Knowledge

Intermolecular force

Source 📝

339:
Most salts form crystals with characteristic distances between the ions; in contrast to many other noncovalent interactions, salt bridges are not directional and show in the solid state usually contact determined only by the van der Waals radii of the ions. Inorganic as well as organic ions display in water at moderate ionic strength I similar salt bridge as association ΔG values around 5 to 6 kJ/mol for a 1:1 combination of anion and cation, almost independent of the nature (size, polarizability, etc.) of the ions. The ΔG values are additive and approximately a linear function of the charges, the interaction of e.g. a doubly charged phosphate anion with a single charged ammonium cation accounts for about 2x5 = 10 kJ/mol. The ΔG values depend on the ionic strength I of the solution, as described by the Debye-HĂŒckel equation, at zero ionic strength one observes ΔG = 8 kJ/mol.
975:
electron clouds in non-polar molecules. Thus, London interactions are caused by random fluctuations of electron density in an electron cloud. An atom with a large number of electrons will have a greater associated London force than an atom with fewer electrons. The dispersion (London) force is the most important component because all materials are polarizable, whereas Keesom and Debye forces require permanent dipoles. The London interaction is universal and is present in atom-atom interactions as well. For various reasons, London interactions (dispersion) have been considered relevant for interactions between macroscopic bodies in condensed systems.
284: 2494: 544:
power of the distance, unlike the interaction energy of two spatially fixed dipoles, which depends on the inverse third power of the distance. The Keesom interaction can only occur among molecules that possess permanent dipole moments, i.e., two polar molecules. Also Keesom interactions are very weak van der Waals interactions and do not occur in aqueous solutions that contain electrolytes. The angle averaged interaction is given by the following equation:
785:
molecule's electrons. A molecule with permanent dipole can induce a dipole in a similar neighboring molecule and cause mutual attraction. Debye forces cannot occur between atoms. The forces between induced and permanent dipoles are not as temperature dependent as Keesom interactions because the induced dipole is free to shift and rotate around the polar molecule. The Debye induction effects and Keesom orientation effects are termed polar interactions.
2488: 280:. The number of Hydrogen bonds formed between molecules is equal to the number of active pairs. The molecule which donates its hydrogen is termed the donor molecule, while the molecule containing lone pair participating in H bonding is termed the acceptor molecule. The number of active pairs is equal to the common number between number of hydrogens the donor has and the number of lone pairs the acceptor has. 2500: 463: 210:, but several such weak interactions with the required spatial configuration of the active center of the enzyme lead to significant restructuring changes the energy state of molecules or substrate, which ultimately leads to the breaking of some and the formation of other covalent chemical bonds. Strictly speaking, all 1151:
When a gas is compressed to increase its density, the influence of the attractive force increases. If the gas is made sufficiently dense, the attractions can become large enough to overcome the tendency of thermal motion to cause the molecules to disperse. Then the gas can condense to form a solid or
784:
The second contribution is the induction (also termed polarization) or Debye force, arising from interactions between rotating permanent dipoles and from the polarizability of atoms and molecules (induced dipoles). These induced dipoles occur when one molecule with a permanent dipole repels another
974:
The third and dominant contribution is the dispersion or London force (fluctuating dipole–induced dipole), which arises due to the non-zero instantaneous dipole moments of all atoms and molecules. Such polarization can be induced either by a polar molecule or by the repulsion of negatively charged
803:
One example of an induction interaction between permanent dipole and induced dipole is the interaction between HCl and Ar. In this system, Ar experiences a dipole as its electrons are attracted (to the H side of HCl) or repelled (from the Cl side) by HCl. The angle averaged interaction is given by
543:
averaged over different rotational orientations of the dipoles. It is assumed that the molecules are constantly rotating and never get locked into place. This is a good assumption, but at some point molecules do get locked into place. The energy of a Keesom interaction depends on the inverse sixth
347:
Dipole–dipole interactions (or Keesom interactions) are electrostatic interactions between molecules which have permanent dipoles. This interaction is stronger than the London forces but is weaker than ion-ion interaction because only partial charges are involved. These interactions tend to align
491:
Ion–dipole and ion–induced dipole forces are similar to dipole–dipole and dipole–induced dipole interactions but involve ions, instead of only polar and non-polar molecules. Ion–dipole and ion–induced dipole forces are stronger than dipole–dipole interactions because the charge of any ion is much
338:
The attraction between cationic and anionic sites is a noncovalent, or intermolecular interaction which is usually referred to as ion pairing or salt bridge. It is essentially due to electrostatic forces, although in aqueous medium the association is driven by entropy and often even endothermic.
1166:
Intermolecular forces observed between atoms and molecules can be described phenomenologically as occurring between permanent and instantaneous dipoles, as outlined above. Alternatively, one may seek a fundamental, unifying theory that is able to explain the various types of interactions such as
1187:
methods, such a quantum mechanical explanation of intermolecular interactions provides an array of approximate methods that can be used to analyze intermolecular interactions. One of the most helpful methods to visualize this kind of intermolecular interactions, that we can find in quantum
291:
Though both not depicted in the diagram, water molecules have four active bonds. The oxygen atom’s two lone pairs interact with a hydrogen each, forming two additional hydrogen bonds, and the second hydrogen atom also interacts with a neighbouring oxygen. Intermolecular hydrogen bonding is
1079:
This comparison is approximate. The actual relative strengths will vary depending on the molecules involved. For instance, the presence of water creates competing interactions that greatly weaken the strength of both ionic and hydrogen bonds. We may consider that for static systems,
374: 495:
An ion–dipole force consists of an ion and a polar molecule interacting. They align so that the positive and negative groups are next to one another, allowing maximum attraction. An important example of this interaction is hydration of ions in water which give rise to
518:
The van der Waals forces arise from interaction between uncharged atoms or molecules, leading not only to such phenomena as the cohesion of condensed phases and physical absorption of gases, but also to a universal force of attraction between macroscopic bodies.
