Knowledge

Neutral-beam injection

Source 📝

107: 1336: 603: 803: 616: 875:). Caesium, deposited at the source walls, is an efficient electron donor; atoms and positive ions scattered at caesiated surface have a relatively high probability of being scattered as negatively charged ions. Operation of caesiated sources is complex and not so reliable. The development of alternative concepts for negative-ion beam sources is mandatory for the use of neutral beam systems in future fusion reactors. 867:. The precursor beam could either be a positive-ion beam or a negative-ion beam: in order to obtain a sufficiently high current, it is produced extracting charges from a plasma discharge. However, few negative hydrogen ions are created in a hydrogen plasma discharge. In order to generate a sufficiently high negative-ion density and obtain a decent negative-ion beam current, 785:
1 MeV. With increasing energy, it is increasingly difficult to obtain fast hydrogen atoms starting from precursor beams composed of positive ions. For that reason, recent and future heating neutral beams will be based on negative-ion beams. In the interaction with background gas, it is much easier to detach the extra electron from a
106: 53:
field. When these neutral particles are ionized by collision with the plasma particles, they are kept in the plasma by the confining magnetic field and can transfer most of their energy by further collisions with the plasma. By tangential injection in the torus, neutral beams also provide momentum to
1343:
Typically, the background gas density shall be minimised all along the beam path (i.e. within the accelerating electrodes, along the duct connecting to the fusion plasma) to minimise losses except in the neutraliser cell. Therefore, the required target thickness for neutralisation is obtained by
784:
in keV. Depending on the plasma minor diameter and density, a minimum particle energy can be defined for the neutral beam, in order to deposit a sufficient power on the plasma core rather than to the plasma edge. For a fusion-relevant plasma, the required fast neutral energy gets in the range of
1574: 110:
First, plasma is formed by microwaving gas. Next, the plasma is accelerated across a voltage drop. This heats the ions to fusion conditions. After this the ions are re-neutralizing. Lastly, the neutrals are injected into the
1330: 168:. This material becomes part of the fusion plasma. It also transfers its energy into the existing plasma within the machine. This hot stream of material should raise the overall temperature. Although the beam has no 575:) by scrambling what were initially well-ordered magnetic fields. If the fast ions are susceptible to this type of behavior, they can escape very quickly. However, some evidence suggests that they are not susceptible. 562:
Because the magnetic field inside the torus is circular, these fast ions are confined to the background plasma. The confined fast ions mentioned above are slowed down by the background plasma, in a similar way to how
192:. To allow power deposition in the center of the burning plasma in larger devices, a higher neutral-beam energy is required. High-energy (>100 keV) systems require the use of negative ion technology (N-NBI). 570:
It is very important that the fast ions are confined within the plasma long enough for them to deposit their energy. Magnetic fluctuations are a big problem for plasma confinement in this type of device (see
1742:
L. R. Grisham, P. Agostinetti, G. Barrera, P. Blatchford, D. Boilson, J. Chareyre, et al., Recent improvements to the ITER neutral beam system design, Fusion Engineering and Design 87 (11), 1805–1815.
969:
Neutralisation of the precursor ion beam is commonly performed by passing the beam through a gas cell. For a precursor negative-ion beam at fusion-relevant energies, the key collisional processes are:
1184:
Cross-sections at 1 MeV are such that, once created, a fast positive ion cannot be converted into a fast neutral, and this is the cause of the limited achievable efficiency of gas neutralisers.
747: 58:. Neutral-beam injection is a flexible and reliable technique, which has been the main heating system on a large variety of fusion devices. To date, all NBI systems were based on positive precursor 1446: 872: 1706:
is adopted, but this solution is unlikely in future devices due to the limited volume inside the bioshield protecting from energetic neutron flux (for instance, in the case of
1224: 588:
collisions of fast ions with plasma ions and electrons by Coulomb collisions (slow-down and scattering, thermalisation) or charge exchange collisions with background neutrals.
