 6365:Nature Communications 6045:10.1038/nnano.2007.89 6025:Nature Nanotechnology 5710:Nature Nanotechnology 5258:10.1038/nnano.2007.37 5237:Nature Nanotechnology 3328:Organic semiconductor 3171: 3078: 3051:ion-exchange membrane 2952:lithium ion batteries 2762: 2733: 2681:Chemical modification 2570: 2168: 2097: 1978: 1961: 1931: 1874: 1790: 1651: 1555:). Conversely, given 1515: 1341: 1271: 1243: 1216: 514: 498: 301:Technology portal 96:Mechanical properties 47: 35: 15593:Refractory materials 15578:Allotropes of carbon 15472:List of competitions 15441:Lunar space elevator 15198:Technological change 15141:Collingridge dilemma 14491:Allotropes of carbon 14261:] (in Russian). 14078:] (in Russian). 13088:Sanderson K (2006). 12855:10.3390/nano14010120 12649:on 18 November 2006. 12510:Smithsonian Magazine 11678:Analytical Chemistry 11189:10.1021/jacs.3c03336 10696:Analytical Chemistry 10410:Nature Biotechnology 9289:patentscope.wipo.int 8521:Analytical Chemistry 8474:Analytical Chemistry 7994:10.1021/jacs.9b09953 7778:Analytical Chemistry 7206:10.1166/jnn.2004.066 4539:Das S (March 2013). 3287:Colossal carbon tube 3221:Buckminsterfullerene 3195:carbon nanoparticles 2469:nickel tetracarbonyl 2459:~30-50 bar. It uses 2402:thermal conductivity 2398:ballistic conduction 2231:copper interconnects 2135:van der Waals forces 1767:(DFT) calculations. 1578: 1395: 1283: 1252: 1248:of the tube is then 1232: 1100: 656:can be written as a 622:linearly independent 394:thermal conductivity 353:allotropes of carbon 266:Nanoporous materials 129:Buckminsterfullerene 15255:Technology scouting 15230:Accelerating change 15101:Powered exoskeleton 15058:Programmable matter 14936:Smart manufacturing 14931:Molecular assembler 14911:3D microfabrication 14356:2020NatSR..1019786K 14309:1990Natur.347..354K 14232:1999Carbo..37.1873A 14171:1976JCrGr..32..335O 14032:2006Carbo..44.1621M 13931:on 24 November 2016 13900:chem.echa.europa.eu 13678:2021PFTox..18...47F 13619:2020PFTox..17...62F 13498:2015PhRvB..92h5428P 13437:2013Sci...339..182B 13361:(36): 19255–19266. 13324:2001PhRvL..87y6805M 13289:1999PhT....52e..22D 13208:10.1038/ncomms13549 13200:2016NatCo...713549V 13143:2006Natur.444..286R 13061:(9–12): 3805–3808. 12609:2006NanoL...6..562Z 12475:2012EnvCL..10..265T 12422:2015NatSR...5E8323B 12349:2019NanoL..19.1460N 12173:(19): 17986–17995. 12101:. 21 September 2022 12099:Med-Tech Innovation 12083:on 27 October 2011. 12063:Nanowerk Newsletter 12002:2011ChSCh...4..848B 11849:2020NatCo..11.1495S 11804:(19): 10705–10710. 11745:2015NatSR...514167R 11590:(19): 10816–10906. 11437:2021JAP...129d4305X 11374:2002Sci...297..593O 11183:(27): 14776–14783. 11022:(18): 21866–21876. 10961:2022PNAS..11902842E 10955:(22): e2202842119. 10839:2020NatCo..11.5995N 10763:2020Senso..20.5247S 10529:2022NanoA...4.2420Z 10365:10.1038/ncomms10241 10357:2016NatCo...710241B 10237:(11): 10689–10703. 10180:2018NanoL..18.4130X 10122:2017NatMa..16..264W 9941:2019SciA....5.3771J 9878:2019NanoL..19.6604D 9758:2008NanoL...8.4299J 9637:2020NanoL..20.2432W 9567:2017PNAS..114.1789K 9403:2008NanoL...8..591H 9337:2007Sci...316.1465C 9321:(5830): 1465–1468. 9158:2019ApSS..463..227S 9071:on 7 September 2017 9041:on 7 September 2017 8952:on 18 February 2013 8890:on 7 September 2017 8857:on 7 September 2017 8827:on 7 September 2017 8714:2017JCIS..504..115S 8644:2023NanoL..23.6588N 8367:2009NanoL...9.1497T 8302:2011NatCo...2..309L 7988:(51): 20177–20186. 7931:2014AdM....26.2800F 7878:(29): 10383–10392. 7633:2005NanoL...5..713A 7523:2007NatNa...2..640N 7468:2007NanoL...7.3013C 7409:2014NRL.....9..393E 7364:(84): 12662–12664. 7335:2003NanoL...3..309I 7291:2001JVSTA..19.1800B 7168:2003Carbo..41.2607Z 7119:(1823): 2223–2238. 7080:2008PhRvB..77c3418M 7016:2019JMatS..54.7397K 6977:2017PhyE...88..104K 6934:2005JNR.....7..651S 6883:2006NanoL...6...96P 6822:2005NatMa...4...86B 6761:2011PNAS..108.8943W 6704:(48): 15638–15639. 6673:2004NanoL...4.1587S 6622:2006Sci...312..413I 6583:2003NanoL...3.1067F 6530:2005Sci...310.1171C 6524:(5751): 1171–1174. 6479:2003Sci...300..783M 6377:2021NatCo..12.3415L 6236:2006PhRvL..96e7001T 6175:2001Sci...292.2462T 6169:(5526): 2462–2465. 6140:2007RvMP...79..677C 6090:2017PhRvB..95l1408V 6037:2007NatNa...2..207H 5956:2015RvMP...87..703L 5854:2007PhRvB..76s5436J 5803:2011AdM....23.2855F 5757:2000SciAm.283f..62C 5745:Scientific American 5676:2009Carbo..47..731L 5634:2012DRM....23..130S 5599:10.1557/jmr.2012.43 5591:2012JMatR..27.1046P 5549:2002CoPhC.146...30H 5497:2002PhRvL..88u7206L 5439:2010Nanot..21c5704W 5389:2006Nanot..17.5691S 5337:2000CPL...321..169S 5294:1998Natur.396R.323S 5249:2007NatNa...2..156N 5190:2019NanoA...1.1148N 5141:10.1002/jbm.a.35449 5042:2008NanoL...8.3166D 4986:(45): 18849–18854. 4942:2011EPJB...83..487M 4877:1997PhRvL..79.4453M 4842:1992PhLA..172..173C 4790:2011LTP....37..337Z 4730:1996Natur.381..678T 4677:2000Sci...289..602C 4518:2013ApPhL.103g3116S 4455:(65): 14791–14801. 4410:(52): 17646–17647. 4359:2009NanoL...9.3137W 4281:2008NanoL...8..459G 4263:Guan L, Suenaga K, 4242:2003NanoL...3..887H 4205:2017Carbo.123..145T 4151:2004PhRvL..92l5502Z 4101:2001CRSSM..26..145S 4047:1996Sci...273..483T 4001:1993Natur.363..605B 3955:1993Natur.363..603I 3832:1998Natur.391...59W 3789:1992PhRvL..68.1579H 3746:1997Natur.386..474T 3699:1992PhRvL..68..631M 3643:2001PhRvL..87u5502K 3582:2000PhRvL..84.4613B 3554:Berber S, Kwon YK, 3513:2014NRL.....9..151S 3458:2000Sci...287..637Y 3418:1976JCrGr..32..335O 3372:1991Natur.354...56I 3302:Molecular modelling 2946:SWCNTs produced by 2595:reference materials 2431:Stone–Wales defects 2424:. This reduces the 2000:composite materials 1962:3D carbon scaffolds 1571:) by the formulas: 644:with same class as 456:Structure of SWCNTs 422:composite materials 168:Carbon quantum dots 15498:Bradley C. Edwards 15272:Technology roadmap 14974:Conductive polymer 14769:(cyclopropatriene) 14750:hypothetical forms 14571:Fullerene whiskers 14409:has a profile for 14344:Scientific Reports 14117:Eklund PC (2007). 13367:10.1039/c7ta04999d 13034:. 21 February 2022 12410:Scientific Reports 12243:Scientific Reports 11908:(24): e202300682. 11733:Scientific Reports 11480:(8): 11742–11754. 10537:10.1039/D2NA00092J 10517:Nanoscale Advances 8423:(18): e202112372. 8310:10.1038/ncomms1313 8159:10.1039/C7QM00427C 7919:Advanced Materials 7676:Advanced Materials 7370:10.1039/C4CC03271C 5791:Advanced Materials 5693:on 9 January 2015. 5199:10.1039/C8NA00101D 5178:Nanoscale Advances 4992:10.1039/c6nr06461b 3297:Filamentous carbon 3292:Diamond nanothread 3272:Carbon nanoscrolls 3089: 2926:tissue engineering 2905:Zyvex Technologies 2898:The Boeing Company 2820:Surrey NanoSystems 2766: 2736: 2631:elemental analysis 2621:X-ray spectrometry 2573: 2515:. When mixed, two 2465:iron pentacarbonyl 2406:thermal insulation 2394:thermal conductors 2355:nanotube synthesis 2350:Raman spectroscopy 2171: 2104: 1985: 1971:Other morphologies 1964: 1934: 1877: 1816:cycloparaphenylene 1793: 1791:Cycloparaphenylene 1761:Raman spectroscopy 1668:Narrowest examples 1646: 1510: 1336: 1266: 1238: 1211: 658:linear combination 648:, the vector from 529: 515:The basis vectors 509: 289:Science portal 101:Optical properties 50: 42: 15565: 15564: 15305: 15304: 15124: 15123: 15073:Synthetic diamond 14969:Artificial muscle 14951:Materials science 14856: 14855: 14724:(diatomic carbon) 14656:mixed sp/sp forms 14415: 14303:(6291): 354–358. 14226:(11): 1873–1874. 13986:978-3-642-31421-6 13486:Physical Review B 13431:(6116): 182–186. 13261:978-3-319-73557-3 12682:on 13 August 2012 12617:10.1021/nl051861e 12430:10.1038/srep08323 11957:(15): 1933–1950. 11753:10.1038/srep14167 11446:10.1063/5.0039047 11368:(5581): 593–596. 11297:www.zymosense.com 10898:(2): e202108373. 10772:10.3390/s20185247 10702:(11): 4800–4808. 10523:(11): 2420–2427. 10473:(48): 8138–8141. 9807:(32): 3973–3984. 9766:10.1021/nl802010z 9752:(12): 4299–4304. 9458:10.1021/ja1084942 9411:10.1021/nl072996i 9111:10.1021/jp0471857 8981:. 7 November 2014 8800:978-3-527-80030-8 8757:10.1115/1.4043410 8638:(14): 6588–6595. 8527:(28): 9941–9951. 8480:(16): 6446–6455. 8375:10.1021/nl8034866 8255:10.1021/ja071577k 8249:(19): 6084–6085. 7925:(18): 2800–2804. 7884:10.1021/ja504078b 7837:10.1021/nn500756a 7790:10.1021/ac0508954 7784:(19): 6225–6228. 7743:10.1021/nn4004956 7682:(19): 2185–2190. 7641:10.1021/nl050133o 7578:10.1021/ja105722u 7476:10.1021/nl071349o 7462:(10): 3013–3017. 7343:10.1021/nl025926e 7299:10.1116/1.1380721 7240:978-1-59693-280-7 7162:(13): 2607–2611. 7010:(10): 7397–7427. 6891:10.1021/nl052145f 6804:Michael S. Strano 6745:(22): 8943–8948. 6710:10.1021/ja0466311 6681:10.1021/nl049337f 6616:(5772): 413–416. 6591:10.1021/nl034313e 6473:(5620): 783–786. 6285:(18): 7299–7303. 6068:Physical Review B 6002:10.1021/cr030093d 5996:(10): 3643–3696. 5842:Physical Review B 5797:(25): 2855–2860. 5373:(22): 5691–5695. 5288:(6709): 323–324. 5135:(10): 3212–3225. 5050:10.1021/nl801417w 5036:(10): 3166–3170. 4907:(1–3): 249–1254. 4871:(22): 4453–4456. 4829:Physics Letters A 4798:10.1063/1.3592692 4724:(6584): 678–680. 4671:(5479): 602–604. 4621:(12): 1442–1443. 4597:10.1021/jz200687u 4591:(13): 1577–1582. 4526:10.1063/1.4818619 4416:10.1021/ja807126u 4377:10.1021/nl901260b 4324:10.1021/nn401995z 4289:10.1021/nl072396j 4250:10.1021/nl034080r 4041:(5274): 483–487. 3995:(6430): 605–607. 3949:(6430): 603–605. 3878:10.1021/cr100018g 3783:(10): 1579–1581. 3740:(6624): 474–477. 3566:(20): 4613–4616. 3452:(5453): 637–640. 3267:Carbon nanofibers 3109:carbon nanofibers 3061:Safety and health 2541:Functionalization 2342:photoluminescence 2308:superconductivity 2116:specific strength 1949:pillared graphene 1902:functionalization 1644: 1602: 1601: 1508: 1444: 1334: 1241:{\displaystyle d} 1209: 1162: 765:) to the pair (−2 558:armchair nanotube 443:and Ichihashi at 434:materials science 408:while others are 396:because of their 337: 336: 149:Carbon allotropes 16:(Redirected from 15615: 15583:Carbon nanotubes 15524:KC Space Pirates 15429:Related concepts 15380: 15332: 15325: 15318: 15309: 15308: 15293: 15292: 15240:Horizon scanning 15156:Ephemeralization 15116:Uncrewed vehicle 15036:Carbon nanotubes 14901: 14900: 14883: 14876: 14869: 14860: 14859: 14828:Activated carbon 14784: 14783: 14782: 14768: 14767: 14766: 14739: 14738: 14737: 14723: 14722: 14721: 14707: 14706: 14705: 14664:Amorphous carbon 14645: 14644: 14643: 14629: 14628: 14627: 14484: 14477: 14470: 14461: 14460: 14413: 14412:carbon nanotube 14403: 14402: 14386: 14385: 14375: 14335: 14329: 14328: 14317:10.1038/347354a0 14292: 14286: 14285: 14284: 14280: 14273: 14267: 14266: 14250: 14244: 14243: 14215: 14209: 14208: 14207: 14203: 14196: 14190: 14189: 14187: 14156: 14147: 14141: 14140: 14138: 14136: 14131:on 11 March 2017 14130: 14123: 14114: 14099: 14098: 14096: 14094: 14088: 14069: 14057: 14051: 14050: 14048: 14026:(9): 1621–1623. 14017: 14008: 13999: 13998: 13978: 13952: 13941: 13940: 13938: 13936: 13917: 13911: 13910: 13908: 13906: 13892: 13886: 13885: 13860:(9): 8849–8863. 13845: 13839: 13838: 13836: 13817: 13811: 13810: 13808: 13792: 13786: 13785: 13783: 13781: 13767: 13761: 13760: 13750: 13740: 13716: 13710: 13709: 13699: 13689: 13657: 13651: 13650: 13640: 13630: 13598: 13592: 13586: 13580: 13579: 13569: 13567:10.1.1.1005.8294 13549: 13543: 13542: 13540: 13516: 13510: 13509: 13481: 13475: 13474: 13456: 13420: 13414: 13413: 13377: 13371: 13370: 13350: 13344: 13343: 13307: 13301: 13300: 13297:10.1063/1.882658 13272: 13266: 13265: 13239: 13230: 13229: 13219: 13179: 13173: 13172: 13154: 13122: 13116: 13115: 13105: 13085: 13079: 13078: 13050: 13044: 13043: 13041: 13039: 13028: 13022: 13021: 13019: 13017: 13002: 12996: 12995: 12985: 12967: 12943: 12937: 12936: 12934: 12932: 12918: 12912: 12911: 12909: 12907: 12892: 12886: 12885: 12875: 12857: 12833: 12827: 12826: 12824: 12822: 12808: 12802: 12801: 12799: 12797: 12783: 12777: 12776: 12770: 12762: 12760: 12758: 12743: 12737: 12736: 12734: 12732: 12717: 12711: 12710: 12698: 12692: 12691: 12689: 12687: 12681: 12666: 12657: 12651: 12650: 12645:. Archived from 12635: 12629: 12628: 12592: 12586: 12585: 12583: 12581: 12566: 12560: 12559: 12558:on 3 March 2012. 