Knowledge

Double layer (surface science)

Source 📝

1024:
by a two-step process. In the first step, when the molecules in the solution first approach a virgin surface that has no pre-existing surface charges, it may be possible that the atoms/molecules in the solution directly interact with the atoms on the solid surface to form strong overlap of electron clouds. Electron transfer occurs first to make the “neutral” atoms on solid surface become charged, i.e., the formation of ions. In the second step, if there are ions existing in the liquid, such as H and OH, the loosely distributed negative ions in the solution would be attracted to migrate toward the surface bonded ions due to electrostatic interactions, forming an EDL. Both electron transfer and ion transfer co-exist at liquid-solid interface.
376: 205: 503:, expressed usually in C/m. This surface charge creates an electrostatic field that then affects the ions in the bulk of the liquid. This electrostatic field, in combination with the thermal motion of the ions, creates a counter charge, and thus screens the electric surface charge. The net electric charge in this screening diffuse layer is equal in magnitude to the net surface charge, but has the opposite polarity. As a result, the complete structure is electrically neutral. 1028: 31: 491: 1023:
The formation of electrical double layer (EDL) has been traditionally assumed to be entirely dominated by ion adsorption and redistribution. With considering the fact that the contact electrification between solid-solid is dominated by electron transfer, it is suggested by Wang that the EDL is formed
694:
There is no general analytical solution for mixed electrolytes, curved surfaces or even spherical particles. There is an asymptotic solution for spherical particles with low charged DLs. In the case when electric potential over DL is less than 25 mV, the so-called Debye-Huckel approximation holds. It
924:
formation. With an electrode, it is possible to regulate the surface charge by applying an external electric potential. This application, however, is impossible in colloidal and porous double layers, because for colloidal particles, one does not have access to the interior of the particle to apply a
441:
His "supercapacitor" stored electrical charge partially in the Helmholtz double-layer and partially as the result of faradaic reactions with "pseudocapacitance" charge transfer of electrons and protons between electrode and electrolyte. The working mechanisms of pseudocapacitors are redox reactions,
406:
proposed the BDM model of the double-layer that included the action of the solvent in the interface. They suggested that the attached molecules of the solvent, such as water, would have a fixed alignment to the electrode surface. This first layer of solvent molecules displays a strong orientation to
379:
Schematic representation of a double layer on an electrode (BMD) model. 1. Inner Helmholtz plane, (IHP), 2. Outer Helmholtz plane (OHP), 3. Diffuse layer, 4. Solvated ions (cations) 5. Specifically adsorbed ions (redox ion, which contributes to the pseudocapacitance), 6. Molecules of the electrolyte
411:
of the solvent that varies with field strength. The IHP passes through the centers of these molecules. Specifically adsorbed, partially solvated ions appear in this layer. The solvated ions of the electrolyte are outside the IHP. Through the centers of these ions pass the OHP. The diffuse layer is
389:
as they approach the electrode. He called ions in direct contact with the electrode "specifically adsorbed ions". This model proposed the existence of three regions. The inner Helmholtz plane (IHP) passes through the centres of the specifically adsorbed ions. The outer Helmholtz plane (OHP) passes
38:
at the interface with a negatively-charged surface of a mineral solid. Blue + sphere: cations; red – spheres: anions. The number of cations is larger in the EDL close to the negatively-charged surface in order to neutralize these negative charges and to maintain electroneutrality. The drawing does
420:
Further research with double layers on ruthenium dioxide films in 1971 by Sergio Trasatti and Giovanni Buzzanca demonstrated that the electrochemical behavior of these electrodes at low voltages with specific adsorbed ions was like that of capacitors. The specific adsorption of the ions in this
437:
electrochemical capacitors. In 1991, he described the difference between 'Supercapacitor' and 'Battery' behavior in electrochemical energy storage. In 1999, he coined the term supercapacitor to explain the increased capacitance by surface redox reactions with faradaic charge transfer between
1330:
Gomila, Alexandre M. J.; PĂ©rez-MejĂ­as, Gonzalo; Nin-Hill, Alba; Guerra-Castellano, Alejandra; Casas-Ferrer, Laura; Ortiz-Tescari, Sthefany; DĂ­az-Quintana, Antonio; Samitier, Josep; Rovira, Carme; De la Rosa, Miguel A.; DĂ­az-Moreno, Irene; Gorostiza, Pau; Giannotti, Marina I.; Lagunas, Anna
354:
The Stern layer accounts for ions' finite size and consequently an ion's closest approach to the electrode is on the order of the ionic radius. The Stern model has its own limitations, namely that it effectively treats ions as point charges, assumes all significant interactions in the
535:
is used for estimating the degree of DL charge. A characteristic value of this electric potential in the DL is 25 mV with a maximum value around 100 mV (up to several volts on electrodes). The chemical composition of the sample at which the ζ-potential is 0 is called the
384:
D. C. Grahame modified the Stern model in 1947. He proposed that some ionic or uncharged species can penetrate the Stern layer, although the closest approach to the electrode is normally occupied by solvent molecules. This could occur if ions lose their
690: 482:
There are detailed descriptions of the interfacial DL in many books on colloid and interface science and microscale fluid transport. There is also a recent IUPAC technical report on the subject of interfacial double layer and related
350:
suggested combining the Helmholtz model with the Gouy-Chapman model: in Stern's model, some ions adhere to the electrode as suggested by Helmholtz, giving an internal Stern layer, while some form a Gouy-Chapman diffuse layer.
