Knowledge

Streaming current

Source 📝

102:. The degree of coagulation of raw water may be monitored by the use of an SCM to provide a positive feedback control of coagulant injection. As the streaming current of the wastewater increases, more coagulant agent is injected into the stream. The higher levels of coagulant agent cause the small colloidal particles to coagulate and sediment out of the stream. Since less colloid particles are in the wastewater stream, the streaming potential decreases. The SCM recognizes this and subsequently reduces the amount of coagulant agent injected into the wastewater stream. The implementation of SCM feedback control has led to a significant materials cost reduction, one that was not realized until the early 1980s. In addition to monitoring capabilities, the streaming current could, in theory, generate usable 146:
placed on either side of a fluidic geometry across which a known pressure difference is applied. When both electrodes are held at the same potential, the streaming current is measured directly as the electric current flowing through the electrodes. Alternatively, the electrodes can be left floating,
93:
are used for evaluations of formations. Streaming potential has to be considered in design for flow of poorly conductive fluids (e.g., gasoline lines) because of the danger of buildup of high voltages. The streaming current monitor (SCM) is a fundamental tool for monitoring
867:
Menachem Elimelech and Amy E. Childress, "Zeta Potential of Reverse Osmosis Membranes: Implications for Membrane Performance". U.S. Department of the Interior, Bureau of Reclamation, Denver Office. Water Treatment Technology Program Report No. 10. December
264: 446: 129:
The transport of counterions along with the pressure-driven fluid flow gives rise to a net charge transport: the streaming current. The reverse effect, generating a fluid flow by applying a potential difference, is called
351: 854:"Measurement and Interpretation of Electrokinetic Phenomena", International Union of Pure and Applied Chemistry, Technical Report, published in Pure Appl. Chem., vol 77, 10, pp. 1753–1805, 2005 167: 563: 695: 362: 150:
A streaming potential is defined as positive when the electric potential is higher on the high pressure end of the flow system than on the low pressure end.
841: 681: 726: 280: 787: 571:
there is no surface conduction (which typically may become important when the zeta potential is large, e.g., |ζ| > 50 mV)
740:
Olthuis, Wouter; Schippers, Bob; Eijkel, Jan; Van Den Berg, Albert (2005). "Energy from streaming current and potential".
17: 702: 888: 107: 118:
Adjacent to the channel walls, the charge-neutrality of the liquid is violated due to the presence of the
259:{\displaystyle I_{str}=-{\frac {\epsilon _{rs}\epsilon _{0}a^{2}\pi }{\eta }}{\frac {\Delta P}{L}}\zeta } 667: 106:. This process, however, has yet to be applied as typical streaming potential mechanical to electrical 99: 883: 750: 539: 39: 808: 119: 65:
The first observation of the streaming potential is generally attributed to the German physicist
855: 745: 481: 271: 90: 86: 66: 8: 131: 77:
Streaming currents in well-defined geometries are a sensitive method to characterize the
835: 675: 441:{\displaystyle U_{str}={\frac {\epsilon _{rs}\epsilon _{0}\zeta }{\eta K_{L}}}\Delta P} 55: 356:
At steady state, the streaming potential built up across the flow system is given by:
62:
is driven by a pressure gradient through a channel or porous plug with charged walls.
783: 720: 43: 755: 274:
current, which is equal in magnitude to the streaming current at steady state, is:
51: 47: 827: 147:
allowing a streaming potential to build up between the two ends of the channel.
648: 629: 158: 103: 78: 759: 536:
the double layer is not too large compared to the pores or capillaries (i.e.,
