Knowledge

Sedimentation potential

Source 📝

576: 413: 140: 84: 920:
particles with different masses or sizes lead to the separation. An exponential distribution of particles of a certain size or weight is results due to the Brownian motion. Some of the assumptions to develop the theoretical equations include that there is no interaction between individual particles and equilibrium can occur anywhere in separation channels.
910:
Some main aspects of SFFF include: it provides high-resolution possibilities for size distribution measurements with high precision, the resolution is dependent on experimental conditions, the typical analysis time is 1 to 2 hours, and it is a non-destructive technique which offers the possibility of
919:
As sedimentation field flow fractionation (SFFF) is one of field flow fractionation separation techniques, it is appropriate for fractionation and characterization of particulate materials and soluble samples in the colloid size range. Differences in interaction between a centrifugal force field and
147:
The following relation provides a measure of the sedimentation potential due to the settling of charged spheres. First discovered by Smoluchowski in 1903 and 1921. This relationship only holds true for non-overlapping electric double layers and for dilute suspensions. In 1954, Booth proved that this
591:
is attached to measure the potential generated from the suspension. To account for different geometries of the electrode, the column is typically rotated 180 degrees while measuring the potential. This difference in potential through rotation by 180 degrees is twice the sedimentation potential. The
118:
Smoluchowski built the first models to calculate the potential in the early 1900s. Booth created a general theory on sedimentation potential in 1954 based on Overbeek's 1943 theory on electrophoresis. In 1980, Stigter extended Booth's model to allow for higher surface potentials. Ohshima created a
906:
Sedimentation field flow fractionation (SFFF) is a non-destructive separation technique which can be used for both separation, and collecting fractions. Some applications of SFFF include characterization of particle size of latex materials for adhesives, coatings and paints, colloidal silica for
98:
The common source of all these effects stems from the interfacial 'double layer' of charges. Particles influenced by an external force generate tangential motion of a fluid with respect to an adjacent charged surface. This force may consist of electric, pressure gradient, concentration gradient,
892:
An improved design cell was developed to determine sedimentation potential, specific conductivity, volume fraction of the solids as well as pH. Two pairs of electrodes are used in this set up, one to measure potential difference and the other for resistance. A flip switch is utilized to avoid
561: 596:
can be determined through measurement by sedimentation potential, as the concentration, conductivity of the suspension, density of the particle, and potential difference are known. By rotating the column 180 degrees, drift and geometry differences of the column can be ignored.
131:
is induced. While the particle moves, ions in the electric double layer lag behind creating a net dipole moment behind due to liquid flow. The sum of all dipoles on the particle is what causes sedimentation potential. Sedimentation potential has the opposite effect compared to
420:
Ohshima's model was developed in 1984 and was originally used to analyze the sedimentation velocity of a single charged sphere and the sedimentation potential of a dilute suspension. The model provided below holds true for dilute suspensions of low zeta potential,
689: 255: 94:
are a family of several different effects that occur in heterogeneous fluids or in porous bodies filled with fluid. The sum of these phenomena deals with the effect on a particle from some outside resulting in a net electrokinetic effect.
928:
Various combinations of the driving force and moving phase determine various electrokinetic effects. Following "Fundamentals of Interface and Colloid Science" by Lyklema (1995), the complete family of electrokinetic phenomena includes:
387: 114:
in 1879. He observed that a vertical electric field had developed in a suspension of glass beads in water, as the beads were settling. This was the origin of sedimentation potential, which is often referred to as the Dorn effect.
434: 893:
polarization of the resistance electrodes and buildup of charge by alternating the current. The pH of the system could be monitored and the electrolyte was drawn into the tube using a vacuum pump.
263:
is the permitivity of free space, D the dimensionless dielectric constant, ξ the zeta potential, g the acceleration due to gravity, Φ the particle volume fraction, ρ the particle density, ρ
907:
binders, coatings and compounding agents, titanium oxide pigments for paints, paper and textiles, emulsion for soft drinks, and biological materials like viruses and liposomes.
816: 785: 602: 119:
model based on O'Brien and White 's 1978 model used to analyze the sedimentation velocity of a single charged sphere and the sedimentation potential of a dilute suspension.
165: 867: 758: 840: 738: 718: 887: 292: 1265: 102:
Sedimentation potential is the field of electrokinetic phenomena dealing with the generation of an electric field by sedimenting colloid particles.
