Knowledge

Georeferencing

Source 📝

1141:). Easily visible locations that be precisely located are preferred as GCP's, such as a road intersection or the corner of a building. When very high accuracy registration is required, it is common to place or paint high-contrast markers on the ground at survey control monuments before the photography is taken, and use GNSS-measured coordinates for the output. In most software, these are entered by pointing at the location on the image, then pointing at the same location on a vector base map or 168: 1239:
The entered GCPs are rarely perfectly located and are even more rarely perfectly representative of the distortion in the rest of the image, but the algebraic solution, which appears to be a perfect match, masks any error. To avoid this, it is common to create many more than the minimal required set
1277:
to create a new raster grid that is natively tied to the coordinate system. Rectification was traditionally the only option, until the computing power became available for the intense calculations of dynamic coordinate transformations; even now, drawing and analysis performance is better with a
1569: 148:
Very essential information may be contained in data or images that were produced at a different point of time. It may be desired either to combine or compare this data with that currently available. The latter can be used to analyze the changes in the features under study over a period of
1256:
Once the function parameters are determined, the transformation functions can be used to transform every pixel of the image to its real-world location. Two options are usually available for making this transformation permanent. One option is to save the parameters themselves as a form of
68:
or within the image file to specify the transformation, or the process of manually or automatically aligning the image to the real world to create such metadata. The most common result is that the image can be visually and analytically integrated with other geographic data in
396:
Several types of functions are available in most GIS and remote sensing software for georeferencing. As the simplest type of two-dimensional curve is a straight line, so the simplest form of coordinate transformation is a linear transformation, the most common type being the
88:
techniques to generate a parametric (or piecewise parametric) formula to transform the rest of the image. Once the parameters of the formula are stored, the image may be transformed dynamically at drawing time, or resampled to generate a georeferenced
1248:
regression to derive a set of function parameters that most closely matches the points. This is almost never a perfect match, so the variance between each GCP location and the location predicted by the functions can be measured and summarized as a
175:
The registration of an image to a geographic space is essentially the transformation from an input coordinate system (the inherent coordinates of pixels in the images based on row and column number) to an output coordinate system, a
993: 835: 1269:). With this metadata, the software can perform the transformation dynamically as it displays the image, so that it appears to align with other data in the desired coordinate system. The alternative method is 1152:
to determine the coefficients and derive the formulas to use for the entire grid. For example, the linear affine transformation above has six unknown coefficients, so six equations with known <
664: 1234: 557: 479: 342: 267: 1025:
software provides an interactive environment for visually aligning the image to the destination coordinate system. The most common method for doing this is to create a series of
1139: 1029:(GCP). A ground control point is a location that can be identified on both the image and the ground, so that it has precise coordinates in both the image coordinate system ( 998:
The second-order terms (and third-order terms in a third-order polynomial) allow for the variable warping of the image, which is especially useful for removing the inherent
391: 1236:> are needed to derive them, which will require three ground control points. The second-order polynomial requires a minimum of six ground control points, and so on. 1148:
With a minimal set of GCPs, the known coordinates can be entered into the mathematical equations for the desired type of transformation, which can then be solved using
1005:
In addition to global parametric formulas, piecewise formulas can also be used, which transform different parts of the image in different ways. A common example is a
1087: 1057: 841: 683: 152:
Different maps may use different projection systems. Georeferencing tools contain methods to combine and overlay these maps with minimum distortion.
1522: 1320:
supports various transformation algorithms (including the Thin Plate Spline transformation), and the computation of distortions, through it's
100:
The term georeferencing has also been used to refer to other types of transformation from general expressions of geographic location (
1797: 677:
Higher order polynomial transformations are also commonly used. For example, a Second-order polynomial transformation would be:
1697: 1667: 1487: 1627: 589: 17: 1716: 1759: 1590: 1299: 1155: 48:
that binds a digital raster image or vector database that represents a geographic space (usually a scanned map or
485: 407: 70: 273: 198: 192:
a relationship between two variables to four dimensions. The goal is to have a pair of functions of the form:
80:
A number of mathematical methods are available, but the process typically involves identifying several sample
1018: 185: 1145:
that is already in the desired coordinate system. This can then be moved and adjusted to improve accuracy.
181: 1467: 1308: 393:
being its column and row number, respectively), a corresponding real-world coordinate can be calculated.
