Knowledge

Porous medium

Source 📝

270: 1277: 1289: 31: 1301: 246:
Depending on the goal, these two techniques are frequently employed since they are complimentary. It is obvious that the microscopic description is required to comprehend surface phenomena like the adsorption of macromolecules from polymer solutions and the blocking of pores, whereas the macroscopic
288:
Numerous factors influence fluid flow in porous media, and its fundamental function is to expend energy and create fluid via the wellbore. In flow mechanics via porous medium, the connection between energy and flow rate becomes the most significant issue. The most fundamental law that characterizes
238:
At the microscopic and macroscopic levels, porous media can be classified. At the microscopic scale, the structure is represented statistically by the distribution of pore sizes, the degree of pore interconnection and orientation, the proportion of dead pores, etc. The macroscopic technique makes
354:. The generalized Murray's law is based on optimizing mass transfer by minimizing transport resistance in pores with a given volume, and can be applicable for optimizing mass transfer involving mass variations and chemical reactions involving flow processes, molecule or ion diffusion. 97:) can sometimes be derived from the respective properties of its constituents (solid matrix and fluid) and the media porosity and pores structure, but such a derivation is usually complex. Even the concept of porosity is only straightforward for a poroelastic medium. 789:
Martinez M.J., McTigue D.F. (1996) Modeling in Nuclear Waste Isolation: Approximate Solutions for Flow in Unsaturated Porous Media. In: Wheeler M.F. (eds) Environmental Studies. The IMA Volumes in Mathematics and its Applications, vol 79. Springer, New York,
301:
A representation of the void phase that exists inside porous materials using a set or network of pores. It serves as a structural foundation for the prediction of transport parameters and is employed in the context of pore structure characterisation.
277:
Fluid flow through porous media is a subject of common interest and has emerged a separate field of study. The study of more general behaviour of porous media involving deformation of the solid frame is called
462: 330:-like structure, having a pore surface area that seems to grow indefinitely when viewed with progressively increasing resolution. Mathematically, this is described by assigning the pore surface a 960: 972:
Peng, Sheng; Hu, Qinhong; Dultz, Stefan; Zhang, Ming (2012). "Using X-ray computed tomography in pore structure characterization for a Berea sandstone: Resolution effect".
833:
Mohammadizadeh, SeyedMehdi; Moghaddam, Mehdi Azhdary; Talebbeydokhti, Naser (2021). "Analysis of Flow in Porous Media using Combined Pressurized-Free surface Network".
961:
M. K. Head, H. S. Wong, N. R. Buenfeld, "Characterisation of 'Hadley’ Grains by Confocal Microscopy", Cement & Concrete Research (2006), 36 (8) 1483 -1489
100:
Often both the solid matrix and the pore network (also known as the pore space) are continuous, so as to form two interpenetrating continua such as in a
1127: 564:
Hierarchically Structured Porous Materials: From Nanoscience to Catalysis, Separation, Optics, Energy, and Life Science - Wiley Online Library
740: 537: 597:"Tuning and transferring slow photons from TiO2 photonic crystals to BiVO4 nanoparticles for unprecedented visible light photocatalysis" 147:
can be considered as porous media. Many of their important properties can only be rationalized by considering them to be porous media.
378: 293:, particularly applicable to fine-porous media. In contrast, Forchheimer's law finds utility in the context of coarse-porous media. 1164: 1122: 877: 817: 645: 54:(voids). The skeletal portion of the material is often called the "matrix" or "frame". The pores are typically filled with a 1005:"Porous Liner Coated Inlet Duct: A Novel Approach to Attenuate Automotive Turbocharger Inlet Flow-Induced Sound Propagation" 285:
The theory of porous flows has applications in inkjet printing and nuclear waste disposal technologies, among others.
723: 687: 579: 255:
are of highest concern. and the molecular dimensions are significantly smaller than pore size of the porous system.
1305: 1189: 264: 542: 1137: 17: 1157: 342:. Porous materials have found some applications in many engineering fields including automotive sectors. 780:
Stephen D. Hoath, "Fundamentals of Inkjet Printing - The Science of Inkjet and Droplets", Wiley VCH 2016
305:
There are many idealized models of pore structures. They can be broadly divided into three categories:
1184: 934:
Crawford, J.W. (1994). "The relationship between structure and the hydraulic conductivity of soil".
