Knowledge

Georeferencing

Source 📝

1130:). Easily visible locations that be precisely located are preferred as GCP's, such as a road intersection or the corner of a building. When very high accuracy registration is required, it is common to place or paint high-contrast markers on the ground at survey control monuments before the photography is taken, and use GNSS-measured coordinates for the output. In most software, these are entered by pointing at the location on the image, then pointing at the same location on a vector base map or 157: 1228:
The entered GCPs are rarely perfectly located and are even more rarely perfectly representative of the distortion in the rest of the image, but the algebraic solution, which appears to be a perfect match, masks any error. To avoid this, it is common to create many more than the minimal required set
1266:
to create a new raster grid that is natively tied to the coordinate system. Rectification was traditionally the only option, until the computing power became available for the intense calculations of dynamic coordinate transformations; even now, drawing and analysis performance is better with a
1558: 137:
Very essential information may be contained in data or images that were produced at a different point of time. It may be desired either to combine or compare this data with that currently available. The latter can be used to analyze the changes in the features under study over a period of
1245:
Once the function parameters are determined, the transformation functions can be used to transform every pixel of the image to its real-world location. Two options are usually available for making this transformation permanent. One option is to save the parameters themselves as a form of
57:
or within the image file to specify the transformation, or the process of manually or automatically aligning the image to the real world to create such metadata. The most common result is that the image can be visually and analytically integrated with other geographic data in
385:
Several types of functions are available in most GIS and remote sensing software for georeferencing. As the simplest type of two-dimensional curve is a straight line, so the simplest form of coordinate transformation is a linear transformation, the most common type being the
77:
techniques to generate a parametric (or piecewise parametric) formula to transform the rest of the image. Once the parameters of the formula are stored, the image may be transformed dynamically at drawing time, or resampled to generate a georeferenced
1237:
regression to derive a set of function parameters that most closely matches the points. This is almost never a perfect match, so the variance between each GCP location and the location predicted by the functions can be measured and summarized as a
164:
The registration of an image to a geographic space is essentially the transformation from an input coordinate system (the inherent coordinates of pixels in the images based on row and column number) to an output coordinate system, a
982: 824: 1258:). With this metadata, the software can perform the transformation dynamically as it displays the image, so that it appears to align with other data in the desired coordinate system. The alternative method is 1141:
to determine the coefficients and derive the formulas to use for the entire grid. For example, the linear affine transformation above has six unknown coefficients, so six equations with known <
653: 1223: 546: 468: 331: 256: 1014:
software provides an interactive environment for visually aligning the image to the destination coordinate system. The most common method for doing this is to create a series of
1128: 1018:(GCP). A ground control point is a location that can be identified on both the image and the ground, so that it has precise coordinates in both the image coordinate system ( 987:
The second-order terms (and third-order terms in a third-order polynomial) allow for the variable warping of the image, which is especially useful for removing the inherent
380: 1225:> are needed to derive them, which will require three ground control points. The second-order polynomial requires a minimum of six ground control points, and so on. 1137:
With a minimal set of GCPs, the known coordinates can be entered into the mathematical equations for the desired type of transformation, which can then be solved using
994:
In addition to global parametric formulas, piecewise formulas can also be used, which transform different parts of the image in different ways. A common example is a
1076: 1046: 830: 672: 141:
Different maps may use different projection systems. Georeferencing tools contain methods to combine and overlay these maps with minimum distortion.
1511: 1309:
supports various transformation algorithms (including the Thin Plate Spline transformation), and the computation of distortions, through it's
89:
The term georeferencing has also been used to refer to other types of transformation from general expressions of geographic location (
1786: 666:
Higher order polynomial transformations are also commonly used. For example, a Second-order polynomial transformation would be:
1686: 1656: 1476: 1616: 578: 1705: 1748: 1579: 1288: 1144: 37:
that binds a digital raster image or vector database that represents a geographic space (usually a scanned map or
474: 396: 59: 262: 187: 181:
a relationship between two variables to four dimensions. The goal is to have a pair of functions of the form:
69:
A number of mathematical methods are available, but the process typically involves identifying several sample
1007: 174: 1134:
that is already in the desired coordinate system. This can then be moved and adjusted to improve accuracy.
170: 1456: 1297: 382:
being its column and row number, respectively), a corresponding real-world coordinate can be calculated.