678: 500:. The polar water molecules surround themselves around ions in water and the energy released during the process is known as hydration enthalpy. The interaction has its immense importance in justifying the stability of various ions (like Cu) in water. 1195:
Concerning electron density topology, recent methods based on electron density gradient methods have emerged recently, notably with the development of IBSI (Intrinsic Bond Strength Index), relying on the IGM (Independent Gradient Model) methodology.
920: 1132:
at the same temperature and pressure. The attractive force draws molecules closer together and gives a real gas a tendency to occupy a smaller volume than an ideal gas. Which interaction is more important depends on temperature and pressure (see
527:
The first contribution to van der Waals forces is due to electrostatic interactions between rotating permanent dipoles, quadrupoles (all molecules with symmetry lower than cubic), and multipoles. It is termed the
356:(HCl): the positive end of a polar molecule will attract the negative end of the other molecule and influence its position. Polar molecules have a net attraction between them. Examples of polar molecules include 503:
An ion–induced dipole force consists of an ion and a non-polar molecule interacting. Like a dipole–induced dipole force, the charge of the ion causes distortion of the electron cloud on the non-polar molecule.
955:
This kind of interaction can be expected between any polar molecule and non-polar/symmetrical molecule. The induction-interaction force is far weaker than dipole–dipole interaction, but stronger than the
458:{\displaystyle {\overset {\color {Red}\delta +}{{\ce {H}}}}-{\overset {\color {Red}\delta -}{{\ce {Cl}}}}\cdots {\overset {\color {Red}\delta +}{{\ce {H}}}}-{\overset {\color {Red}\delta -}{{\ce {Cl}}}}} 1148:
is the measure of thermal energy, so increasing temperature reduces the influence of the attractive force. In contrast, the influence of the repulsive force is essentially unaffected by temperature.
1152:
liquid, i.e., a condensed phase. Lower temperature favors the formation of a condensed phase. In a condensed phase, there is very nearly a balance between the attractive and repulsive forces.
550: 1140:
In a gas, the distances between molecules are generally large, so intermolecular forces have only a small effect. The attractive force is not overcome by the repulsive force, but by the
268:. The hydrogen bond is often described as a strong electrostatic dipole–dipole interaction. However, it also has some features of covalent bonding: it is directional, stronger than a 810: 792:), which is the attractive interaction between a permanent multipole on one molecule with an induced (by the former di/multi-pole) 31 on another. This interaction is called the 739: 712: 770: 950: 979:
developed the theory of van der Waals between macroscopic bodies in 1937 and showed that the additivity of these interactions renders them considerably more long-range.
51:, involving sharing electron pairs between atoms, is much stronger than the forces present between neighboring molecules. Both sets of forces are essential parts of 472:
on the molecule as a whole. This occurs if there is symmetry within the molecule that causes the dipoles to cancel each other out. This occurs in molecules such as
186:) in which the formation of chemical, that is, ionic, covalent or metallic bonds does not occur. In other words, these interactions are significantly weaker than 1256: 2253:
Ponce-Vargas M, Lefebvre C, Boisson JC, HĂ©non E (January 2020). "Atomic Decomposition Scheme of Noncovalent Interactions Applied to Host-Guest Assemblies".
1523: 1353:"Biochemistry and Molecular Biology - Paperback - Despo Papachristodoulou, Alison Snape, William H. Elliott, Daphne C. Elliott - Oxford University Press" 1375: 2163:"Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced density gradient versus electron density" 2587: 1612:"The second virial coefficient for rigid spherical molecules whose mutual attraction is equivalent to that of a quadruplet placed at its center" 2213:"The Independent Gradient Model: A New Approach for Probing Strong and Weak Interactions in Molecules from Wave Function Calculations" 2705: 2632: 2313: 1211: 333: 133: 2741: 1124:). In a gas, the repulsive force chiefly has the effect of keeping two molecules from occupying the same volume. This gives a 1841: 1806: 1756: 1506: 1446: 1422: 1336: 2104: 480:. The dipole–dipole interaction between two individual atoms is usually zero, since atoms rarely carry a permanent dipole. 536:. These forces originate from the attraction between permanent dipoles (dipolar molecules) and are temperature dependent. 2627: 1246: 1088:
will always be stronger than intermolecular forces in any given substance. But it is not so for big moving systems like
1352: 673:{\displaystyle {\frac {-d_{1}^{2}d_{2}^{2}}{24\pi ^{2}\varepsilon _{0}^{2}\varepsilon _{r}^{2}k_{\text{B}}Tr^{6}}}=V,} 70:
published in Paris in 1743. Other scientists who have contributed to the investigation of microscopic forces include:
2552: 2376: 1331:. International Series of Monographs in Natural Philosophy. Vol. 18 (1st ed.). Oxford: Pergamon Press. 1189: 2567: 483:
The Keesom interaction is a van der Waals force. It is discussed further in the section "Van der Waals forces".
2731: 2403: 2364: 2354: 1867:"Conformational proofreading: the impact of conformational changes on the specificity of molecular recognition" 1531: 300:, which have little capability to hydrogen bond. Intramolecular hydrogen bonding is partly responsible for the 2359: 2162: 1192:, which is based on the electron density of the system. London dispersion forces play a big role with this. 1161: 2306: 915:{\displaystyle {\frac {-d_{1}^{2}\alpha _{2}}{16\pi ^{2}\varepsilon _{0}^{2}\varepsilon _{r}^{2}r^{6}}}=V,} 1772: 1561:"Theoretical models for surface forces and adhesion and their measurement using atomic force microscopy" 105: 276:, and usually involves a limited number of interaction partners, which can be interpreted as a kind of 207: 717: 690: 2736: 2622: 2612: 2602: 2577: 2547: 1261: 1216: 1145: 1677:
Roberts JK, Orr WJ (1938). "Induced dipoles and the heat of adsorption of argon on ionic crystals".
1462:
Biedermann F, Schneider HJ (May 2016). "Experimental Binding Energies in Supramolecular Complexes".
2393: 748: 492:
greater than the charge of a dipole moment. Ion–dipole bonding is stronger than hydrogen bonding.