595:
Madanu, Thomas L.; Mouchet, Sébastien R.; Deparis, Olivier; Liu, Jing; Li, Yu; Su, Bao-Lian (2023).
187: 1281: 90: 1150: 1327: 1293: 1207: 517: 269: 214:. Two important current fields of application for porous materials are energy conversion and 179: 1053: 977: 906: 82: 1132: 8: 1202: 507: 335: 331: 124: 1057: 981: 910: 1332: 1252: 1133:
Graphical depiction of different flow rates through materials of differing permeability
1082: 1041: 947: 763: 679: 512: 105: 334:
greater than 2. Experimental methods for the investigation of pore structures include
150:
The concept of porous media is used in many areas of applied science and engineering:
1288: 1087: 1069: 873: 869: 813: 767: 719: 683: 667: 641: 575: 470:
is the ratio of mass variation during mass transfer in the parent pore, the exponent
316: 199: 132: 39: 759: 1077: 1061: 1016: 985: 943: 914: 865: 857: 838: 805: 755: 711: 675: 633: 608: 567: 522: 339: 227: 211: 86: 989: 1247: 895:"Fractal pore structure of sedimentary rocks: Simulation by ballistic deposition" 842: 351: 136: 1037: 1021: 1004: 809: 612: 290: 215: 183: 171: 167: 112: 1321: 1173: 1073: 715: 596: 532: 279: 252: 240: 626:
Zhang, Tao; Asefa, Tewodros (2020). Gitis, Vitaly; Rothenberg, Gadi (eds.).
1257: 1242: 1091: 703: 195: 163: 571: 1262: 1237: 919: 894: 191: 175: 1065: 1227: 1222: 527: 502: 248: 207: 203: 151: 94: 1232: 832: 310: 223: 219: 159: 155: 1036:
Zheng, Xianfeng; Shen, Guofang; Wang, Chao; Li, Yu; Dunphy, Darren;
741:"Tortuosity of porous media: Image analysis and physical simulation" 497: 78: 51: 637: 218:, where porous materials are essential for superpacitors, (photo-) 1217: 1212: 327: 247:
approach is frequently quite sufficient for process design where
144: 128: 120: 1142: 627: 74:
are often also usefully analyzed using concept of porous media.
30: 457:{\displaystyle r_{o}^{a}={1 \over 1-X}\sum _{i=1}^{N}r_{i}^{a}} 140: 101: 59: 1042:"Bio-inspired Murray materials for mass transfer and activity" 243:
that have been averaged at scales far bigger than pore size.
67: 55: 739:
Fu, Jinlong; Thomas, Hywel R.; Li, Chenfeng (January 2021).
562:
Su, Bao-Lian; Sanchez, Clément; Yang, Xiao-Yu, eds. (2011).
476:
is dependent on the type of the transfer. For laminar flow
116: 71: 104:. However, there is also a concept of closed porosity and 63: 672:
Non-Newtonian Flow and Applied Rheology (Second Edition)
708:
Modelling, Simulation and Control of the Dyeing Process
594: 661: 659: 657: 381: 666:
Chhabra, R. P.; Richardson, J. F. (1 January 2008).