789:(H has a binding energy of 0.75 eV and a very large cross-section for electron detachment in this energy range) rather than to attach one electron to a positive ion. 1187:
The fractions of negatively charged, positively charged, and neutral particles exiting the neutraliser gas cells depend on the integrated gas density or target thickness
770: 694: 1176: 1141: 1100: 1055: 1010: 1344:
injecting gas in a cell with two open ends. A peaked density profile is realised along the cell, when injection occurs at mid-length. For a given gas throughput
1704: 1677: 1657: 1637: 1617: 1597: 1481: 1469: 1382: 1362: 1264: 1244: 1686:
among the largest ever built, with pumping speeds in the range of million liters per second. If there are no space constraints, a large gas cell length
148:
It is critical to inject neutral material into plasma, because if it is charged, it can start harmful plasma instabilities. Most fusion devices inject
1269: 1870:"Caesium influence on plasma parameters and source performance during conditioning of the prototype ITER neutral beam injector negative ion source" 321: 82:
is being constructed to optimize its performance in view of the ITER future operations. Other ways to heat plasma for nuclear fusion include
2028: 1827:
Ikeda, K.; Tsumori, K.; Kisaki, M.; Nakano, H.; Nagaoka, K.; Osakabe, M.; Kamio, S.; Fujiwara, Y.; Haba, Y.; Takeiri, Y. (2018).
824: 637: 184:
At present, all main fusion experiments use NBIs. Traditional positive-ion-based injectors (P-NBI) are installed for instance in
17: 79: 702: 1390: 1809: 567:
slows down a baseball. The energy transfer from the fast ions to the plasma increases the overall plasma temperature.
850: 663: 128:
This is done dropping the positively charged ions towards negative plates. As the ions fall, the electric field does
832: 645: 1723: 219: 91: 828: 641: 214: 87: 1987: 1711: 1190: 899: 878:
Existing and future negative-ion-based neutral beam systems (N-NBI) are listed in the following table:
434: 864: 606:
Maximum neutralisation efficiency of a fast D ion beam in a gas cell, as a function of the ion energy
863:
A neutral beam is obtained by neutralisation of a precursor ion beam, commonly accelerated in large
813: 626: 224: 95: 66:
sources and accelerators with the construction of multi-megawatt negative-ion-based NBI systems at
1335: 1829:"First results of deuterium beam operation on neutral beam injectors in the large helical device" 817: 630: 138:
the hot plasma by adding in the opposite charge. This gives the fast-moving beam with no charge.
755: 679: 2053: 1161: 1126: 1085: 1040: 995: 1999: 1936: 1881: 1840: 1765: 894: 463: 237: 185: 67: 50: 1569:{\displaystyle C={\frac {9.7}{L/2}}{\sqrt {\frac {T}{m}}}{\frac {a^{2}\cdot b^{2}}{a+b}},} 8: 1472: 2003: 1940: 1893: 1885: 1844: 1777: 1769: 1266:. In the case of D beams, the maximum neutralisation yield occurs at a target thickness 1905: 1791: 1689: 1662: 1642: 1622: 1602: 1582: 1454: 1367: 1347: 1249: 1229: 602: 2011: 1897: 1795: 1909: 1364:, the maximum gas pressure at the centre of the cell depends on the gas conductance 2007: 1954: 1944: 1889: 1869: 1848: 1781: 1773: 1682:
Very high gas throughput is commonly adopted, and neutral-beam systems have custom
572: 46: 38: 1753: 495: 83: 1813: 1949: 1924: 786: 564: 197: 129: 55: 1752:
V. Toigo; D. Boilson; T. Bonicelli; R. Piovan; M. Hanada; et al. (2015).
1707: 1325:{\displaystyle \tau _{{\text{D}}^{-},{\text{1 MeV}}}\approx 1.4\cdot 10^{-16}} 889: 265: 2047: 1925:"Neutralisation and transport of negative ion beams: physics and diagnostics" 1901: 377: 189: 169: 63: 176:. This happens because the beam bounces off ions already in the plasma . 1959: 179: 1786: 1751: 1181:
indicate the charge state of fast particle before and after collision.
54:
the plasma and current drive, one essential feature for long pulses of
2038: 1973: 1853: 1828: 172:
charge when it enters, as it passes through the plasma, the atoms are
1754:"Progress in the realization of the PRIMA neutral beam test facility" 405: 161: 157: 2033: 2029:
Thermonuclear Fusion Test Reactor with neutral beam injector at PPPL
1339:
Simplified scheme of gas-cell neutraliser for neutral-beam injectors
802: 615: 1683: 153: 59: 1710:
the N-NBI neutraliser cell is about 15 m long, while in the
868: 173: 165: 149: 42: 1833:
Proceedings of the 17th International Conference on Ion Sources
349: 71: 578:
The interaction of fast neutrals with the plasma consist of
1868:
Schiesko, L; McNeely, P; Fantz, U; Franzen, P (2011-07-07).