877: 566: 492: 602:
Mansouri et al. The Journal of Physical Chemistry C, 112(42), 16192 (2008)
142:
A typical setup to measure streaming currents consists of two reversible
95: 59: 821: 777: 779:
Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices
123: 499: 154: 143: 739: 82: 596:
F.H.J. van der Heyden et al., Phys. Rev. Lett. 95, 116104 (2005)
599:
C. Werner et al., J. Colloid Interface Sci. 208, 329 (1998)
593:
J. Lyklema, Fundamentals of Interface and Colloid Science
664:
Electrokinetically Driven Microfluidics and Nanofluidics
346:{\displaystyle I_{c}=K_{L}a^{2}\pi {\frac {U_{str}}{L}}} 466:- streaming potential at zero net current conditions, V 542: 459:- streaming current under short-circuit conditions, A 365: 283: 170: 661: 557: 440: 345: 258: 822:Karniadakis, G.M., Beskok, A., Aluru, N. (2005). 525:The equation above is usually referred to as the 81:of surfaces, which is important in the fields of 875: 574:there is no electrical double layer polarization 521:- specific conductivity of the bulk liquid, S·m 626:Fundamentals of Interface and Colloid Science 153:The value of streaming current observed in a 840:: CS1 maint: multiple names: authors list ( 680:: CS1 maint: multiple names: authors list ( 775: 623: 815: 802: 749: 619: 617: 615: 583:the geometry is that of a capillary/tube. 580:there is no axial concentration gradient 577:the surface is homogeneous in properties 771: 769: 14: 876: 725:: CS1 maint: archived copy as title ( 642: 612: 89:. In geology, measurements of related 137: 796: 766: 655: 565:), where κ is the reciprocal of the 24: 432: 241: 126:attracted by the charged surface. 25: 900: 742:Sensors and Actuators B: Chemical 636: 532:The above equations assume that: 645:Electrokinetics in Microfluidics 861: 527:Helmholtz–Smoluchowski equation 72: 848: 782:. Cambridge University Press. 733: 688: 13: 1: 662:Chang, H.C., Yeo, L. (2009). 606: 587: 558:{\displaystyle \kappa a\gg 1} 508:ΔP - pressure difference, Pa 484:of the liquid, dimensionless 7: 100:wastewater treatment plants 10: 905: 668:Cambridge University Press 157:is usually related to the 805:Theoretical Microfluidics 760:10.1016/j.snb.2005.03.039 113: 58:which originates when an 824:Microflows and Nanoflows 42:studied in the areas of 40:electrokinetic phenomena 27:Electrokinetic phenomena 809:Oxford University Press 514:a - capillary radius, m 511:L - capillary length, m 473:- conduction current, A 120:electrical double layer 559: 442: 347: 260: 161:through the relation: 560: 505:ζ - zeta potential, V 502:of the liquid, kg·m·s 482:relative permittivity 443: 348: 261: 91:spontaneous potential 67:Georg Hermann Quincke 38:are two interrelated 776:Kirby, B.J. (2010). 744:. 111–112: 385–389. 624:Lyklema, J. (1995). 540: 363: 281: 168: 889:Colloidal chemistry 132:electroosmotic flow 36:streaming potential 18:Streaming potential 803:Bruus, H. (2007). 555: 438: 343: 256: 138:Measurement method 122:: a thin layer of 789:978-0-521-11903-0 430: 341: 251: 236: 87:interface science 44:surface chemistry 32:streaming current 16:(Redirected from 896: 884:Electric current 869: 865: 859: 852: 846: 845: 839: 831: 819: 813: 812: 800: 794: 793: 773: 764: 763: 753: 737: 731: 730: 724: 716: 714: 713: 707: 701:. Archived from 700: 692: 686: 685: 679: 671: 659: 653: 652: 640: 634: 633: 621: 564: 562: 561: 556: 447: 445: 444: 439: 431: 429: 428: 427: 414: 410: 409: 400: 399: 386: 381: 380: 352: 350: 349: 344: 342: 337: 336: 321: 316: 315: 306: 305: 293: 292: 265: 263: 262: 257: 252: 247: 239: 237: 232: 228: 227: 218: 217: 208: 207: 194: 186: 185: 104:electrical power 52:electric current 48:electrochemistry 21: 904: 903: 899: 898: 897: 895: 894: 893: 874: 873: 872: 866: 862: 853: 849: 833: 832: 828:Springer Verlag 820: 816: 801: 797: 790: 774: 767: 751:10.1.1.590.7603 738: 734: 718: 717: 711: 709: 705: 698: 696:"Archived copy" 694: 693: 689: 673: 672: 660: 656: 643:Li, D. (2004). 