39:. While the particle moves, the ions in the electric double layer lag behind due to the liquid flow. This causes a slight displacement between the 1223:
Merkus, H. G.; Mori, Y.; Scarlett, B. (1989). "Particle size analysis by sedimentation field flow fractionation. Performance and application".
1170:
Ozaki, Masataka; Ando, Tomoyuki; Mizuno, Kenji (1999). "A new method for the measurement of sedimentation potential: rotating column method".
556:{\displaystyle E_{s}=-{\frac {\varepsilon \zeta (\rho -\rho _{0})\phi _{p}}{\sigma ^{\infty }\eta }}gH(\kappa \alpha )+\vartheta (\zeta ^{2})} 693:
When dealing with the case of concentrated systems, the zeta potential can be determined through measurement of the sedimentation potential
1266:
Stochastic Modeling of Filtrate Alkalinity in Water Filtration Devices: Transport through Micro/Nano Porous Clay Based Ceramic Materials
1204:
Uddin, S.; Mirnezami, M., and Finch, J.A. "Surface Characterization of Single and Mixed Mineral Systems using Sedimentation Potential."
136:
where an electric field is applied to the system. Ionic conductivity is often referred to when dealing with sedimentation potential.
1296: 720:, from the potential difference relative to the distance between the electrodes. The other parameters represent the following: 1113: 1090: 1306: 1286: 148:
idea held true for Pyrex glass powder settling in a KCl solution. From this relation, the sedimentation potential, E
994:
as either electric potential or current generated by fluid moving through porous body, or relative to flat surface
575: 67: 1281: 889:
is the acceleration due to gravity; and σ is the electrical conductivity of the bulk electrolyte solution.
1063:
Russel, W.B., Saville, D.A. and Schowalter, W.R. "Colloidal Dispersions", Cambridge University Press,1989
684:{\displaystyle \zeta ={\frac {\eta \lambda E_{s}}{\varepsilon _{r}\varepsilon _{0}(\rho -\rho _{0})g}}} 36: 794: 763: 250:{\displaystyle E_{s}=-{\frac {\varepsilon \zeta (\rho -\rho _{0})\phi _{p}g}{\sigma ^{\infty }\eta }}} 1301: 999: 1012: 91: 99:
gravity. In addition, the moving phase might be either the continuous fluid or dispersed phase.
1132:
Marlow, Bruce J.; Rowell, Robert L. (1985). "Sedimentation potential in aqueous electrolytes".
845: 52: 743: 1083:
Characterization of liquids, nano- and micro- particulates and porous bodies using Ultrasound
788: 1291: 825: 723: 696: 111: 412: 8: 989: 20: 382:{\displaystyle \sigma ^{\infty }={\frac {e^{2}}{k_{B}T}}\sum z_{i}^{2}D_{i}n_{i\infty }} 286:
The double-layer thickness 1/κ is small compared to the particle radius a (κa>>1).
1248: 969: 872: 139: 128: 1183: 1054:
Dukhin, S.S. & Derjaguin, B.V. "Electrokinetic Phenomena", J.Willey and Sons, 1974
984:
as motion of liquid in porous body under influence of the chemical potential gradient
1240: 1187: 1149: 1109: 1086: 979: 1252: 1036:
Lyklema, J. "Fundamentals of Interface and Colloid Science", vol.2, page.3.208, 1995
1264:
Anand Plappally, Alfred Soboyejo, Norman Fausey, Winston Soboyejo and Larry Brown,"
1232: 1179: 1141: 963: 914: 953: 943: 133: 44: 901: 127:
As a charged particle moves through a gravitational force or centrifugation, an
1072:
Kruyt, H.R. "Colloid Science", Elsevier: Volume 1, Irreversible systems, (1952)
593: 40: 28: 1017:
as ultrasound generated by colloidal particles in oscillating electric field.
1004:
as electric current generated by particles moving in fluid under influence of
1275: 1244: 1191: 1153: 267:
the medium density, λ the specific volume conductivity, and η the viscosity.
83: 48: 35:
in a medium. This motion disrupts the equilibrium symmetry of the particle's
1045:
Hunter, R.J. "Foundations of Colloid Science", Oxford University Press, 1989
55:. The sum of all of the dipoles generates an electric field which is called 819: 59:. It can be measured with an open electrical circuit, which is also called 931: 32: 1145: 1103: 1236: 1105:
Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices
1005: 584: 958:
as motion of liquid in porous body under influence of electric field
588: 972: 277:
Laminar flow around the particles occurs (Reynolds number <1).