12548: 12542: 12541: 12540: 12536: 12527: 12521: 12520: 12518: 12516: 12501: 12495: 12494: 12458: 12452: 12451: 12441: 12401: 12395: 12394: 12383: 12377: 12376: 12343:(3): 1460–1466. 12332: 12326: 12325: 12315: 12291: 12285: 12284: 12274: 12234: 12228: 12227: 12215: 12209: 12208: 12198: 12158: 12152: 12151: 12141: 12117: 12111: 12110: 12108: 12106: 12091: 12085: 12084: 12073: 12067: 12066: 12055: 12049: 12048: 12047:on 10 July 2011. 12036: 12030: 12029: 11981: 11975: 11974: 11942: 11936: 11935: 11917: 11893: 11887: 11886: 11876: 11828: 11822: 11821: 11789: 11783: 11782: 11772: 11724: 11718: 11717: 11669: 11663: 11662: 11637:(4): 3769–3779. 11622: 11616: 11615: 11584:Chemical Reviews 11575: 11569: 11568: 11528: 11522: 11521: 11465: 11459: 11458: 11448: 11416: 11410: 11409: 11353: 11347: 11346: 11314: 11308: 11307: 11305: 11303: 11289: 11283: 11282: 11280: 11278: 11264: 11258: 11257: 11247: 11223: 11217: 11216: 11168: 11162: 11161: 11151: 11111: 11105: 11104: 11079:(30): e2101660. 11064: 11058: 11057: 11047: 11007: 11001: 11000: 10990: 10972: 10940: 10934: 10933: 10923: 10883: 10877: 10876: 10866: 10818: 10803: 10802: 10792: 10774: 10742: 10736: 10735: 10687: 10681: 10680: 10670: 10645:(5): 1236–1244. 10630: 10624: 10623: 10613: 10573: 10567: 10566: 10556: 10508: 10499: 10498: 10458: 10452: 10451: 10441: 10401: 10395: 10394: 10384: 10336: 10330: 10329: 10319: 10279: 10273: 10272: 10262: 10222: 10216: 10215: 10174:(7): 4130–4135. 10159: 10150: 10149: 10130:10.1038/nmat4771 10110:Nature Materials 10101: 10095: 10094: 10084: 10044: 10038: 10037: 10027: 10009: 9985: 9979: 9978: 9968: 9935:(12): eaay3771. 9929:Science Advances 9920: 9914: 9913: 9872:(9): 6604–6611. 9857: 9851: 9850: 9824: 9792: 9786: 9785: 9737: 9731: 9730: 9682: 9673: 9672: 9631:(4): 2432–2442. 9616: 9607: 9606: 9596: 9578: 9561:(8): 1789–1794. 9546: 9535: 9534: 9524: 9484: 9478: 9477: 9437: 9431: 9430: 9382: 9373: 9372: 9330: 9306: 9300: 9299: 9297: 9295: 9281: 9275: 9267: 9266: 9262: 9255: 9249: 9248: 9231:(5): 1075–1083. 9219: 9213: 9212: 9195:(6): 1301–1308. 9184: 9178: 9177: 9137: 9131: 9130: 9099:J. Phys. Chem. B 9096: 9087: 9081: 9080: 9078: 9076: 9067:. Archived from 9057: 9051: 9050: 9048: 9046: 9037:. Archived from 9027: 9021: 9020: 9018: 9016: 9007:. Archived from 8997: 8991: 8990: 8988: 8986: 8968: 8962: 8961: 8959: 8957: 8948:. Archived from 8938: 8932: 8931: 8929: 8927: 8909: 8900: 8899: 8897: 8895: 8886:. Archived from 8876: 8867: 8866: 8864: 8862: 8853:. Archived from 8843: 8837: 8836: 8834: 8832: 8823:. Archived from 8811: 8805: 8804: 8778: 8769: 8768: 8740: 8734: 8733: 8696: 8690: 8689: 8671: 8623: 8617: 8616: 8598: 8589:(14): e2206856. 8574: 8561: 8560: 8512: 8506: 8505: 8465: 8459: 8458: 8448: 8408: 8395: 8394: 8361:(4): 1497–1500. 8346: 8340: 8339: 8329: 8281: 8275: 8274: 8234: 8228: 8227: 8217: 8192:(14): e2200054. 8186:Advanced Science 8177: 8171: 8170: 8138: 8132: 8131: 8098:(5): 2693–2758. 8092:Chemical Reviews 8083: 8077: 8076: 8043:(2): 2567–2578. 8028: 8022: 8021: 7973: 7967: 7966: 7910: 7904: 7903: 7863: 7857: 7856: 7831:(7): 6756–6764. 7816: 7810: 7809: 7769: 7763: 7762: 7737:(4): 3557–3564. 7722: 7716: 7715: 7667: 7661: 7660: 7612: 7606: 7605: 7557: 7551: 7550: 7502: 7496: 7495: 7447: 7441: 7440: 7430: 7420: 7388: 7382: 7381: 7353: 7347: 7346: 7317: 7311: 7310: 7285:(4): 1800–1805. 7274: 7268: 7267: 7251: 7245: 7244: 7233:. Artech House. 7224: 7218: 7217: 7189: 7180: 7179: 7151: 7145: 7144: 7108: 7102: 7101: 7099: 7063: 7057: 7056: 7036: 7030: 7029: 7027: 6995: 6989: 6988: 6960: 6954: 6953: 6917: 6911: 6910: 6876: 6874:cond-mat/0512624 6856: 6850: 6849: 6830:10.1038/nmat1276 6809:Nature Materials 6799: 6793: 6792: 6782: 6772: 6754: 6728: 6722: 6721: 6691: 6685: 6684: 6667:(9): 1587–1591. 6650: 6644: 6643: 6633: 6601: 6595: 6594: 6577:(8): 1067–1071. 6564: 6558: 6557: 6513: 6507: 6506: 6462: 6456: 6450: 6444: 6443: 6441: 6439: 6424: 6415: 6414: 6396: 6356: 6350: 6349: 6338:10.1038/nphys252 6321: 6315: 6314: 6304: 6294: 6270: 6264: 6263: 6229: 6227:cond-mat/0509466 6209: 6203: 6202: 6158: 6152: 6151: 6125: 6116: 6110: 6109: 6083: 6063: 6057: 6056: 6020: 6014: 6013: 5990:Chemical Reviews 5985: 5976: 5975: 5949: 5923: 5917: 5916: 5906: 5896: 5872: 5866: 5865: 5837: 5831: 5830: 5786: 5777: 5776: 5740: 5734: 5733: 5704: 5695: 5694: 5692: 5686:. Archived from 5661: 5652: 5646: 5645: 5617: 5611: 5610: 5585:(7): 1046–1053. 5574: 5568: 5567: 5566:on 27 June 2008. 5565: 5559:. Archived from 5532: 5523: 5517: 5516: 5476: 5467: 5466: 5422: 5416: 5415: 5413: 5382: 5380:cond-mat/0611671 5364: 5355: 5349: 5348: 5331:(1–2): 169–174. 5325:Chem. Phys. Lett 5320: 5314: 5313: 5277: 5271: 5270: 5260: 5228: 5222: 5221: 5211: 5201: 5184:(3): 1148–1154. 5169: 5163: 5162: 5152: 5120: 5114: 5113: 5103: 5071: 5062: 5061: 5025: 5019: 5018: 5016: 4977: 4968: 4962: 4961: 4923: 4917: 4916: 4895: 4889: 4888: 4860: 4854: 4853: 4823: 4817: 4816: 4814: 4783: 4765: 4756: 4750: 4749: 4738:10.1038/381678a0 4713: 4707: 4706: 4688: 4660: 4654: 4653: 4651: 4627:10.1039/b301514a 4616: 4607: 4601: 4600: 4579: 4573: 4572: 4570: 4563: 4545: 4536: 4530: 4529: 4501: 4495: 4494: 4487: 4481: 4480: 4444: 4438: 4437: 4427: 4395: 4389: 4388: 4370: 4353:(9): 3137–3141. 4342: 4336: 4335: 4318:(7): 6156–6161. 4307: 4301: 4300: 4260: 4254: 4253: 4223: 4217: 4216: 4184: 4178: 4177: 4175: 4136: 4127: 4121: 4120: 4084: 4075: 4074: 4030: 4021: 4020: 4009:10.1038/363605a0 3984: 3975: 3974: 3963:10.1038/363603a0 3938: 3929: 3928: 3896: 3890: 3889: 3872:(9): 5366–5397. 3866:Chemical Reviews 3861: 3852: 3851: 3815: 3809: 3808: 3772: 3766: 3765: 3754:10.1038/386474a0 3725: 3719: 3718: 3682: 3671: 3670: 3636: 3634:cond-mat/0106578 3616: 3610: 3609: 3575: 3573:cond-mat/0002414 3551: 3545: 3544: 3534: 3524: 3492: 3486: 3485: 3441: 3430: 3429: 3401: 3392: 3391: 3380:10.1038/354056a0 3355: 3225: 3006:Cu interconnects 3002:electromigration 2675:light scattering 2651:Raman scattering 2535:biocompatibility 2409:2800 °C in 2316:electrochemistry 2235:electromigration 2139:nanoindentations 2108:tensile strength 1721: 1709: 1697: 1685: 1655: 1653: 1652: 1647: 1645: 1637: 1603: 1597: 1596: 1588: 1546: 1519: 1517: 1516: 1511: 1509: 1504: 1500: 1485: 1474: 1473: 1450: 1445: 1440: 1428: 1345: 1343: 1342: 1337: 1335: 1321: 1320: 1296: 1275: 1273: 1272: 1267: 1262: 1247: 1245: 1244: 1239: 1220: 1218: 1217: 1212: 1210: 1196: 1195: 1171: 1163: 1158: 1157: 1136: 1135: 1123: 1121: 1117: 949:if it has type ( 930: 918: 906: 894: 829:(inclusive) and 480: 468: 390:tensile strength 329: 322: 315: 299: 298: 287: 286: 238:Titanium dioxide 77:Carbon nanotubes 71: 52: 51: 21: 18:Carbon nano tube 15623: 15622: 15618: 15617: 15616: 15614: 15613: 15612: 15568: 15567: 15566: 15561: 15538: 15512: 15493:Yuri Artsutanov 15481: 15460: 15424: 15403:Carbon nanotube 15381: 15372: 15341: 15336: 15306: 15301: 15281: 15120: 15077: 14979:Femtotechnology 14964:Amorphous metal 14945: 14892: 14887: 14857: 14852: 14814: 14805:Metallic carbon 14781: 14778: 14777: 14776: 14774: 14765: 14762: 14761: 14760: 14758: 14744: 14736: 14733: 14732: 14731: 14729: 14720: 14717: 14716: 14715: 14713: 14708:(atomic carbon) 14704: 14701: 14700: 14699: 14697: 14683: 14669:Carbon nanofoam 14650: 14642: 14639: 14638: 14637: 14635: 14626: 14623: 14622: 14621: 14619: 14600: 14565: 14555: 14521: 14511:Diamond (cubic) 14493: 14488: 14434: 14421: 14420: 14419: 14404: 14400: 14395: 14390: 14389: 14336: 14332: 14293: 14289: 14282: 14274: 14270: 14251: 14247: 14216: 14212: 14205: 14197: 14193: 14185: 14154: 14148: 14144: 14134: 14132: 14128: 14121: 14115: 14102: 14092: 14090: 14089:on 5 March 2016 14086: 14067: 14064: 14058: 14054: 14046: 14015: 14009: 14002: 13987: 13953: 13944: 13934: 13932: 13919: 13918: 13914: 13904: 13902: 13894: 13893: 13889: 13846: 13842: 13819: 13818: 13814: 13793: 13789: 13779: 13777: 13769: 13768: 13764: 13717: 13713: 13658: 13654: 13599: 13595: 13587: 13583: 13550: 13546: 13517: 13513: 13482: 13478: 13421: 13417: 13387: 13383: 13378: 13374: 13351: 13347: 13308: 13304: 13273: 13269: 13262: 13240: 13233: 13180: 13176: 13152:10.1038/444286a 13123: 13119: 13086: 13082: 13051: 13047: 13037: 13035: 13030: 13029: 13025: 13015: 13013: 13004: 13003: 12999: 12944: 12940: 12930: 12928: 12920: 12919: 12915: 12905: 12903: 12894: 12893: 12889: 12834: 12830: 12820: 12818: 12810: 12809: 12805: 12795: 12793: 12785: 12784: 12780: 12764: 12763: 12756: 12754: 12744: 12740: 12730: 12728: 12718: 12714: 12699: 12695: 12685: 12683: 12679: 12664: 12658: 12654: 12637: 12636: 12632: 12593: 12589: 12579: 12577: 12567: 12563: 12550: 12549: 12545: 12538: 12528: 12524: 12514: 12512: 12502: 12498: 12459: 12455: 12402: 12398: 12385: 12384: 12380: 12333: 12329: 12292: 12288: 12235: 12231: 12216: 12212: 12159: 12155: 12118: 12114: 12104: 12102: 12093: 12092: 12088: 12077:"Nanotube Tips" 12075: 12074: 12070: 12057: 12056: 12052: 12037: 12033: 11982: 11978: 11943: 11939: 11894: 11890: 11829: 11825: 11790: 11786: 11725: 11721: 11670: 11666: 11623: 11619: 11576: 11572: 11529: 11525: 11466: 11462: 11417: 11413: 11354: 11350: 11315: 11311: 11301: 11299: 11291: 11290: 11286: 11276: 11274: 11272:Smart Nanotubes 11266: 11265: 11261: 11224: 11220: 11169: 11165: 11112: 11108: 11065: 11061: 11008: 11004: 10941: 10937: 10884: 10880: 10819: 10806: 10743: 10739: 10688: 10684: 10631: 10627: 10574: 10570: 10509: 10502: 10459: 10455: 10402: 10398: 10337: 10333: 10280: 10276: 10223: 10219: 10160: 10153: 10102: 10098: 10045: 10041: 9986: 9982: 9921: 9917: 9858: 9854: 9793: 9789: 9738: 9734: 9683: 9676: 9617: 9610: 9547: 9538: 9485: 9481: 9438: 9434: 9383: 9376: 9307: 9303: 9293: 9291: 9283: 9282: 9278: 9273:Wayback Machine 9264: 9256: 9252: 9220: 9216: 9185: 9181: 9138: 9134: 9094: 9088: 9084: 9074: 9072: 9059: 9058: 9054: 9044: 9042: 9029: 9028: 9024: 9014: 9012: 9011:on 1 April 2015 8999: 8998: 8994: 8984: 8982: 8970: 8969: 8965: 8955: 8953: 8940: 8939: 8935: 8925: 8923: 8910: 8903: 8893: 8891: 8878: 8877: 8870: 8860: 8858: 8845: 8844: 8840: 8830: 8828: 8813: 8812: 8808: 8801: 8779: 8772: 8741: 8737: 8697: 8693: 8624: 8620: 8575: 8564: 8513: 8509: 8466: 8462: 8409: 8398: 8347: 8343: 8282: 8278: 8235: 8231: 8178: 8174: 8139: 8135: 8084: 8080: 8029: 8025: 7974: 7970: 7911: 7907: 7864: 7860: 7817: 7813: 7770: 7766: 7723: 7719: 7668: 7664: 7613: 7609: 7558: 7554: 7517:(10): 640–646. 7503: 7499: 7448: 7444: 7389: 7385: 7354: 7350: 7318: 7314: 7275: 7271: 7252: 7248: 7241: 7225: 7221: 7190: 7183: 7152: 7148: 7109: 7105: 7064: 7060: 7047:(3–4): 491–51. 7037: 7033: 6996: 6992: 6961: 6957: 6918: 6914: 6857: 6853: 6800: 6796: 6729: 6725: 6692: 6688: 6651: 6647: 6602: 6598: 6565: 6561: 6514: 6510: 6463: 6459: 6451: 6447: 6437: 6435: 6425: 6418: 6357: 6353: 6322: 6318: 6271: 6267: 6210: 6206: 6159: 6155: 6123: 6117: 6113: 6064: 6060: 6021: 6017: 5986: 5979: 5924: 5920: 5873: 5869: 5838: 5834: 5787: 5780: 5741: 5737: 5716:(10): 626–631. 5705: 5698: 5690: 5659: 5653: 5649: 5618: 5614: 5575: 5571: 5563: 5530: 5524: 5520: 5477: 5470: 5423: 5419: 5411: 5362: 5356: 5352: 5321: 5317: 5278: 5274: 5229: 5225: 5170: 5166: 5121: 5117: 5072: 5065: 5026: 5022: 5014: 4975: 4969: 4965: 4924: 4920: 4896: 4892: 4861: 4857: 4824: 4820: 4812: 4763: 4757: 4753: 4714: 4710: 4686:10.1.1.859.7671 4661: 4657: 4649: 4614: 4608: 4604: 4580: 4576: 4568: 4561:10.1.1.413.7576 4543: 4537: 4533: 4502: 4498: 4489: 4488: 4484: 4445: 4441: 4396: 4392: 4368:10.1.1.454.2744 4343: 4339: 4308: 4304: 4261: 4257: 4224: 4220: 4185: 4181: 4173: 4134: 4128: 4124: 4085: 4078: 4031: 4024: 3985: 3978: 3939: 3932: 3897: 3893: 3862: 3855: 3826:(6662): 59–62. 3816: 3812: 3773: 3769: 3726: 3722: 3683: 3674: 3617: 3613: 3552: 3548: 3493: 3489: 3442: 3433: 3402: 3395: 3366:(6348): 56–58. 