580:
The theory for a flat surface and a symmetrical electrolyte is usually referred to as the Gouy-Chapman theory. It yields a simple relationship between electric charge in the diffuse layer σ and the Stern potential Κ:
794: 498:
As stated by Lyklema, "...the reason for the formation of a "relaxed" ("equilibrium") double layer is the non-electric affinity of charge-determining ions for a surface..." This process leads to the buildup of an
285:
in 1913 both observed that capacitance was not a constant and that it depended on the applied potential and the ionic concentration. The "Gouy–Chapman model" made significant improvements by introducing a
843:
The thin DL model is valid for most aqueous systems because the Debye length is only a few nanometers in such cases. It breaks down only for nano-colloids in solution with ionic strengths close to water.
330:, electric fields extending several nanometers, and currents decreasing quasi exponentially with the distance at rate ~1 nm. This region is termed "Gouy-Chapman conduit" and is strongly regulated by 2162: 1125: 801:
The first one is "thin DL". This model assumes that DL is much thinner than the colloidal particle or capillary radius. This restricts the value of the Debye length and particle radius as following:
586: 1794:"Measurement and Interpretation of Electrokinetic Phenomena", International Union of Pure and Applied Chemistry, Technical Report, published in Pure Appl.Chem., vol 77, 10, pp.1753-1805, 2005 1846:
Jiang, Jingkun; Oberdörster, GĂŒnter; Biswas, Pratim (25 June 2008). "Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies".
334:, which adds one negative charge to the protein surface that disrupts cationic depletion and prevents long-distance charge transport. Similar effects are observed at the redox active site of 1002: 1031:
The "two-step" model (Wang model) for the formation of electric double-layer (EDL) at a liquid-solid interface, in which the electron transfer plays a dominant role in the first step.
462:
reactions, in which two chemical species change only in their charge, with an electron jumping. For redox reactions without making or breaking bonds, Marcus theory takes the place of
885:
The last model introduces "overlapped DLs". This is important in concentrated dispersions and emulsions when distances between particles become comparable with the Debye length.
1553:
Nakamura, Masashi; Sato, Narumasa; Hoshi, Nagahiro; Sakata, Osami (2011). "Outer Helmholtz Plane of the Electrical Double Layer Formed at the Solid Electrode-Liquid Interface".
262:
This model, while a good foundation for the description of the interface, does not consider important factors including diffusion/mixing of ions in solution, the possibility of
577:
The electric field strength inside the DL can be anywhere from zero to over 10 V/m. These steep electric potential gradients are the reason for the importance of the DLs.
513:. There is a conventionally introduced slipping plane that separates mobile fluid from fluid that remains attached to the surface. Electric potential at this plane is called 877: 828: 403: 458:
explains the rates of electron transfer reactions—the rate at which an electron can move from one chemical species to another. It was originally formulated to address
1257:
Lagunas, Anna; Guerra-Castellano, Alejandra; Nin-Hill, Alba; DĂ­az-Moreno, Irene; De la Rosa, Miguel A.; Samitier, Josep; Rovira, Carme; Gorostiza, Pau (2018-12-04).
421:
region of potential could also involve a partial charge transfer between the ion and the electrode. It was the first step towards understanding pseudocapacitance.
708: 244:
dielectric and stores charge electrostatically. Below the electrolyte's decomposition voltage, the stored charge is linearly dependent on the voltage applied.
1129: 1155: 390:
through the centres of solvated ions at the distance of their closest approach to the electrode. Finally the diffuse layer is the region beyond the OHP.
1209: 574:. In aqueous solutions it is typically on the scale of a few nanometers and the thickness decreases with increasing concentration of the electrolyte. 236:
electrodes immersed in electrolyte solutions repel the co-ions of the charge while attracting counterions to their surfaces. Two layers of opposite
115:
the first layer. This second layer is loosely associated with the object. It is made of free ions that move in the fluid under the influence of
1222: 2027:"Quantifying electron-transfer and ion-transfer in liquid-solid contact electrification and the formation mechanism of electric double-layer" 1682: 1093:"Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche" 544:. It is usually determined by the solution pH value, since protons and hydroxyl ions are the charge-determining ions for most surfaces. 450:
The physical and mathematical basics of electron charge transfer absent chemical bonds leading to pseudocapacitance was developed by
240:
form at the interface between electrode and electrolyte. In 1853, he showed that an electrical double layer (DL) is essentially a
318: 798:
There are several asymptotic models which play important roles in theoretical developments associated with the interfacial DL.
2146: 2125: 1978: 1830: 1768: 1193: 1388:
LĂłpez‐Ortiz, Manuel; Zamora, Ricardo A.; Giannotti, Marina InĂ©s; Hu, Chen; Croce, Roberta; Gorostiza, Pau (February 2022).
471: 1390:"Distance and Potential Dependence of Charge Transport Through the Reaction Center of Individual Photosynthetic Complexes" 290:
model of the DL. In this model, the charge distribution of ions as a function of distance from the metal surface allows
208:
Simplified illustration of the potential development in the area and in the further course of a Helmholtz double layer.