2654: 2557: 2529: 2299: 1925: 1287: 1221: 1121: 1120:
Intermolecular forces are repulsive at short distances and attractive at long distances (see the
969: 957: 928: 164: 123: 52: 139:
Information on intermolecular forces is obtained by macroscopic measurements of properties like
1134: 469: 128: 2062: 1639:
Blustin PH (1978). "A Floating Gaussian Orbital calculation on argon hydrochloride (Ar·HCl)".
2698: 2659: 2212: 1966: 1093: 533: 297: 215: 2693: 2211:
Lefebvre C, Khartabil H, Boisson JC, Contreras-GarcĂ­a J, Piquemal JP, HĂ©non E (March 2018).
2004:
Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, et al. (2011-07-08).
2617: 2371: 2330: 2177: 2119: 1937: 1878: 1713: 1299: 1231: 1100:) bonds form an active intermediate state where the intermolecular bonds cause some of the 789: 309: 273: 191: 160: 75: 71: 44: 963: 8: 2519: 2383: 2349: 2103:
Klein J, Khartabil H, Boisson JC, Contreras-GarcĂ­a J, Piquemal JP, HĂ©non E (March 2020).
1833: 1704:
Sapse AM, Rayez-Meaume MT, Rayez JC, Massa LJ (1979). "Ion-induced dipole H−n clusters".
1251: 1180: 1172: 513: 301: 277: 269: 111: 79: 56: 2683: 2181: 2123: 1941: 1882: 1717: 1611: 1303: 170:
In the broadest sense, it can be understood as such interactions between any particles (
2438: 2278: 2161:
Lefebvre C, Rubez G, Khartabil H, Boisson JC, Contreras-GarcĂ­a J, HĂ©non E (July 2017).
2143: 2035: 1901: 1866: 1729: 1656: 1587: 1560: 1226: 540: 473: 305: 148: 218:
and the enzyme, therefore the importance of these interactions is especially great in
2669: 2458: 2418: 2408: 2282: 2270: 2235: 2193: 2147: 2135: 2055: 2027: 1986: 1906: 1847: 1837: 1802: 1752: 1592: 1502: 1479: 1442: 1418: 1332: 1184: 1176: 797: 357: 353: 253: 223: 2039: 1660: 1385: 2710: 2450: 2423: 2262: 2227: 2185: 2127: 2085: 2017: 1978: 1945: 1896: 1886: 1733: 1721: 1686: 1648: 1582: 1572: 1471: 1410: 1389: 1380: 1307: 1168: 1105: 1104:
to be broken, while the others are formed, in this way proceeding the thousands of
497: 349: 248:
is an extreme form of dipole-dipole bonding, referring to the attraction between a
211: 83: 32: 2688: 2562: 2433: 1891: 1829: 1236: 1175:
and dipole–dipole interactions. Typically, this is done by applying the ideas of
63: 1950: 1475: 1414: 1312: 2597: 2398: 1141: 976: 477: 283: 152: 2725: 2646: 2606: 2539: 2493: 2468: 2341: 2322: 2266: 2131: 2031: 2022: 2005: 1990: 1851: 1384:, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) " 1206: 1101: 1097: 1085: 1081: 1035: 239: 194:
of the interacting particles. (This is only partially true. For example, all
187: 183: 156: 144: 97: 87: 48: 1405:
Lindh U (2013), "Biological functions of the elements", in Selinus O (ed.),
1393: 16:
Force of attraction or repulsion between molecules and neighboring particles
2592: 2274: 2239: 2231: 2197: 2139: 1982: 1910: 1596: 1483: 317: 219: 115: 93:
Attractive intermolecular forces are categorized into the following types:
1823: 1577: 272:
interaction, produces interatomic distances shorter than the sum of their
31:) is the force that mediates interaction between molecules, including the 2678: 2428: 1690: 119: 2210: 2089: 202:
begin with a weak intermolecular interaction between a substrate and an
35:
which act between atoms and other types of neighbouring particles, e.g.
2189: 1652: 1559:
Leite FL, Bueno CC, Da RĂłz AL, Ziemath EC, Oliveira ON (October 2012).
1183:
has been especially effective in this regard. When applied to existing
964:
London dispersion force (fluctuating dipole–induced dipole interaction)
361: 1751:(5th ed.). Boston: Houghton Mifflin Company. pp. 30–33, 67. 2413: 2388: 2102: 1725: 1266: 1129: 522: 468:
Often molecules contain dipolar groups of atoms, but have no overall
199: 140: 62:
The first reference to the nature of microscopic forces is found in
2487: 1125: 1109: 321: 265: 257: 249: 171: 779: 2291: 1619:
Proceedings of the Royal Netherlands Academy of Arts and Sciences
1241: 788:
The induced dipole forces appear from the induction (also termed
539:
They consist of attractive interactions between dipoles that are
313: 2252: 1089: 261: 227: 203: 195: 2006:"Definition of the hydrogen bond (IUPAC Recommendations 2011)" 1073:
Estimated from the enthalpies of vaporization of hydrocarbons
47:– the forces which hold a molecule together. For example, the 2160: 293: 1965:
Lenhard, Johannes; Stephan, Simon; Hasse, Hans (June 2024).