78:
is a substantial challenge (D, 1 MeV, 40 A) and a
1867: 293: 75: 1150:
Underline indicates the fast particles, while subscripts
792: 1826: 1988:"The vacuum systems of the nuclear fusion facility JET" 1810:"Neutral beam powers into the record books, 09/07/2012" 742:{\displaystyle \lambda ={\frac {E}{18\cdot n\cdot M}},} 585:
drift of newly created fast ions in the magnetic field,
582:
ionisation by collision with plasma electrons and ions,
1441:{\displaystyle P_{0}=P_{\text{tank}}+{\frac {Q}{2C}},} 180:
Neutral-beam injectors installed in fusion experiments
1692: 1665: 1645: 1625: 1605: 1585: 1484: 1457: 1393: 1370: 1350: 1272: 1252: 1232: 1193: 1164: 1129: 1088: 1043: 998: 758: 705: 682: 62:. In the 1990s there has been impressive progress in 696:for neutral beam ionization in a plasma is roughly 122:
This can be done by microwaving a low-pressure gas.
1698: 1671: 1651: 1631: 1611: 1591: 1568: 1463: 1440: 1376: 1356: 1324: 1258: 1238: 1218: 1170: 1135: 1094: 1049: 1004: 764: 741: 688: 592: 27:Method used to heat plasma inside a fusion device 2045: 144:the fast-moving hot neutral beam in the machine. 196:Additional heating power installed in various 557: 132:on them, heating them to fusion temperatures. 1922: 831:. Unsourced material may be challenged and 644:. Unsourced material may be challenged and 553: Active, NBI being updated and revised 1985: 964: 871:vapors are added to the plasma discharge ( 1958: 1948: 1852: 1785: 1206: 1037: (double-electron detachment, with 851:Learn how and when to remove this message 664:Learn how and when to remove this message 1334: 992: (singe-electron detachment, with 601: 74:(D, 500 keV). The NBI designed for 1923:G. Serianni; et al. (April 2017). 14: 2046: 793:Charge state of the precursor ion beam 1874:Plasma Physics and Controlled Fusion 1714:its length is limited to 3 m). 1246:the gas density along the beam path 829:adding citations to reliable sources 796: 642:adding citations to reliable sources 609: 45:consisting in a beam of high-energy 873:surface-plasma negative-ion sources 24: 935:Max power per installed beam (MW) 105: 25: 2065: 2022: 1219:{\displaystyle \tau =\int n\,dl,} 2039:IPP website about NBI technology 801: 614: 1724:ITER Neutral Beam Test Facility 126:Electrostatic ion acceleration. 92:ion cyclotron resonance heating 1979: 1967: 1916: 1861: 1835:. AIP Conference Proceedings. 1820: 1802: 1745: 1736: 1579:with the geometric parameters 921:Max acceleration voltage (kV) 597: 593:Design of neutral beam systems 200:experiments (* design target) 96:lower hybrid resonance heating 13: 1: 1894:10.1088/0741-3335/53/8/085029 1778:10.1088/0029-5515/55/8/083025 1729: 37:) is one method used to heat 2012:10.1016/0042-207X(87)90015-7 205:Magnetic confinement device 101: 88:electron cyclotron resonance 7: 1717: 1082: (reionization, with 558:Coupling with fusion plasma 115:This is typically done by: 10: 2070: 865:electrostatic accelerators 2034:Auxiliary heating in ITER 1146:negligible at 1 MeV) 1123: (charge exchange, 1105:=3.79×10 m at 1 MeV) 1060:=7.22×10 