304:
Gouy-Chapman layers may bear special relevance in bioelectrochemistry. The observation of long-distance inter-protein
1647:
Conway, B.E. (May 1991), "Transition from 'Supercapacitor' to 'Battery' Behavior in Electrochemical Energy Storage",
1758: 804: 291: 964: 1162: 528:. Electric potential difference between the fluid bulk and the surface is called the electric surface potential. 524:
The electric potential on the external boundary of the Stern layer versus the bulk electrolyte is referred to as
459: 685:{\displaystyle \sigma ^{d}=-{\sqrt {{8\varepsilon _{0}}{\varepsilon _{m}}CRT}}\sinh {\frac {F\Psi ^{d}}{2RT}}} 1197: 1057: 882:
This model can be useful for some nano-colloids and non-polar fluids, where the Debye length is much larger.
17: 2182: 130: 920:
The primary difference between a double layer on an electrode and one on an interface is the mechanism of
1718:
Russel, W.B., Saville, D.A. and Schowalter, W.R. "Colloidal Dispersions", Cambridge University Press,1989
2177: 1067: 1012: 2192: 837: 552: 308:
through the aqueous solution has been attributed to a diffuse region between redox partner proteins (
282: 188: 1899: 1489: 1229: 2187: 951: 945: 853: 514: 484: 327: 248: 184: 112: 1596:
J. O’m. Bockris; M. A. V. Devanathan; K. MĂŒllen (1963). "On the structure of charged interfaces".
500: 467: 364: 331: 1900:"Scalable Surface Area Characterization by Electrokinetic Analysis of Complex Anion Adsorption" 1795: 1679: 463: 267: 1510:
Grahame, David C. (1947). "The Electrical Double Layer and the Theory of Electrocapillarity".
1971:
Characterization of liquids, nano- and micro- particulates and porous bodies using Ultrasound
1389: 1259:"Long distance electron transfer through the aqueous solution between redox partner proteins" 929: 326:) that is depleted of cations in comparison to the solution bulk, thereby leading to reduced 229: 221: 126: 1698: 847:
The opposing "thick DL" model assumes that the Debye length is larger than particle radius:
2202: 2086: 1855: 1652: 1605: 1344: 1270: 1100: 910: 537: 375: 104: 8: 1052: 832:
This model offers tremendous simplifications for many subsequent applications. Theory of
560: 556: 252: 237: 2090: 1859: 1656: 1609: 1598:
Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences
1348: 1274: 1104: 407:
the electric field depending on the charge. This orientation has great influence on the
367:
to be constant throughout the double layer, and that fluid viscosity is constant plane.
2051: 2026: 2007: 1940: 1914: 1871: 1629: 1470: 1435: 1365: 1332: 1312: 1299: 1258: 1198:
Chapter 2, Electrode/electrolyte interfaces: Structure and kinetics of charge transfer.
914: 902: 541: 430: 295: 278: 165: 2077:
Stillinger, Frank H.; Kirkwood, John G. (1960). "Theory of the Diffuse Double Layer".
1709:
Dukhin, S.S. & Derjaguin, B.V. "Electrokinetic Phenomena", J.Willey and Sons, 1974
2142: 2121: 2102: 2056: 2011: 1974: 1932: 1826: 1764: 1621: 1578: 1570: 1535: 1527: 1474: 1439: 1427: 1419: 1370: 1304: 1286: 1189: 1188:
Srinivasan S. (2006) Fuel cells, from Fundamentals to Applications, Springer eBooks,
451: 305: 298: 1875: 1811:
Lyklema, J. "Fundamentals of Interface and Colloid Science", vol.2, page.3.208, 1995
1633: 1316: 2094: 2046: 2038: 1999: 1944: 1924: 1863: 1660: 1613: 1562: 1519: 1462: 1409: 1401: 1360: 1352: 1294: 1278: 1210:
Electrochemical double-layer capacitors using carbon nanotube electrode structures.
1108: 1041: 933: 510: 157: 116: 35: 2197: 2136: 2115: 2003: 1686: 833: 570:, Îș. It is reciprocally proportional to the square root of the ion concentration 548: 525: 434: 386: 233: 146: 88: 44: 2138:
Principles of Colloid and Surface Chemistry, Third Edition, Revised and Expanded
2042: 1727:
Kruyt, H.R. "Colloid Science", Elsevier: Volume 1, Irreversible systems, (1952)
1356: 1282: 1072: 1008: 921: 532: 518: 225: 120: 107:. The second layer is composed of ions attracted to the surface charge via the 92: 1867: 2171: 2106: 1625: 1574: 1531: 1423: 1290: 1112: 470:
which was derived for reactions with structural changes. Marcus received the
455: 356: 204: 173: 108: 1957:
Hunter, R.J. "Foundations of Colloid Science", Oxford University Press, 1989
2060: 1990:
Wang, Z.L.; Wang, A.C. (2019). "On the origin of contact electrification".
1936: 1617: 1595: 1582: 1566: 1539: 1466: 1431: 1405: 1374: 1333:"Phosphorylation disrupts long-distance electron transport in cytochrome c" 1329: 1308: 1256: 1062: 567: 506:
The diffuse layer, or at least part of it, can move under the influence of
408: 399: 313: 123:
rather than being firmly anchored. It is thus called the "diffuse layer".