24: 1172:
Colloids and Surfaces A: Physicochemical and Engineering Aspects
915:
Particle size analysis by sedimentation field flow fractionation
66:
There are detailed descriptions of this effect in many books on
902:
Applications of sedimentation field flow fractionation (SFFF)
587:
to a glass column filled with the dispersion of interest. A
270:
Smoluchowski developed the equation under five assumptions:
274:
Particles are spherical, nonconducting, and monodispersed.
948:
as motion of particles under influence of electric field
259:
Smoluchowski's sedimentation potential is defined where ε
416:
Sedimentation Of A Single Particle Generates a Potential
875: 848: 828: 797: 766: 746: 726: 699: 605: 579:
Instrumental Setup to measure Sedimentation Potential
437: 409:
is the number concentration of electrolyte solution.
295: 168: 78: 1222: 881: 861: 834: 810: 779: 752: 732: 712: 683: 555: 381: 249: 152:, is independent of the particle radius and that E 583:Sedimentation potential is measured by attaching 1273: 1169: 51:. As a result, the moving particle creates a 1131: 968:as motion of particles under influence of a 122: 1206:The Minerals, Metals, and Materials Society 1101: 280:Interparticle interactions are negligible. 1218: 1216: 1214: 1127: 1125: 574: 411: 138: 110:This phenomenon was first discovered by 82: 1165: 1163: 1274: 1211: 1075: 1030: 1198: 1122: 1057: 1048: 1039: 1160: 1095: 1066: 398:is the diffusion coefficient of the 143:Macroscopic Diagram of Sedementation 105: 23:move under the influence of either 13: 502: 374: 301: 236: 14: 1318: 1268:" J Nat Env Sci 2010 1(2):96-105. 283:Surface conduction is negligible. 73: 811:{\displaystyle \varepsilon _{0}} 780:{\displaystyle \varepsilon _{r}} 79:Background related to phenomenon 1081:Dukhin, A. S. and Goetz, P. J. 896: 1297:Non-equilibrium thermodynamics 1108:. Cambridge University Press. 672: 653: 570: 550: 537: 528: 519: 482: 463: 213: 194: 1: 1225:Colloid & Polymer Science 1184:10.1016/S0927-7757(99)00278-2 1023: 990:Streaming potential / current 842:the density of the particle; 740:the viscosity of the medium; 68:colloid and interface science 7: 923: 869:the density of the medium; 10: 1323: 1307:Electrochemical potentials 935:Electrokinetic phenomenon 565: 1000:Colloid vibration current 937: 934: 862:{\displaystyle \rho _{0}} 160:→ 0 (a single particle). 123:Generation of a potential 1287:Condensed matter physics 1013:Electric sonic amplitude 753:{\displaystyle \lambda } 92:Electrokinetic phenomena 760:the bulk conductivity; 87:Sedimentation potential 57:sedimentation potential 17:Sedimentation potential 883: 863: 836: 812: 781: 754: 734: 714: 685: 580: 557: 417: 383: 251: 144: 88: 938:Description of event 911:collecting fraction. 884: 864: 837: 835:{\displaystyle \rho } 813: 789:relative permittivity 782: 755: 735: 733:{\displaystyle \eta } 715: 713:{\displaystyle E_{s}} 686: 578: 558: 415: 384: 252: 142: 86: 61:sedimentation current 1102:Kirby, B.J. (2010). 873: 846: 826: 795: 764: 744: 724: 697: 603: 435: 402:solute species, and 293: 166: 1282:Colloidal chemistry 1146:10.1021/la00061a013 355: 21:dispersed particles 1237:10.1007/BF01496931 1085:, Elsevier, 2017 970:chemical potential 879: 859: 832: 808: 777: 750: 730: 710: 681: 581: 553: 418: 379: 341: 247: 145: 129:electric potential 89: 1231:(12): 1102–1107. 