352:). An example of a dipole–dipole interaction can be seen in 1926:"On the history of key empirical intermolecular potentials" 1703: 1409:(Revised ed.), Dordrecht: Springer, pp. 129–177, 1288:"On the history of key empirical intermolecular potentials" 486: 190:
ones and do not lead to a significant restructuring of the
175: 36: 2499: 1790: 1439:
Ionic Interactions in Natural and Synthetic Macromolecules
1096:
molecules. Here the numerous intramolecular (most often -
2003: 342: 179: 40: 1740: 147:(PVT) data. The link to microscopic aspects is given by 1558: 1257:
Comparison of software for molecular mechanics modeling
320:. It also plays an important role in the structure of 1501:. United States: Pearson Education Inc. p. 466. 931: 813: 751: 720: 693: 553: 377: 1964: 1672: 1670: 1461: 1162:
Covalent bond § Quantum mechanical description
523:Keesom force (permanent dipole – permanent dipole) 214:begin with intermolecular interactions between the 2054: 1924:Fischer, Johann; Wendland, Martin (October 2023). 1515: 1286:Fischer, Johann; Wendland, Martin (October 2023). 1115: 944: 914: 764: 733: 706: 672: 457: 33:electromagnetic forces of attraction or repulsion 2723: 1697: 1667: 1046:About 5 kcal/mol (21 kJ/mol) in water 780:Debye force (permanent dipoles–induced dipoles) 1967:"On the History of the Lennard-Jones Potential" 1923: 1799:Enthalpies of Vaporization of Organic Compounds 1634: 1632: 1326: 1285: 741:= dielectric constant of surrounding material, 348:the molecules to increase attraction (reducing 2076:King M (1976). "Theory of the Chemical Bond". 2052: 1765: 1369: 1155: 982: 102:Ion–dipole forces and ion–induced dipole force 2307: 1436: 1128:a tendency to occupy a larger volume than an 43:. Intermolecular forces are weak relative to 2255:Journal of Chemical Information and Modeling 1796: 1629: 252:atom that is bonded to an element with high 1864: 1749:Organic Chemistry: Structure and Reactivity 1565:International Journal of Molecular Sciences 1441:. Hoboken, NJ: John Wiley & Sons, Inc. 2314: 2300: 1676: 292:responsible for the high boiling point of 2021: 1949: 1900: 1890: 1586: 1576: 1311: 2706:Polyhedral skeletal electron pair theory 2078:Journal of the American Chemical Society 487:Ion–dipole and ion–induced dipole forces 334:Salt bridge (protein and supramolecular) 282: 134:Salt bridge (protein and supramolecular) 1821: 1638: 1179:to molecules, and Rayleigh–Schrödinger 507: 343:Dipole–dipole and similar interactions 2724: 1609: 1521: 2295: 1554: 1552: 1550: 1548: 1404: 445: 425: 405: 385: 2075: 1822:Alberts, Bruce; et al. (2015). 296:(100 Â°C) compared to the other 2170:Physical Chemistry Chemical Physics 2112:The Journal of Physical Chemistry A 2105:"New Way for Probing Bond Strength" 2057:Electrodynamics of Continuous Media 1746: 1679:Transactions of the Faraday Society 1496: 1247:Quantum chemistry computer programs 233: 13: 2321: 2046: 1997: 1545: 1437:Ciferri A, Perico A, eds. (2012). 1381:Compendium of Chemical Terminology 14: 2753: 68:ThĂ©orie de la figure de la Terre, 2498: 2492: 2486: 1801:. Oxford: Blackwell Scientific. 734:{\displaystyle \varepsilon _{r}} 707:{\displaystyle \varepsilon _{0}} 2246: 2204: 2154: 2096: 2069: 2053:Landau LD, Lifshitz EM (1960). 1958: 1917: 1858: 1815: 1603: 1499:Chemistry: A Molecular Approach 1329:Theory of Intermolecular Forces 1327:Margenau H, Kestner NR (1969). 1116:Effect on the behavior of gases 2742:Johannes Diderik van der Waals 1865:Savir Y, Tlusty T (May 2007). 1828:(6th ed.). New York, NY: 1777:Division of Chemical Education 1490: 1455: 1430: 1398: 1345: 1320: 1279: 1190:non-covalent interaction index 776:= distance between molecules. 714:= permittivity of free space, 327: 324:, both synthetic and natural. 1: 2061:. Oxford: Pergamon. pp.  1825:Molecular biology of the cell 1407:Essentials of Medical Geology 1273: 145:pressure, volume, temperature 1892:10.1371/journal.pone.0000468 765:{\displaystyle k_{\text{B}}} 7: 1951:10.1016/j.fluid.2023.113876 1797:Majer V, Svoboda V (1985). 