3356: 3347: 3337: 3332: 3262:Carbon nanocone 3247: 3223: 3139: 3129: 3073: 3065:Main articles: 3063: 3012:intermolecular 2982: 2976: 2855: 2839:synthetic setae 2806:Amroy Europe Oy 2788: 2749: 2728: 2693: 2685:Main articles: 2683: 2589:There are many 2587: 2565: 2543: 2530: 2492: 2461:carbon monoxide 2445: 2439: 2390: 2384: 2367:photo-detectors 2334: 2328: 2302: 2262: 2255: 2189:) nanotube, if 2163: 2112:elastic modulus 2092: 2086: 2058: 2046:charge capacity 2019:magnetic moment 1988:Carbon nanobuds 1973: 1926: 1869: 1856: 1832:highest density 1828: 1785: 1729: 1728: 1727: 1726: 1725: 1722: 1714: 1713: 1710: 1702: 1701: 1698: 1690: 1689: 1686: 1677: 1676: 1670: 1665: 1663:Physical limits 1636: 1589: 1587: 1579: 1576: 1575: 1544: 1496: 1486: 1484: 1463: 1462: 1446: 1439: 1424: 1396: 1393: 1392: 1360:The tilt angle 1316: 1312: 1295: 1284: 1281: 1280: 1258: 1253: 1250: 1249: 1233: 1230: 1229: 1228:. The diameter 1191: 1187: 1170: 1153: 1149: 1131: 1127: 1122: 1113: 1109: 1101: 1098: 1097: 1073: 943: 938: 937: 936: 935: 934: 931: 923: 922: 919: 911: 910: 907: 899: 898: 895: 751: 550:zigzag nanotube 503:where the atom 493: 488: 487: 486: 485: 484: 481: 473: 472: 469: 458: 341:carbon nanotube 333: 293: 281: 178:Aluminium oxide 28: 23: 22: 15: 12: 11: 5: 15621: 15611: 15610: 15605: 15600: 15598:Space elevator 15595: 15590: 15585: 15580: 15563: 15562: 15560: 15559: 15554: 15549: 15543: 15540: 15539: 15537: 15536: 15534:LiftPort Group 15531: 15526: 15520: 15518: 15514: 15513: 15511: 15510: 15505: 15503:Jerome Pearson 15500: 15495: 15489: 15487: 15483: 15482: 15480: 15479: 15474: 15468: 15466: 15462: 15461: 15459: 15458: 15456:Space fountain 15453: 15448: 15443: 15438: 15432: 15430: 15426: 15425: 15423: 15422: 15421: 15420: 15410: 15408:Nanotechnology 15405: 15400: 15395: 15389: 15387: 15383: 15382: 15375: 15373: 15371: 15370: 15365: 15360: 15355: 15349: 15347: 15343: 15342: 15339:Space elevator 15335: 15334: 15327: 15320: 15312: 15303: 15302: 15300: 15299: 15286: 15283: 15282: 15280: 15279: 15274: 15269: 15264: 15259: 15258: 15257: 15252: 15247: 15242: 15237: 15232: 15222: 15217: 15212: 15207: 15206: 15205: 15195: 15190: 15185: 15184: 15183: 15178: 15173: 15168: 15158: 15153: 15148: 15143: 15138: 15132: 15130: 15126: 15125: 15122: 15121: 15119: 15118: 15113: 15111:Swarm robotics 15108: 15103: 15098: 15093: 15087: 15085: 15079: 15078: 15076: 15075: 15070: 15065: 15060: 15055: 15053:Picotechnology 15050: 15049: 15048: 15043: 15038: 15031:Nanotechnology 15028: 15023: 15018: 15017: 15016: 15006: 15001: 14996: 14991: 14986: 14981: 14976: 14971: 14966: 14961: 14955: 14953: 14947: 14946: 14944: 14943: 14938: 14933: 14928: 14923: 14918: 14913: 14907: 14905: 14898: 14894: 14893: 14886: 14885: 14878: 14871: 14863: 14854: 14853: 14851: 14850: 14845: 14840: 14835: 14830: 14824: 14822: 14816: 14815: 14813: 14812: 14810:Penta-graphene 14807: 14802: 14797: 14792: 14787: 14779: 14771: 14763: 14754: 14752: 14746: 14745: 14743: 14742: 14734: 14726: 14718: 14710: 14702: 14693: 14691: 14685: 14684: 14682: 14681: 14676: 14671: 14666: 14660: 14658: 14652: 14651: 14649: 14648: 14640: 14632: 14624: 14616: 14610: 14608: 14602: 14601: 14599: 14598: 14593: 14563: 14553: 14544: 14539: 14531: 14529: 14523: 14522: 14520: 14519: 14514: 14506: 14504: 14495: 14494: 14487: 14486: 14479: 14472: 14464: 14458: 14457: 14452: 14447: 14442: 14437: 14432: 14428: 14405: 14398: 14397: 14396: 14394: 14393:External links 14391: 14388: 14387: 14330: 14287: 14268: 14245: 14210: 14200:JP 1982-58,966 14191: 14165:(3): 335–349. 14142: 14100: 14052: 14000: 13985: 13942: 13912: 13887: 13840: 13812: 13787: 13762: 13711: 13652: 13593: 13581: 13544: 13511: 13476: 13415: 13396:(6): 1701019. 13385: 13381: 13372: 13345: 13318:(25): 256805. 13302: 13267: 13260: 13231: 13174: 13117: 13080: 13045: 13023: 13012:. 26 July 2024 12997: 12938: 12913: 12902:. 26 July 2024 12887: 12828: 12803: 12778: 12752:Plastics Today 12738: 12712: 12693: 12652: 12630: 12603:(3): 562–567. 12587: 12561: 12543: 12522: 12496: 12469:(3): 265–273. 12453: 12396: 12393:. 27 May 2014. 12378: 12327: 12286: 12229: 12210: 12153: 12112: 12086: 12068: 12050: 12031: 11996:(7): 848–863. 11976: 11937: 11888: 11823: 11784: 11719: 11684:(1): 916–923. 11664: 11617: 11570: 11523: 11460: 11411: 11348: 11309: 11284: 11259: 11218: 11163: 11126:(3): 267–275. 11106: 11059: 11002: 10935: 10878: 10804: 10737: 10682: 10625: 10568: 10500: 10453: 10416:(4): 389–406. 10396: 10331: 10274: 10217: 10151: 10116:(2): 264–272. 10096: 10039: 9980: 9915: 9852: 9787: 9732: 9697:(4): 404–415. 9674: 9608: 9536: 9499:(4): 302–309. 9479: 9452:(3): 567–581. 9432: 9397:(2): 591–595. 9374: 9301: 9276: 9250: 9214: 9179: 9132: 9082: 9052: 9022: 8992: 8963: 8933: 8901: 8868: 8838: 8806: 8799: 8770: 8735: 8691: 8618: 8562: 8507: 8460: 8396: 8341: 8276: 8229: 8172: 8133: 8078: 8023: 7968: 7905: 7858: 7811: 7764: 7717: 7662: 7627:(4): 713–718. 7607: 7572:(4): 652–655. 7552: 7497: 7442: 7383: 7348: 7329:(3): 309–314. 7312: 7269: 7246: 7239: 7219: 7200:(4): 307–316. 7181: 7146: 7103: 7058: 7031: 6990: 6955: 6928:(6): 651–657. 6912: 6851: 6794: 6723: 6686: 6645: 6596: 6559: 6508: 6457: 6445: 6416: 6351: 6332:(3): 155–156. 6326:Nature Physics 6316: 6265: 6204: 6153: 6134:(2): 677–732. 6111: 6074:(12): 121408. 6058: 6031:(4): 207–208. 6015: 5977: 5940:(3): 703–764. 5918: 5867: 5848:(19): 195436. 5832: 5778: 5735: 5696: 5670:(3): 731–736. 5647: 5612: 5569: 5518: 5491:(21): 217206. 5468: 5427:Nanotechnology 5417: 5367:Nanotechnology 5350: 5315: 5272: 5243:(3): 156–161. 5223: 5164: 5115: 5063: 5020: 4963: 4936:(4): 487–492. 4918: 4890: 4855: 4836:(3): 173–176. 4818: 4774:(4): 337–342. 4751: 4708: 4655: 4602: 4574: 4554:(3): 774–781. 4531: 4496: 4482: 4439: 4390: 4337: 4302: 4275:(2): 459–462. 4255: 4236:(7): 887–889. 4218: 4179: 4145:(12): 125502. 4122: 4095:(3): 145–249. 4076: 4022: 3976: 3930: 3911:(3): 287–299. 3891: 3853: 3810: 3767: 3720: 3693:(5): 631–634. 3672: 3627:(21): 215502. 3611: 3546: 3487: 3431: 3412:(3): 335–349. 3393: 3344: 3343: 3336: 3333: 3331: 3330: 3325: 3320: 3314: 3309: 3304: 3299: 3294: 3289: 3284: 3279: 3274: 3269: 3264: 3259: 3254: 3248: 3246: 3243: 3128: 3125: 3062: 3059: 2994:Damascus steel 2986:nanotechnology 2978:Main article: 2975: 2972: 2938:damascus steel 2930: 2929: 2922: 2912: 2902: 2895: 2892: 2889: 2886: 2883: 2876: 2872: 2868: 2865: 2862: 2854: 2851: 2850: 2849: 2842: 2827: 2817: 2803: 2787: 2784: 2748: 2745: 2727: 2724: 2698:hydrophobicity 2682: 2679: 2593:standards and 2586: 2583: 2578:micromechanics 2564: 2561: 2542: 2539: 2529: 2526: 2491: 2488: 2441:Main article: 2438: 2435: 2426:mean free path 2386:Main article: 2383: 2380: 2330:Main article: 2327: 2324: 2300: 2260: 2253: 2179:semiconducting 2162: 2159: 2088:Main article: 2085: 2082: 2057: 2054: 1996:field emitters 1972: 1969: 1940:as well as by 1925: 1922: 1868: 1865: 1855: 1852: 1827: 1824: 1784: 1781: 1723: 1716: 1715: 1711: 1704: 1703: 1699: 1692: 1691: 1687: 1680: 1679: 1678: 1674: 1673: 1672: 1671: 1669: 1666: 1664: 1661: 1657: 1656: 1643: 1640: 1635: 1632: 1629: 1626: 1623: 1620: 1617: 1612: 1609: 1606: 1600: 1595: 1592: 1586: 1583: 1521: 1520: 1507: 1503: 1499: 1495: 1492: 1489: 1483: 1480: 1477: 1472: 1469: 1466: 1460: 1456: 1453: 1449: 1443: 1438: 1434: 1431: 1427: 1423: 1420: 1417: 1414: 1411: 1408: 1404: 1400: 1347: 1346: 1333: 1330: 1327: 1324: 1319: 1315: 1311: 1308: 1305: 1302: 1299: 1294: 1291: 1288: 1265: 1261: 1257: 1237: 1222: 1221: 1208: 1205: 1202: 1199: 1194: 1190: 1186: 1183: 1180: 1177: 1174: 1169: 1166: 1161: 1156: 1152: 1148: 1145: 1142: 1139: 1134: 1130: 1126: 1120: 1116: 1112: 1108: 1105: 1072: 1069: 945:A nanotube is 942: 939: 932: 925: 924: 920: 913: 912: 908: 901: 900: 896: 889: 888: 887: 886: 885: 750: 747: 492: 489: 482: 475: 474: 470: 463: 462: 461: 460: 459: 457: 454: 430:nanotechnology 410:semiconductors 386: 385: 375: 335: 334: 332: 331: 324: 317: 309: 306: 305: 304: 303: 291: 276: 275: 274: 273: 268: 263: 258: 250: 249: 243: 242: 241: 240: 235: 230: 225: 220: 215: 210: 205: 200: 195: 190: 185: 180: 175: 170: 162: 161: 154: 153: 152: 151: 146: 141: 136: 131: 123: 122: 116: 115: 114: 113: 108: 103: 98: 93: 88: 80: 79: 73: 72: 64: 63: 57: 56: 26: 9: 6: 4: 3: 2: 15620: 15609: 15608:Nanomaterials 15606: 15604: 15601: 15599: 15596: 15594: 15591: 15589: 15586: 15584: 15581: 15579: 15576: 15575: 15573: 15558: 15555: 15553: 15550: 15548: 15545: 15544: 15541: 15535: 15532: 15530: 15527: 15525: 15522: 15521: 15519: 15517:Organizations 15515: 15509: 15506: 15504: 15501: 15499: 15496: 15494: 15491: 15490: 15488: 15484: 15478: 15477:Elevator:2010 15475: 15473: 15470: 15469: 15467: 15463: 15457: 15454: 15452: 15449: 15447: 15444: 15442: 15439: 15437: 15434: 15433: 15431: 15427: 15419: 15416: 15415: 15414: 15411: 15409: 15406: 15404: 15401: 15399: 15398:Counterweight 15396: 15394: 15391: 15390: 15388: 15384: 15379: 15369: 15366: 15364: 15361: 15359: 15356: 15354: 15351: 15350: 15348: 15346:Main articles 15344: 15340: 15333: 15328: 15326: 15321: 15319: 15314: 15313: 15310: 15298: 15297: 15288: 15287: 15284: 15278: 15277:Transhumanism 15275: 15273: 15270: 15268: 15265: 15263: 15260: 15256: 15253: 15251: 15248: 15246: 15243: 15241: 15238: 15236: 15233: 15231: 15228: 15227: 15226: 15223: 15221: 15218: 15216: 15213: 15211: 15208: 15204: 15201: 15200: 15199: 15196: 15194: 15191: 15189: 15186: 15182: 15179: 15177: 15174: 15172: 15169: 15167: 15164: 15163: 15162: 15159: 15157: 15154: 15152: 15149: 15147: 15144: 15142: 15139: 15137: 15134: 15133: 15131: 15127: 15117: 15114: 15112: 15109: 15107: 15104: 15102: 15099: 15097: 15094: 15092: 15089: 15088: 15086: 15084: 15080: 15074: 15071: 15069: 15066: 15064: 15061: 15059: 15056: 15054: 15051: 15047: 15046:Nanomaterials 15044: 15042: 15039: 15037: 15034: 15033: 15032: 15029: 15027: 15024: 15022: 15019: 15015: 15012: 15011: 15010: 15009:Metamaterials 15007: 15005: 15002: 15000: 14997: 14995: 14992: 14990: 14987: 14985: 14982: 14980: 14977: 14975: 14972: 14970: 14967: 14965: 14962: 14960: 14957: 14956: 14954: 14952: 14948: 14942: 14939: 14937: 14934: 14932: 14929: 14927: 14924: 14922: 14921:3D publishing 14919: 14917: 14914: 14912: 14909: 14908: 14906: 14904:Manufacturing 14902: 14899: 14895: 14891: 14884: 14879: 14877: 14872: 14870: 14865: 14864: 14861: 14849: 14846: 14844: 14841: 14839: 14836: 14834: 14831: 14829: 14826: 14825: 14823: 14821: 14817: 14811: 14808: 14806: 14803: 14801: 14798: 14796: 14793: 14791: 14788: 14786: 14785:(prismane C8) 14772: 14770: 14756: 14755: 14753: 14751: 14747: 14741: 14727: 14725: 14711: 14709: 14695: 14694: 14692: 14690: 14686: 14680: 14677: 14675: 14672: 14670: 14667: 14665: 14662: 14661: 14659: 14657: 14653: 14647: 14633: 14631: 14617: 14615: 14612: 14611: 14609: 14607: 14603: 14597: 14596:Glassy carbon 14594: 14591: 14590: 14585: 14584: 14579: 14578: 14573: 14572: 14567: 14566: 14558: 14557: 14548: 14545: 14543: 14540: 14538: 14537: 14533: 14532: 14530: 14528: 14524: 14518: 14515: 14513: 14512: 14508: 14507: 14505: 14503: 14502: 14496: 14492: 14485: 14480: 14478: 14473: 14471: 14466: 14465: 14462: 14456: 14453: 14451: 14448: 14446: 14443: 14441: 14438: 14436: 14429: 14426: 14423: 14422: 14417: 14416: 14408: 14383: 14379: 14374: 14369: 14365: 14361: 14357: 14353: 14349: 14345: 14341: 14334: 14326: 14322: 14318: 14314: 14310: 14306: 14302: 14298: 14291: 14278: 14272: 14264: 14260: 14256: 14249: 14241: 14237: 14233: 14229: 14225: 14221: 14214: 14201: 14195: 14184: 14180: 14176: 14172: 14168: 14164: 14160: 14153: 14146: 14127: 14120: 14113: 14111: 14109: 14107: 14105: 14085: 14081: 14077: 14073: 14065: 14056: 14045: 14041: 14037: 14033: 14029: 14025: 14021: 14014: 14007: 14005: 13996: 13992: 13988: 13982: 13977: 13972: 13968: 13964: 13960: 13959: 13951: 13949: 13947: 13930: 13926: 13922: 13916: 13901: 13897: 13891: 13883: 13879: 13875: 13871: 13867: 13863: 13859: 13855: 13851: 13844: 13835: 13830: 13826: 13822: 13816: 13807: 13802: 13798: 13791: 13776: 13772: 13766: 13758: 13754: 13749: 13744: 13739: 13734: 13730: 13726: 13722: 13715: 13707: 13703: 13698: 13693: 13688: 13683: 13679: 13675: 13671: 13667: 13663: 13656: 13648: 13644: 13639: 13634: 13629: 13624: 13620: 13616: 13612: 13608: 13604: 13597: 13590: 13585: 13577: 13573: 13568: 13563: 13559: 13555: 13548: 13539: 13534: 13530: 13526: 13522: 13515: 13507: 13503: 13499: 13495: 13492:(8): 085428. 