84: 1888:
V.S. Bogotsky, Fundamentals of Electrochemistry, Wiley-Interscience, 2006.
1047: 1027: 789:{\displaystyle {\Psi }(r)={\Psi ^{d}}{\frac {a}{r}}\exp({-\kappa }(r-a))} 335: 138: 1774: 1523: 137:
or porous bodies with particles or pores (respectively) on the scale of
1760:
Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices
1414: 507: 347: 309: 263: 156:
DLs play a fundamental role in many everyday substances. For instance,
142: 76: 2098: 1928: 1665: 176:
fluid-based systems, such as blood, paint, ink and ceramic and cement
287: 150: 1453:
Stern, O. (1924). "Zur Theorie der Elektrolytischen Doppelschicht".
1092: 905:
near a surface, and has a significant influence on the behaviour of
1919: 950:
EDLs have an additional parameter defining their characterization:
241: 100: 906: 360: 256: 134: 80: 64: 194: 1018: 177: 169: 30: 2134: 1898:
Hanaor, D.A.H.; Ghadiri, M.; Chrzanowski, W.; Gan, Y. (2014).
1823:
Colloidal dispersions : suspensions, emulsions, and foams
490: 346:
The Gouy-Chapman model fails for highly charged DLs. In 1924,
145:. However, DLs are important to other phenomena, such as the 72: 68: 1689:
Central Electrochemical Research Institute, (November, 2008)
1651:(in German), vol. 138, no. 6, pp. 1539–1548, 1387: 1897: 1099:(in German), vol. 165, no. 6, pp. 211–233, 161: 96: 1678:
A.K. Shukla, T.P. Kumar, Electrochemistry Encyclopedia,
433:
conducted extensive fundamental and development work on
39:
not explicitly show the negative charges of the surface.
1552: 1156:"A survey of electrochemical supercapacitor technology" 216:
conductor is brought in contact with a solid or liquid
1845: 695:
yields the following expression for electric potential
266:
onto the surface, and the interaction between solvent
967: 856: 807: 711: 589: 251:
independent from the charge density depending on the
1699:
Rudolph A. Marcus: The Nobel Prize in Chemistry 1992
1680:
Pillars of modern electrochemistry: A brief history
164:droplets are covered with a DL that prevents their 2135:Paul C. Hiemenz; Raj Rajagopalan (18 March 1997). 2076: 2025:Lin, S.Q.; Xu, L.; Wang, A.C.; Wang, Z.L. (2020). 996: 871: 822: 788: 699:in the spherical DL as a function of the distance 684: 393: 34:Schematic of the electrical double layer (EDL) in 1640: 27:Molecular interface between a surface and a fluid 2169: 1546: 1153: 2113: 566:The characteristic thickness of the DL is the 129:DLs are most apparent in systems with a large 2024: 195:Development of the (interfacial) double layer 91:surrounding the object. The first layer, the 1820: 1184: 1182: 1019:Electron transfer in electrical double layer 997:{\displaystyle C={\frac {d\sigma }{d\Psi }}} 220:conductor (electrolyte), a common boundary ( 2117:Principles of Colloid and Surface Chemistry 1756: 1503: 939: 888: 477: 95:(either positive or negative), consists of 1807: 1805: 1803: 1220: 1149: 1147: 87:. The DL refers to two parallel layers of 2050: 1965: 1963: 1918: 1736: 1664: 1413: 1364: 1298: 1179: 1090: 301:away from the surface of the fluid bulk. 1989: 1752: 1750: 1748: 1026: 489: 374: 203: 29: 1821:Morrison, Ian D.; Ross, Sydney (2002). 1800: 1509: 1487: 1144: 954:. Differential capacitance, denoted as 494:detailed illustration of interfacial DL 259:and the thickness of the double-layer. 14: 2170: 1960: 1649:Journal of the Electrochemical Society 1646: 958:, is described by the equation below: 247:This early model predicted a constant 1825:(2nd ed.). New York, NY: Wiley. 1745: 1730: 1692: 1452: 1044:(structure of semiconductor junction) 547:Zeta potential can be measured using 67:of an object when it is exposed to a 63:) is a structure that appears on the 1252: 1250: 901:) is the result of the variation of 415: 909:and other surfaces in contact with 836:is just one example. The theory of 442:intercalation and electrosorption. 