1476:10.1021/acs.chemrev.5b00583 1415:10.1007/978-94-007-4375-5_7 1313:10.1016/j.fluid.2023.113876 1199: 1156:Quantum mechanical theories 1092:molecules interacting with 983:Relative strength of forces 945:{\displaystyle \alpha _{2}} 10: 2758: 2404:Metal–ligand multiple bond 2010:Pure and Applied Chemistry 1159: 967: 772:= Boltzmann constant, and 687:= electric dipole moment, 511: 331: 237: 2668: 2645: 2576: 2538: 2518: 2507: 2484: 2467: 2449: 2340: 2329: 1262:Non-covalent interactions 1064:London dispersion forces 287:Hydrogen bonding in water 2267:10.1021/acs.jcim.9b01016 2132:10.1021/acs.jpca.9b09845 2023:10.1351/PAC-REC-10-01-02 804:the following equation: 1641:Theoretica Chimica Acta 1524:"Intermolecular Forces" 1394:10.1351/goldbook.H02899 1222:Force field (chemistry) 1122:Lennard-Jones potential 970:London dispersion force 958:London dispersion force 165:Lennard-Jones potential 124:London dispersion force 2232:10.1002/cphc.201701325 1983:10.1002/andp.202400115 1930:Fluid Phase Equilibria 1292:Fluid Phase Equilibria 1217:Coomber's relationship 1135:compressibility factor 946: 916: 766: 735: 708: 674: 459: 288: 226:, and is the basis of 2732:Intermolecular forces 1578:10.3390/ijms131012773 947: 917: 767: 736: 709: 675: 534:Willem Hendrik Keesom 460: 310:quaternary structures 286: 206:or a molecule with a 129:Cation–cation bonding 108:, σ–π and π–π bonding 45:intramolecular forces 2394:Coordinate (dipolar) 1834:Taylor & Francis 1691:10.1039/TF9383401346 1232:Intramolecular force 998:Dissociation energy 929: 811: 749: 718: 691: 551: 508:Van der Waals forces 375: 192:electronic structure 161:Buckingham potential 112:Van der Waals forces 21:intermolecular force 2568:C–H···O interaction 2350:Electron deficiency 2182:2017PCCP...1917928L 2176:(27): 17928–17936. 2124:2020JPCA..124.1850K 2090:10.1021/ja00428a004 1942:2023FlPEq.57313876F 1883:2007PLoSO...2..468S 1779:. Purdue University 1718:1979Natur.278..332S 1571:(10): 12773–12856. 1304:2023FlPEq.57313876F 1252:van der Waals force 1181:perturbation theory 1173:van der Waals force 1108:, so important for 1106:enzymatic reactions 993:Dissociation energy 889: 874: 834: 634: 619: 589: 574: 514:van der Waals force 274:van der Waals radii 270:van der Waals force 212:enzymatic reactions 200:catalytic reactions 151:and intermolecular 149:virial coefficients 57:molecular mechanics 55:frequently used in 2553:Resonance-assisted 2190:10.1039/C7CP02110K 1971:Annalen der Physik 1773:"Lattice Energies" 1653:10.1007/BF00577166 1610:Keesom WH (1915). 1227:Hydrophobic effect 1188:chemistry, is the 1144:of the molecules. 952:= polarizability. 942: 912: 875: 860: 820: 762: 731: 704: 670: 620: 605: 575: 560: 530:Keesom interaction 498:hydration enthalpy 474:tetrachloromethane 455: 452: 432: 412: 392: 289: 2719: 2718: 2670:Electron counting 2641: 2640: 2530:London dispersion 2482: 2481: 2459:Metal aromaticity 2084:(12): 3415–3420. 1843:978-0-8153-4432-2 1808:978-0-632-01529-0 1758:978-0-618-31809-4 1712:(5702): 332–333. 1522:Blaber M (1996). 1508:978-0-321-65178-5 1448:978-0-470-52927-0 1424:978-94-007-4374-8 1338:978-0-08-016502-8 1185:quantum chemistry 1177:quantum mechanics 1077: 1076: 901: 798:Peter J. W. Debye 759: 659: 642: 453: 443: 433: 423: 413: 403: 393: 383: 358:hydrogen chloride 354:hydrogen chloride 298:group 16 hydrides 254:electronegativity 224:molecular biology 2749: 2737:Chemical bonding 2711:Jemmis mno rules 2563:Dihydrogen bonds 2516: 2515: 2502: 2496: 2490: 2424:Hyperconjugation 2338: 2337: 2316: 2309: 2302: 2293: 2292: 2287: 2286: 2250: 2244: 2243: 2217: 2208: 2202: 2201: 2167: 2158: 2152: 2151: 2118:(9): 1850–1860. 2109: 2100: 2094: 2093: 2073: 2067: 2066: 2060: 2050: 2044: 2043: 2025: 2016:(8): 1637–1641. 2001: 1995: 1994: 1962: 1956: 1955: 1953: 1921: 1915: 1914: 1904: 1894: 1862: 1856: 1855: 1819: 1813: 1812: 1794: 1788: 1787: 1785: 1784: 1769: 1763: 1762: 1744: 1738: 1737: 1726:10.1038/278332a0 1701: 1695: 1694: 1674: 1665: 1664: 1636: 1627: 1626: 1616: 1607: 1601: 1600: 1590: 1580: 1556: 1543: 1542: 1540: 1539: 1530:. Archived from 1519: 1513: 1512: 1494: 1488: 1487: 1470:(9): 5216–5300. 