1006:
It is very rare that a user would specify the parameters for the transformation directly. Instead, most
1239: 103:
is preferred by some to refer to the image transformation. Occasionally, this process has been called
1279:
GIS software has had this capability for many years, including the Georeferencing tool in ArcGIS Pro.
1081: 34: 1404: 1394: 339: 166: 151: 42: 551:
Where A-F are constant coefficients set for the entire image. These formulas allow an image to be
1285:
has a Georeferencer tool, originally developed as an add-on but now integrated into the software.
1765:
Discovering Location Indicators of Toponyms from News to Improve Gazetteer-Based Geo-Referencing
1409: 1230: 555:(the C and F coefficients specify the desired location of the top left corner of the image), 387: 130:, usually raster images, useful for mapping as it explains how other data, such as the above 1051: 1021: 1520: 110: 49:. The term can refer to the mathematical formulas used to perform the transformation, the 8: 1430: 1389: 1259: 1247: 1242:(RMSE). A lower RMSE thus means that the transformation formulas closely match the GCPs. 988: 50: 1524: 79: 1538: 1482: 1468: 1399: 1374: 1369: 560: 95:) to coordinate measurements, but most of these other methods are more commonly called 46: 1559:
International Encyclopedia of Geography: People, the Earth, Environment and Technology
45:, thus locating the digital data in the real world. It is thus the geographic form of 1764: 1744: 1682: 1652: 1575: 1486: 1472: 1379: 995: 127: 38: 1598:
Longley, Paul A.; Goodchild, Michael F.; Maguire, David J.; Rhind, David W. (2011).
1571: 1542: 1567: 1528: 1464: 1310: 1533: 1506: 1301: 1384: 1349: 1138: 1011: 977:{\displaystyle y_{out}=Gx_{in}+Hy_{in}+Ix_{in}^{2}+Jy_{in}^{2}+Kx_{in}y_{in}+L} 819:{\displaystyle x_{out}=Ax_{in}+By_{in}+Cx_{in}^{2}+Dy_{in}^{2}+Ex_{in}y_{in}+F} 123: 105: 63: 20: 109:, but that term is more commonly applied to a very similar process applied to 1780: 1740: 1292: 1263: 1234: 559:(without rotation, the A and E coefficients specify the size of each cell or 178: 156: 74: 1504: 1339: 660: 54: 1364: 1359: 1255: 1131: 656: 83: 1770: 1354: 1344: 1334: 1324: 96: 1329: 1254:), or in a sidecar file stored alongside the image file (e.g., a 1251: 91: 1649:
GIS Fundamentals: A First Text on Geographic Information Systems
663:
that specifies these six coefficients for image georeferencing.
1773:
online tutorial material from the University of Southampton, UK
571:
in both the x and y directions, and the image is to be rotated
1461:
International Encyclopedia of Human Geography (Second Edition)
73:
with known locations on the image and the ground, then using
1597: 1556:
Leidner, J.L. (2017). "Georeferencing: From Texts to Maps".
1505:
Hackeloeer, A.; Klasing, K.; Krisp, J.M.; Meng, L. (2014).
1282: 1276: 16:
Identification of something to locations in physical space
131: 1771:
Geographical referencing resources for social scientists
1306: 1250:, either in the header of the image file itself (e.g., 1507:"Georeferencing: a review of methods and applications" 177:
zone. It is thus the extension of the typical task of