24: 2070: 1118: 988: 731: 713: 659: 25: 2214: 2156: 1247: 1848:Journal of Nanoparticle Research 2079:The Journal of Chemical Physics 2018: 1983: 1969:Dukhin, A. S. and Goetz, P. J. 1951: 1891: 1882: 1839: 1814: 1788: 1721: 1712: 1703: 1672: 1589: 1481: 1446: 521:(also denoted as ζ-potential). 394:Bockris/Devanathan/MĂŒller (BDM) 273: 172:. DLs exist in practically all 1763:. Cambridge University Press. 1381: 1323: 1214: 1203: 1084: 783: 780: 768: 757: 723: 717: 460:outer sphere electron transfer 232:was the first to realize that 13: 1: 1455:Zeitschrift fĂŒr Elektrochemie 1126:"The electrical double layer" 1097:Annalen der Physik und Chemie 1078: 1058:Interface and colloid science 872:{\displaystyle \kappa a<1} 823:{\displaystyle \kappa a\gg 1} 183:The DL is closely related to 2004:10.1016/j.mattod.2019.05.016 292:Maxwell–Boltzmann statistics 199: 131:surface-area-to-volume ratio 7: 2163:The Electrical Double Layer 1221:Ehrenstein, Gerald (2001). 1035: 412:the region beyond the OHP. 10: 2219: 2043:10.1038/s41467-019-14278-9 1357:10.1038/s41467-022-34809-1 1283:10.1038/s41467-018-07499-x 1068:Poisson-Boltzmann equation 1013:electric surface potential 943: 928:EDLs are analogous to the 703:from the particle center: 402:, M. A. V. Devanathan and 370: 1868:10.1007/s11051-008-9446-4 1739:Theoretical Microfluidics 838:electroacoustic phenomena 553:electroacoustic phenomena 474:in 1992 for this theory. 445: 424: 189:electroacoustic phenomena 2114:Paul C. Hiemenz (1986). 1685:August 20, 2013, at the 1488:SMIRNOV, Gerald (2011). 1113:10.1002/andp.18531650603 952:differential capacitance 946:Differential capacitance 940:Differential capacitance 889:Electrical double layers 515:electrokinetic potential 485:electrokinetic phenomena 478:Mathematical description 472:Nobel Prize in Chemistry 341: 336:photosynthetic complexes 294:to be applied. Thus the 249:differential capacitance 185:electrokinetic phenomena 71:. The object might be a 1490:"Electric Double Layer" 895:electrical double layer 501:electric surface charge 468:transition state theory 429:Between 1975 and 1980, 365:dielectric permittivity 299:decreases exponentially 103:onto the object due to 57:electrical double layer 1618:10.1098/rspa.1963.0114 1567:10.1002/cphc.201100011 1467:10.1002/bbpc.192400182 1406:10.1002/smll.202104366 1154:Adam Marcus Namisnyk. 1128:. 2011. Archived from 1091:Helmholtz, H. (1853), 1032: 998: 925:potential difference. 873: 824: 790: 686: 495: 381: 209: 40: 2031:Nature Communications 1337:Nature Communications 1263:Nature Communications 1030: 999: 874: 825: 791: 687: 493: 438:electrodes and ions. 378: 283:David Leonard Chapman 230:Hermann von Helmholtz 207: 105:chemical interactions 33: 1757:Kirby, B.J. (2010). 1235:on 28 September 2011 965: 854: 840:is another example. 805: 709: 587: 538:point of zero charge 160:exists only because 2183:Colloidal chemistry 2091:1960JChPh..33.1282S 1913:(50): 15143–15152. 1860:2009JNR....11...77J 1657:1991JElS..138.1539C 1610:1963RSPSA.274...55B 1524:10.1021/cr60130a002 1349:2022NatCo..13.7100G 1275:2018NatCo...9.5157L 1105:1853AnP...165..211H 1053:Electroosmotic pump 915:fast ion conductors 561:electroosmotic flow 557:streaming potential 270:and the electrode. 255:of the electrolyte 253:dielectric constant 117:electric attraction 1737:Bruus, H. (2007). 1033: 994: 903:electric potential 869: 820: 786: 682: 542:iso-electric point 496: 431:Brian Evans Conway 382: 296:electric potential 279:Louis Georges Gouy 210: 41: 2178:Chemical mixtures 2148:978-0-8247-9397-5 2127:978-0-8247-7476-9 2099:10.1063/1.1731401 1979:978-0-444-63908-0 1973:, Elsevier, 2017 1929:10.1021/la503581e 1832:978-0-471-17625-1 1770:978-0-521-11903-0 1666:10.1149/1.2085829 1194:978-0-387-35402-6 992: 749: 680: 644: 452:Rudolph A. Marcus 416:Trasatti/Buzzanca 306:electron transfer 55:, also called an 16:(Redirected from 2210: 2193:Electrochemistry 2152: 2131: 2110: 2085:(5): 1282–1290. 