1017:
It is very rare that a user would specify the parameters for the transformation directly. Instead, most
1250: 114:
is preferred by some to refer to the image transformation. Occasionally, this process has been called
1290:
GIS software has had this capability for many years, including the Georeferencing tool in ArcGIS Pro.
1092: 45: 1415: 1405: 350: 177: 162: 53: 562:
Where A-F are constant coefficients set for the entire image. These formulas allow an image to be
1296:
has a Georeferencer tool, originally developed as an add-on but now integrated into the software.
1776:
Discovering Location Indicators of Toponyms from News to Improve Gazetteer-Based Geo-Referencing
1420: 1241: 566:(the C and F coefficients specify the desired location of the top left corner of the image), 398: 141:, usually raster images, useful for mapping as it explains how other data, such as the above 1062: 1032: 1531: 121: 60:. The term can refer to the mathematical formulas used to perform the transformation, the 8: 1441: 1400: 1270: 1258: 1253:(RMSE). A lower RMSE thus means that the transformation formulas closely match the GCPs. 999: 61: 1535: 90: 1549: 1493: 1479: 1410: 1385: 1380: 571: 106:) to coordinate measurements, but most of these other methods are more commonly called 57: 1570:
International Encyclopedia of Geography: People, the Earth, Environment and Technology
56:, thus locating the digital data in the real world. It is thus the geographic form of 1775: 1755: 1693: 1663: 1586: 1497: 1483: 1390: 1006: 138: 49: 1609:
Longley, Paul A.; Goodchild, Michael F.; Maguire, David J.; Rhind, David W. (2011).
1582: 1553: 1578: 1539: 1475: 1321: 1544: 1517: 1312: 1395: 1360: 1149: 1022: 988:{\displaystyle y_{out}=Gx_{in}+Hy_{in}+Ix_{in}^{2}+Jy_{in}^{2}+Kx_{in}y_{in}+L} 830:{\displaystyle x_{out}=Ax_{in}+By_{in}+Cx_{in}^{2}+Dy_{in}^{2}+Ex_{in}y_{in}+F} 134: 116: 74: 31: 120:, but that term is more commonly applied to a very similar process applied to 1791: 1751: 1303: 1274: 1245: 570:(without rotation, the A and E coefficients specify the size of each cell or 189: 167: 85: 1515: 1350: 671: 65: 1375: 1370: 1266: 1142: 667: 94: 1781: 1365: 1355: 1345: 1335: 107: 1340: 1265:), or in a sidecar file stored alongside the image file (e.g., a 1262: 102: 1660:
GIS Fundamentals: A First Text on Geographic Information Systems
674:
that specifies these six coefficients for image georeferencing.
1784:
online tutorial material from the University of Southampton, UK
582:
in both the x and y directions, and the image is to be rotated
1472:
International Encyclopedia of Human Geography (Second Edition)
84:
with known locations on the image and the ground, then using
1608: 1567:
Leidner, J.L. (2017). "Georeferencing: From Texts to Maps".
1516:
Hackeloeer, A.; Klasing, K.; Krisp, J.M.; Meng, L. (2014).
1293: 1287: 27:
Identification of something to locations in physical space
142: 1782:
Geographical referencing resources for social scientists
1317: 1261:, either in the header of the image file itself (e.g., 1518:"Georeferencing: a review of methods and applications" 188:
zone. It is thus the extension of the typical task of