1147: 1084: 1054: 1024: 833: 675: 648:{\displaystyle A=E=r\cos(\alpha ),B=D=r\sin(\alpha )} 581: 477: 399: 342: 265: 190: 1217: 1122: 1070: 1040: 976: 818: 647: 540: 462: 374: 325: 250: 1778: 1078:= pixel row) and the ground coordinate system ( 1679:Introduction to Geographic Information Systems 1681:(7th ed.). McGraw-Hill. pp. 50–57. 1593: 1591: 1555: 1218:{\displaystyle x_{in},y_{in},x_{out},y_{out}} 1600:Geographic Information Systems & Science 160:Graphical view of the affine transformation. 1672: 1670: 1668: 1270: 1588: 1642: 1640: 1638: 1532: 541:{\displaystyle y_{out}=Dx_{in}+Ey_{in}+F} 463:{\displaystyle x_{out}=Ax_{in}+By_{in}+C} 1665: 567:. In the last case, if the cell size is 336:Such that for every pixel in the image ( 326:{\displaystyle y_{out}=G(x_{in},y_{in})} 251:{\displaystyle x_{out}=F(x_{in},y_{in})} 155: 1646: 1779: 1700: 1698: 1635: 1611: 1609: 1463:, Oxford: Elsevier, pp. 111–117, 1289:Image Georeferencing and Rectification 1676: 659:developed by Esri is a commonly used 1734: 1695: 1606: 1454: 13: 1728: 1469:10.1016/b978-0-08-102295-5.10548-7 169:of the user's choice, such as the 122:Georeferencing is crucial to make 14: 1798: 1767:- paper presented at Geoinfo 2008 1758: 1431:"What does "georeferenced" mean?" 1001: 575:degrees counter-clockwise, then 1787:Geographic data and information 1572:10.1002/9781118786352.wbieg0160 1123:{\displaystyle x_{out},y_{out}} 1549: 1498: 1459:, in Kobayashi, Audrey (ed.), 1457:"Georeferencing and Geocoding" 1455:Yao, Xiaobai A. (2020-01-01), 1448: 1423: 642: 636: 609: 603: 320: 288: 245: 213: 145: 134:points, relate to the imagery. 60:geographic information systems 1: 1416: 375:{\displaystyle x_{in},y_{in}} 175:Universal Transverse Mercator 116: 99:. Because of this ambiguity, 1617:"Overview of georeferencing" 1534:10.1080/19475683.2013.868826 171:geographic coordinate system 7: 1317: 10: 1803: 1677:Chang, Kang-tsung (2014). 149: 18: 1651:. Ann Arbor, MI: XanEdu. 1298:Image to Map Registration 35:coordinate transformation 1621:ArcGIS Pro Documentation 1437:. U.S. Geological Survey 1405:Transport infrastructure 1395:Spatial reference system 1271:Software implementations 1262:, in which the image is 167:spatial reference system 152:Geometric transformation 43:spatial reference system 19:Not to be confused with 1735:Hill, Linda L. (2006). 1710:QGIS 3.22 documentation 991:in aerial photographs. 1647:Bolstad, Paul (2019). 1602:(3rd ed.). Wiley. 1240:Root-mean-square error 1219: 1124: 1072: 1071:{\displaystyle y_{in}} 1042: 1041:{\displaystyle x_{in}} 978: 820: 649: 542: 464: 376: 327: 252: 161: 1410:World Geodetic System 1231:overdetermined system 1220: 1125: 1073: 1043: 1016:ground control points 979: 821: 650: 543: 465: 388:affine transformation 377: 328: 253: 159: 71:ground control points 1706:"16.3 Georeferencer" 1145: 1082: 1052: 1022: 831: 673: 579: 475: 397: 340: 263: 188: 1525:2014AnGIS..20...61H 1390:Reference ellipsoid 935: 911: 777: 753: 1400:Toponym resolution 1375:Linear referencing 1370:Image registration 1311:@allmaps/transform 1215: 1120: 1068: 1038: 974: 918: 894: 816: 760: 736: 645: 561:spatial resolution 538: 460: 372: 323: 248: 162: 47:image registration 1688:978-0-07-352290-6 1658:978-1-59399-552-2 1478:978-0-08-102296-2 1380:Reverse geocoding 1267:rectified image. 