77:A porous medium is most often characterised by its 1040:; Brinker, C. Jeffrey; Su, Bao-Lian (2017-04-06). 654: 456: 258: 665: 1319: 971: 1035: 1128:Tailoring porous media to control permeability 710:. Woodhead Publishing: 54–81. 1 January 2014. 375:, the formula of generalized Murray's law is: 233: 1158: 561: 899:Journal of Geophysical Research: Solid Earth 357:For connecting a parent pipe with radius of 345: 1165: 1151: 1138:Fundamentals of Fluid Flow in Porous Media 738: 625: 108:, i.e. the pore space accessible to flow. 1081: 1020: 918: 1002: 933: 855: 601:Journal of Colloid and Interface Science 350:One of the Laws for porous materials is 296: 268: 29: 81:. Other properties of the medium (e.g. 14: 1320: 484:=7/3; for molecule or ionic diffusion 366:to many children pipes with radius of 66:). The skeletal material is usually a 27:Material containing fluid-filled voids 1146: 892: 1300: 704:"3 - Dye transport in fluid systems" 1110:Dynamics of Fluids in Porous Media. 24: 1102: 948:10.1111/j.1365-2389.1994.tb00535.x 680:10.1016/b978-0-7506-8532-0.00005-6 674:. Butterworth-Heinemann: 249–315. 139:), and man made materials such as 25: 1344: 1172: 1116: 668:"Chapter 5 - Particulate systems" 315:arrays of solid particles (e.g., 1299: 1287: 1276: 1275: 936:European Journal of Soil Science 870:10.1007/978-3-642-40872-4_1055-2 111:Many natural substances such as 1029: 996: 965: 954: 927: 886: 849: 826: 760:10.1016/j.earscirev.2020.103439 632:. Singapore: WORLD SCIENTIFIC. 273:Fluid flow through porous media 265:Fluid flow through porous media 259:Fluid flow through porous media 793: 783: 774: 732: 696: 619: 588: 555: 326:Porous materials often have a 13: 1: 990:10.1016/j.jhydrol.2012.09.034 548: 1009:Engineering Research Express 843:10.1615/JPorMedia.2021025407 629:Handbook of Porous Materials 352:the generalized Murray's law 7: 1003:Ravanbod, Mohammad (2023). 491: 234:Microscopic and macroscopic 10: 1349: 856:Burganos, Vasilis (2015). 837:. Begel House Inc.: 1–15. 810:10.1142/9789811219535_0002 802:Fluid Flow in Porous Media 613:10.1016/j.jcis.2022.12.033 262: 1271: 1198: 1180: 862:Encyclopedia of Membranes 346:Laws for porous materials 50:is a material containing 1022:10.1088/2631-8695/acbfa4 804:: 47–67. November 2020. 716:10.1533/9780857097583.54 188:construction engineering 835:journal of Porous Media 480:=3; for turbulent flow 91:electrical conductivity 1123:Defining Permeability 893:Dutta, Tapati (2003). 458: 438: 274: 70:, but structures like 35: 1208:Environmental science 1046:Nature Communications 748:Earth-Science Reviews 572:10.1002/9783527639588 518:Percolation threshold 459: 418: 297:Pore structure models 272: 180:petroleum engineering 33: 1112:(Elsevier, New York) 976:. 472–473: 254–261. 974:Journal of Hydrology 920:10.1029/2001JB000523 503:Nanoporous materials 379: 125:petroleum reservoirs 1203:Atmospheric science 1066:10.1038/ncomms14921 1058:2017NatCo...814921Z 982:2012JHyd..472..254P 911:2003JGRB..108.2062D 508:NMR in porous media 453: 396: 336:confocal microscopy 332:Hausdorff dimension 289:this connection is 135:(e.g. bones, wood, 1253:Physical geography 538:Reactive transport 513:Percolation theory 454: 439: 382: 275: 133:biological tissues 106:effective porosity 36: 1315: 1314: 879:978-3-642-40872-4 864:. Springer: 1–2. 