641: 637: 622: 613: 609: 590: 541: 538: 537: 520: 490: 479: 472: 465: 458: 423: 419: 415: 405: 401: 392: 388: 387: 385: 370: 366: 364: 361: 360: 326: 322: 320: 311: 307: 301: 297: 288: 284: 282: 279: 278: 240: 238: 223: 219: 213: 209: 200: 196: 195: 193: 175: 171: 169: 166: 165: 140: 116: 110:are around 1%. 75: 28: 23: 22: 15: 12: 11: 5: 902: 892: 891: 886: 871: 870: 860: 847: 814: 795: 788: 765: 732: 687: 654: 649:Academic Press 635: 630:Academic Press 610: 608: 605: 604: 603: 600: 597: 594: 589: 586: 585: 584: 581: 578: 575: 572: 569: 554: 551: 548: 545: 523: 522: 518: 515: 512: 509: 506: 503: 496: 495:of vacuum, F·m 488: 485: 477: 474: 470: 467: 463: 460: 456: 449: 448: 437: 434: 426: 422: 418: 413: 408: 404: 398: 395: 391: 384: 379: 376: 373: 369: 354: 353: 340: 335: 332: 329: 325: 319: 314: 310: 304: 300: 296: 291: 287: 268: 267: 255: 250: 246: 243: 235: 231: 226: 222: 216: 212: 206: 203: 199: 192: 189: 184: 181: 178: 174: 159:zeta potential 139: 136: 115: 112: 79:zeta potential 74: 71: 50:. They are an 26: 9: 6: 4: 3: 2: 901: 890: 887: 885: 882: 881: 879: 864: 857: 851: 843: 837: 829: 825: 818: 810: 806: 799: 791: 785: 781: 780: 772: 770: 761: 757: 752: 747: 743: 736: 728: 722: 708:on 2016-03-04 704: 697: 691: 683: 677: 669: 665: 658: 650: 646: 639: 631: 627: 620: 618: 616: 611: 601: 598: 595: 592: 591: 582: 579: 576: 573: 570: 568: 552: 549: 546: 543: 535: 534: 533: 530: 528: 516: 513: 510: 507: 504: 501: 497: 494: 491:- electrical 486: 483: 475: 468: 461: 454: 453: 452: 435: 424: 420: 416: 411: 406: 402: 396: 393: 389: 382: 377: 374: 371: 367: 359: 358: 357: 338: 333: 330: 327: 323: 317: 312: 308: 302: 298: 294: 289: 285: 277: 276: 275: 273: 253: 248: 244: 233: 229: 224: 220: 214: 210: 204: 201: 197: 190: 187: 182: 179: 176: 172: 164: 163: 162: 160: 156: 151: 148: 145: 135: 133: 127: 125: 121: 111: 109: 105: 101: 97: 92: 88: 84: 80: 70: 68: 63: 61: 57: 53: 49: 45: 41: 37: 33: 19: 863: 850: 823: 817: 804: 798: 778: 741: 735: 710:. Retrieved 703:the original 690: 663: 657: 644: 638: 625: 567:Debye length 531: 526: 524: 498:η - dynamic 493:permittivity 450: 355: 269: 152: 149: 141: 128: 117: 108:efficiencies 76: 73:Applications 64: 35: 31: 29: 124:counterions 96:coagulation 60:electrolyte 878:Categories 712:2013-05-07 607:References 588:Literature 272:conduction 144:electrodes 836:cite book 746:CiteSeerX 676:cite book 550:≫ 544:κ 500:viscosity 451:Symbols: 433:Δ 417:η 412:ζ 403:ϵ 390:ϵ 318:π 254:ζ 242:Δ 234:η 230:π 211:ϵ 198:ϵ 191:− 155:capillary 69:in 1859. 56:potential 721:cite web 83:colloid 786:  748:  114:Origin 868:1996. 856:(pdf) 706:(PDF) 699:(PDF) 842:link 784:ISBN 727:link 682:link 270:The 85:and 46:and 34:and 756:doi 464:str 457:str 98:in 54:or 880:: 838:}} 834:{{ 826:. 807:. 768:^ 754:. 723:}} 719:{{ 678:}} 674:{{ 666:. 647:. 628:. 614:^ 529:. 480:- 478:rs 134:. 30:A 858:. 844:) 830:. 811:. 792:. 762:. 758:: 729:) 715:. 684:) 670:. 651:. 632:. 553:1 547:a 519:L 517:K 489:0 487:ε 476:ε 471:c 469:I 462:U 455:I 436:P 425:L 421:K 407:0 397:s 394:r 383:= 378:r 375:t 372:s 368:U 339:L 334:r 331:t 328:s 324:U 313:2 309:a 303:L 299:K 295:= 290:c 286:I 266:. 249:L 245:P 225:2 221:a 215:0 205:s 202:r 188:= 183:r 180:t 177:s 173:I 20:)

Index

Streaming potential
electrokinetic phenomena
surface chemistry
electrochemistry
electric current
potential
electrolyte
Georg Hermann Quincke
zeta potential
colloid
interface science
spontaneous potential
coagulation
wastewater treatment plants
electrical power
efficiencies
electrical double layer
counterions
electroosmotic flow
electrodes
capillary
zeta potential
conduction
relative permittivity
permittivity
viscosity
Debye length


Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.