1158: 1095: 1065: 1035: 844: 686: 659:{\displaystyle A=E=r\cos(\alpha ),B=D=r\sin(\alpha )} 592: 488: 410: 353: 276: 201: 1228: 1133: 1081: 1051: 987: 829: 658: 551: 473: 385: 336: 261: 1789: 1089:= pixel row) and the ground coordinate system ( 1690:Introduction to Geographic Information Systems 1692:(7th ed.). McGraw-Hill. pp. 50–57. 1604: 1602: 1566: 1229:{\displaystyle x_{in},y_{in},x_{out},y_{out}} 1611:Geographic Information Systems & Science 171:Graphical view of the affine transformation. 1683: 1681: 1679: 1281: 1599: 1653: 1651: 1649: 1543: 552:{\displaystyle y_{out}=Dx_{in}+Ey_{in}+F} 474:{\displaystyle x_{out}=Ax_{in}+By_{in}+C} 1676: 578:. In the last case, if the cell size is 347:Such that for every pixel in the image ( 337:{\displaystyle y_{out}=G(x_{in},y_{in})} 262:{\displaystyle x_{out}=F(x_{in},y_{in})} 166: 1657: 14: 1790: 1711: 1709: 1646: 1622: 1620: 1474:, Oxford: Elsevier, pp. 111–117, 1300:Image Georeferencing and Rectification 1687: 670:developed by Esri is a commonly used 1745: 1706: 1617: 1465: 24: 1739: 1480:10.1016/b978-0-08-102295-5.10548-7 180:of the user's choice, such as the 133:Georeferencing is crucial to make 25: 1809: 1778:- paper presented at Geoinfo 2008 1769: 1442:"What does "georeferenced" mean?" 1012: 586:degrees counter-clockwise, then 1798:Geographic data and information 1583:10.1002/9781118786352.wbieg0160 1134:{\displaystyle x_{out},y_{out}} 1560: 1509: 1470:, in Kobayashi, Audrey (ed.), 1468:"Georeferencing and Geocoding" 1466:Yao, Xiaobai A. (2020-01-01), 1459: 1434: 653: 647: 620: 614: 331: 299: 256: 224: 156: 145:points, relate to the imagery. 71:geographic information systems 13: 1: 1427: 386:{\displaystyle x_{in},y_{in}} 186:Universal Transverse Mercator 127: 110:. Because of this ambiguity, 1628:"Overview of georeferencing" 1545:10.1080/19475683.2013.868826 182:geographic coordinate system 7: 1328: 10: 1814: 1688:Chang, Kang-tsung (2014). 160: 29: 1662:. Ann Arbor, MI: XanEdu. 1309:Image to Map Registration 46:coordinate transformation 1632:ArcGIS Pro Documentation 1448:. U.S. Geological Survey 1416:Transport infrastructure 1406:Spatial reference system 1282:Software implementations 1273:, in which the image is 178:spatial reference system 163:Geometric transformation 54:spatial reference system 30:Not to be confused with 1746:Hill, Linda L. (2006). 1721:QGIS 3.22 documentation 1002:in aerial photographs. 1658:Bolstad, Paul (2019). 1613:(3rd ed.). Wiley. 1251:Root-mean-square error 1230: 1135: 1083: 1082:{\displaystyle y_{in}} 1053: 1052:{\displaystyle x_{in}} 989: 831: 660: 553: 475: 387: 338: 263: 172: 1421:World Geodetic System 1242:overdetermined system 1231: 1136: 1084: 1054: 1027:ground control points 990: 832: 661: 554: 476: 399:affine transformation 388: 339: 264: 170: 82:ground control points 1717:"16.3 Georeferencer" 1156: 1093: 1063: 1033: 842: 684: 590: 486: 408: 351: 274: 199: 1536:2014AnGIS..20...61H 1401:Reference ellipsoid 946: 922: 788: 764: 18:Spatial referencing 1411:Toponym resolution 1386:Linear referencing 1381:Image registration 1322:@allmaps/transform 1226: 1131: 1079: 1049: 985: 929: 905: 827: 771: 747: 656: 572:spatial resolution 549: 471: 383: 334: 259: 173: 58:image registration 1699:978-0-07-352290-6 1669:978-1-59399-552-2 1489:978-0-08-102296-2 1391:Reverse geocoding 1278:rectified image. 