13491: 13487: 13480: 13472: 13468: 13464: 13460: 13455: 13450: 13446: 13442: 13438: 13434: 13430: 13426: 13419: 13411: 13407: 13403: 13399: 13395: 13391: 13376: 13368: 13364: 13360: 13356: 13349: 13341: 13337: 13333: 13329: 13325: 13321: 13317: 13313: 13306: 13298: 13294: 13290: 13286: 13282: 13278: 13277:Physics Today 13271: 13263: 13257: 13253: 13249: 13245: 13238: 13236: 13227: 13223: 13218: 13213: 13209: 13205: 13201: 13197: 13193: 13189: 13185: 13178: 13170: 13166: 13162: 13158: 13153: 13148: 13144: 13140: 13137:(7117): 286. 13136: 13132: 13128: 13121: 13113: 13109: 13104: 13099: 13095: 13091: 13084: 13076: 13072: 13068: 13064: 13060: 13056: 13049: 13033: 13027: 13011: 13007: 13001: 12993: 12989: 12984: 12979: 12975: 12971: 12966: 12961: 12957: 12953: 12949: 12942: 12927: 12923: 12917: 12901: 12897: 12891: 12883: 12879: 12874: 12869: 12865: 12861: 12856: 12851: 12847: 12843: 12842:Nanomaterials 12839: 12832: 12817: 12813: 12807: 12792: 12788: 12782: 12774: 12768: 12753: 12749: 12742: 12727: 12723: 12716: 12708: 12704: 12697: 12678: 12674: 12670: 12663: 12656: 12648: 12644: 12640: 12634: 12626: 12622: 12618: 12614: 12610: 12606: 12602: 12598: 12591: 12576: 12572: 12565: 12557: 12553: 12547: 12534: 12530: 12526: 12511: 12507: 12500: 12492: 12488: 12484: 12480: 12476: 12472: 12468: 12464: 12457: 12449: 12445: 12440: 12435: 12431: 12427: 12423: 12419: 12415: 12411: 12407: 12400: 12392: 12388: 12382: 12374: 12370: 12366: 12362: 12358: 12354: 12350: 12346: 12342: 12338: 12331: 12323: 12319: 12314: 12309: 12305: 12301: 12297: 12290: 12282: 12278: 12273: 12268: 12264: 12260: 12256: 12252: 12248: 12244: 12240: 12233: 12225: 12221: 12214: 12206: 12202: 12197: 12192: 12188: 12184: 12180: 12176: 12172: 12168: 12164: 12157: 12149: 12145: 12140: 12135: 12131: 12127: 12123: 12116: 12100: 12096: 12090: 12082: 12078: 12072: 12064: 12060: 12054: 12046: 12042: 12035: 12027: 12023: 12019: 12015: 12011: 12007: 12003: 11999: 11995: 11991: 11987: 11980: 11972: 11968: 11964: 11960: 11956: 11952: 11948: 11941: 11933: 11929: 11925: 11921: 11916: 11911: 11907: 11903: 11899: 11892: 11884: 11880: 11875: 11870: 11866: 11862: 11858: 11854: 11850: 11846: 11842: 11838: 11834: 11827: 11819: 11815: 11811: 11807: 11803: 11799: 11795: 11788: 11780: 11776: 11771: 11766: 11762: 11758: 11754: 11750: 11746: 11742: 11738: 11734: 11730: 11723: 11715: 11711: 11707: 11703: 11699: 11695: 11691: 11687: 11683: 11679: 11675: 11668: 11660: 11656: 11652: 11648: 11644: 11640: 11636: 11632: 11628: 11621: 11613: 11609: 11605: 11601: 11597: 11593: 11589: 11585: 11581: 11574: 11566: 11562: 11558: 11554: 11550: 11546: 11542: 11538: 11534: 11527: 11519: 11515: 11511: 11507: 11503: 11499: 11495: 11491: 11487: 11483: 11479: 11475: 11471: 11464: 11456: 11452: 11447: 11442: 11438: 11434: 11431:(4): 044305. 11430: 11426: 11422: 11415: 11407: 11403: 11399: 11395: 11391: 11387: 11383: 11379: 11375: 11371: 11367: 11363: 11359: 11352: 11344: 11340: 11336: 11332: 11328: 11324: 11320: 11313: 11298: 11294: 11288: 11273: 11269: 11263: 11255: 11251: 11246: 11241: 11237: 11233: 11229: 11222: 11214: 11210: 11206: 11202: 11198: 11194: 11190: 11186: 11182: 11178: 11174: 11167: 11159: 11155: 11150: 11145: 11141: 11137: 11133: 11129: 11125: 11121: 11117: 11110: 11102: 11098: 11094: 11090: 11086: 11082: 11078: 11074: 11070: 11063: 11055: 11051: 11046: 11041: 11037: 11033: 11029: 11025: 11021: 11017: 11013: 11006: 10998: 10994: 10989: 10984: 10980: 10976: 10971: 10966: 10962: 10958: 10954: 10950: 10946: 10939: 10931: 10927: 10922: 10917: 10913: 10909: 10905: 10901: 10897: 10893: 10889: 10882: 10874: 10870: 10865: 10860: 10856: 10852: 10848: 10844: 10840: 10836: 10832: 10828: 10824: 10817: 10815: 10813: 10811: 10809: 10800: 10796: 10791: 10786: 10782: 10778: 10773: 10768: 10764: 10760: 10756: 10752: 10748: 10741: 10733: 10729: 10725: 10721: 10717: 10713: 10709: 10705: 10701: 10697: 10693: 10686: 10678: 10674: 10669: 10664: 10660: 10656: 10652: 10648: 10644: 10640: 10636: 10629: 10621: 10617: 10612: 10607: 10603: 10599: 10595: 10591: 10587: 10583: 10579: 10572: 10564: 10560: 10555: 10550: 10546: 10542: 10538: 10534: 10530: 10526: 10522: 10518: 10514: 10507: 10505: 10496: 10492: 10488: 10484: 10480: 10476: 10472: 10468: 10464: 10457: 10449: 10445: 10440: 10435: 10431: 10427: 10423: 10419: 10415: 10411: 10407: 10400: 10392: 10388: 10383: 10378: 10374: 10370: 10366: 10362: 10358: 10354: 10350: 10346: 10342: 10335: 10327: 10323: 10318: 10313: 10309: 10305: 10301: 10297: 10293: 10289: 10285: 10278: 10270: 10266: 10261: 10256: 10252: 10248: 10244: 10240: 10236: 10232: 10228: 10221: 10213: 10209: 10205: 10201: 10197: 10193: 10189: 10185: 10181: 10177: 10173: 10169: 10165: 10158: 10156: 10147: 10143: 10139: 10135: 10131: 10127: 10123: 10119: 10115: 10111: 10107: 10100: 10092: 10088: 10083: 10078: 10074: 10070: 10066: 10062: 10058: 10054: 10050: 10043: 10035: 10031: 10026: 10021: 10017: 10013: 10008: 10003: 9999: 9995: 9991: 9984: 9976: 9972: 9967: 9962: 9958: 9954: 9950: 9946: 9942: 9938: 9934: 9930: 9926: 9919: 9911: 9907: 9903: 9899: 9895: 9891: 9887: 9883: 9879: 9875: 9871: 9867: 9863: 9856: 9848: 9844: 9840: 9836: 9832: 9828: 9823: 9822:1721.1/102316 9818: 9814: 9810: 9806: 9802: 9798: 9791: 9783: 9779: 9775: 9771: 9767: 9763: 9759: 9755: 9751: 9747: 9743: 9736: 9728: 9724: 9720: 9716: 9712: 9708: 9704: 9700: 9696: 9692: 9691:Nature Plants 9688: 9681: 9679: 9670: 9666: 9662: 9658: 9654: 9650: 9646: 9642: 9638: 9634: 9630: 9626: 9622: 9615: 9613: 9604: 9600: 9595: 9590: 9586: 9582: 9577: 9572: 9568: 9564: 9560: 9556: 9552: 9545: 9543: 9541: 9532: 9528: 9523: 9518: 9514: 9510: 9506: 9502: 9498: 9494: 9490: 9483: 9475: 9471: 9467: 9463: 9459: 9455: 9451: 9447: 9443: 9436: 9428: 9424: 9420: 9416: 9412: 9408: 9404: 9400: 9396: 9392: 9388: 9381: 9379: 9370: 9366: 9362: 9358: 9354: 9350: 9346: 9342: 9338: 9334: 9329: 9324: 9320: 9316: 9312: 9305: 9290: 9286: 9280: 9274: 9270: 9260: 9254: 9246: 9242: 9238: 9234: 9230: 9226: 9218: 9210: 9206: 9202: 9198: 9194: 9190: 9183: 9175: 9171: 9167: 9163: 9159: 9155: 9151: 9147: 9143: 9136: 9128: 9124: 9120: 9116: 9112: 9108: 9104: 9100: 9093: 9086: 9070: 9066: 9062: 9056: 9040: 9036: 9032: 9026: 9010: 9006: 9002: 8996: 8980: 8979: 8973: 8967: 8951: 8947: 8943: 8937: 8922: 8921: 8915: 8908: 8906: 8889: 8885: 8881: 8875: 8873: 8856: 8852: 8848: 8842: 8826: 8822: 8821: 8816: 8810: 8802: 8796: 8792: 8788: 8784: 8777: 8775: 8766: 8762: 8758: 8754: 8751:(3): 030903. 8750: 8746: 8739: 8731: 8727: 8723: 8719: 8715: 8711: 8707: 8703: 8695: 8687: 8683: 8679: 8675: 8670: 8665: 8661: 8657: 8653: 8649: 8645: 8641: 8637: 8633: 8629: 8622: 8614: 8610: 8606: 8602: 8597: 8592: 8588: 8584: 8580: 8573: 8571: 8569: 8567: 8558: 8554: 8550: 8546: 8542: 8538: 8534: 8530: 8526: 8522: 8518: 8511: 8503: 8499: 8495: 8491: 8487: 8483: 8479: 8475: 8471: 8464: 8456: 8452: 8447: 8442: 8438: 8434: 8430: 8426: 8422: 8418: 8414: 8407: 8405: 8403: 8401: 8392: 8388: 8384: 8380: 8376: 8372: 8368: 8364: 8360: 8356: 8352: 8345: 8337: 8333: 8328: 8323: 8319: 8315: 8311: 8307: 8303: 8299: 8295: 8291: 8287: 8280: 8272: 8268: 8264: 8260: 8256: 8252: 8248: 8244: 8240: 8233: 8225: 8221: 8216: 8211: 8207: 8203: 8199: 8195: 8191: 8187: 8183: 8176: 8168: 8164: 8160: 8156: 8152: 8148: 8144: 8137: 8129: 8125: 8121: 8117: 8113: 8109: 8105: 8101: 8097: 8093: 8089: 8082: 8074: 8070: 8066: 8062: 8058: 8054: 8050: 8046: 8042: 8038: 8034: 8027: 8019: 8015: 8011: 8007: 8003: 7999: 7995: 7991: 7987: 7983: 7979: 7972: 7964: 7960: 7956: 7952: 7948: 7944: 7940: 7936: 7932: 7928: 7924: 7920: 7916: 7909: 7901: 7897: 7893: 7889: 7885: 7881: 7877: 7873: 7869: 7862: 7854: 7850: 7846: 7842: 7838: 7834: 7830: 7826: 7822: 7815: 7807: 7803: 7799: 7795: 7791: 7787: 7783: 7779: 7775: 7768: 7760: 7756: 7752: 7748: 7744: 7740: 7736: 7732: 7728: 7721: 7713: 7709: 7705: 7701: 7697: 7693: 7689: 7685: 7681: 7677: 7673: 7666: 7658: 7654: 7650: 7646: 7642: 7638: 7634: 7630: 7626: 7622: 7618: 7611: 7603: 7599: 7595: 7591: 7587: 7583: 7579: 7575: 7571: 7567: 7563: 7556: 7548: 7544: 7540: 7536: 7532: 7528: 7524: 7520: 7516: 7512: 7508: 7501: 7493: 7489: 7485: 7481: 7477: 7473: 7469: 7465: 7461: 7457: 7453: 7446: 7438: 7434: 7429: 7424: 7419: 7414: 7410: 7406: 7402: 7398: 7394: 7387: 7379: 7375: 7371: 7367: 7363: 7359: 7352: 7344: 7340: 7336: 7332: 7328: 7324: 7316: 7308: 7304: 7300: 7296: 7292: 7288: 7284: 7280: 7273: 7265: 7261: 7257: 7250: 7242: 7236: 7232: 7231: 7223: 7215: 7211: 7207: 7203: 7199: 7195: 7188: 7186: 7177: 7173: 7169: 7165: 7161: 7157: 7150: 7142: 7138: 7134: 7130: 7126: 7122: 7118: 7114: 7107: 7098: 7093: 7089: 7085: 7081: 7077: 7074:(3): 033418. 7073: 7069: 7062: 7054: 7050: 7046: 7042: 7035: 7026: 7021: 7017: 7013: 7009: 7005: 7001: 6994: 6986: 6982: 6978: 6974: 6970: 6966: 6959: 6951: 6947: 6943: 6939: 6935: 6931: 6927: 6923: 6916: 6908: 6904: 6900: 6896: 6892: 6888: 6884: 6880: 6875: 6870: 6867:(1): 96–100. 6866: 6862: 6855: 6847: 6843: 6839: 6835: 6831: 6827: 6823: 6819: 6815: 6811: 6810: 6805: 6798: 6790: 6786: 6781: 6776: 6771: 6766: 6762: 6758: 6753: 6748: 6744: 6740: 6739: 6734: 6727: 6719: 6715: 6711: 6707: 6703: 6699: 6698: 6690: 6682: 6678: 6674: 6670: 6666: 6662: 6661: 6656: 6649: 6641: 6637: 6632: 6627: 6623: 6619: 6615: 6611: 6607: 6600: 6592: 6588: 6584: 6580: 6576: 6572: 6571: 6563: 6555: 6551: 6547: 6543: 6539: 6535: 6531: 6527: 6523: 6519: 6512: 6504: 6500: 6496: 6492: 6488: 6484: 6480: 6476: 6472: 6468: 6461: 6454: 6449: 6434: 6430: 6423: 6421: 6412: 6408: 6404: 6400: 6395: 6390: 6386: 6382: 6378: 6374: 6370: 6366: 6362: 6355: 6347: 6343: 6339: 6335: 6331: 6327: 6320: 6312: 6308: 6303: 6298: 6293: 6288: 6284: 6280: 6276: 6269: 6261: 6257: 6253: 6249: 6245: 6241: 6237: 6233: 6228: 6223: 6220:(5): 057001. 6219: 6215: 6208: 6200: 6196: 6192: 6188: 6184: 6180: 6176: 6172: 6168: 6164: 6157: 6149: 6145: 6141: 6137: 6133: 6129: 6122: 6115: 6107: 6103: 6099: 6095: 6091: 6087: 6082: 6077: 6073: 6069: 6062: 6054: 6050: 6046: 6042: 6038: 6034: 6030: 6026: 6019: 6011: 6007: 6003: 5999: 5995: 5991: 5984: 5982: 5973: 5969: 5965: 5961: 5957: 5953: 5948: 5943: 5939: 5935: 5934: 5929: 5922: 5914: 5910: 5905: 5900: 5895: 5890: 5886: 5882: 5878: 5871: 5863: 5859: 5855: 5851: 5847: 5843: 5836: 5828: 5824: 5820: 5816: 5812: 5808: 5804: 5800: 5796: 5792: 5785: 5783: 5774: 5770: 5766: 5762: 5758: 5754: 5750: 5746: 5739: 5731: 5727: 5723: 5719: 5715: 5711: 5703: 5701: 5689: 5685: 5681: 5677: 5673: 5669: 5665: 5658: 5651: 5643: 5639: 5635: 5631: 5627: 5623: 5616: 5608: 5604: 5600: 5596: 5592: 5588: 5584: 5580: 5579:J. Mater. Res 5573: 5562: 5558: 5554: 5550: 5546: 5542: 5538: 5537: 5529: 5522: 5514: 5510: 5506: 5502: 5498: 5494: 5490: 5486: 5482: 5475: 5473: 5464: 5460: 5456: 5452: 5448: 5444: 5440: 5436: 5433:(3): 035704. 5432: 5428: 5421: 5410: 5406: 5402: 5398: 5394: 5390: 5386: 5381: 5376: 5372: 5368: 5361: 5354: 5346: 5342: 5338: 5334: 5330: 5326: 5319: 5311: 5307: 5303: 5302:10.1038/24521 5299: 5295: 5291: 5287: 5283: 5276: 5268: 5264: 5259: 5254: 5250: 5246: 5242: 5238: 5234: 5227: 5219: 5215: 5210: 5205: 5200: 5195: 5191: 5187: 5183: 5179: 5175: 5168: 5160: 5156: 5151: 5146: 5142: 5138: 5134: 5130: 5126: 5119: 5111: 5107: 5102: 5097: 5093: 5089: 5085: 5081: 5077: 5070: 5068: 5059: 5055: 5051: 5047: 5043: 5039: 5035: 5031: 5024: 5013: 5009: 5005: 5001: 4997: 4993: 4989: 4985: 4981: 4974: 4967: 4959: 4955: 4951: 4947: 4943: 4939: 4935: 4931: 4930: 4922: 4914: 4910: 4906: 4903: 4902: 4894: 4886: 4882: 4878: 4874: 4870: 4866: 4859: 4851: 4847: 4843: 4839: 4835: 4831: 4830: 4822: 4811: 4807: 4803: 4799: 4795: 4791: 4787: 4782: 4777: 4773: 4769: 4762: 4755: 4747: 4743: 4739: 4735: 4731: 4727: 4723: 4719: 4712: 4704: 4700: 4696: 4692: 4687: 4682: 4678: 4674: 4670: 4666: 4659: 4648: 4644: 4640: 4636: 4632: 4628: 4624: 4620: 4613: 4606: 4598: 4594: 4590: 4586: 4578: 4567: 4562: 4557: 4553: 4549: 4542: 4535: 4527: 4523: 4519: 4515: 4512:(7): 073116. 