1115:978-0-521-11903-0 1091:978-0-444-63908-0 1021: 1020: 980:Capillary osmosis 882:{\displaystyle g} 679: 511: 336: 245: 106:History of models 1314: 1302:Electrochemistry 1257: 1256: 1220: 1209: 1202: 1196: 1195: 1178:(2–3): 477–480. 1167: 1158: 1157: 1129: 1120: 1119: 1099: 1093: 1079: 1073: 1070: 1064: 1061: 1055: 1052: 1046: 1043: 1037: 1034: 964:Diffusiophoresis 932: 888: 886: 885: 880: 868: 866: 865: 860: 858: 857: 841: 839: 838: 833: 817: 815: 814: 809: 807: 806: 786: 784: 783: 778: 776: 775: 759: 757: 756: 751: 739: 737: 736: 731: 719: 717: 716: 711: 709: 708: 690: 688: 687: 682: 680: 678: 671: 670: 652: 651: 642: 641: 631: 630: 629: 613: 562: 560: 559: 554: 549: 548: 512: 510: 506: 505: 495: 494: 493: 481: 480: 455: 447: 446: 388: 386: 385: 380: 378: 377: 365: 364: 354: 349: 337: 335: 331: 330: 320: 319: 310: 305: 304: 256: 254: 253: 248: 246: 244: 240: 239: 229: 225: 224: 212: 211: 186: 178: 177: 1322: 1321: 1317: 1316: 1315: 1313: 1312: 1311: 1272: 1271: 1261: 1260: 1221: 1212: 1203: 1199: 1168: 1161: 1130: 1123: 1116: 1100: 1096: 1080: 1076: 1071: 1067: 1062: 1058: 1053: 1049: 1044: 1040: 1035: 1031: 1026: 954:Electro-osmosis 944:Electrophoresis 926: 917: 904: 899: 874: 871: 870: 853: 849: 847: 844: 843: 827: 824: 823: 822:of free space; 802: 798: 796: 793: 792: 791:of the medium; 771: 767: 765: 762: 761: 745: 742: 741: 725: 722: 721: 704: 700: 698: 695: 694: 691: 666: 662: 647: 643: 637: 633: 632: 625: 621: 614: 612: 604: 601: 600: 573: 568: 563: 544: 540: 501: 497: 496: 489: 485: 476: 472: 456: 454: 442: 438: 436: 433: 432: 428: 407: 396: 389: 370: 366: 360: 356: 350: 345: 326: 322: 321: 315: 311: 309: 300: 296: 294: 291: 290: 266: 262: 257: 235: 231: 230: 220: 216: 207: 203: 187: 185: 173: 169: 167: 164: 163: 159: 155: 151: 134:electrophoresis 125: 108: 81: 76: 45:electric charge 12: 11: 5: 1320: 1310: 1309: 1304: 1299: 1294: 1289: 1284: 1270: 1269: 1259: 1258: 1210: 1197: 1159: 1121: 1114: 1094: 1074: 1065: 1056: 1047: 1038: 1028: 1027: 1025: 1022: 1019: 1018: 1015: 1009: 1008: 1002: 996: 995: 992: 986: 985: 982: 976: 975: 966: 960: 959: 956: 950: 949: 946: 940: 939: 936: 925: 922: 916: 913: 903: 900: 898: 895: 878: 856: 852: 831: 805: 801: 774: 770: 749: 729: 707: 703: 677: 674: 669: 665: 661: 658: 655: 650: 646: 640: 636: 628: 624: 620: 617: 611: 608: 599: 594:zeta potential 572: 569: 567: 564: 552: 547: 543: 539: 536: 533: 530: 527: 524: 521: 518: 515: 509: 504: 500: 492: 488: 484: 479: 475: 471: 468: 465: 462: 459: 453: 450: 445: 441: 431: 426: 405: 394: 376: 373: 369: 363: 359: 353: 348: 344: 340: 334: 329: 325: 318: 314: 308: 303: 299: 289: 288: 287: 284: 281: 278: 275: 264: 260: 243: 238: 234: 228: 223: 219: 215: 210: 206: 202: 199: 196: 193: 190: 184: 181: 176: 172: 162: 157: 153: 149: 124: 121: 107: 104: 80: 77: 75: 74:Surface energy 72: 41:surface charge 29:centrifugation 9: 6: 4: 3: 2: 1319: 1308: 1305: 1303: 1300: 1298: 1295: 1293: 1290: 1288: 1285: 1283: 1280: 1279: 1277: 1267: 1263: 1262: 1254: 1250: 1246: 1242: 1238: 