2065: 2064: 2054: 2022: 2016: 2015: 1987: 1981: 1967: 1958: 1955: 1949: 1948: 1922: 1904: 1895: 1889: 1886: 1880: 1879: 1843: 1837: 1836: 1818: 1812: 1809: 1798: 1792: 1786: 1785: 1783: 1782: 1773:. Archived from 1754: 1743: 1742: 1734: 1728: 1725: 1719: 1716: 1710: 1707: 1701: 1696: 1690: 1676: 1670: 1669: 1668: 1644: 1638: 1637: 1593: 1587: 1586: 1561:(8): 1430–1434. 1550: 1544: 1543: 1512:Chemical Reviews 1507: 1501: 1500: 1498: 1496: 1485: 1479: 1478: 1450: 1444: 1443: 1417: 1385: 1379: 1378: 1368: 1327: 1321: 1320: 1302: 1254: 1245: 1244: 1242: 1240: 1234: 1228:. Archived from 1227: 1223:"Surface charge" 1218: 1212: 1207: 1201: 1186: 1177: 1176: 1174: 1173: 1167: 1161:. Archived from 1160: 1151: 1142: 1141: 1139: 1137: 1122: 1116: 1115: 1088: 1042:Depletion region 1003: 1001: 1000: 995: 993: 991: 983: 975: 878: 876: 875: 870: 829: 827: 826: 821: 795: 793: 792: 787: 767: 750: 742: 740: 739: 738: 716: 691: 689: 688: 683: 681: 679: 668: 667: 666: 653: 645: 634: 633: 632: 622: 621: 620: 607: 599: 598: 224:) among the two 158:homogenized milk 36:aqueous solution 21: 2218: 2217: 2213: 2212: 2211: 2209: 2208: 2207: 2188:Surface science 2168: 2167: 2159: 2149: 2128: 2073: 2071:Further reading 2068: 2023: 2019: 1992:Materials Today 1988: 1984: 1968: 1961: 1956: 1952: 1902: 1896: 1892: 1887: 1883: 1844: 1840: 1833: 1819: 1815: 1810: 1801: 1793: 1789: 1780: 1778: 1771: 1755: 1746: 1735: 1731: 1726: 1722: 1717: 1713: 1708: 1704: 1697: 1693: 1687:Wayback Machine 1677: 1673: 1645: 1641: 1604:(1356): 55–79. 1594: 1590: 1551: 1547: 1508: 1504: 1494: 1492: 1486: 1482: 1451: 1447: 1386: 1382: 1328: 1324: 1255: 1248: 1238: 1236: 1232: 1225: 1219: 1215: 1208: 1204: 1187: 1180: 1171: 1169: 1165: 1158: 1152: 1145: 1135: 1133: 1124: 1123: 1119: 1089: 1085: 1081: 1038: 1021: 1007:where σ is the 984: 976: 974: 966: 963: 962: 948: 942: 913:or solid-state 891: 855: 852: 851: 834:electrophoresis 806: 803: 802: 760: 741: 734: 730: 729: 712: 710: 707: 706: 669: 662: 658: 654: 652: 628: 624: 623: 616: 612: 608: 606: 594: 590: 588: 585: 584: 549:electrophoresis 526:Stern potential 480: 448: 435:ruthenium oxide 427: 418: 400:J. O'M. Bockris 396: 387:solvation shell 373: 344: 332:phosphorylation 324: 276: 202: 197: 147:electrochemical 111:, electrically 45:surface science 28: 23: 22: 15: 12: 11: 5: 2216: 2206: 2205: 2200: 2195: 2190: 2185: 2180: 2166: 2165: 2158: 2157:External links 2155: 2154: 2153: 2147: 2132: 2126: 2111: 2072: 2069: 2067: 2066: 2017: 1982: 1959: 1950: 1890: 1881: 1838: 1831: 1813: 1799: 1787: 1769: 1744: 1729: 1720: 1711: 1702: 1691: 1671: 1639: 1588: 1545: 1518:(3): 441–501. 1502: 1480: 1461:(21–22): 508. 1445: 1400:(7): 2104366. 1380: 1331:(2022-11-19). 1322: 1246: 1213: 1202: 1178: 1143: 1132:on 31 May 2011 1117: 1082: 1080: 1077: 1076: 1075: 1073:Supercapacitor 1070: 1065: 1060: 1055: 1050: 1045: 1037: 1034: 1020: 1017: 1009:surface charge 1005: 1004: 990: 987: 982: 979: 973: 970: 944:Main article: 941: 938: 922:surface charge 890: 887: 880: 879: 868: 865: 862: 859: 819: 816: 813: 810: 785: 782: 779: 776: 773: 770: 766: 763: 759: 756: 753: 748: 745: 737: 733: 728: 725: 722: 719: 715: 678: 675: 672: 665: 661: 657: 651: 648: 643: 640: 637: 631: 627: 619: 615: 611: 605: 602: 597: 593: 533:zeta potential 519:zeta potential 479: 476: 447: 444: 426: 423: 417: 414: 395: 392: 372: 369: 343: 340: 322: 275: 272: 268:dipole moments 201: 198: 196: 193: 121:thermal motion 93:surface charge 26: 9: 6: 4: 3: 2: 2215: 2204: 2201: 2199: 2196: 2194: 2191: 2189: 2186: 2184: 2181: 2179: 2176: 2175: 2173: 2164: 2161: 2160: 2150: 2144: 2141:. CRC Press. 