4511: 4507: 4500: 4492: 4486: 4478: 4474: 4470: 4466: 4462: 4458: 4454: 4450: 4443: 4435: 4431: 4426: 4421: 4417: 4413: 4409: 4405: 4401: 4394: 4386: 4382: 4378: 4374: 4369: 4364: 4360: 4356: 4352: 4348: 4341: 4333: 4329: 4325: 4321: 4317: 4313: 4306: 4298: 4294: 4290: 4286: 4282: 4278: 4274: 4270: 4266: 4259: 4251: 4247: 4243: 4239: 4235: 4231: 4230: 4222: 4214: 4210: 4206: 4202: 4198: 4194: 4190: 4183: 4172: 4168: 4164: 4160: 4156: 4152: 4148: 4144: 4140: 4133: 4126: 4118: 4114: 4110: 4106: 4102: 4098: 4094: 4090: 4083: 4081: 4072: 4068: 4064: 4060: 4056: 4052: 4048: 4044: 4040: 4036: 4029: 4027: 4018: 4014: 4010: 4006: 4002: 3998: 3994: 3990: 3983: 3981: 3972: 3968: 3964: 3960: 3956: 3952: 3948: 3944: 3937: 3935: 3926: 3922: 3918: 3914: 3910: 3906: 3902: 3895: 3887: 3883: 3879: 3875: 3871: 3867: 3860: 3858: 3849: 3845: 3841: 3840:10.1038/34139 3837: 3833: 3829: 3825: 3821: 3814: 3806: 3802: 3798: 3794: 3790: 3786: 3782: 3778: 3771: 3763: 3759: 3755: 3751: 3747: 3743: 3739: 3735: 3731: 3724: 3716: 3712: 3708: 3704: 3700: 3696: 3692: 3688: 3681: 3679: 3677: 3668: 3664: 3660: 3656: 3652: 3648: 3644: 3640: 3635: 3630: 3626: 3622: 3615: 3607: 3603: 3599: 3595: 3591: 3587: 3583: 3579: 3574: 3569: 3565: 3561: 3557: 3550: 3542: 3538: 3533: 3528: 3523: 3518: 3514: 3510: 3506: 3502: 3498: 3491: 3483: 3479: 3475: 3471: 3467: 3463: 3459: 3455: 3451: 3447: 3440: 3438: 3436: 3427: 3423: 3419: 3415: 3411: 3407: 3400: 3398: 3389: 3385: 3381: 3377: 3373: 3369: 3365: 3361: 3354: 3352: 3350: 3345: 3342: 3341: 3329: 3326: 3324: 3321: 3318: 3315: 3313: 3310: 3308: 3305: 3303: 3300: 3298: 3295: 3293: 3290: 3288: 3285: 3283: 3280: 3278: 3275: 3273: 3270: 3268: 3265: 3263: 3260: 3258: 3255: 3253: 3250: 3249: 3242: 3240: 3236: 3232: 3227: 3222: 3217: 3216:single-walled 3213: 3207: 3203: 3200: 3196: 3191: 3189: 3184: 3180: 3179:Morinobu Endo 3174: 3170: 3168: 3164: 3160: 3155: 3152: 3148: 3144: 3138: 3134: 3124: 3122: 3118: 3113: 3110: 3106: 3102: 3098: 3097:nanomaterials 3094: 3086: 3082: 3077: 3072: 3068: 3058: 3056: 3052: 3047: 3044: 3040: 3036: 3032: 3026: 3024: 3019: 3015: 3009: 3007: 3003: 2998: 2995: 2991: 2987: 2981: 2971: 2969: 2965: 2961: 2957: 2953: 2949: 2944: 2941: 2939: 2935: 2927: 2923: 2920: 2916: 2913: 2910: 2906: 2903: 2899: 2896: 2893: 2890: 2887: 2884: 2881: 2877: 2873: 2869: 2866: 2863: 2860: 2859: 2858: 2847: 2843: 2840: 2836: 2835:adhesive tape 2832: 2828: 2825: 2821: 2818: 2815: 2811: 2808:manufactures 2807: 2804: 2801: 2797: 2793: 2790: 2789: 2783: 2780: 2776: 2772: 2761: 2757: 2753: 2744: 2741: 2732: 2723: 2721: 2716: 2714: 2713:nanoparticles 2709: 2707: 2703: 2699: 2692: 2688: 2678: 2676: 2672: 2666: 2663: 2659: 2656: 2652: 2648: 2644: 2640: 2636: 2632: 2628: 2624: 2622: 2618: 2614: 2610: 2607: 2603: 2598: 2596: 2592: 2582: 2579: 2569: 2560: 2556: 2554: 2553:sulfuric acid 2549: 2538: 2536: 2525: 2521: 2518: 2514: 2509: 2506: 2500: 2496: 2487: 2483: 2480: 2476: 2474: 2470: 2466: 2462: 2458: 2454: 2450: 2444: 2434: 2432: 2427: 2423: 2419: 2414: 2412: 2407: 2403: 2399: 2395: 2389: 2379: 2376: 2372: 2368: 2364: 2359: 2356: 2351: 2347: 2343: 2339: 2333: 2323: 2319: 2317: 2311: 2309: 2304: 2298: 2294: 2290: 2285: 2281: 2276: 2274: 2270: 2266: 2259: 2252: 2248: 2243: 2240: 2239:interconnects 2236: 2232: 2228: 2222: 2220: 2216: 2212: 2208: 2207:semiconductor 2204: 2200: 2196: 2192: 2188: 2184: 2180: 2176: 2167: 2158: 2155: 2150: 2148: 2144: 2140: 2136: 2132: 2127: 2125: 2119: 2117: 2113: 2109: 2101: 2096: 2091: 2081: 2079: 2075: 2071: 2067: 2063: 2053: 2049: 2047: 2043: 2039: 2035: 2030: 2026: 2022: 2020: 2016: 2011: 2008: 2007:carbon peapod 2003: 2001: 1997: 1993: 1989: 1982: 1977: 1968: 1960: 1956: 1954: 1950: 1945: 1943: 1939: 1938:arc discharge 1930: 1921: 1919: 1913: 1911: 1907: 1903: 1898: 1893: 1890: 1889: 1884: 1883: 1873: 1864: 1862: 1851: 1849: 1845: 1841: 1837: 1833: 1823: 1821: 1817: 1813: 1808: 1806: 1802: 1798: 1789: 1780: 1778: 1773: 1770:The thinnest 1768: 1766: 1762: 1758: 1752: 1750: 1746: 1742: 1738: 1734: 1720: 1708: 1696: 1684: 1660: 1641: 1638: 1633: 1630: 1627: 1624: 1621: 1618: 1615: 1610: 1607: 1604: 1598: 1593: 1590: 1584: 1581: 1574: 1573: 1572: 1570: 1566: 1562: 1558: 1554: 1550: 1542: 1538: 1534: 1530: 1526: 1505: 1501: 1497: 1493: 1490: 1487: 1481: 1478: 1475: 1458: 1451: 1447: 1441: 1436: 1432: 1429: 1425: 1421: 1418: 1415: 1409: 1406: 1402: 1398: 1391: 1390: 1389: 1387: 1383: 1379: 1375: 1374: 1369: 1368: 1363: 1358: 1356: 1352: 1328: 1325: 1322: 1317: 1309: 1306: 1303: 1292: 1289: 1286: 1279: 1278: 1277: 1263: 1259: 1255: 1235: 1227: 1203: 1200: 1197: 1192: 1184: 1181: 1178: 1167: 1164: 1154: 1150: 1146: 1143: 1140: 1137: 1132: 1128: 1118: 1110: 1106: 1103: 1096: 1095: 1094: 1092: 1091: 1086: 1082: 1078: 1068: 1066: 1065: 1060: 1059: 1054: 1050: 1046: 1042: 1038: 1034: 1030: 1026: 1022: 1018: 1014: 1013: 1008: 1007: 1002: 1001: 996: 992: 988: 984: 980: 976: 972: 968: 964: 960: 956: 952: 948: 929: 917: 905: 893: 884: 882: 881: 876: 875: 870: 869: 864: 860: 859: 854: 850: 846: 842: 838: 834: 833: 828: 827: 822: 821: 816: 812: 808: 804: 800: 796: 792: 788: 784: 780: 776: 772: 768: 764: 760: 756: 746: 744: 740: 736: 732: 728: 724: 720: 716: 715: 710: 709: 704: 700: 696: 692: 688: 684: 680: 676: 675: 671: 667: 666: 662: 659: 655: 651: 647: 643: 639: 638: 633: 632: 627: 623: 619: 618: 613: 612: 606: 603: 599: 595: 591: 587: 583: 579: 575: 571: 567: 561: 559: 555: 554:armchair type 551: 547: 542: 537: 534: 526: 525: 520: 519: 513: 506: 502: 497: 491:Basic details 479: 467: 453: 450: 446: 442: 437: 435: 431: 427: 426:carbon fibres 423: 419: 415: 411: 407: 403: 399: 398:nanostructure 395: 391: 383: 379: 376: 373: 369: 365: 361: 358: 357: 356: 354: 350: 346: 342: 330: 325: 323: 318: 316: 311: 310: 308: 307: 302: 297: 292: 290: 285: 280: 279: 278: 277: 272: 269: 267: 264: 262: 259: 257: 256:Nanocomposite 254: 253: 252: 251: 248: 245: 244: 239: 236: 234: 231: 229: 226: 224: 221: 219: 218:Iron–platinum 216: 214: 211: 209: 206: 204: 201: 199: 196: 194: 191: 189: 186: 184: 181: 179: 176: 174: 171: 169: 166: 165: 164: 163: 160: 159:nanoparticles 156: 155: 150: 147: 145: 144:Health impact 142: 140: 137: 135: 134:C70 fullerene 132: 130: 127: 126: 125: 124: 121: 118: 117: 112: 109: 107: 104: 102: 99: 97: 94: 92: 89: 87: 84: 83: 82: 81: 78: 75: 74: 70: 66: 65: 62: 61:Nanomaterials 59: 58: 54: 53: 46: 39: 34: 30: 19: 15465:Competitions 15446:Orbital ring 15413:Space tether 15402: 15386:Technologies 15353:Construction 15294: 15181:Robot ethics 15096:Nanorobotics 15063:Quantum dots 15035: 14843:Carbon fiber 14833:Carbon black 14819: 14800:Cubic carbon 14749: 14688: 14655: 14605: 14587: 14581: 14576: 14575: 14569: 14560: 14550: 14549:, including 14534: 14526: 14509: 14498: 14411: 14350:(1): 19786. 14347: 14343: 14333: 14300: 14296: 14290: 14271: 14262: 14258: 14254: 14248: 14223: 14219: 14213: 14194: 14162: 14158: 14145: 14133:. Retrieved 14126:the original 14091:. Retrieved 14084:the original 14079: 14075: 14071: 14055: 14023: 14019: 13957: 13933:. Retrieved 13929:the original 13924: 13915: 13903:. Retrieved 13899: 13890: 13857: 13853: 13843: 13824: 13815: 13796: 13790: 13778:. Retrieved 13774: 13765: 13728: 13724: 13714: 13669: 13665: 13655: 13610: 13606: 13596: 13584: 13557: 13553: 13547: 13528: 13524: 13514: 13489: 13485: 13479: 13428: 13424: 13418: 13393: 13389: 13375: 13358: 13354: 13348: 13315: 13311: 13305: 13283:(5): 22–28. 13280: 13276: 13270: 13243: 13191: 13187: 13177: 13134: 13130: 13120: 13093: 13083: 13058: 13054: 13048: 13036:. Retrieved 13026: 13014:. Retrieved 13009: 13000: 12955: 12951: 12941: 12929:. Retrieved 12925: 12916: 12904:. Retrieved 12899: 12890: 12845: 12841: 12831: 12819:. Retrieved 12815: 12806: 12794:. Retrieved 12790: 12781: 12755:. Retrieved 12751: 12741: 12729:. Retrieved 12725: 12715: 12706: 12701:Simonite T. 12696: 12684:. Retrieved 12677:the original 12672: 12668: 12655: 12647:the original 12642: 12633: 12600: 12597:Nano Letters 12596: 12590: 12578:. Retrieved 12574: 12564: 12556:the original 12546: 12525: 12513:. Retrieved 12509: 12499: 12466: 12462: 12456: 12413: 12409: 12399: 12391:nano.byu.edu 12390: 12381: 12340: 12337:Nano Letters 12336: 12330: 12303: 12299: 12289: 12249:(1): 11550. 12246: 12242: 12232: 12223: 12213: 12170: 12166: 12156: 12129: 12125: 12115: 12103:. Retrieved 12098: 12089: 12081:the original 12071: 12062: 12053: 12045:the original 12034: 11993: 11989: 11979: 11954: 11950: 11940: 11905: 11901: 11891: 11840: 11836: 11826: 11801: 11797: 11787: 11739:(1): 14167. 11736: 11732: 11722: 11681: 11677: 11667: 11634: 11630: 11620: 11587: 11583: 11573: 11540: 11536: 11526: 11477: 11473: 11463: 11428: 11424: 11414: 11365: 11361: 11351: 11326: 11322: 11312: 11300:. Retrieved 11296: 11287: 11275:. Retrieved 11271: 11262: 11235: 11231: 11221: 11180: 11176: 11166: 11123: 11119: 11109: 11076: 11072: 11062: 11019: 11015: 11005: 10952: 10948: 10938: 10895: 10891: 10881: 10830: 10826: 10757:(18): 5247. 10754: 10750: 10740: 10699: 10695: 10685: 10642: 10638: 10628: 10585: 10581: 10571: 10520: 10516: 10470: 10466: 10456: 10413: 10409: 10399: 10351:(1): 10241. 10348: 10344: 10334: 10291: 10287: 10277: 10234: 10230: 10220: 10171: 10168:Nano Letters 10167: 10113: 10109: 10099: 10059:(1): 54–64. 10056: 10053:Biochemistry 10052: 10042: 9997: 9993: 9983: 9932: 9928: 9918: 9869: 9866:Nano Letters 9865: 9855: 9804: 9800: 9790: 9749: 9746:Nano Letters 9745: 9735: 9694: 9690: 9628: 9625:Nano Letters 9624: 9558: 9554: 9496: 9492: 9482: 9449: 9445: 9435: 9394: 9391:Nano Letters 9390: 9318: 9314: 9304: 9294:17 September 9292:. Retrieved 9288: 9279: 9253: 9228: 9224: 9217: 9192: 9188: 9182: 9149: 9145: 9135: 9102: 9098: 9085: 9073:. Retrieved 9069:the original 9064: 9055: 9043:. Retrieved 9039:the original 9034: 9025: 9013:. Retrieved 9009:the original 9004: 8995: 8983:. Retrieved 8975: 8966: 8954:. Retrieved 8950:the original 8945: 8936: 8924:. Retrieved 8917: 8892:. Retrieved 8888:the original 8883: 8859:. Retrieved 8855:the original 8850: 8841: 8829:. Retrieved 8825:the original 8818: 8809: 8782: 8748: 8744: 8738: 8705: 8701: 8694: 8635: 8632:Nano Letters 8631: 8621: 8586: 8582: 8524: 8520: 8510: 8477: 8473: 8463: 8420: 8416: 8358: 8355:Nano Letters 8354: 8344: 8293: 8289: 8279: 8246: 8242: 8232: 8189: 8185: 8175: 8153:(1): 36–63. 8150: 8146: 8136: 8095: 8091: 8081: 8040: 8036: 8026: 7985: 7981: 7971: 7922: 7918: 7908: 7875: 7871: 7861: 7828: 7824: 7814: 7781: 7777: 7767: 7734: 7730: 7720: 7679: 7675: 7665: 7624: 7621:Nano Letters 7620: 7610: 7569: 7565: 7555: 7514: 7510: 7500: 7459: 7456:Nano Letters 7455: 7445: 7400: 7396: 7386: 7361: 7357: 7351: 7326: 7323:Nano Letters 7322: 7315: 7282: 7278: 7272: 7263: 7259: 7249: 7229: 7222: 7197: 7193: 7159: 7155: 7149: 7116: 7112: 7106: 7071: 7068:Phys. Rev. B 7067: 7061: 7044: 7040: 7034: 7007: 7003: 6993: 6968: 6964: 6958: 6925: 6921: 6915: 6864: 6861:Nano Letters 6860: 6854: 6816:(1): 86–92. 6813: 6807: 6797: 6742: 6736: 6726: 6701: 6695: 6689: 6664: 6660:Nano Letters 6658: 6648: 6613: 6609: 6599: 6574: 6570:Nano Letters 6568: 6562: 6521: 6517: 6511: 6470: 6466: 6460: 6452: 6448: 6436:. Retrieved 6433:SciTechDaily 6432: 6368: 6364: 6354: 6329: 6325: 6319: 6282: 6278: 6268: 6217: 6213: 6207: 6166: 6162: 6156: 6131: 6127: 6114: 6071: 6067: 6061: 6028: 6024: 6018: 5993: 5989: 5937: 5931: 5921: 5887:(13): 2960. 5884: 5880: 5870: 5845: 5841: 5835: 5794: 5790: 5751:(6): 62–69. 5748: 5744: 5738: 5713: 5709: 5688:the original 5667: 5663: 5650: 5625: 5621: 5615: 5582: 5578: 5572: 5561:the original 5543:(1): 30–37. 