819:978-981-12-1952-8 647:978-981-12-2322-8 416: 317:random close pack 200:petroleum geology 40:materials science 34:Open-cell ceramic 16:(Redirected from 1340: 1303: 1302: 1291: 1279: 1278: 1167: 1160: 1153: 1144: 1143: 1096: 1095: 1085: 1033: 1027: 1026: 1024: 1000: 994: 993: 969: 963: 958: 952: 951: 931: 925: 924: 922: 890: 884: 883: 853: 847: 846: 830: 824: 823: 800:"Basic theory". 797: 791: 787: 781: 778: 772: 771: 745: 736: 730: 729: 700: 694: 693: 663: 652: 651: 623: 617: 616: 592: 586: 585: 559: 523:Reticulated foam 463: 461: 460: 455: 452: 447: 437: 432: 417: 415: 401: 395: 390: 340:x-ray tomography 212:material science 87:tensile strength 21: 1348: 1347: 1343: 1342: 1341: 1339: 1338: 1337: 1318: 1317: 1316: 1311: 1267: 1248:Paleogeoscience 1194: 1176: 1171: 1119: 1108:J. Bear; (1972) 1105: 1103:Further reading 1100: 1099: 1038:Hasan, Tawfique 1034: 1030: 1001: 997: 970: 966: 959: 955: 932: 928: 891: 887: 880: 854: 850: 831: 827: 820: 799: 798: 794: 788: 784: 779: 775: 743: 737: 733: 726: 702: 701: 697: 690: 664: 655: 648: 624: 620: 593: 589: 582: 560: 556: 551: 494: 448: 443: 433: 422: 405: 400: 391: 386: 380: 377: 376: 372: 363: 348: 299: 267: 261: 241:bulk properties 236: 206:), biology and 48:porous material 28: 23: 22: 15: 12: 11: 5: 1346: 1336: 1335: 1330: 1313: 1312: 1310: 1309: 1297: 1285: 1272: 1269: 1268: 1266: 1265: 1260: 1255: 1250: 1245: 1240: 1235: 1230: 1225: 1220: 1215: 1210: 1205: 1199: 1196: 1195: 1193: 1192: 1187: 1181: 1178: 1177: 1170: 1169: 1162: 1155: 1147: 1141: 1140: 1135: 1130: 1125: 1118: 1117:External links 1115: 1114: 1113: 1104: 1101: 1098: 1097: 1028: 995: 964: 953: 942:(4): 493–502. 926: 885: 878: 848: 825: 818: 792: 782: 773: 731: 724: 695: 688: 653: 646: 618: 587: 580: 553: 552: 550: 547: 546: 545: 540: 535: 530: 525: 520: 515: 510: 505: 500: 493: 490: 451: 446: 442: 436: 431: 428: 425: 421: 414: 411: 408: 404: 399: 394: 389: 385: 370: 361: 347: 344: 324: 323: 320: 313: 298: 295: 263:Main article: 260: 257: 235: 232: 216:energy storage 184:bioremediation 172:rock mechanics 168:soil mechanics 26: 9: 6: 4: 3: 2: 1345: 1334: 1331: 1329: 1326: 1325: 1323: 1308: 1307: 1298: 1296: 1295: 1290: 1286: 1284: 1283: 1274: 1273: 1270: 1264: 1261: 1259: 1256: 1254: 1251: 1249: 1246: 1244: 1241: 1239: 1236: 1234: 1231: 1229: 1226: 1224: 1221: 1219: 1216: 1214: 1211: 1209: 1206: 1204: 1201: 1200: 1197: 1191: 1188: 1186: 1183: 1182: 1179: 1175: 1174:Earth science 1168: 1163: 1161: 1156: 1154: 1149: 1148: 1145: 1139: 1136: 1134: 1131: 1129: 1126: 1124: 1121: 1120: 1111: 1107: 1106: 1093: 1089: 1084: 1079: 1075: 1071: 1067: 1063: 1059: 1055: 1051: 1047: 1043: 1039: 1032: 1023: 1018: 1015:(1): 015047. 1014: 1010: 1006: 999: 991: 987: 983: 979: 975: 968: 962: 957: 949: 945: 941: 937: 930: 921: 916: 912: 908: 904: 900: 896: 889: 881: 875: 871: 867: 863: 859: 852: 844: 840: 836: 829: 821: 815: 811: 807: 803: 796: 786: 777: 769: 765: 761: 757: 753: 749: 742: 735: 727: 725:9780857091338 721: 717: 713: 709: 705: 699: 691: 689:9780750685320 685: 681: 677: 673: 669: 662: 660: 658: 649: 643: 639: 638:10.1142/11909 635: 631: 630: 622: 614: 610: 606: 602: 598: 591: 583: 581:9783527639588 577: 573: 569: 565: 558: 554: 544: 541: 539: 536: 534: 533:Poromechanics 531: 529: 526: 524: 521: 519: 516: 514: 511: 509: 506: 504: 501: 499: 496: 495: 489: 487: 483: 479: 475: 474: 469: 468: 449: 444: 440: 434: 429: 426: 423: 419: 412: 409: 