1007:Thin plate spline 139:satellite imagery 50:aerial photograph 16:(Redirected from 1805: 1765: 1733: 1732: 1730: 1728: 1713: 1704: 1703: 1685: 1674: 1673: 1655: 1644: 1643: 1641: 1639: 1624: 1615: 1614: 1606: 1597: 1596: 1564: 1558: 1557: 1547: 1513: 1507: 1506: 1505: 1504: 1463: 1457: 1456: 1454: 1453: 1438: 1235: 1233: 1232: 1227: 1225: 1224: 1206: 1205: 1187: 1186: 1171: 1170: 1140: 1138: 1137: 1132: 1130: 1129: 1111: 1110: 1088: 1086: 1085: 1080: 1078: 1077: 1059:= pixel column, 1058: 1056: 1055: 1050: 1048: 1047: 1009:transformation. 994: 992: 991: 986: 978: 977: 965: 964: 945: 940: 921: 916: 898: 897: 879: 878: 860: 859: 836: 834: 833: 828: 820: 819: 807: 806: 787: 782: 763: 758: 740: 739: 721: 720: 702: 701: 665: 663: 662: 657: 558: 556: 555: 550: 542: 541: 523: 522: 504: 503: 480: 478: 477: 472: 464: 463: 445: 444: 426: 425: 392: 390: 389: 384: 382: 381: 366: 365: 343: 341: 340: 335: 330: 329: 314: 313: 292: 291: 268: 266: 265: 260: 255: 254: 239: 238: 217: 216: 184:or a particular 21: 1813: 1812: 1808: 1807: 1806: 1804: 1803: 1802: 1788: 1787: 1772: 1762: 1742: 1740:Further reading 1737: 1736: 1726: 1724: 1715: 1714: 1707: 1700: 1686: 1677: 1670: 1656: 1647: 1637: 1635: 1626: 1625: 1618: 1607: 1600: 1593: 1565: 1561: 1514: 1510: 1502: 1500: 1490: 1464: 1460: 1451: 1449: 1440: 1439: 1435: 1430: 1425: 1331: 1284: 1214: 1210: 1195: 1191: 1179: 1175: 1163: 1159: 1157: 1154: 1153: 1119: 1115: 1100: 1096: 1094: 1091: 1090: 1070: 1066: 1064: 1061: 1060: 1040: 1036: 1034: 1031: 1030: 1015: 970: 966: 957: 953: 941: 933: 917: 909: 890: 886: 871: 867: 849: 845: 843: 840: 839: 812: 808: 799: 795: 783: 775: 759: 751: 732: 728: 713: 709: 691: 687: 685: 682: 681: 591: 588: 587: 534: 530: 515: 511: 493: 489: 487: 484: 483: 456: 452: 437: 433: 415: 411: 409: 406: 405: 374: 370: 358: 354: 352: 349: 348: 322: 318: 306: 302: 281: 277: 275: 272: 271: 247: 243: 231: 227: 206: 202: 200: 197: 196: 165: 159: 130: 112:Georegistration 91:raster GIS file 42:georegistration 35: 28: 23: 22: 15: 12: 11: 5: 1811: 1801: 1800: 1786: 1785: 1779: 1771: 1770:External links 1768: 1767: 1766: 1761:978-0262083546 1760: 1748:Georeferencing 1741: 1738: 1735: 1734: 1705: 1698: 1675: 1668: 1645: 1616: 1598: 1591: 1559: 1508: 1488: 1458: 1432: 1431: 1429: 1426: 1424: 1423: 1418: 1413: 1408: 1403: 1398: 1396:Rubbersheeting 1393: 1388: 1383: 1378: 1373: 1368: 1363: 1361:Geopositioning 1358: 1353: 1348: 1343: 1338: 1332: 1330: 1327: 1326: 1325: 1315: 1306: 1297: 1291: 1283: 1280: 1223: 1220: 1217: 1213: 1209: 1204: 1201: 1198: 1194: 1190: 1185: 1182: 1178: 1174: 1169: 1166: 1162: 1150:linear algebra 1128: 1125: 1122: 1118: 1114: 1109: 1106: 1103: 1099: 1076: 1073: 1069: 1046: 1043: 1039: 1023:remote sensing 1014: 1013:The GCP method 1011: 996: 995: 984: 981: 976: 973: 969: 963: 960: 956: 952: 949: 944: 939: 936: 932: 928: 925: 920: 915: 912: 908: 904: 901: 896: 893: 889: 885: 882: 877: 874: 870: 866: 863: 858: 855: 852: 848: 837: 826: 823: 818: 815: 811: 805: 802: 798: 794: 791: 786: 781: 778: 774: 770: 767: 762: 757: 