5540: 5534: 5521: 5488: 5484: 5430: 5426: 5420: 5370: 5366: 5353: 5328: 5324: 5318: 5285: 5281: 5275: 5240: 5236: 5226: 5181: 5177: 5167: 5132: 5128: 5118: 5083: 5079: 5033: 5030:Nano Letters 5029: 5023: 4983: 4979: 4966: 4933: 4927: 4921: 4904: 4899: 4893: 4868: 4864: 4858: 4833: 4827: 4821: 4771: 4767: 4754: 4721: 4717: 4711: 4668: 4664: 4658: 4618: 4605: 4588: 4584: 4577: 4551: 4547: 4534: 4509: 4505: 4499: 4485: 4452: 4448: 4442: 4407: 4403: 4393: 4350: 4347:Nano Letters 4346: 4340: 4315: 4311: 4305: 4272: 4269:Nano Letters 4268: 4258: 4233: 4229:Nano Letters 4227: 4221: 4196: 4192: 4182: 4142: 4138: 4125: 4092: 4088: 4038: 4034: 3992: 3988: 3946: 3942: 3908: 3904: 3894: 3869: 3865: 3823: 3819: 3813: 3780: 3776: 3770: 3737: 3733: 3723: 3690: 3686: 3624: 3620: 3614: 3563: 3559: 3549: 3504: 3500: 3490: 3449: 3445: 3409: 3405: 3363: 3359: 3339: 3338: 3228: 3215: 3211: 3208: 3204: 3192: 3176: 3172: 3166: 3158: 3156: 3147:Sumio Iijima 3142: 3140: 3114: 3090: 3048: 3027: 3022: 3010: 2999: 2983: 2964:rubber parts 2945: 2942: 2934:carbon fiber 2931: 2856: 2767: 2754: 2750: 2737: 2726:Applications 2717: 2710: 2694: 2667: 2625: 2599: 2588: 2574: 2557: 2544: 2531: 2522: 2510: 2501: 2497: 2493: 2490:Purification 2484: 2477: 2446: 2415: 2391: 2360: 2346:fluorescence 2335: 2320: 2312: 2305: 2297:metallocenes 2293:intercalated 2277: 2268: 2264: 2257: 2250: 2244: 2229:, where for 2223: 2218: 2214: 2210: 2202: 2198: 2194: 2190: 2186: 2182: 2172: 2151: 2128: 2120: 2105: 2074:Kataura plot 2065: 2061: 2059: 2050: 2023: 2012: 2004: 1986: 1965: 1946: 1935: 1914: 1906:double bonds 1894: 1886: 1882:Russian Doll 1880: 1878: 1867:Multi-walled 1859:(MWNT). The 1857: 1831: 1829: 1820:Ramesh Jasti 1811: 1809: 1796: 1794: 1772:freestanding 1771: 1769: 1753: 1744: 1740: 1736: 1732: 1730: 1658: 1568: 1564: 1560: 1556: 1552: 1548: 1540: 1536: 1532: 1528: 1524: 1522: 1385: 1381: 1377: 1372: 1371: 1366: 1365: 1361: 1359: 1354: 1350: 1348: 1223: 1089: 1088: 1084: 1080: 1076: 1074: 1063: 1062: 1057: 1056: 1052: 1048: 1044: 1040: 1036: 1032: 1028: 1024: 1020: 1011: 1010: 1005: 1004: 999: 998: 994: 990: 986: 982: 978: 974: 966: 962: 958: 954: 950: 944: 879: 878: 873: 872: 867: 866: 862: 857: 856: 852: 848: 844: 840: 836: 831: 830: 825: 824: 819: 818: 814: 810: 809:) such that 806: 802: 798: 794: 790: 786: 782: 781:relative to 778: 774: 770: 766: 762: 758: 754: 752: 742: 738: 734: 730: 726: 722: 718: 713: 712: 707: 706: 702: 698: 694: 690: 686: 682: 678: 673: 672: 669: 664: 663: 660: 653: 649: 645: 641: 636: 635: 630: 629: 625: 616: 615: 610: 609: 607: 601: 597: 593: 589: 585: 581: 577: 573: 569: 565: 562: 557: 553: 549: 545: 538: 530: 523: 522: 517: 516: 504: 500: 438: 387: 381: 377: 363: 359: 344: 340: 338: 193:Cobalt oxide 173:Quantum dots 106:Applications 76: 29: 15552:Spaceflight 15529:LaserMotive 15436:Launch loop 15245:Moore's law 15176:Neuroethics 15171:Cyberethics 14941:Utility fog 14926:Claytronics 14916:3D printing 14795:Haeckelites 14740:(tricarbon) 14689:other forms 14589:Nanoscrolls 13976:10803/84001 13935:24 November 13896:"ECHA CHEM" 13775:www.cdc.gov 13731:(6): 1318. 13094:Nature News 12791:www.ipcm.it 12686:24 November 12580:13 November 12132:(1): 1–11. 12105:6 September 11990:ChemSusChem 11843:(1): 1495. 10833:(1): 5995. 10639:ACS Sensors 10000:(5): 2161. 9259:US 10000382 9225:ChemCatChem 9152:: 227–233. 9075:6 September 9045:6 September 9015:6 September 8985:6 September 8956:6 September 8926:6 September 8894:6 September 8861:6 September 8831:6 September 8708:: 115–123. 7266:(1): 15–24. 6971:: 104–108. 6371:(1): 3415. 5628:: 130–134. 4901:Synth. Met. 4199:: 145–150. 3312:Nano-I-beam 3169:editorial: 3043:resistivity 2875:properties. 2720:fluorinated 2649:, resonant 2453:temperature 1039:) with 0 ≤ 969:; then its 961:> 0 and 813:> 0 and 797:,0) and (0, 546:zigzag type 533:cylindrical 414:electronics 15572:Categories 15368:In fiction 15136:Automation 15021:Metal foam 14547:Fullerenes 14414:(Q1778729) 14277:US 4663230 13925:pcimag.com 13780:9 November 13454:1911/70792 12958:(2): 226. 12848:(1): 120. 12533:US 9329021 12504:Tucker A. 12306:: 153759. 11329:: 114642. 11302:9 February 11277:9 February 8296:(1): 309. 7403:(1): 393. 7097:1813/10898 6081:1611.04867 5086:: 90–100. 3507:(1): 151. 3335:References 3307:Nanoflower 3252:Buckypaper 3235:Tamil Nadu 3131:See also: 3018:logic gate 2960:ESD floors 2824:vantablack 2747:Biosensing 2704:to a bulk 2671:viscometry 2641:, induced 2623:analysis. 2548:nanofluids 2517:immiscible 2505:desorption 2473:nucleation 2371:wavelength 2338:absorption 2306:Intrinsic 2161:Electrical 2084:Mechanical 2056:Properties 1992:fullerenes 1897:morphology 1848:molybdenum 1523:where arg( 1276:, that is 1226:picometres 971:enantiomer 368:nanometres 213:Iron oxide 120:Fullerenes 15358:Economics 15166:Bioethics 14984:Fullerene 14577:Nanotubes 13995:199491391 13874:1936-0851 13672:(1): 47. 13613:(1): 62. 13591:. Youtube 13562:CiteSeerX 13560:(1): 12. 13410:139283096 13194:: 13549. 13112:136774602 13075:115751858 12974:2073-4360 12864:2079-4991 12767:cite news 12322:1385-8947 12263:2045-2322 12187:2574-0970 12148:2662-4443 12018:1864-5631 11924:1433-7851 11865:2041-1723 11818:1932-7447 11761:2045-2322 11714:209340238 11698:0003-2700 11651:1936-0851 11604:0009-2665 11557:2157-846X 11518:249956650 11494:1936-0851 11455:0021-8979 11390:0036-8075 11293:"Welcome" 11254:1616-301X 11213:259261621 11197:0002-7863 11140:2157-846X 11093:1613-6810 11036:1944-8244 10979:0027-8424 10912:1433-7851 10855:2041-1723 10781:1424-8220 10732:232188200 10716:0003-2700 10659:2379-3694 10602:2157-846X 10545:2516-0230 10487:1433-7851 10430:1087-0156 10373:2041-1723 10308:1946-6234 10251:1936-0851 10196:1530-6984 10138:1476-1122 10073:0006-2960 10016:1420-3049 9994:Molecules 9957:2375-2548 9910:201019834 9894:1530-6984 9831:1613-6810 9774:1530-6984 9727:215774820 9711:2055-0278 9669:211524215 9653:1530-6984 9585:0027-8424 9513:1748-3387 9466:0002-7863 9419:1530-6984 9353:0036-8075 9328:0707.3246 9245:104164617 9209:101287773 9174:105024629 9119:1520-5207 8976:Canadian 8765:140766023 8686:259356687 8660:1530-6984 8605:1613-6810 8557:250283972 8541:0003-2700 8494:0003-2700 8437:1433-7851 8383:1530-6984 8318:2041-1723 8263:0002-7863 8206:2198-3844 8167:2052-1537 8128:211071215 8112:0009-2665 8057:1936-0851 8018:208498347 8002:0002-7863 7963:205253171 7947:0935-9648 7892:0002-7863 7845:1936-0851 7798:0003-2700 7751:1936-0851 7696:0935-9648 7649:1530-6984 7586:0002-7863 7539:1748-3395 7484:1530-6984 6965:Physica E 6950:138479725 6752:1105.3536 6411:235370395 6346:125902065 6260:119049151 5972:119208985 5947:1403.6113 5881:Molecules 5607:137964473 4980:Nanoscale 4958:119497542 4781:0903.2461 4681:CiteSeerX 4556:CiteSeerX 4477:219983922 4363:CiteSeerX 3848:205003208 3556:Tomanek D 3177:In 1976, 2956:polyamide 2919:pellicles 2901:aircraft. 2844:Tips for 2831:nano tape 2810:Hybtonite 2734:Nano tape 2591:metrology 2585:Metrology 2437:Synthesis 2375:bolometer 2175:semimetal 2070:monotonic 2029:graphitic 1983:structure 1979:A stable 1888:Parchment 1759:(HRTEM), 1634:− 1631:α 1628:⁡ 1611:α 1608:⁡ 1482:⁡ 1476:⁡ 1410:⁡ 1399:α 1323:− 1290:≈ 1264:π 1198:− 1165:≈ 1019:are the ( 349:nanoscale 183:Cellulose 139:Chemistry 91:Chemistry 86:Synthesis 15091:Domotics 15083:Robotics 15068:Silicene 14989:Graphene 14838:Charcoal 14679:Q-carbon 14606:sp forms 14583:Nanobuds 14542:Graphene 14536:Graphite 14527:sp forms 14382:33188244 14265:: 12–17. 14183:Archived 14135:5 August 14044:Archived 13882:28759202 13854:ACS Nano 13757:33804168 13706:34923995 13647:33287860 13531:: 9–12. 13471:10843825 13463:23307737 13340:11736597 13226:27941752 13161:17108950 13038:7 August 13016:7 August 12992:38257025 12983:10820770 12952:Polymers 12931:7 August 12906:7 August 12882:38202575 12873:10780583 12821:7 August 12796:7 August 12757:7 August 12731:7 August 12625:16522063 12491:95369378 12448:25662746 12416:: 8323. 12373:73450707 12365:30720283 12281:38773242 12272:11109235 12205:37854856 12196:10580240 12026:21751417 11971:23906934 11932:36891826 11883:32198383 11779:26387482 11706:31829619 11659:29614219 11631:ACS Nano 11612:25997028 11565:78795936 11510:35732039 11474:ACS Nano 11406:22623119 11398:12142535 11343:36055131 11205:37367958 11158:35301449 11101:34197026 11054:37128896 11045:10176323 10997:35613050 10930:34608727 10873:33239609 10799:32937986 10724:33703890 10677:31056899 10620:28845337 10563:35746900 10495:17099921 10448:30804534 10391:26742890 10326:30282694 10269:28898055 10231:ACS Nano 10212:49310769 10204:29923734 10146:27798623 10091:30480442 10034:36903408 10025:10004328 9975:31897432 9902:31418577 9847:44726670 9839:25981520 9782:19367966 9719:32296141 9661:32097014 9603:28179565 9531:20208549 9474:21142158 9427:18162002 9361:17556581 9269:Archived 9127:96173424 8730:28531649 8678:37410951 8669:11068083 8613:36610045 8549:35786856 8502:33830740 8455:34978752 8391:19243112 8336:21556063 8271:17458969 8224:35293698 8120:32039585 8073:59224819 8065:30673278 8037:ACS Nano 8010:31783712 7955:24448916 7900:24976036 7853:24896840 7825:ACS Nano 7806:16194082 7759:23540203 7731:ACS Nano 7704:21472798 7657:15826114 7602:23209007 7594:21171609 7547:18654390 7492:17867716 7437:25170330 7378:25204561 7214:15296221 7141:20752554 7133:15370479 6907:14874373 6899:16402794 6846:43558342 6838:15592477 6789:21576494 6718:15571374 6640:16627739 6554:21960183 6546:16293757 6503:36336745 6495:12730598 6403:34099639 6311:19369206 6252:16486971 6199:44987798 6191:11431560 6106:59023024 6053:18654263 6010:16218563 5913:32605124 5819:21538593 5773:11103460 5730:18839003 5513:12059501 5463:12358310 5455:19966399 5409:Archived 5405:18165997 5310:30670931 5267:18654245 5218:36133213 5159:25788440 5110:23436939 5058:18800853 5012:Archived 5008:42241359 5000:27808332 4810:Archived 4806:51932307 4703:10915618 4647:Archived 4643:30627446 4635:12841282 4566:Archived 4469:32572996 4434:19055403 4385:19650638 4332:23806050 4312:ACS Nano 4297:18186659 4265:Iijima S 4171:Archived 4167:15089683 4117:95444574 4071:13284203 3925:38252035 3886:20545303 3805:10045167 3715:10045950 3667:12533685 3659:11736348 3598:10990753 3541:24678607 3482:10758240 3474:10649994 3245:See also 3231:Keezhadi 3163:Cold War 3031:spinning 2968:gelcoats 2702:adhesion 2563:Modeling 2457:pressure 2256:, where 2141:with an 2124:buckling 2078:band gap 2042:graphene 2038:graphite 2034:graphene 1854:Variants 1838:-coated 1836:titanium 1812:shortest 1364:between 1055:between 993:through 957:), with 697:. Given 677:, where 556:, or an 402:strength 372:graphene 261:Nanofoam 228:Platinum 111:Timeline 15451:Skyhook 14959:Aerogel 14820:related 14790:Chaoite 14407:Scholia 14373:7666134 14352:Bibcode 14325:4359360 14305:Bibcode 14228:Bibcode 14167:Bibcode 14093:5 April 14028:Bibcode 13905:10 June 13748:7998467 13725:Cancers 13697:8686255 13674:Bibcode 13638:7720492 13615:Bibcode 13494:Bibcode 13433:Bibcode 13425:Science 13320:Bibcode 13285:Bibcode 13217:5159813 13196:Bibcode 13169:4431079 13139:Bibcode 12605:Bibcode 12515:2 March 12471:Bibcode 12439:4321171 12418:Bibcode 12345:Bibcode 12224:NanoEra 11998:Bibcode 11874:7083911 11845:Bibcode 11770:4585673 11741:Bibcode 11502:1879407 11433:Bibcode 11370:Bibcode 11362:Science 11149:9108893 10988:9295782 10957:Bibcode 10921:9298901 10864:7689463 10835:Bibcode 10790:7570893 10759:Bibcode 10751:Sensors 10668:7556989 10611:5568023 10554:9154020 10525:Bibcode 10439:8183422 10382:4729864 10353:Bibcode 10317:6543545 10294:(461). 10260:5707631 10176:Bibcode 10118:Bibcode 10082:6411385 9966:6920020 9937:Bibcode 9874:Bibcode 9754:Bibcode 9633:Bibcode 9594:5338365 9563:Bibcode 9522:6438196 9399:Bibcode 9369:7476534 9333:Bibcode 9315:Science 9154:Bibcode 8710:Bibcode 8640:Bibcode 8446:9313876 8363:Bibcode 8327:3113293 8298:Bibcode 8215:9108629 7927:Bibcode 7712:5375678 7629:Bibcode 7519:Bibcode 7464:Bibcode 7428:4141964 7405:Bibcode 7331:Bibcode 7307:3846517 7287:Bibcode 7164:Bibcode 7076:Bibcode 7012:Bibcode 6973:Bibcode 6930:Bibcode 6879:Bibcode 6818:Bibcode 6780:3107273 6757:Bibcode 6669:Bibcode 6618:Bibcode 6610:Science 6579:Bibcode 6526:Bibcode 6518:Science 6475:Bibcode 6467:Science 6394:8184849 6373:Bibcode 6302:2678622 6232:Bibcode 6171:Bibcode 6163:Science 6136:Bibcode 6086:Bibcode 6033:Bibcode 5952:Bibcode 5904:7412307 5850:Bibcode 5827:6363504 5799:Bibcode 5753:Bibcode 5672:Bibcode 5630:Bibcode 5587:Bibcode 5545:Bibcode 5493:Bibcode 5435:Bibcode 5385:Bibcode 5333:Bibcode 5290:Bibcode 5245:Bibcode 5209:9418787 5186:Bibcode 5150:4552611 5101:3578711 5038:Bibcode 4938:Bibcode 4873:Bibcode 4838:Bibcode 4786:Bibcode 4746:4332264 4726:Bibcode 4673:Bibcode 4665:Science 4514:Bibcode 4425:2709987 4355:Bibcode 4277:Bibcode 4238:Bibcode 4201:Bibcode 4147:Bibcode 4097:Bibcode 4063:8662534 4043:Bibcode 4035:Science 4017:4321984 3997:Bibcode 3971:4314177 3951:Bibcode 3828:Bibcode 3785:Bibcode 3762:4366705 3742:Bibcode 3695:Bibcode 3639:Bibcode 3606:9006722 3578:Bibcode 3532:4006636 3509:Bibcode 3454:Bibcode 3446:Science 3414:Bibcode 3388:4302490 3368:Bibcode 3317:Ninithi 3127:History 3055:winding 2848:probes. 2800:bicycle 2779:visible 2764:SWCNTs. 2740:polymer 2706:polymer 2606:optical 2513:dextran 2422:phonons 2382:Thermal 2348:), and 2326:Optical 2289:dopants 2271:is the 1981:nanobud 1826:Density 1801:silicon 1797:longest 1749:carbyne 1017:achiral 745:atoms. 