406: 402: 397: 392: 387: 383: 374: 373: 365: 364: 355: 353: 343: 341: 337: 333: 329: 321: 318: 314: 312: 308: 307: 306: 303: 294: 292: 286: 283: 281: 280:poromechanics 271: 266: 256: 254: 253:mass transfer 250: 244: 242: 231: 229: 225: 221: 217: 213: 209: 205: 201: 197: 193: 189: 185: 181: 177: 173: 169: 165: 161: 157: 153: 148: 146: 142: 138: 134: 130: 126: 122: 118: 114: 109: 107: 103: 98: 96: 92: 88: 84: 80: 75: 73: 69: 65: 61: 57: 53: 49: 45: 44:porous medium 41: 32: 19: 1328:Porous media 1304: 1292: 1280: 1258:Soil science 1243:Oceanography 1109: 1049: 1045: 1031: 1012: 1008: 998: 973: 967: 956: 939: 935: 929: 905:(B2): 2062. 902: 898: 888: 861: 858:"Pore Model" 851: 834: 828: 801: 795: 785: 776: 751: 747: 734: 707: 698: 671: 628: 621: 604: 600: 590: 563: 557: 543:Permeability 485: 481: 477: 472: 471: 466: 465: 464:, where the 368: 367: 359: 358: 356: 349: 325: 309:networks of 304: 300: 287: 284: 276: 251:, heat, and 245: 237: 196:hydrogeology 164:geomechanics 149: 110: 99: 83:permeability 76: 47: 43: 37: 18:Porous media 1263:Volcanology 1238:Meteorology 607:: 290–299. 319:of spheres) 311:capillaries 291:Darcy's law 192:geosciences 176:engineering 1322:Categories 1228:Glaciology 1223:Geophysics 754:: 103439. 549:References 528:Filtration 249:fluid flow 224:fuel cells 208:biophysics 204:geophysics 152:filtration 95:tortuosity 1333:Materials 1233:Hydrology 1074:2041-1723 1052:: 14921. 768:229386129 488:=2; etc. 420:∑ 410:− 228:batteries 220:catalysis 160:acoustics 156:mechanics 1282:Category 1092:28382972 498:Cenocell 492:See also 322:trimodal 145:ceramics 129:zeolites 121:aquifers 79:porosity 1306:Commons 1218:Geology 1213:Geodesy 1185:Outline 1083:5384213 1054:Bibcode 978:Bibcode 907:Bibcode 328:fractal 239:use of 141:cements 1294:Portal 1090:  1080:  1072:  876:  816:  766:  722:  686:  644:  578:  226:, and 119:(e.g. 102:sponge 60:liquid 1190:Index 764:S2CID 744:(PDF) 113:rocks 72:foams 68:solid 56:fluid 52:pores 46:or a 1088:PMID 1070:ISSN 874:ISBN 814:ISBN 720:ISBN 684:ISBN 642:ISBN 576:ISBN 338:and 143:and 137:cork 117:soil 115:and 42:, a 1078:PMC 1062:doi 1017:doi 986:doi 944:doi 915:doi 903:108 866:doi 839:doi 806:doi 756:doi 752:212 712:doi 676:doi 634:doi 609:doi 605:634 568:doi 190:), 174:), 127:), 64:gas 62:or 38:In 1324:: 1086:. 1076:. 1068:. 1060:. 1048:. 1044:. 1011:. 1007:. 984:. 940:45 938:. 913:. 901:. 897:. 872:. 860:. 812:. 790:NY 762:. 750:. 746:. 718:. 706:. 682:. 670:. 656:^ 640:. 603:. 599:. 574:. 566:. 282:. 230:. 222:, 210:, 202:, 198:, 186:, 182:, 170:, 166:, 162:, 154:, 131:, 123:, 93:, 89:, 85:, 1166:e 1159:t 1152:v 1094:. 1064:: 1056:: 1050:8 1025:. 1019:: 1013:5 992:. 988:: 980:: 950:. 946:: 923:. 917:: 909:: 882:. 868:: 845:. 841:: 822:. 808:: 770:. 758:: 728:. 714:: 692:. 678:: 650:. 636:: 615:. 611:: 584:. 570:: 486:α 482:α 478:α 473:α 467:X 450:a 445:i 441:r 435:N 430:1 427:= 424:i 413:X 407:1 403:1 398:= 393:a 388:o 384:r 371:i 369:r 362:0 360:r 194:( 178:( 158:( 58:( 20:)

Index

Porous media

materials science
pores
fluid
liquid
gas
solid
foams
porosity
permeability
tensile strength
electrical conductivity
tortuosity
sponge
effective porosity
rocks
soil
aquifers
petroleum reservoirs
zeolites
biological tissues
cork
cements
ceramics
filtration
mechanics
acoustics
geomechanics
soil mechanics

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.