2140: 2139: 2133: 2129: 2123: 2120:. M. Dekker. 2119: 2118: 2112: 2108: 2104: 2100: 2096: 2092: 2088: 2084: 2080: 2075: 2074: 2062: 2058: 2053: 2048: 2044: 2040: 2036: 2032: 2028: 2021: 2013: 2009: 2005: 2001: 1997: 1993: 1986: 1980: 1976: 1972: 1966: 1964: 1954: 1946: 1942: 1938: 1934: 1930: 1926: 1921: 1916: 1912: 1908: 1901: 1894: 1885: 1877: 1873: 1869: 1865: 1861: 1857: 1853: 1849: 1842: 1834: 1828: 1824: 1817: 1808: 1806: 1804: 1797: 1791: 1777:on 2019-04-28 1776: 1772: 1766: 1762: 1761: 1753: 1751: 1749: 1740: 1733: 1724: 1715: 1706: 1700: 1695: 1688: 1684: 1681: 1675: 1667: 1662: 1658: 1654: 1650: 1643: 1635: 1631: 1627: 1623: 1619: 1615: 1611: 1607: 1603: 1599: 1592: 1584: 1580: 1576: 1572: 1568: 1564: 1560: 1556: 1549: 1541: 1537: 1533: 1529: 1525: 1521: 1517: 1513: 1506: 1491: 1484: 1476: 1472: 1468: 1464: 1460: 1456: 1449: 1441: 1437: 1433: 1429: 1425: 1421: 1416: 1411: 1407: 1403: 1399: 1395: 1391: 1384: 1376: 1372: 1367: 1362: 1358: 1354: 1350: 1346: 1342: 1338: 1334: 1326: 1318: 1314: 1310: 1306: 1301: 1296: 1292: 1288: 1284: 1280: 1276: 1272: 1268: 1264: 1260: 1253: 1251: 1231: 1224: 1217: 1211: 1206: 1200:(769 kB) 1199: 1195: 1191: 1185: 1183: 1168:on 2014-12-22 1164: 1157: 1150: 1148: 1131: 1127: 1121: 1114: 1110: 1106: 1102: 1098: 1094: 1087: 1083: 1074: 1071: 1069: 1066: 1064: 1061: 1059: 1056: 1054: 1051: 1049: 1046: 1043: 1040: 1039: 1029: 1025: 1016: 1014: 1011:and ψ is the 1010: 985: 980: 977: 971: 968: 961: 960: 959: 957: 953: 947: 937: 935: 931: 926: 923: 918: 916: 912: 908: 904: 900: 896: 886: 883: 866: 863: 860: 857: 850: 849: 848: 845: 841: 839: 835: 830: 817: 814: 811: 808: 799: 796: 777: 774: 771: 764: 761: 754: 751: 746: 743: 735: 726: 720: 704: 702: 698: 692: 676: 673: 670: 663: 655: 649: 646: 641: 638: 635: 629: 625: 617: 613: 609: 603: 600: 595: 591: 582: 578: 575: 573: 569: 564: 562: 558: 554: 550: 545: 543: 539: 534: 529: 527: 522: 520: 516: 512: 509: 504: 502: 492: 488: 486: 475: 473: 469: 465: 461: 457: 456:Marcus Theory 453: 443: 439: 436: 432: 422: 413: 410: 405: 401: 391: 388: 377: 368: 366: 362: 358: 357:diffuse layer 352: 349: 339: 337: 333: 329: 325: 321: 316: 315: 311: 307: 302: 300: 297: 293: 289: 284: 280: 271: 269: 265: 260: 258: 254: 250: 245: 243: 239: 235: 231: 227: 223: 219: 215: 206: 192: 190: 186: 181: 179: 175: 174:heterogeneous 171: 167: 163: 159: 154: 152: 149:behaviour of 148: 144: 140: 136: 132: 128: 124: 122: 118: 114: 110: 109:Coulomb force 106: 102: 98: 94: 90: 86: 82: 78: 74: 70: 66: 62: 58: 54: 50: 46: 37: 32: 19: 18:Diffuse layer 2137: 2116: 2082: 2078: 2034: 2030: 2020: 1995: 1991: 1985: 1970: 1953: 1910: 1906: 1893: 1884: 1854:(1): 77–89. 1851: 1847: 1841: 1822: 1816: 1790: 1779:. Retrieved 1775:the original 1759: 1738: 1732: 1723: 1714: 1705: 1694: 1674: 1648: 1642: 1601: 1597: 1591: 1558: 1555:ChemPhysChem 1554: 1548: 1515: 1511: 1505: 1493:. Retrieved 1483: 1458: 1454: 1448: 1397: 1393: 1383: 1340: 1336: 1325: 1266: 1262: 1237:. Retrieved 1230:the original 1216: 1205: 1170:. Retrieved 1163:the original 1134:. Retrieved 1130:the original 1120: 1096: 1086: 1063:Nanofluidics 1022: 1006: 955: 949: 930:double layer 927: 919: 898: 894: 892: 884: 881: 846: 842: 831: 800: 797: 705: 700: 696: 693: 583: 579: 576: 571: 568:Debye length 565: 546: 530: 523: 505: 497: 481: 464:Henry Eyring 449: 440: 428: 419: 409:permittivity 404:Klaus MĂŒller 397: 383: 353: 345: 319: 312: 303: 281:in 1910 and 277: 274:Gouy–Chapman 261: 246: 217: 213: 211: 182: 155: 133:, such as a 125: 75:particle, a 60: 56: 52: 49:double layer 48: 42: 2203:Soft matter 1415:2445/191184 1343:(1): 7100. 1269:(1): 5157. 1048:DLVO theory 310:cytochromes 166:coagulation 139:micrometres 127:Interfacial 85:porous body 79:, a liquid 2172:Categories 2037:(1): 399. 