620:be two 188:Ceramic 15486:People 15363:Safety 15161:Ethics 15129:Topics 14897:Fields 14380:  14370:  14323:  14297:Nature 14283:  14220:Carbon 14206:  14020:Carbon 13993:  13983:  13880:  13872:  13755:  13745:  13704:  13694:  13645:  13635:  13564:  13469:  13461:  13408:  13338:  13258:  13224:  13214:  13167:  13159:  13131:Nature 13110:  13073:  12990:  12980:  12972:  12880:  12870:  12862:  12623:  12539:  12489:  12446:  12436:  12371:  12363:  12320:  12279:  12269:  12261:  12203:  12193:  12185:  12146:  12024:  12016:  11969:  11930:  11922:  11881:  11871:  11863:  11816:  11777:  11767:  11759:  11712:  11704:  11696:  11657:  11649:  11610:  11602:  11563:  11555:  11516:  11508:  11500:  11492:  11453:  11404:  11396:  11388:  11341:  11252:  11211:  11203:  11195:  11156:  11146:  11138:  11099:  11091:  11052:  11042:  11034:  10995:  10985:  10977:  10928:  10918:  10910:  10871:  10861:  10853:  10797:  10787:  10779:  10730:  10722:  10714:  10675:  10665:  10657:  10618:  10608:  10600:  10561:  10551:  10543:  10493:  10485:  10446:  10436:  10428:  10389:  10379:  10371:  10324:  10314:  10306:  10267:  10257:  10249:  10210:  10202:  10194:  10144:  10136:  10089:  10079:  10071:  10032:  10022:  10014:  9973:  9963:  9955:  9908:  9900:  9892:  9845:  9837:  9829:  9780:  9772:  9725:  9717:  9709:  9667:  9659:  9651:  9601:  9591:  9583:  9529:  9519:  9511:  9472:  9464:  9425:  9417:  9367:  9359:  9351:  9265:  9243:  9207:  9172:  9125:  9117:  8797:  8763:  8728:  8684:  8676:  8666:  8658:  8611:  8603:  8555:  8547:  8539:  8500:  8492:  8453:  8443:  8435:  8389:  8381:  8334:  8324:  8316:  8269:  8261:  8222:  8212:  8204:  8165:  8126:  8118:  8110:  8071:  8063:  8055:  8016:  8008:  8000:  7961:  7953:  7945:  7898:  7890:  7851:  7843:  7804:  7796:  7757:  7749:  7710:  7702:  7694:  7655:  7647:  7600:  7592:  7584:  7545:  7537:  7490:  7482:  7435:  7425:  7376:  7305:  7237:  7212:  7156:Carbon 7139:  7131:  6948:  6905:  6897:  6844:  6836:  6787:  6777:  6716:  6638:  6552:  6544:  6501:  6493:  6438:8 June 6409:  6401:  6391:  6344:  6309:  6299:  6258:  6250:  6197:  6189:  6104:  6051:  6008:  5970:  5911:  5901:  5825:  5817:  5771:  5728:  5664:Carbon 5605:  5511:  5461:  5453:  5403:  5308:  5282:Nature 5265:  5216:  5206:  5157:  5147:  5108:  5098:  5080:Carbon 5056:  5006:  4998:  4956:  4804:  4744:  4718:Nature 4701:  4683:  4641:  4633:  4558:  4475:  4467:  4432:  4422:  4383:  4365:  4330:  4295:  4193:Carbon 4165:  4115:  4069:  4061:  4015:  3989:Nature 3969:  3943:Nature 3923:  3884:  3846:  3820:Nature 3803:  3760:  3734:Nature 3713:  3665:  3657:  3604:  3596:  3539:  3529:  3480:  3472:  3386:  3360:Nature 3212:et al. 3167:Carbon 3143:Carbon 3121:OCSiAl 2948:OCSiAl 2673:, and 2418:phonon 2411:vacuum 2365:) and 2284:doping 2227:copper 1844:cobalt 1840:copper 1783:Length 1763:, and 947:chiral 441:Iijima 418:optics 382:MWCNTs 364:SWCNTs 233:Silver 198:Copper 157:Other 14501:forms 14321:S2CID 14257:[ 14186:(PDF) 14155:(PDF) 14129:(PDF) 14122:(PDF) 14087:(PDF) 14074:[ 14068:(PDF) 14047:(PDF) 14016:(PDF) 13991:S2CID 13467:S2CID 13406:S2CID 13165:S2CID 13108:S2CID 13071:S2CID 12680:(PDF) 12665:(PDF) 12487:S2CID 12369:S2CID 11710:S2CID 11561:S2CID 11543:(1). 11514:S2CID 11402:S2CID 11238:(6). 11209:S2CID 11073:Small 10728:S2CID 10588:(4). 10208:S2CID 9906:S2CID 9843:S2CID 9801:Small 9723:S2CID 9665:S2CID 9365:S2CID 9323:arXiv 9241:S2CID 9205:S2CID 9170:S2CID 9123:S2CID 9095:(PDF) 8918:U.S. 8761:S2CID 8682:S2CID 8583:Small 8553:S2CID 8124:S2CID 8069:S2CID 8014:S2CID 7959:S2CID 7708:S2CID 7598:S2CID 7303:S2CID 7137:S2CID 6946:S2CID 6903:S2CID 6869:arXiv 6842:S2CID 6747:arXiv 6550:S2CID 6499:S2CID 6407:S2CID 6342:S2CID 6256:S2CID 6222:arXiv 6195:S2CID 6124:(PDF) 6102:S2CID 6076:arXiv 5968:S2CID 5942:arXiv 5823:S2CID 5691:(PDF) 5660:(PDF) 5603:S2CID 5581:. 7. 5564:(PDF) 5531:(PDF) 5459:S2CID 5412:(PDF) 5401:S2CID 5375:arXiv 5363:(PDF) 5306:S2CID 5015:(PDF) 5004:S2CID 4976:(PDF) 4954:S2CID 4813:(PDF) 4802:S2CID 4776:arXiv 4764:(PDF) 4742:S2CID 4650:(PDF) 4639:S2CID 4615:(PDF) 4569:(PDF) 4544:(PDF) 4473:S2CID 4174:(PDF) 4135:(PDF) 4113:S2CID 4067:S2CID 4013:S2CID 3967:S2CID 3844:S2CID 3758:S2CID 3663:S2CID 3629:arXiv 3602:S2CID 3568:arXiv 3478:S2CID 3384:S2CID 3239:India 2814:epoxy 2072:(see 2015:torus 1998:. In 1545:atan2 1075:From 749:Types 223:Lipid 15296:List 14378:PMID 14137:2015 14095:2012 13981:ISBN 13937:2016 13907:2024 13878:PMID 13870:ISSN 13782:2022 13753:PMID 13702:PMID 13643:PMID 13459:PMID 13336:PMID 13256:ISBN 13222:PMID 13157:PMID 13040:2024 13018:2024 12988:PMID 12970:ISSN 12933:2024 12908:2024 12878:PMID 12860:ISSN 12823:2024 12798:2024 12773:link 12759:2024 12733:2024 12688:2011 12621:PMID 12582:2022 12517:2021 12444:PMID 12361:PMID 12318:ISSN 12277:PMID 12259:ISSN 12201:PMID 12183:ISSN 12144:ISSN 12107:2024 12022:PMID 12014:ISSN 11967:PMID 11928:PMID 11920:ISSN 11879:PMID 11861:ISSN 11814:ISSN 11775:PMID 11757:ISSN 11702:PMID 11694:ISSN 11655:PMID 11647:ISSN 11608:PMID 11600:ISSN 11553:ISSN 11506:PMID 11498:OSTI 11490:ISSN 11451:ISSN 11394:PMID 11386:ISSN 11339:PMID 11304:2024 11279:2024 11250:ISSN 11201:PMID 11193:ISSN 11154:PMID 11136:ISSN 11097:PMID 11089:ISSN 11050:PMID 11032:ISSN 10993:PMID 10975:ISSN 10926:PMID 10908:ISSN 10869:PMID 10851:ISSN 10795:PMID 10777:ISSN 10720:PMID 10712:ISSN 10673:PMID 10655:ISSN 10616:PMID 10598:ISSN 10559:PMID 10541:ISSN 10491:PMID 10483:ISSN 10444:PMID 10426:ISSN 10387:PMID 10369:ISSN 10322:PMID 10304:ISSN 10265:PMID 10247:ISSN 10200:PMID 10192:ISSN 10142:PMID 10134:ISSN 10087:PMID 10069:ISSN 10030:PMID 10012:ISSN 9971:PMID 9953:ISSN 9898:PMID 9890:ISSN 9835:PMID 9827:ISSN 9778:PMID 9770:ISSN 9715:PMID 9707:ISSN 9657:PMID 9649:ISSN 9599:PMID 9581:ISSN 9527:PMID 9509:ISSN 9470:PMID 9462:ISSN 9423:PMID 9415:ISSN 9357:PMID 9349:ISSN 9296:2018 9115:ISSN 9077:2017 9047:2017 9017:2017 8987:2017 8958:2017 8928:2017 8896:2017 8863:2017 8833:2017 8795:ISBN 8726:PMID 8674:PMID 8656:ISSN 8609:PMID 8601:ISSN 8545:PMID 8537:ISSN 8498:PMID 8490:ISSN 8451:PMID 8433:ISSN 8387:PMID 8379:ISSN 8332:PMID 8314:ISSN 8267:PMID 8259:ISSN 8220:PMID 8202:ISSN 8163:ISSN 8116:PMID 8108:ISSN 8061:PMID 8053:ISSN 8006:PMID 7998:ISSN 7951:PMID 7943:ISSN 7896:PMID 7888:ISSN 7849:PMID 7841:ISSN 7802:PMID 7794:ISSN 7755:PMID 7747:ISSN 7700:PMID 7692:ISSN 7653:PMID 7645:ISSN 7590:PMID 7582:ISSN 7543:PMID 7535:ISSN 7488:PMID 7480:ISSN 7433:PMID 7374:PMID 7235:ISBN 7210:PMID 7129:PMID 6895:PMID 6834:PMID 6785:PMID 6714:PMID 6636:PMID 6542:PMID 6491:PMID 6440:2021 6399:PMID 6307:PMID 6248:PMID 6187:PMID 6049:PMID 6006:PMID 5909:PMID 5815:PMID 5769:PMID 5726:PMID 5509:PMID 5451:PMID 5263:PMID 5214:PMID 5155:PMID 5106:PMID 5054:PMID 4996:PMID 4699:PMID 4631:PMID 4465:PMID 4430:PMID 4381:PMID 4328:PMID 4293:PMID 4163:PMID 4059:PMID 3921:PMID 3882:PMID 3801:PMID 3711:PMID 3655:PMID 3594:PMID 3537:PMID 3470:PMID 3183:CNRS 3135:and 3091:The 3069:and 3035:yarn 2915:IMEC 2689:and 2627:NIST 2615:and 2363:LEDs 2110:and 1910:CCVD 1846:and 1830:The 1810:The 1735:and 1559:and 1388:by: 1384:and 1370:and 1353:and 1293:78.3 1079:and 1061:and 1047:and 871:and 845:type 721:and 701:and 681:and 614:and 608:Let 596:and 576:and 541:path 521:and 400:and 392:and 208:Iron 203:Gold 14499:sp 14368:PMC 14360:doi 14313:doi 14301:347 14236:doi 14175:doi 14036:doi 13971:hdl 13963:doi 13862:doi 13829:doi 13801:doi 13743:PMC 13733:doi 13692:PMC 13682:doi 13633:PMC 13623:doi 13572:doi 13533:doi 13502:doi 13449:hdl 13441:doi 13429:339 13398:doi 13363:doi 13328:doi 13293:doi 13248:doi 13212:PMC 13204:doi 13147:doi 13135:444 13098:doi 13063:doi 12978:PMC 12960:doi 12868:PMC 12850:doi 12673:107 12613:doi 12479:doi 12434:PMC 12426:doi 12353:doi 12308:doi 12304:496 12267:PMC 12251:doi 12191:PMC 12175:doi 12134:doi 12006:doi 11959:doi 11910:doi 11869:PMC 11853:doi 11806:doi 11802:120 11765:PMC 11749:doi 11686:doi 11639:doi 11592:doi 11588:115 11545:doi 11482:doi 11441:doi 11429:129 11378:doi 11366:297 11331:doi 11327:216 11240:doi 11185:doi 11181:145 11144:PMC 11128:doi 11081:doi 11040:PMC 11024:doi 10983:PMC 10965:doi 10953:119 10916:PMC 10900:doi 10859:PMC 10843:doi 10785:PMC 10767:doi 10704:doi 10663:PMC 10647:doi 10606:PMC 10590:doi 10549:PMC 10533:doi 10475:doi 10434:PMC 10418:doi 10377:PMC 10361:doi 10312:PMC 10296:doi 10255:PMC 10239:doi 10184:doi 10126:doi 10077:PMC 10061:doi 10020:PMC 10002:doi 9961:PMC 9945:doi 9882:doi 9817:hdl 9809:doi 9762:doi 9699:doi 9641:doi 9589:PMC 9571:doi 9559:114 9517:PMC 9501:doi 9454:doi 9450:133 9407:doi 9341:doi 9319:316 9233:doi 9197:doi 9162:doi 9150:463 9107:doi 9103:108 8787:doi 8753:doi 8718:doi 8706:504 8664:PMC 8648:doi 8591:doi 8529:doi 8482:doi 8441:PMC 8425:doi 8371:doi 8322:PMC 8306:doi 8251:doi 8247:129 8210:PMC 8194:doi 8155:doi 8100:doi 8096:120 8045:doi 7990:doi 7986:141 7935:doi 7880:doi 7876:136 7833:doi 7786:doi 7739:doi 7684:doi 7637:doi 7574:doi 7570:133 7527:doi 7472:doi 7423:PMC 7413:doi 7366:doi 7339:doi 7295:doi 7202:doi 7172:doi 7121:doi 7117:362 7092:hdl 7084:doi 7049:doi 7020:doi 6981:doi 6938:doi 6887:doi 6826:doi 6775:PMC 6765:doi 6743:108 6706:doi 6702:126 6677:doi 6626:doi 6614:312 6587:doi 6534:doi 6522:310 6483:doi 6471:300 6389:PMC 6381:doi 6334:doi 6297:PMC 6287:doi 6283:106 6240:doi 6179:doi 6167:292 6144:doi 6094:doi 6041:doi 5998:doi 5994:105 5960:doi 5899:PMC 5889:doi 5858:doi 5807:doi 5761:doi 5749:283 5718:doi 5680:doi 5638:doi 5595:doi 5553:doi 5541:146 5501:doi 5443:doi 5393:doi 5341:doi 5329:321 5298:doi 5286:396 5253:doi 5204:PMC 5194:doi 5145:PMC 5137:doi 5133:103 5096:PMC 5088:doi 5046:doi 4988:doi 4946:doi 4909:doi 4881:doi 4846:doi 4834:172 4794:doi 4734:doi 4722:381 4691:doi 4669:289 4623:doi 4593:doi 4522:doi 4510:103 4457:doi 4420:PMC 4412:doi 4408:130 4373:doi 4320:doi 4285:doi 4246:doi 4209:doi 4197:123 4155:doi 4105:doi 4051:doi 4039:273 4005:doi 3993:363 3959:doi 3947:363 3913:doi 3874:doi 3870:110 3836:doi 3824:391 3793:doi 3750:doi 3738:386 3703:doi 3647:doi 3586:doi 3527:PMC 3517:doi 3462:doi 3450:287 3422:doi 3376:doi 3364:354 3233:in 3199:XRD 3181:of 3151:NEC 3149:of 3023:not 2990:GPa 2924:In 2777:or 2602:ISO 2467:or 2263:= 2 2154:wt% 1731:If 1625:cos 1605:sin 1479:cos 1407:arg 1224:in 1168:246 652:to 584:to 449:IBM 445:NEC 428:), 345:CNT 15574:: 14641:18 14586:, 14580:, 14574:, 14568:, 14564:70 14559:, 14554:60 14433:60 14376:. 14366:. 14358:. 14348:10 14346:. 14342:. 14319:. 14311:. 14299:. 14234:. 14224:37 14222:. 14181:. 14173:. 14163:32 14161:. 14157:. 14103:^ 14080:26 14070:. 14042:. 14034:. 14024:44 14022:. 14018:. 14003:^ 13989:. 13979:. 13969:. 13945:^ 13923:. 13898:. 13876:. 13868:. 13858:11 13856:. 13852:. 13823:. 13773:. 13751:. 13741:. 13729:13 13727:. 13723:. 13700:. 13690:. 13680:. 13670:18 13668:. 13664:. 13641:. 13631:. 13621:. 13611:17 13609:. 13605:. 13570:. 13558:10 13556:. 13527:. 13523:. 13500:. 13490:92 13488:. 13465:. 13457:. 13447:. 13439:. 13427:. 13404:. 13394:20 13392:. 13357:. 13334:. 13326:. 13316:87 13314:. 13291:. 13281:52 13279:. 13254:. 13234:^ 13220:. 13210:. 13202:. 13190:. 13186:. 13163:. 13155:. 13145:. 13133:. 13129:. 13106:. 13096:. 13092:. 13069:. 13059:96 13057:. 13008:. 12986:. 12976:. 12968:. 12956:16 12954:. 12950:. 12924:. 12898:. 12876:. 12866:. 12858:. 12846:14 12844:. 12840:. 12814:. 12789:. 12769:}} 12765:{{ 12750:. 12724:. 12705:. 12671:. 12667:. 12641:. 12619:. 12611:. 12599:. 12573:. 12508:. 12485:. 12477:. 12467:10 12465:. 12442:. 12432:. 12424:. 12412:. 12408:. 12389:. 12367:. 12359:. 12351:. 12341:19 12339:. 12316:. 12302:. 12298:. 12275:. 12265:. 12257:. 12247:14 12245:. 12241:. 12222:. 12199:. 12189:. 12181:. 12169:. 12165:. 12142:. 12128:. 12124:. 12097:. 12061:. 12020:. 12012:. 12004:. 11992:. 11988:. 11965:. 11955:65 11953:. 11949:. 11926:. 11918:. 11906:62 11904:. 11900:. 11877:. 11867:. 11859:. 11851:. 11841:11 11839:. 11835:. 11812:. 11800:. 11796:. 11773:. 11763:. 11755:. 11747:. 11735:. 11731:. 11708:. 11700:. 11692:. 11682:92 11680:. 11676:. 11653:. 11645:. 11635:12 11633:. 11629:. 11606:. 11598:. 