996:Thin plate spline 128:satellite imagery 39:aerial photograph 1794: 1754: 1722: 1721: 1719: 1717: 1702: 1693: 1692: 1674: 1663: 1662: 1644: 1633: 1632: 1630: 1628: 1613: 1604: 1603: 1595: 1586: 1585: 1553: 1547: 1546: 1536: 1502: 1496: 1495: 1494: 1493: 1452: 1446: 1445: 1443: 1442: 1427: 1224: 1222: 1221: 1216: 1214: 1213: 1195: 1194: 1176: 1175: 1160: 1159: 1129: 1127: 1126: 1121: 1119: 1118: 1100: 1099: 1077: 1075: 1074: 1069: 1067: 1066: 1048:= pixel column, 1047: 1045: 1044: 1039: 1037: 1036: 998:transformation. 983: 981: 980: 975: 967: 966: 954: 953: 934: 929: 910: 905: 887: 886: 868: 867: 849: 848: 825: 823: 822: 817: 809: 808: 796: 795: 776: 771: 752: 747: 729: 728: 710: 709: 691: 690: 654: 652: 651: 646: 547: 545: 544: 539: 531: 530: 512: 511: 493: 492: 469: 467: 466: 461: 453: 452: 434: 433: 415: 414: 381: 379: 378: 373: 371: 370: 355: 354: 332: 330: 329: 324: 319: 318: 303: 302: 281: 280: 257: 255: 254: 249: 244: 243: 228: 227: 206: 205: 173:or a particular 1802: 1801: 1797: 1796: 1795: 1793: 1792: 1791: 1777: 1776: 1761: 1751: 1731: 1729:Further reading 1726: 1725: 1715: 1713: 1704: 1703: 1696: 1689: 1675: 1666: 1659: 1645: 1636: 1626: 1624: 1615: 1614: 1607: 1596: 1589: 1582: 1554: 1550: 1503: 1499: 1491: 1489: 1479: 1453: 1449: 1440: 1438: 1429: 1428: 1424: 1419: 1414: 1320: 1273: 1203: 1199: 1184: 1180: 1168: 1164: 1152: 1148: 1146: 1143: 1142: 1108: 1104: 1089: 1085: 1083: 1080: 1079: 1059: 1055: 1053: 1050: 1049: 1029: 1025: 1023: 1020: 1019: 1004: 959: 955: 946: 942: 930: 922: 906: 898: 879: 875: 860: 856: 838: 834: 832: 829: 828: 801: 797: 788: 784: 772: 764: 748: 740: 721: 717: 702: 698: 680: 676: 674: 671: 670: 580: 577: 576: 523: 519: 504: 500: 482: 478: 476: 473: 472: 445: 441: 426: 422: 404: 400: 398: 395: 394: 363: 359: 347: 343: 341: 338: 337: 311: 307: 295: 291: 270: 266: 264: 261: 260: 236: 232: 220: 216: 195: 191: 189: 186: 185: 154: 148: 119: 101:Georegistration 80:raster GIS file 31:georegistration 24: 17: 12: 11: 5: 1800: 1790: 1789: 1775: 1774: 1768: 1760: 1759:External links 1757: 1756: 1755: 1750:978-0262083546 1749: 1737:Georeferencing 1730: 1727: 1724: 1723: 1694: 1687: 1664: 1657: 1634: 1605: 1587: 1580: 1548: 1497: 1477: 1447: 1421: 1420: 1418: 1415: 1413: 1412: 1407: 1402: 1397: 1392: 1387: 1385:Rubbersheeting 1382: 1377: 1372: 1367: 1362: 1357: 1352: 1350:Geopositioning 1347: 1342: 1337: 1332: 1327: 1321: 1319: 1316: 1315: 1314: 1304: 1295: 1286: 1280: 1272: 1269: 1212: 1209: 1206: 1202: 1198: 1193: 1190: 1187: 1183: 1179: 1174: 1171: 1167: 1163: 1158: 1155: 1151: 1139:linear algebra 1117: 1114: 1111: 1107: 1103: 1098: 1095: 1092: 1088: 1065: 1062: 1058: 1035: 1032: 1028: 1012:remote sensing 1003: 1002:The GCP method 1000: 985: 984: 973: 970: 965: 962: 958: 952: 949: 945: 941: 938: 933: 928: 925: 921: 917: 914: 909: 904: 901: 897: 893: 890: 885: 882: 878: 874: 871: 866: 863: 859: 855: 852: 847: 844: 841: 837: 826: 815: 812: 807: 804: 800: 794: 791: 787: 783: 780: 775: 770: 767: 763: 759: 756: 751: 746: 743: 739: 735: 