1234: 1230: 1226: 1219: 1217: 1215: 1207: 1201: 1193: 1189: 1185: 1181: 1177: 1173: 1166: 1164: 1155: 1151: 1147: 1143: 1139: 1135: 1128: 1126: 1117: 1111: 1107: 1106: 1098: 1092: 1088: 1084: 1078: 1069: 1060: 1051: 1042: 1033: 1029: 1016: 1014: 1011: 1010: 1007: 1003: 1001: 998: 997: 993: 991: 988: 987: 983: 981: 978: 977: 974: 971: 967: 965: 962: 961: 957: 955: 952: 951: 947: 945: 942: 941: 933: 930: 921: 912: 908: 894: 890: 876: 854: 850: 829: 821: 803: 799: 790: 772: 768: 747: 727: 705: 701: 675: 667: 663: 659: 656: 648: 644: 638: 634: 626: 622: 618: 615: 609: 606: 598: 595: 590: 586: 577: 545: 541: 534: 531: 525: 522: 516: 513: 507: 498: 490: 486: 477: 473: 469: 466: 460: 457: 451: 448: 443: 439: 430: 424: 414: 410: 408: 401: 397: 371: 367: 361: 357: 351: 346: 342: 338: 332: 327: 323: 316: 312: 306: 297: 285: 282: 279: 276: 273: 272: 271: 268: 241: 232: 226: 221: 217: 208: 204: 200: 197: 191: 188: 182: 179: 174: 170: 161: 141: 137: 135: 130: 120: 116: 113: 103: 100: 96: 93: 85: 71: 69: 64: 62: 58: 54: 53:dipole moment 50: 49:diffuse layer 46: 42: 38: 34: 30: 26: 22: 18: 1228: 1224: 1205: 1200: 1175: 1171: 1140:(1): 83–90. 1137: 1133: 1104: 1097: 1082: 1077: 1068: 1059: 1050: 1041: 1032: 927: 918: 909: 905: 897:Applications 891: 820:permittivity 692: 582: 422: 419: 403: 399: 392: 390: 269: 258: 146: 126: 117: 109: 101: 97: 90: 65: 60: 56: 37:double layer 19:occurs when 16: 15: 1292:Soft matter 571:Measurement 33:electricity 1276:Categories 1024:References 1006:ultrasound 585:electrodes 1245:0303-402X 1192:0927-7757 1154:0743-7463 851:ρ 830:ρ 800:ε 769:ε 748:λ 728:η 664:ρ 660:− 657:ρ 645:ε 635:ε 619:λ 616:η 607:ζ 589:voltmeter 542:ζ 535:ϑ 526:α 523:κ 508:η 503:∞ 499:σ 487:ϕ 474:ρ 470:− 467:ρ 461:ζ 458:ε 452:− 375:∞ 339:∑ 302:∞ 298:σ 242:η 237:∞ 233:σ 218:ϕ 205:ρ 201:− 198:ρ 192:ζ 189:ε 183:− 1253:98181572 1134:Langmuir 973:gradient 924:See also 43:and the 566:Testing 156:→ 0, Φ 47:of the 25:gravity 1251:  1243:  1190:  1152:  1112:  1089:  423:i.e. e 391:Where 1249:S2CID 429:T ≤2 1241:ISSN 1208:2010 1188:ISSN 1150:ISSN 1110:ISBN 1087:ISBN 818:the 787:the 112:Dorn 1233:doi 1229:267 1180:doi 1176:159 1142:doi 425:ζ/κ 400:ith 31:or 27:or 1278:: 1247:. 1239:. 1227:. 1213:^ 1186:. 1174:. 1162:^ 1148:. 1136:. 1124:^ 406:i∞ 70:. 63:. 1255:. 1235:: 1194:. 1182:: 1156:. 1144:: 1138:1 1118:. 877:g 855:0 804:0 773:r 706:s 702:E 676:g 673:) 668:0 654:( 649:0 639:r 627:s 623:E 610:= 551:) 546:2 538:( 532:+ 529:) 520:( 517:H 514:g 491:p 483:) 478:0 464:( 449:= 444:s 440:E 427:B 404:n 395:i 393:D 372:i 368:n 362:i 358:D 352:2 347:i 343:z 333:T 328:B 324:k 317:2 313:e 307:= 265:o 261:0 227:g 222:p 214:) 209:0 195:( 180:= 175:s 171:E 158:p 154:S 150:S

Index

dispersed particles
gravity
centrifugation
electricity
double layer
surface charge
electric charge
diffuse layer
dipole moment
colloid and interface science

Electrokinetic phenomena
Dorn
electric potential
electrophoresis



electrodes
voltmeter
zeta potential
relative permittivity
permittivity
Electrophoresis
Electro-osmosis
Diffusiophoresis
chemical potential
gradient
Capillary osmosis
Streaming potential / current

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.