754: 750: 746: 743: 738: 735: 731: 727: 724: 719: 716: 712: 708: 705: 700: 697: 694: 690: 655: 652: 649: 646: 643: 640: 637: 634: 631: 628: 625: 622: 619: 616: 613: 610: 607: 604: 601: 598: 595: 560: 559: 548: 545: 540: 537: 533: 529: 526: 521: 518: 514: 510: 507: 502: 499: 496: 492: 481: 470: 467: 462: 459: 455: 451: 448: 443: 440: 436: 432: 429: 424: 421: 418: 414: 380: 377: 373: 369: 364: 361: 357: 345: 344: 333: 328: 325: 321: 317: 312: 309: 305: 301: 298: 295: 290: 287: 284: 280: 269: 258: 253: 250: 246: 242: 237: 234: 230: 226: 223: 220: 215: 212: 209: 205: 161:Main article: 158: 155: 154: 153: 150: 146: 129: 126: 117:rubbersheeting 75:remote sensing 38:Georeferencing 32:Rubbersheeting 26: 9: 6: 4: 3: 2: 1810: 1799: 1796: 1795: 1793: 1783: 1780: 1777: 1774: 1773: 1763: 1757: 1753: 1752:The MIT Press 1749: 1744: 1743: 1722: 1718: 1712: 1710: 1701: 1695: 1691: 1684: 1682: 1680: 1671: 1665: 1661: 1654: 1652: 1650: 1633: 1629: 1623: 1621: 1612: 1605: 1603: 1594: 1592:9780470659632 1588: 1584: 1580: 1577:: 2897–2907. 1576: 1572: 1571: 1563: 1555: 1551: 1546: 1541: 1537: 1533: 1529: 1525: 1524: 1523:Annals of GIS 1519: 1512: 1499: 1495: 1491: 1485: 1481: 1477: 1473: 1469: 1462: 1447: 1443: 1437: 1433: 1422: 1419: 1417: 1414: 1412: 1409: 1407: 1404: 1402: 1399: 1397: 1394: 1392: 1389: 1387: 1384: 1382: 1379: 1377: 1374: 1372: 1369: 1367: 1364: 1362: 1359: 1357: 1354: 1352: 1349: 1347: 1344: 1342: 1339: 1337: 1334: 1333: 1323: 1319: 1316: 1314: 1310: 1307: 1305: 1304:ERDAS Imagine 1301: 1298: 1295: 1292: 1289: 1286: 1285: 1279: 1276: 1272: 1271:rectification 1268: 1264: 1260: 1254: 1252: 1247: 1246:least squares 1243: 1240:(creating an 1237: 1221: 1218: 1215: 1211: 1207: 1202: 1199: 1196: 1192: 1188: 1183: 1180: 1176: 1172: 1167: 1164: 1160: 1151: 1146: 1144: 1126: 1123: 1120: 1116: 1112: 1107: 1104: 1101: 1097: 1074: 1071: 1067: 1044: 1041: 1037: 1028: 1024: 1020: 1010: 1008: 1003: 1001: 982: 979: 974: 971: 967: 961: 958: 954: 950: 947: 942: 937: 934: 930: 926: 923: 918: 913: 910: 906: 902: 899: 894: 891: 887: 883: 880: 875: 872: 868: 864: 861: 856: 853: 850: 846: 838: 824: 821: 816: 813: 809: 803: 800: 796: 792: 789: 784: 779: 776: 772: 768: 765: 760: 755: 752: 748: 744: 741: 736: 733: 729: 725: 722: 717: 714: 710: 706: 703: 698: 695: 692: 688: 680: 679: 678: 675: 673: 669: 650: 644: 641: 638: 635: 632: 629: 626: 623: 617: 611: 608: 605: 602: 599: 596: 593: 585: 581: 577: 573: 569: 565: 546: 543: 538: 535: 531: 527: 524: 519: 516: 512: 508: 505: 500: 497: 494: 490: 482: 468: 465: 460: 457: 453: 449: 446: 441: 438: 434: 430: 427: 422: 419: 416: 412: 404: 403: 402: 400: 394: 378: 375: 371: 367: 362: 359: 355: 326: 323: 319: 315: 310: 307: 303: 296: 293: 288: 285: 282: 278: 270: 251: 248: 244: 240: 235: 232: 228: 221: 218: 213: 210: 207: 203: 195: 194: 193: 191: 190:curve fitting 187: 183: 179: 169: 164: 151: 147: 144: 140: 136: 132: 131: 125: 123: 119: 118: 113: 109: 105: 104: 98: 96: 92: 87: 86:curve fitting 83: 78: 76: 72: 67: 63: 59: 55: 51: 47: 44:is a type of 43: 39: 33: 19: 1747: 1725:. Retrieved 1720: 1689: 1659: 1636:. Retrieved 1631: 1610: 1574: 1568: 1562: 1530:(1): 61–69. 