732: 727: 724: 720: 716: 713: 708: 705: 701: 697: 694: 689: 686: 683: 679: 644: 641: 638: 635: 632: 629: 626: 623: 620: 617: 614: 611: 608: 605: 602: 599: 596: 593: 590: 587: 584: 549: 548: 537: 534: 529: 526: 522: 518: 515: 510: 507: 503: 499: 496: 491: 488: 485: 481: 470: 459: 456: 451: 448: 444: 440: 437: 432: 429: 425: 421: 418: 413: 410: 407: 403: 369: 366: 362: 358: 353: 350: 346: 334: 333: 322: 317: 314: 310: 306: 301: 298: 294: 290: 287: 284: 279: 276: 273: 269: 258: 247: 242: 239: 235: 231: 226: 223: 219: 215: 212: 209: 204: 201: 198: 194: 150:Main article: 147: 144: 143: 142: 139: 135: 118: 115: 106:rubbersheeting 64:remote sensing 27:Georeferencing 21:Rubbersheeting 15: 9: 6: 4: 3: 2: 1799: 1788: 1785: 1784: 1782: 1772: 1769: 1766: 1763: 1762: 1752: 1746: 1742: 1741:The MIT Press 1738: 1733: 1732: 1711: 1707: 1701: 1699: 1690: 1684: 1680: 1673: 1671: 1669: 1660: 1654: 1650: 1643: 1641: 1639: 1622: 1618: 1612: 1610: 1601: 1594: 1592: 1583: 1581:9780470659632 1577: 1573: 1569: 1566:: 2897–2907. 1565: 1561: 1560: 1552: 1544: 1540: 1535: 1530: 1526: 1522: 1518: 1514: 1513: 1512:Annals of GIS 1508: 1501: 1488: 1484: 1480: 1474: 1470: 1466: 1462: 1458: 1451: 1436: 1432: 1426: 1422: 1411: 1408: 1406: 1403: 1401: 1398: 1396: 1393: 1391: 1388: 1386: 1383: 1381: 1378: 1376: 1373: 1371: 1368: 1366: 1363: 1361: 1358: 1356: 1353: 1351: 1348: 1346: 1343: 1341: 1338: 1336: 1333: 1331: 1328: 1326: 1323: 1322: 1312: 1308: 1305: 1303: 1299: 1296: 1294: 1293:ERDAS Imagine 1290: 1287: 1284: 1281: 1278: 1275: 1274: 1268: 1265: 1261: 1260:rectification 1257: 1253: 1249: 1243: 1241: 1236: 1235:least squares 1232: 1229:(creating an 1226: 1210: 1207: 1204: 1200: 1196: 1191: 1188: 1185: 1181: 1177: 1172: 1169: 1165: 1161: 1156: 1153: 1149: 1140: 1135: 1133: 1115: 1112: 1109: 1105: 1101: 1096: 1093: 1090: 1086: 1063: 1060: 1056: 1033: 1030: 1026: 1017: 1013: 1009: 999: 997: 992: 990: 971: 968: 963: 960: 956: 950: 947: 943: 939: 936: 931: 926: 923: 919: 915: 912: 907: 902: 899: 895: 891: 888: 883: 880: 876: 872: 869: 864: 861: 857: 853: 850: 845: 842: 839: 835: 827: 813: 810: 805: 802: 798: 792: 789: 785: 781: 778: 773: 768: 765: 761: 757: 754: 749: 744: 741: 737: 733: 730: 725: 722: 718: 714: 711: 706: 703: 699: 695: 692: 687: 684: 681: 677: 669: 668: 667: 664: 662: 658: 639: 633: 630: 627: 624: 621: 618: 615: 612: 606: 600: 597: 594: 591: 588: 585: 582: 574: 570: 566: 562: 558: 554: 535: 532: 527: 524: 520: 516: 513: 508: 505: 501: 497: 494: 489: 486: 483: 479: 471: 457: 454: 449: 446: 442: 438: 435: 430: 427: 423: 419: 416: 411: 408: 405: 401: 393: 392: 391: 389: 383: 367: 364: 360: 356: 351: 348: 344: 315: 312: 308: 304: 299: 296: 292: 285: 282: 277: 274: 271: 267: 259: 240: 237: 233: 229: 224: 221: 217: 210: 207: 202: 199: 196: 192: 184: 183: 182: 180: 179:curve fitting 176: 172: 168: 158: 153: 140: 136: 133: 129: 125: 121: 120: 114: 112: 108: 107: 102: 98: 94: 93: 87: 85: 81: 76: 75:curve fitting 72: 67: 65: 61: 56: 52: 48: 44: 40: 36: 33:is a type of 32: 28: 22: 1736: 1714:. Retrieved 1709: 1678: 1648: 1625:. Retrieved 1620: 1599: 1563: 1557: 1551: 1519:(1): 61–69. 