1464:Chemical Reviews 1459: 1453: 1452: 1434: 1428: 1427: 1402: 1396: 1373: 1367: 1366: 1364: 1363: 1349: 1343: 1342: 1324: 1318: 1317: 1315: 1283: 1169:hydrogen bonding 1110:living organisms 1086:covalent bonding 987: 986: 951: 949: 948: 943: 941: 940: 921: 919: 918: 913: 902: 900: 899: 898: 888: 883: 873: 868: 859: 858: 845: 844: 843: 833: 828: 815: 771: 769: 768: 763: 761: 760: 757: 740: 738: 737: 732: 730: 729: 713: 711: 710: 705: 703: 702: 679: 677: 676: 671: 660: 658: 657: 656: 644: 643: 640: 633: 628: 618: 613: 604: 603: 590: 588: 583: 573: 568: 555: 464: 462: 461: 456: 454: 444: 441: 439: 434: 424: 421: 419: 414: 404: 401: 399: 394: 384: 381: 379: 350:potential energy 234:Hydrogen bonding 98:Hydrogen bonding 2757: 2756: 2752: 2751: 2750: 2748: 2747: 2746: 2722: 2721: 2720: 2715: 2664: 2637: 2580: 2572: 2534: 2521: 2511: 2503: 2497: 2491: 2478: 2463: 2445: 2333: 2325: 2320: 2290: 2251: 2247: 2215: 2209: 2205: 2165: 2159: 2155: 2107: 2101: 2097: 2074: 2070: 2051: 2047: 2002: 1998: 1963: 1959: 1922: 1918: 1863: 1859: 1844: 1830:Garland Science 1820: 1816: 1809: 1795: 1791: 1782: 1780: 1771: 1770: 1766: 1759: 1747:Eğe SN (2004). 1745: 1741: 1702: 1698: 1675: 1668: 1637: 1630: 1614: 1608: 1604: 1557: 1546: 1537: 1535: 1520: 1516: 1509: 1495: 1491: 1460: 1456: 1449: 1435: 1431: 1425: 1403: 1399: 1374: 1370: 1361: 1359: 1351: 1350: 1346: 1339: 1325: 1321: 1284: 1280: 1276: 1271: 1237:Molecular solid 1202: 1164: 1158: 1118: 994: 985: 972: 966: 936: 932: 930: 927: 926: 894: 890: 884: 879: 869: 864: 854: 850: 846: 839: 835: 829: 824: 816: 814: 812: 809: 808: 782: 756: 752: 750: 747: 746: 745:= temperature, 725: 721: 719: 716: 715: 698: 694: 692: 689: 688: 652: 648: 639: 635: 629: 624: 614: 609: 599: 595: 591: 584: 579: 569: 564: 556: 554: 552: 549: 548: 525: 516: 510: 489: 440: 438: 420: 418: 400: 398: 380: 378: 376: 373: 372: 367: 345: 336: 330: 242: 236: 153:pair potentials 64:Alexis Clairaut 29:secondary force 17: 12: 11: 5: 2755: 2745: 2744: 2739: 2734: 2717: 2716: 2714: 2713: 2708: 2703: 2702: 2701: 2696: 2691: 2686: 2675: 2673: 2666: 2665: 2663: 2662: 2657: 2651: 2649: 2643: 2642: 2639: 2638: 2636: 2635: 2630: 2625: 2620: 2615: 2610: 2600: 2595: 2590: 2584: 2582: 2574: 2573: 2571: 2570: 2565: 2560: 2555: 2550: 2544: 2542: 2536: 2535: 2533: 2532: 2526: 2524: 2513: 2509:Intermolecular 2505: 2504: 2485: 2483: 2480: 2479: 2477: 2476: 2473: 2471: 2465: 2464: 2462: 2461: 2455: 2453: 2447: 2446: 2444: 2443: 2442: 2441: 2436: 2426: 2421: 2416: 2411: 2406: 2401: 2396: 2391: 2386: 2381: 2380: 2379: 2369: 2368: 2367: 2362: 2357: 2346: 2344: 2335: 2331:Intramolecular 2327: 2326: 2323:Chemical bonds 2319: 2318: 2311: 2304: 2296: 2289: 2288: 2261:(1): 268–278. 2245: 2226:(6): 724–735. 2203: 2153: 2095: 2068: 2045: 1996: 1957: 1916: 1857: 1842: 1814: 1807: 1789: 1764: 1757: 1739: 1696: 1666: 1647:(3): 249–257. 1628: 1602: 1544: 1528:mikeblaber.org 1514: 1507: 1497:Tro N (2011). 1489: 1454: 1447: 1429: 1423: 1397: 1368: 1357:global.oup.com 1344: 1337: 1319: 1277: 1275: 1272: 1270: 1269: 1264: 1259: 1254: 1249: 1244: 1239: 1234: 1229: 1224: 1219: 1214: 1209: 1203: 1201: 1198: 1160:Main article: 1157: 1154: 1142:thermal energy 1117: 1114: 1098:hydrogen bonds 1075: 1074: 1071: 1068: 1065: 1061: 1060: 1058: 1055: 1052: 1051:Dipole–dipole 1048: 1047: 1044: 1041: 1038: 1032: 1031: 1029: 1026: 1023: 1022:Covalent bond 1019: 1018: 1016: 1013: 1010: 1009:Ionic lattice 1006: 1005: 1002: 996: 991: 984: 981: 968:Main article: 965: 962: 939: 935: 923: 922: 911: 908: 905: 897: 893: 887: 882: 878: 872: 867: 863: 857: 853: 849: 842: 838: 832: 827: 823: 819: 796:, named after 781: 778: 755: 728: 724: 701: 697: 681: 680: 669: 666: 663: 655: 651: 647: 638: 632: 627: 623: 617: 612: 608: 602: 598: 594: 587: 582: 578: 572: 567: 563: 559: 532:, named after 524: 521: 512:Main article: 509: 506: 488: 485: 478:carbon dioxide 466: 465: 451: 448: 437: 431: 428: 417: 411: 408: 397: 391: 388: 365: 344: 341: 332:Main article: 329: 326: 238:Main article: 235: 232: 184:molecular ions 155:, such as the 137: 136: 131: 126: 109: 103: 100: 15: 9: 6: 4: 3: 2: 2754: 2743: 2740: 2738: 2735: 2733: 2730: 2729: 2727: 2712: 2709: 2707: 2704: 2700: 2697: 2695: 2692: 2690: 2687: 2685: 2684:HĂŒckel's rule 2682: 2681: 2680: 2677: 2676: 2674: 2671: 2667: 2661: 2658: 2656: 2653: 2652: 2650: 2648: 2647:Bond cleavage 2644: 2634: 2631: 2629: 2626: 2624: 2621: 2619: 2616: 2614: 2613:Intercalation 2611: 2608: 2604: 2603:Metallophilic 2601: 2599: 2596: 2594: 2591: 2589: 2586: 2585: 2583: 2579: 2575: 2569: 2566: 2564: 2561: 2559: 2556: 2554: 2551: 2549: 2546: 2545: 2543: 2541: 2537: 2531: 2528: 2527: 2525: 2523: 2520:Van der Waals 2517: 2514: 2510: 2506: 2501: 2495: 2489: 2475: 2474: 2472: 2470: 2466: 2460: 2457: 2456: 2454: 2452: 2448: 2440: 2437: 