1527: 1521: 1511: 1501:, retrieved 1471: 1461: 1450:. Retrieved 1446:www.usgs.gov 1445: 1436: 1351:Geomessaging 1255: 1238: 1147: 1026: 1016: 1004: 997: 676: 672:sidecar file 583: 579: 575: 567: 563: 561: 395: 346: 174: 115: 111: 101: 99: 81: 79: 41: 37: 36: 1376:Hydrography 1244:), and use 157:Mathematics 1503:2022-01-04 1452:2022-01-04 1428:References 1371:Geotagging 1267:world file 1143:orthophoto 1000:distortion 668:world file 128:Motivation 122:vector GIS 95:orthophoto 77:software. 1727:8 January 1638:8 January 1498:241797395 1366:GeoReader 1356:Geoportal 1346:Geocoding 1336:Altimetry 1275:resampled 651:α 645:⁡ 618:α 612:⁡ 108:geocoding 66:alongside 1792:Category 1554:38306705 1341:Cadaster 1329:See also 1324:package. 1259:metadata 103:geocodes 62:metadata 1723:. OSGEO 1532:Bibcode 1318:Allmaps 1263:GeoTIFF 576:rotated 574:), and 64:stored 52:) to a 1758:  1696:  1666:  1634:. Esri 1589:  1552:  1496:  1486:  666:. The 568:scaled 135:aerial 124:data. 1550:S2CID 1494:S2CID 564:moved 149:time. 1756:ISBN 1729:2023 1694:ISBN 1664:ISBN 1640:2023 1587:ISBN 1484:ISBN 1313:ENVI 1294:QGIS 1288:Esri 1021:and 137:and 73:and 1579:doi 1540:doi 1476:doi 1311:in 1302:in 1019:GIS 642:sin 609:cos 143:GPS 93:or 40:or 1794:: 1754:. 1750:. 1719:. 1708:^ 1678:^ 1648:^ 1630:. 1619:^ 1601:^ 1585:. 1575:vi 1573:. 1548:. 1538:. 1528:20 1526:. 1520:. 1492:, 1482:, 1444:. 401:: 97:. 1764:. 1731:. 1702:. 1672:. 1642:. 1595:. 1581:: 1556:. 1542:: 1534:: 1478:: 1455:. 1222:t 1219:u 1216:o 1212:y 1208:, 1203:t 1200:u 1197:o 1193:x 1189:, 1184:n 1181:i 1177:y 1173:, 1168:n 1165:i 1161:x 1127:t 1124:u 1121:o 1117:y 1113:, 1108:t 1105:u 1102:o 1098:x 1075:n 1072:i 1068:y 1045:n 1042:i 1038:x 983:L 980:+ 975:n 972:i 968:y 962:n 959:i 955:x 951:K 948:+ 943:2 938:n 935:i 931:y 927:J 924:+ 919:2 914:n 911:i 907:x 903:I 900:+ 895:n 892:i 888:y 884:H 881:+ 876:n 873:i 869:x 865:G 862:= 857:t 854:u 851:o 847:y 825:F 822:+ 817:n 814:i 810:y 804:n 801:i 797:x 793:E 790:+ 785:2 780:n 777:i 773:y 769:D 766:+ 761:2 756:n 753:i 749:x 745:C 742:+ 737:n 734:i 730:y 726:B 723:+ 718:n 715:i 711:x 707:A 704:= 699:t 696:u 693:o 689:x 654:) 648:( 639:r 636:= 633:D 630:= 627:B 624:, 621:) 615:( 606:r 603:= 600:E 597:= 594:A 584:α 580:r 547:F 544:+ 539:n 536:i 532:y 528:E 525:+ 520:n 517:i 513:x 509:D 506:= 501:t 498:u 495:o 491:y 469:C 466:+ 461:n 458:i 454:y 450:B 447:+ 442:n 439:i 435:x 431:A 428:= 423:t 420:u 417:o 413:x 379:n 376:i 372:y 368:, 363:n 360:i 356:x 332:) 327:n 324:i 320:y 316:, 311:n 308:i 304:x 300:( 297:G 294:= 289:t 286:u 283:o 279:y 257:) 252:n 249:i 245:y 241:, 236:n 233:i 229:x 225:( 222:F 219:= 214:t 211:u 208:o 204:x 34:. 20:)

Index

Spatial referencing
Rubbersheeting
coordinate transformation
aerial photograph
spatial reference system
image registration
metadata
alongside
geographic information systems
remote sensing
curve fitting
raster GIS file
orthophoto
geocodes
geocoding
rubbersheeting
vector GIS
aerial
satellite imagery
GPS
Geometric transformation

spatial reference system
geographic coordinate system
Universal Transverse Mercator
curve fitting
affine transformation
spatial resolution
world file
sidecar file

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.