1920:2106.03411 1781:2010-01-15 1172:2012-12-10 1079:References 508:tangential 363:, assumes 348:Otto Stern 264:adsorption 214:electronic 151:electrodes 143:nanometres 99:which are 77:gas bubble 2107:0021-9606 2012:189987682 1626:2053-9169 1575:1439-4235 1532:0009-2665 1475:138033996 1440:244922892 1424:1613-6810 1291:2041-1723 989:Ψ 981:σ 911:solutions 858:κ 815:≫ 809:κ 775:− 765:κ 762:− 755:⁡ 732:Ψ 714:Ψ 660:Ψ 650:⁡ 626:ε 614:ε 604:− 592:σ 398:In 1963, 361:Coulombic 328:screening 242:molecular 228:appears. 222:interface 200:Helmholtz 113:screening 2061:31964882 1937:25495551 1907:Langmuir 1876:95536100 1683:Archived 1634:94958336 1583:21557434 1540:18895519 1495:23 April 1432:34874621 1375:36402842 1317:54444826 1309:30514833 1136:23 April 1036:See also 907:colloids 531:Usually 238:polarity 212:When an 101:adsorbed 2087:Bibcode 2052:6972942 1945:4697498 1856:Bibcode 1653:Bibcode 1606:Bibcode 1366:9675734 1345:Bibcode 1300:6279779 1271:Bibcode 1101:Bibcode 540:or the 380:solvent 371:Grahame 288:diffuse 257:solvent 234:charged 135:colloid 83:, or a 81:droplet 65:surface 2198:Matter 2145:  2124:  2105:  2059:  2049:  2010:  1998:: 34. 1977:  1943:  1935:  1874:  1829:  1767:  1632:  1624:  1581:  1573:  1538:  1530:  1473:  1438:  1430:  1422:  1373:  1363:  1315:  1307:  1297:  1289:  1239:30 May 1192:  934:plasma 559:, and 511:stress 446:Marcus 425:Conway 226:phases 178:slurry 170:butter 89:charge 2008:S2CID 1941:S2CID 1915:arXiv 1903:(PDF) 1872:S2CID 1796:(pdf) 1630:S2CID 1471:S2CID 1436:S2CID 1394:Small 1313:S2CID 1233:(PDF) 1226:(PDF) 1166:(PDF) 1159:(PDF) 342:Stern 218:ionic 168:into 73:solid 69:fluid 2143:ISBN 2122:ISBN 2103:ISSN 2057:PMID 1975:ISBN 1933:PMID 1827:ISBN 1765:ISBN 1622:ISSN 1579:PMID 1571:ISSN 1536:PMID 1528:ISSN 1497:2013 1428:PMID 1420:ISSN 1371:PMID 1305:PMID 1287:ISSN 1241:2011 1190:ISBN 1138:2013 893:The 864:< 647:sinh 359:are 317:and 187:and 119:and 97:ions 47:, a 2095:doi 2047:PMC 2039:doi 2000:doi 1925:doi 1864:doi 1661:doi 1614:doi 1602:274 1563:doi 1520:doi 1463:doi 1410:hdl 1402:doi 1361:PMC 1353:doi 1295:PMC 1279:doi 1109:doi 932:in 899:EDL 752:exp 517:or 466:'s 162:fat 141:to 61:EDL 43:In 2174:: 2101:. 2093:. 2083:33 2081:. 2055:. 2045:. 2035:11 2033:. 2029:. 2006:. 1996:30 1994:. 1962:^ 1939:. 1931:. 1923:. 1911:30 1909:. 1905:. 1870:. 1862:. 1852:11 1850:. 1802:^ 1747:^ 1659:, 1628:. 1620:. 1612:. 1600:. 1577:. 1569:. 1559:12 1557:. 1534:. 1526:. 1516:41 1514:. 1469:. 1459:30 1457:. 1434:. 1426:. 1418:. 1408:. 1398:18 1396:. 1392:. 1369:. 1359:. 1351:. 1341:13 1339:. 1335:. 1311:. 1303:. 1293:. 1285:. 1277:. 1265:. 1261:. 1249:^ 1196:, 1181:^ 1146:^ 1107:, 1095:, 1015:. 936:. 917:. 563:. 555:, 551:, 487:. 454:. 338:. 191:. 180:. 153:. 59:, 53:DL 2151:. 2130:. 2109:. 2097:: 2089:: 2063:. 2041:: 2014:. 2002:: 1947:. 1927:: 1917:: 1878:. 1866:: 1858:: 1835:. 1784:. 1741:. 1663:: 1655:: 1636:. 1616:: 1608:: 1585:. 1565:: 1542:. 1522:: 1499:. 1477:. 1465:: 1442:. 1412:: 1404:: 1377:. 1355:: 1347:: 1319:. 1281:: 1273:: 1267:9 1243:. 1175:. 1140:. 1111:: 1103:: 986:d 978:d 972:= 969:C 956:C 897:( 867:1 861:a 818:1 812:a 784:) 781:) 778:a 772:r 769:( 758:( 747:r 744:a 736:d 727:= 724:) 721:r 718:( 701:r 697:Κ 677:T 674:R 671:2 664:d 656:F 642:T 639:R 636:C 630:m 618:0 610:8 601:= 596:d 572:C 323:1 320:c 314:c 51:( 20:)

Index

Diffuse layer

aqueous solution
surface science
surface
fluid
solid
gas bubble
droplet
porous body
charge
surface charge
ions
adsorbed
chemical interactions
Coulomb force
screening
electric attraction
thermal motion
Interfacial
surface-area-to-volume ratio
colloid
micrometres
nanometres
electrochemical
electrodes
homogenized milk
fat
coagulation
butter

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