2435: 2432: 2431: 2430: 2427: 2425: 2422: 2420: 2417: 2415: 2412: 2410: 2407: 2405: 2402: 2400: 2397: 2395: 2392: 2390: 2387: 2385: 2382: 2378: 2375: 2374: 2373: 2370: 2366: 2363: 2361: 2358: 2356: 2353: 2352: 2351: 2348: 2347: 2345: 2343: 2339: 2336: 2332: 2328: 2324: 2317: 2312: 2310: 2305: 2303: 2298: 2297: 2294: 2284: 2280: 2276: 2272: 2268: 2264: 2260: 2256: 2249: 2241: 2237: 2233: 2229: 2225: 2221: 2214: 2207: 2199: 2195: 2191: 2187: 2183: 2179: 2175: 2171: 2164: 2157: 2149: 2145: 2141: 2137: 2133: 2129: 2125: 2121: 2117: 2113: 2106: 2099: 2091: 2087: 2083: 2079: 2072: 2064: 2059: 2058: 2049: 2041: 2037: 2033: 2029: 2024: 2019: 2015: 2011: 2007: 2000: 1992: 1988: 1984: 1980: 1976: 1972: 1968: 1961: 1952: 1947: 1943: 1939: 1935: 1931: 1927: 1920: 1912: 1908: 1903: 1898: 1893: 1888: 1884: 1880: 1876: 1872: 1868: 1861: 1853: 1849: 1845: 1839: 1835: 1831: 1827: 1826: 1818: 1810: 1804: 1800: 1793: 1778: 1774: 1768: 1760: 1754: 1750: 1743: 1735: 1731: 1727: 1723: 1719: 1715: 1711: 1707: 1700: 1692: 1688: 1684: 1680: 1673: 1671: 1662: 1658: 1654: 1650: 1646: 1642: 1635: 1633: 1624: 1620: 1613: 1606: 1598: 1594: 1589: 1584: 1579: 1574: 1570: 1566: 1562: 1555: 1553: 1551: 1549: 1534:on 2020-08-01 1533: 1529: 1525: 1518: 1510: 1504: 1500: 1493: 1485: 1481: 1477: 1473: 1469: 1465: 1458: 1450: 1444: 1440: 1433: 1426: 1420: 1416: 1412: 1408: 1401: 1395: 1391: 1387: 1386:hydrogen bond 1383: 1382: 1377: 1372: 1358: 1354: 1348: 1340: 1334: 1330: 1323: 1314: 1309: 1305: 1301: 1297: 1293: 1289: 1282: 1278: 1268: 1265: 1263: 1260: 1258: 1255: 1253: 1250: 1248: 1245: 1243: 1240: 1238: 1235: 1233: 1230: 1228: 1225: 1223: 1220: 1218: 1215: 1213: 1210: 1208: 1207:Ionic bonding 1205: 1204: 1197: 1193: 1191: 1186: 1182: 1178: 1174: 1170: 1163: 1153: 1149: 1147: 1143: 1138: 1136: 1131: 1127: 1123: 1113: 1111: 1107: 1103: 1102:covalent bond 1099: 1095: 1091: 1087: 1083: 1082:Ionic bonding 1072: 1069: 1066: 1063: 1062: 1059: 1056: 1053: 1050: 1049: 1045: 1042: 1039: 1037: 1036:Hydrogen bond 1034: 1033: 1030: 1027: 1024: 1021: 1020: 1017: 1014: 1011: 1008: 1007: 1003: 1001: 997: 992: 989: 988: 980: 978: 971: 961: 959: 953: 937: 933: 909: 906: 903: 895: 891: 885: 880: 876: 870: 865: 861: 855: 851: 847: 840: 836: 830: 825: 821: 817: 807: 806: 805: 801: 799: 795: 791: 786: 777: 775: 753: 744: 726: 722: 699: 695: 686: 667: 664: 661: 653: 649: 645: 636: 630: 625: 621: 615: 610: 606: 600: 596: 592: 585: 580: 576: 570: 565: 561: 557: 547: 546: 545: 542: 537: 535: 531: 520: 515: 505: 501: 499: 493: 484: 481: 479: 475: 471: 470:dipole moment 449: 446: 435: 429: 426: 415: 409: 406: 395: 389: 386: 371: 370: 369: 363: 359: 355: 351: 340: 335: 325: 323: 319: 318:nucleic acids 315: 311: 307: 303: 299: 295: 285: 281: 279: 275: 271: 267: 263: 259: 255: 251: 247: 246:hydrogen bond 241: 240:Hydrogen bond 231: 229: 225: 221: 217: 213: 209: 205: 201: 197: 193: 189: 185: 181: 177: 173: 168: 166: 162: 158: 157:Mie potential 154: 150: 146: 142: 135: 132: 130: 127: 125: 121: 117: 113: 110: 107: 104: 101: 99: 96: 95: 94: 91: 89: 85: 81: 77: 73: 69: 65: 60: 58: 54: 50: 49:covalent bond 46: 42: 38: 34: 30: 26: 22: 2689:Baird's rule 2508: 2409:Charge-shift 2372:Hypervalence 2258: 2254: 2248: 2223: 2220:ChemPhysChem 2219: 2206: 2173: 2169: 2156: 2115: 2111: 2098: 2081: 2077: 2071: 2056: 2048: 2013: 2009: 1999: 1974: 1970: 1960: 1933: 1929: 1919: 1874: 1870: 1860: 1824: 1817: 1798: 1792: 1781:. Retrieved 1776: 1767: 1748: 1742: 1709: 1705: 1699: 1682: 1678: 1644: 1640: 1622: 1618: 1605: 1568: 1564: 1536:. Retrieved 1532:the original 1527: 1517: 1498: 1492: 1467: 1463: 1457: 1438: 1432: 1406: 1400: 1379: 1371: 1360:. Retrieved 1356: 1347: 1328: 1322: 1295: 1291: 1281: 1212:Salt bridges 1194: 1165: 1150: 1139: 1119: 1078: 1070:<4 to 63 1067:<1 to 15 999: 973: 954: 924: 802: 793: 790:polarization 787: 783: 773: 742: 684: 682: 538: 529: 526: 517: 502: 494: 490: 482: 467: 346: 337: 290: 245: 243: 220:biochemistry 169: 138: 116:Keesom force 92: 67: 61: 53:force fields 28: 24: 20: 18: 2679:Aromaticity 2655:Heterolysis 2633:Salt bridge 2578:Noncovalent 2548:Low-barrier 2429:Aromaticity 2419:Conjugation 2399:Pi backbond 1877:(5): e468. 1146:Temperature 1015:1100–20000 995:(kcal/mol) 794:Debye force 328:Salt bridge 120:Debye force 2726:Categories 2607:aurophilic 2588:Mechanical 1936:: 113876. 