11586:. 11582:. 11559:. 11551:. 11539:. 11535:. 11512:. 11504:. 11496:. 11488:. 11478:16 11476:. 11472:. 11449:. 11439:. 11427:. 11423:. 11400:. 11392:. 11384:. 11376:. 11364:. 11360:. 11337:. 11325:. 11321:. 11295:. 11270:. 11248:. 11236:34 11234:. 11230:. 11207:. 11199:. 11191:. 11179:. 11175:. 11152:. 11142:. 11134:. 11122:. 11118:. 11095:. 11087:. 11077:17 11075:. 11071:. 11048:. 11038:. 11030:. 11020:15 11018:. 11014:. 10991:. 10981:. 10973:. 10963:. 10951:. 10947:. 10924:. 10914:. 10906:. 10896:61 10894:. 10890:. 10867:. 10857:. 10849:. 10841:. 10831:11 10829:. 10825:. 10807:^ 10793:. 10783:. 10775:. 10765:. 10755:20 10753:. 10749:. 10726:. 10718:. 10710:. 10700:93 10698:. 10694:. 10671:. 10661:. 10653:. 10641:. 10637:. 10614:. 10604:. 10596:. 10584:. 10580:. 10557:. 10547:. 10539:. 10531:. 10519:. 10515:. 10503:^ 10489:. 10481:. 10471:45 10469:. 10465:. 10442:. 10432:. 10424:. 10414:37 10412:. 10408:. 10385:. 10375:. 10367:. 10359:. 10347:. 10343:. 10320:. 10310:. 10302:. 10292:10 10290:. 10286:. 10263:. 10253:. 10245:. 10235:11 10233:. 10229:. 10206:. 10198:. 10190:. 10182:. 10172:18 10170:. 10166:. 10154:^ 10140:. 10132:. 10124:. 10114:16 10112:. 10108:. 10085:. 10075:. 10067:. 10057:58 10055:. 10051:. 10028:. 10018:. 10010:. 9998:28 9996:. 9992:. 9969:. 9959:. 9951:. 9943:. 9931:. 9927:. 9904:. 9896:. 9888:. 9880:. 9870:19 9868:. 9864:. 9841:. 9833:. 9825:. 9815:. 9805:11 9803:. 9799:. 9776:. 9768:. 9760:. 9748:. 9744:. 9721:. 9713:. 9705:. 9693:. 9689:. 9677:^ 9663:. 9655:. 9647:. 9639:. 9629:20 9627:. 9623:. 9611:^ 9597:. 9587:. 9579:. 9569:. 9557:. 9553:. 9539:^ 9525:. 9515:. 9507:. 9495:. 9491:. 9468:. 9460:. 9448:. 9444:. 9421:. 9413:. 9405:. 9393:. 9389:. 9377:^ 9363:. 9355:. 9347:. 9339:. 9331:. 9317:. 9313:. 9287:. 9239:. 9229:10 9227:. 9203:. 9193:26 9191:. 9168:. 9160:. 9148:. 9144:. 9121:. 9113:. 9101:. 9097:. 9063:. 9033:. 9003:. 8974:. 8944:. 8916:. 8904:^ 8882:. 8871:^ 8849:. 8817:. 8793:. 8773:^ 8759:. 8747:. 8724:. 8716:. 8704:. 8680:. 8672:. 8662:. 8654:. 8646:. 8636:23 8634:. 8630:. 8607:. 8599:. 8587:19 8585:. 8581:. 8565:^ 8551:. 8543:. 8535:. 8525:94 8523:. 8519:. 8496:. 8488:. 8478:93 8476:. 8472:. 8449:. 8439:. 8431:. 8421:61 8419:. 8415:. 8399:^ 8385:. 8377:. 8369:. 8357:. 8353:. 8330:. 8320:. 8312:. 8304:. 8292:. 8288:. 8265:. 8257:. 8245:. 8241:. 8218:. 8208:. 8200:. 8188:. 8184:. 8161:. 8149:. 8145:. 8122:. 8114:. 8106:. 8094:. 8090:. 8067:. 8059:. 8051:. 8041:13 8039:. 8035:. 8012:. 8004:. 7996:. 7984:. 7980:. 7957:. 7949:. 7941:. 7933:. 7923:26 7921:. 7917:. 7894:. 7886:. 7874:. 7870:. 7847:. 7839:. 7827:. 7823:. 7800:. 7792:. 7782:77 7780:. 7776:. 7753:. 7745:. 7733:. 7729:. 7706:. 7698:. 7690:. 7680:23 7678:. 7674:. 7651:. 7643:. 7635:. 7623:. 7619:. 7596:. 7588:. 7580:. 7568:. 7564:. 7541:. 7533:. 7525:. 7513:. 7509:. 7486:. 7478:. 7470:. 7458:. 7454:. 7431:. 7421:. 7411:. 7399:. 7395:. 7372:. 7362:50 7360:. 7337:. 7325:. 7301:. 7293:. 7283:19 7281:. 7262:. 7258:. 7208:. 7196:. 7184:^ 7170:. 7160:41 7158:. 7135:. 7127:. 7115:. 7090:. 7082:. 7072:77 7070:. 7045:65 7043:. 7018:. 7008:54 7006:. 7002:. 6979:. 6969:88 6967:. 6944:. 6936:. 6924:. 6901:. 6893:. 6885:. 6877:. 6863:. 6840:. 6832:. 6824:. 6812:. 6783:. 6773:. 6763:. 6755:. 6741:. 6735:. 6712:. 6700:. 6675:. 6663:. 6657:. 6634:. 6624:. 6612:. 6608:. 6585:. 6573:. 6548:. 6540:. 6532:. 6520:. 6497:. 6489:. 6481:. 6469:. 6431:. 6419:^ 6405:. 6397:. 6387:. 6379:. 6369:12 6367:. 6363:. 6340:. 6328:. 6305:. 6295:. 6281:. 6277:. 6254:. 6246:. 6238:. 6230:. 6218:96 6216:. 6193:. 6185:. 6177:. 6165:. 6142:. 6132:79 6130:. 6126:. 6100:. 6092:. 6084:. 6072:95 6070:. 6047:. 6039:. 6027:. 6004:. 5992:. 5980:^ 5966:. 5958:. 5950:. 5938:87 5936:. 5930:. 5907:. 5897:. 5885:25 5883:. 5879:. 5856:. 5846:76 5844:. 5821:. 5813:. 5805:. 5795:23 5793:. 5781:^ 5767:. 5759:. 5747:. 5724:. 5712:. 5699:^ 5678:. 5668:47 5666:. 5662:. 5636:. 5626:23 5624:. 5601:. 5593:. 5583:27 5551:. 5539:. 5533:. 5507:. 5499:. 5489:88 5487:. 5483:. 5471:^ 5457:. 5449:. 5441:. 5431:21 5429:. 5407:. 5399:. 5391:. 5383:. 5371:17 5369:. 5365:. 5339:. 5327:. 5304:. 5296:. 5284:. 5261:. 5251:. 5239:. 5235:. 5212:. 5202:. 5192:. 5180:. 5176:. 5153:. 5143:. 5131:. 5127:. 5104:. 5094:. 5084:53 5082:. 5078:. 5066:^ 5052:. 5044:. 5032:. 5010:. 5002:. 4994:. 4982:. 4978:. 4952:. 4944:. 4934:83 4932:. 4905:77 4879:. 4869:79 4867:. 4844:. 4832:. 4808:. 4800:. 4792:. 4784:. 4772:37 4770:. 4766:. 4740:. 4732:. 4720:. 4697:. 4689:. 4679:. 4667:. 4645:. 4637:. 4629:. 4617:. 4587:. 4564:. 4550:. 4546:. 4520:. 4508:. 4471:. 4463:. 4453:26 4451:. 4428:. 4418:. 4406:. 4402:. 4379:. 4371:. 4361:. 4349:. 4326:. 4314:. 4291:. 4283:. 4271:. 4244:. 4232:. 4207:. 4195:. 4191:. 4169:. 4161:. 4153:. 4143:92 4141:. 4137:. 4111:. 4103:. 4093:26 4091:. 4079:^ 4065:. 4057:. 4049:. 4037:. 4025:^ 4011:. 4003:. 3991:. 3979:^ 3965:. 3957:. 3945:. 3933:^ 3919:. 3909:32 3907:. 3903:. 3880:. 3868:. 3856:^ 3842:. 3834:. 3822:. 3799:. 3791:. 3781:68 3779:. 3756:. 3748:. 3736:. 3732:. 3709:. 3701:. 3691:68 3689:. 3675:^ 3661:. 3653:. 3645:. 3637:. 3625:87 3623:. 3600:. 3592:. 3584:. 3576:. 3564:84 3562:. 3535:. 3525:. 3515:. 3503:. 3499:. 3476:. 3468:. 3460:. 3448:. 3434:^ 3420:. 3410:32 3408:. 3396:^ 3382:. 3374:. 3362:. 3348:^ 3237:, 3079:A 2954:; 2940:. 2775:UV 2653:, 2645:, 2637:, 2537:. 2340:, 2282:, 2275:. 2213:= 2201:− 2193:= 2098:A 2005:A 1955:. 1043:≤ 995:A1 965:≠ 783:A1 779:A2 755:A1 723:A2 719:A1 695:A2 668:+ 654:A2 650:A1 646:A1 642:A2 626:A1 598:A2 594:A1 586:A2 582:A1 578:A2 574:A1 505:A1 501:A2 436:. 420:, 416:, 339:A 36:A 15331:e 15324:t 15317:v 14882:e 14875:t 14868:v 14780:6 14775:C 14764:3 14759:C 14735:3 14730:C 14719:2 14714:C 14703:1 14698:C 14636:C 14625:6 14620:C 14592:) 14562:C 14552:C 14483:e 14476:t 14469:v 14431:C 14418:. 14384:. 14362:: 14354:: 14327:. 14315:: 14307:: 14263:3 14242:. 14238:: 14230:: 14177:: 14169:: 14139:. 14097:. 14038:: 14030:: 13997:. 13973:: 13965:: 13939:. 13909:. 13884:. 13864:: 13837:. 13831:: 13809:. 13803:: 13784:. 13759:. 13735:: 13708:. 13684:: 13676:: 13649:. 13625:: 13617:: 13578:. 13574:: 13541:. 13535:: 13529:3 13508:. 13504:: 13496:: 13473:. 13451:: 13443:: 13435:: 13412:. 13400:: 13386:3 13384:O 13382:2 13369:. 13365:: 13359:5 13342:. 13330:: 13322:: 13299:. 13295:: 13287:: 13264:. 13250:: 13228:. 13206:: 13198:: 13192:7 13171:. 13149:: 13141:: 13114:. 13100:: 13077:. 13065:: 13042:. 13020:. 12994:. 12962:: 12935:. 12910:. 12884:. 12852:: 12825:. 12800:. 12775:) 12761:. 12735:. 12709:. 12690:. 12627:. 12615:: 12607:: 12601:6 12584:. 12519:. 12493:. 12481:: 12473:: 12450:. 12428:: 12420:: 12414:5 12375:. 12355:: 12347:: 12324:. 12310:: 12283:. 12253:: 12207:. 12177:: 12171:6 12150:. 12136:: 12130:5 12109:. 12028:. 12008:: 12000:: 11994:4 11973:. 11961:: 11934:. 11912:: 11885:. 11855:: 11847:: 11820:. 11808:: 11781:. 11751:: 11743:: 11737:5 11716:. 11688:: 11661:. 11641:: 11614:. 11594:: 11567:. 11547:: 11541:1 11520:. 11484:: 11457:. 11443:: 11435:: 11408:. 11380:: 11372:: 11345:. 11333:: 11306:. 11281:. 11256:. 11242:: 11215:. 11187:: 11160:. 11130:: 11124:6 11103:. 11083:: 11056:. 11026:: 10999:. 10967:: 10959:: 10932:. 10902:: 10875:. 10845:: 10837:: 10801:. 10769:: 10761:: 10734:. 10706:: 10679:. 10649:: 10643:4 10622:. 10592:: 10586:1 10565:. 10535:: 10527:: 10521:4 10497:. 10477:: 10450:. 10420:: 10393:. 10363:: 10355:: 10349:7 10328:. 10298:: 10271:. 10241:: 10214:. 10186:: 10178:: 10148:. 10128:: 10120:: 10093:. 10063:: 10036:. 10004:: 9977:. 9947:: 9939:: 9933:5 9912:. 9884:: 9876:: 9849:. 9819:: 9811:: 9784:. 9764:: 9756:: 9750:8 9729:. 9701:: 9695:6 9671:. 9643:: 9635:: 9605:. 9573:: 9565:: 9533:. 9503:: 9497:5 9476:. 9456:: 9429:. 9409:: 9401:: 9395:8 9371:. 9343:: 9335:: 9325:: 9298:. 9247:. 9235:: 9211:. 9199:: 9176:. 9164:: 9156:: 9129:. 9109:: 9079:. 9049:. 9019:. 8989:. 8960:. 8930:. 8898:. 8865:. 8835:. 8803:. 8789:: 8767:. 8755:: 8749:5 8732:. 8720:: 8712:: 8688:. 8650:: 8642:: 8615:. 8593:: 8559:. 8531:: 8504:. 8484:: 8457:. 8427:: 8393:. 8373:: 8365:: 8359:9 8338:. 8308:: 8300:: 8294:2 8273:. 8253:: 8226:. 8196:: 8190:9 8169:. 8157:: 8151:2 8130:. 8102:: 8075:. 8047:: 8020:. 7992:: 7965:. 7937:: 7929:: 7902:. 7882:: 7855:. 7835:: 7829:8 7808:. 7788:: 7761:. 7741:: 7735:7 7714:. 7686:: 7659:. 7639:: 7631:: 7625:5 7604:. 7576:: 7549:. 7529:: 7521:: 7515:2 7494:. 7474:: 7466:: 7460:7 7439:. 7415:: 7407:: 7401:9 7380:. 7368:: 7345:. 7341:: 7333:: 7327:3 7309:. 7297:: 7289:: 7264:5 7243:. 7216:. 7204:: 7198:4 7178:. 7174:: 7166:: 7143:. 7123:: 7100:. 7094:: 7086:: 7078:: 7055:. 7051:: 7028:. 7022:: 7014:: 6987:. 6983:: 6975:: 6952:. 6940:: 6932:: 6926:7 6909:. 6889:: 6881:: 6871:: 6865:6 6848:. 6828:: 6820:: 6814:4 6791:. 6767:: 6759:: 6749:: 6720:. 6708:: 6683:. 6679:: 6671:: 6665:4 6642:. 6628:: 6620:: 6593:. 6589:: 6581:: 6575:3 6556:. 6536:: 6528:: 6505:. 6485:: 6477:: 6442:. 6413:. 6383:: 6375:: 6348:. 6336:: 6330:2 6313:. 6289:: 6262:. 6242:: 6234:: 6224:: 6201:. 6181:: 6173:: 6150:. 6146:: 6138:: 6108:. 6096:: 6088:: 6078:: 6055:. 6043:: 6035:: 6029:2 6012:. 6000:: 5974:. 5962:: 5954:: 5944:: 5915:. 5891:: 5864:. 5860:: 5852:: 5829:. 5809:: 5801:: 5775:. 5763:: 5755:: 5732:. 5720:: 5714:3 5682:: 5674:: 5644:. 5640:: 5632:: 5609:. 5597:: 5589:: 5555:: 5547:: 5515:. 5503:: 5495:: 5465:. 5445:: 5437:: 5395:: 5387:: 5377:: 5347:. 5343:: 5335:: 5312:. 5300:: 5292:: 5269:. 5255:: 5247:: 5241:2 5220:. 5196:: 5188:: 5182:1 5161:. 5139:: 5112:. 5090:: 5060:. 5048:: 5040:: 5034:8 4990:: 4984:8 4960:. 4948:: 4940:: 4915:. 4911:: 4887:. 4883:: 4875:: 4852:. 4848:: 4840:: 4796:: 4788:: 4778:: 4748:. 4736:: 4728:: 4705:. 4693:: 4675:: 4625:: 4599:. 4595:: 4589:2 4552:3 4528:. 4524:: 4516:: 4479:. 4459:: 4436:. 4414:: 4387:. 4375:: 4357:: 4351:9 4334:. 4322:: 4316:7 4299:. 4287:: 4279:: 4273:8 4252:. 4248:: 4240:: 4234:3 4215:. 4211:: 4203:: 4157:: 4149:: 4119:. 4107:: 4099:: 4073:. 4053:: 4045:: 4019:. 4007:: 3999:: 3973:. 3961:: 3953:: 3927:. 3915:: 3888:. 3876:: 3850:. 3838:: 3830:: 3807:. 3795:: 3787:: 3764:. 3752:: 3744:: 3717:. 3705:: 3697:: 3669:. 3649:: 3641:: 3631:: 3608:. 3588:: 3580:: 3570:: 3543:. 3519:: 3511:: 3505:9 3484:. 3464:: 3456:: 3428:. 3424:: 3416:: 3390:. 3378:: 3370:: 3087:. 2882:. 2344:( 2301:3 2269:h 2267:/ 2265:e 2261:0 2258:G 2254:0 2251:G 2219:K 2215:m 2211:n 2203:m 2199:n 2195:m 2191:n 2187:m 2185:, 2183:n 2066:m 2064:, 2062:n 1900:( 1745:m 1743:, 1741:n 1737:m 1733:n 1642:2 1639:m 1622:c 1619:= 1616:n 1599:3 1594:c 1591:2 1585:= 1582:m 1569:m 1567:, 1565:n 1561:α 1557:c 1553:x 1551:, 1549:y 1547:( 1541:y 1539:, 1537:x 1533:X 1529:y 1527:, 1525:x 1506:c 1502:2 1498:/ 1494:m 1491:+ 1488:n 1471:c 1468:r 1465:a 1459:= 1455:) 1452:2 1448:/ 1442:3 1437:m 1433:, 1430:2 1426:/ 1422:m 1419:+ 1416:n 1413:( 1403:= 1386:m 1382:n 1378:c 1373:w 1367:u 1362:α 1355:m 1351:n 1332:) 1329:m 1326:n 1318:2 1314:) 1310:m 1307:+ 1304:n 1301:( 1298:( 1287:d 1260:/ 1256:c 1236:d 1207:) 1204:m 1201:n 1193:2 1189:) 1185:m 1182:+ 1179:n 1176:( 1173:( 1160:) 1155:2 1151:m 1147:+ 1144:m 1141:n 1138:+ 1133:2 1129:n 1125:( 1119:| 1115:u 1111:| 1107:= 1104:c 1090:w 1085:c 1081:m 1077:n 1064:w 1058:u 1053:α 1049:n 1045:n 1041:m 1037:m 1035:, 1033:n 1029:k 1027:, 1025:k 1021:k 1012:v 1009:+ 1006:u 1000:u 991:L 987:m 985:, 983:n 979:n 977:, 975:m 967:n 963:m 959:m 955:m 953:, 951:n 880:u 874:w 868:u 863:α 858:w 853:m 851:, 849:n 841:m 839:, 837:n 832:v 826:u 820:w 815:m 811:n 807:m 805:, 803:n 799:k 795:k 791:m 789:, 787:n 775:m 773:+ 771:n 769:, 767:m 763:m 761:, 759:n 743:k 739:k 737:, 735:k 731:k 727:k 714:w 708:w 703:m 699:n 691:m 689:, 687:n 683:m 679:n 674:v 670:m 665:u 661:n 637:v 631:u 617:v 611:u 602:A 590:A 570:A 566:A 524:v 518:u 380:( 362:( 343:( 328:e 321:t 314:v 20:)

Index

Carbon nano tube

scanning tunneling microscopy

Nanomaterials

Carbon nanotubes
Synthesis
Chemistry
Mechanical properties
Optical properties
Applications
Timeline
Fullerenes
Buckminsterfullerene
C70 fullerene
Chemistry
Health impact
Carbon allotropes
nanoparticles
Carbon quantum dots
Quantum dots
Aluminium oxide
Cellulose
Ceramic
Cobalt oxide
Copper
Gold
Iron
Iron oxide

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.