1516: 1510: 1500: 1490:, retrieved 1460: 1450: 1439:. Retrieved 1435:www.usgs.gov 1434: 1425: 1340:Geomessaging 1244: 1227: 1136: 1015: 1005: 993: 986: 665: 661:sidecar file 572: 568: 564: 556: 552: 550: 384: 335: 163: 104: 100: 90: 88: 70: 68: 30: 26: 25: 1365:Hydrography 1233:), and use 146:Mathematics 1492:2022-01-04 1441:2022-01-04 1417:References 1360:Geotagging 1256:world file 1132:orthophoto 989:distortion 657:world file 117:Motivation 111:vector GIS 84:orthophoto 66:software. 1716:8 January 1627:8 January 1487:241797395 1355:GeoReader 1345:Geoportal 1335:Geocoding 1325:Altimetry 1264:resampled 640:α 634:⁡ 607:α 601:⁡ 97:geocoding 55:alongside 1781:Category 1543:38306705 1330:Cadaster 1318:See also 1313:package. 1248:metadata 92:geocodes 51:metadata 1712:. OSGEO 1521:Bibcode 1307:Allmaps 1252:GeoTIFF 565:rotated 563:), and 53:stored 41:) to a 1747:  1685:  1655:  1623:. Esri 1578:  1541:  1485:  1475:  655:. The 557:scaled 124:aerial 113:data. 1539:S2CID 1483:S2CID 553:moved 138:time. 1745:ISBN 1718:2023 1683:ISBN 1653:ISBN 1629:2023 1576:ISBN 1473:ISBN 1302:ENVI 1283:QGIS 1277:Esri 1010:and 126:and 62:and 1568:doi 1529:doi 1465:doi 1300:in 1291:in 1008:GIS 631:sin 598:cos 132:GPS 82:or 29:or 1783:: 1743:. 1739:. 1708:. 1697:^ 1667:^ 1637:^ 1619:. 1608:^ 1590:^ 1574:. 1564:vi 1562:. 1537:. 1527:. 1517:20 1515:. 1509:. 1481:, 1471:, 1433:. 390:: 86:. 1753:. 1720:. 1691:. 1661:. 1631:. 1584:. 1570:: 1545:. 1531:: 1523:: 1467:: 1444:. 1211:t 1208:u 1205:o 1201:y 1197:, 1192:t 1189:u 1186:o 1182:x 1178:, 1173:n 1170:i 1166:y 1162:, 1157:n 1154:i 1150:x 1116:t 1113:u 1110:o 1106:y 1102:, 1097:t 1094:u 1091:o 1087:x 1064:n 1061:i 1057:y 1034:n 1031:i 1027:x 972:L 969:+ 964:n 961:i 957:y 951:n 948:i 944:x 940:K 937:+ 932:2 927:n 924:i 920:y 916:J 913:+ 908:2 903:n 900:i 896:x 892:I 889:+ 884:n 881:i 877:y 873:H 870:+ 865:n 862:i 858:x 854:G 851:= 846:t 843:u 840:o 836:y 814:F 811:+ 806:n 803:i 799:y 793:n 790:i 786:x 782:E 779:+ 774:2 769:n 766:i 762:y 758:D 755:+ 750:2 745:n 742:i 738:x 734:C 731:+ 726:n 723:i 719:y 715:B 712:+ 707:n 704:i 700:x 696:A 693:= 688:t 685:u 682:o 678:x 643:) 637:( 628:r 625:= 622:D 619:= 616:B 613:, 610:) 604:( 595:r 592:= 589:E 586:= 583:A 573:α 569:r 536:F 533:+ 528:n 525:i 521:y 517:E 514:+ 509:n 506:i 502:x 498:D 495:= 490:t 487:u 484:o 480:y 458:C 455:+ 450:n 447:i 443:y 439:B 436:+ 431:n 428:i 424:x 420:A 417:= 412:t 409:u 406:o 402:x 368:n 365:i 361:y 357:, 352:n 349:i 345:x 321:) 316:n 313:i 309:y 305:, 300:n 297:i 293:x 289:( 286:G 283:= 278:t 275:u 272:o 268:y 246:) 241:n 238:i 234:y 230:, 225:n 222:i 218:x 214:( 211:F 208:= 203:t 200:u 197:o 193:x 23:.

Index

Rubbersheeting
coordinate transformation
aerial photograph
spatial reference system
image registration
metadata
alongside
geographic information systems
remote sensing
curve fitting
raster GIS file
orthophoto
geocodes
geocoding
rubbersheeting
vector GIS
aerial
satellite imagery
GPS
Geometric transformation

spatial reference system
geographic coordinate system
Universal Transverse Mercator
curve fitting
affine transformation
spatial resolution
world file
sidecar file
distortion

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.