1783:2014-01-21 1625:: 636–646. 1538:2011-11-17 1362:2024-01-04 1298:: 113876. 1274:References 990:Bond type 362:chloroform 360:(HCl) and 256:, usually 228:enzymology 2699:spherical 2660:Homolysis 2623:Cation–pi 2598:Chalcogen 2558:Symmetric 2414:Hapticity 2283:209488458 2148:211070812 2032:1365-3075 1991:0003-3804 1852:887605755 1267:Solvation 1130:ideal gas 1094:substrate 1028:130–1100 1012:250–4000 1000:(kJ/mol) 934:α 877:ε 862:ε 852:π 837:α 818:− 723:ε 696:ε 622:ε 607:ε 597:π 558:− 450:− 447:δ 436:− 427:δ 416:⋯ 410:− 407:δ 396:− 387:δ 302:secondary 216:substrate 196:enzymatic 172:molecules 141:viscosity 84:Boltzmann 2628:Anion–pi 2618:Stacking 2540:Hydrogen 2451:Metallic 2342:Covalent 2334:(strong) 2275:31877034 2240:29250908 2198:28664951 2140:32039597 2040:97688573 1911:17520027 1871:PLOS ONE 1685:: 1346. 1661:93104668 1597:23202925 1484:27136957 1200:See also 1126:real gas 541:ensemble 322:polymers 314:proteins 306:tertiary 266:fluorine 258:nitrogen 250:hydrogen 208:catalyst 188:covalent 106:Cation–π 66:'s work 2593:Halogen 2439:bicyclo 2384:Agostic 2178:Bibcode 2120:Bibcode 2063:368–376 1938:Bibcode 1902:1868595 1879:Bibcode 1734:4304250 1714:Bibcode 1588:3497299 1300:Bibcode 1242:Polymer 1025:30–260 977:Hamaker 278:valence 88:Pauling 80:Maxwell 72:Laplace 27:; also 2694:Möbius 2522:forces 2512:(weak) 2281:  2273:  2238:  2196:  2146:  2138:  2038:  2030:  1989:  1909:  1899:  1850:  1840:  1805:  1755:  1732:  1706:Nature 1659:  1595:  1585:  1505:  1482:  1445:  1421:  1335:  1090:enzyme 1054:0.5–2 925:where 683:where 308:, and 262:oxygen 204:enzyme 122:, and 2672:rules 2581:other 2469:Ionic 2377:3c–4e 2365:8c–2e 2360:4c–2e 2355:3c–2e 2279:S2CID 2216:(PDF) 2166:(PDF) 2144:S2CID 2108:(PDF) 2036:S2CID 1977:(6). 1730:S2CID 1657:S2CID 1615:(PDF) 1376:IUPAC 1043:4–50 1040:1–12 1004:Note 364:(CHCl 294:water 264:, or 176:atoms 76:Gauss 37:atoms 2434:homo 2389:Bent 2271:PMID 2236:PMID 2194:PMID 2136:PMID 2028:ISSN 1987:ISSN 1907:PMID 1848:OCLC 1838:ISBN 1803:ISBN 1753:ISBN 1593:PMID 1503:ISBN 1480:PMID 1443:ISBN 1419:ISBN 1333:ISBN 1084:and 1057:2–8 476:and 316:and 222:and 198:and 182:and 180:ions 86:and 41:ions 2263:doi 2228:doi 2186:doi 2128:doi 2116:124 2086:doi 2018:doi 1979:doi 1975:536 1946:doi 1934:573 1897:PMC 1887:doi 1722:doi 1710:278 1687:doi 1649:doi 1583:PMC 1573:doi 1472:doi 1468:116 1411:doi 1390:doi 1388:". 1308:doi 1296:573 1137:). 368:). 312:of 230:). 163:or 39:or 25:IMF 19:An 2728:: 2277:. 2269:. 2259:60 2257:. 2234:. 2224:19 2222:. 2218:. 2192:. 2184:. 2174:19 2172:. 2168:. 2142:. 2134:. 2126:. 2114:. 2110:. 2082:98 2080:. 2034:. 2026:. 2014:83 2012:. 2008:. 1985:. 1973:. 1969:. 1944:. 1932:. 1928:. 1905:. 1895:. 1885:. 1873:. 1869:. 1846:. 1836:. 1832:- 1775:. 1728:. 1720:. 1708:. 1683:34 1681:. 1669:^ 1655:. 1645:47 1643:. 1631:^ 1623:18 1621:. 1617:. 1591:. 1581:. 1569:13 1567:. 1563:. 1547:^ 1526:. 1478:. 1466:. 1417:, 1378:, 1355:. 1306:. 1294:. 1290:. 1171:, 1112:. 960:. 848:16 800:. 593:24 442:Cl 402:Cl 304:, 260:, 244:A 178:, 174:, 167:. 159:, 143:, 118:, 114:– 90:. 82:, 78:, 74:, 59:. 2609:) 2605:( 2315:e 2308:t 2301:v 2285:. 2265:: 2242:. 2230:: 2200:. 2188:: 2180:: 2150:. 2130:: 2122:: 2092:. 2088:: 2065:. 2042:. 2020:: 1993:. 1981:: 1954:. 1948:: 1940:: 1913:. 1889:: 1881:: 1875:2 1854:. 1811:. 1786:. 1761:. 1736:. 1724:: 1716:: 1693:. 1689:: 1663:. 1651:: 1599:. 1575:: 1541:. 1511:. 1486:. 1474:: 1451:. 1413:: 1392:: 1365:. 1341:. 1316:. 1310:: 1302:: 938:2 910:, 907:V 904:= 896:6 892:r 886:2 881:r 871:2 866:0 856:2 841:2 831:2 826:1 822:d 774:r 758:B 754:k 743:T 727:r 700:0 685:d 668:, 665:V 662:= 654:6 650:r 646:T 641:B 637:k 631:2 626:r 616:2 611:0 601:2 586:2 581:2 577:d 571:2 566:1 562:d 430:+ 422:H 390:+ 382:H 366:3 23:(

Index

electromagnetic forces of attraction or repulsion
atoms
ions
intramolecular forces
covalent bond
force fields
molecular mechanics
Alexis Clairaut
Laplace
Gauss
Maxwell
Boltzmann
Pauling
Hydrogen bonding
Cation–π
Van der Waals forces
Keesom force
Debye force
London dispersion force
Cation–cation bonding
Salt bridge (protein and supramolecular)
viscosity
pressure, volume, temperature
virial coefficients
pair potentials
Mie potential
Buckingham potential
Lennard-Jones potential
molecules
atoms

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