m at 1 MeV) 1015:=1.13×10 m at 1 MeV) 1950:10.1088/1367-2630/aa64bd 882:N-NBI (* design target) 780:in amu, particle energy 765:{\displaystyle \lambda } 689:{\displaystyle \lambda } 1659:gas molecule mass, and 1171:{\displaystyle \sigma } 1136:{\displaystyle \sigma } 1095:{\displaystyle \sigma } 1050:{\displaystyle \sigma } 1005:{\displaystyle \sigma } 965:Ion beam neutralisation 772:in m, particle density 1929:New Journal of Physics 1700: 1673: 1653: 1633: 1613: 1593: 1570: 1475:can be calculated as 1465: 1442: 1378: 1358: 1340: 1326: 1260: 1240: 1220: 1172: 1137: 1096: 1051: 1006: 766: 743: 690: 676:The adsorption length 607: 112: 70:(H, 180 keV) and 31:Neutral-beam injection 18:Neutral Beam Injection 1974:IAEA Aladdin database 1701: 1674: 1654: 1639:indicated in figure, 1634: 1614: 1594: 1571: 1473:molecular-flow regime 1466: 1443: 1379: 1359: 1338: 1327: 1261: 1241: 1221: 1173: 1158:of the cross-section 1138: 1097: 1052: 1007: 776:in 10 m, atomic mass 767: 744: 691: 605: 109: 1690: 1663: 1643: 1623: 1603: 1583: 1482: 1455: 1391: 1368: 1348: 1270: 1250: 1230: 1191: 1162: 1127: 1086: 1041: 996: 825:improve this section 756: 703: 680: 638:improve this section 539: In development 51:magnetic confinement 2004:1987Vacuu..37..309D 1986:G. Duesing (1987). 1941:2017NJPh...19d5003S 1886:2011PPCF...53h5029S 1845:2018AIPC.2011f0002I 1770:2015NucFu..55h3025T 949:Pulse duration (s) 907:Precursor ion beam 883: 201: 49:that can enter the 1696: 1669: 1649: 1629: 1609: 1589: 1566: 1461: 1438: 1374: 1354: 1341: 1322: 1256: 1236: 1216: 1168: 1133: 1092: 1047: 1002: 881: 762: 739: 686: 608: 195: 113: 1854:10.1063/1.5053331 1699:{\displaystyle L} 1679:gas temperature. 1672:{\displaystyle T} 1652:{\displaystyle m} 1632:{\displaystyle b} 1612:{\displaystyle a} 1592:{\displaystyle L} 1561: 1521: 1520: 1509: 1464:{\displaystyle C} 1433: 1414: 1377:{\displaystyle C} 1357:{\displaystyle Q} 1296: 1282: 1259:{\displaystyle l} 1239:{\displaystyle n} 962: 961: 958:3600 (at 16.7MW) 861: 860: 853: 734: 674: 673: 666: 522: 521: 47:neutral particles 16:(Redirected from 2061: 2016: 2015: 1998:(3–4): 309–315. 1983: 1977: 1971: 1965: 1964: 1962: 1952: 1920: 1914: 1913: 1865: 1859: 1858: 1856: 1824: 1818: 1817: 1812:. Archived from 1806: 1800: 1799: 1789: 1749: 1743: 1740: 1705: 1703: 1702: 1697: 1678: 1676: 1675: 1670: 1658: 1656: 1655: 1650: 1638: 1636: 1635: 1630: 1618: 1616: 1615: 1610: 1598: 1596: 1595: 1590: 1575: 1573: 1572: 1567: 1562: 1560: 1549: 1548: 1547: 1535: 1534: 1524: 1522: 1513: 1512: 1510: 1508: 1504: 1492: 1470: 1468: 1467: 1462: 1447: 1445: 1444: 1439: 1434: 1432: 1421: 1416: 1415: 1412: 1403: 1402: 1383: 1381: 1380: 1375: 1363: 1361: 1360: 1355: 1331: 1329: 1328: 1323: 1321: 1320: 1299: 1298: 1297: 1294: 1289: 1288: 1283: 1280: 1265: 1263: 1262: 1257: 1245: 1243: 1242: 1237: 1225: 1223: 1222: 1217: 1177: 1175: 1174: 1169: 1142: 1140: 1139: 1134: 1101: 1099: 1098: 1093: 1056: 1054: 1053: 1048: 1011: 1009: 1008: 1003: 952:30 (2MW, 360kV) 884: 880: 856: 849: 845: 842: 836: 805: 797: 771: 769: 768: 763: 748: 746: 745: 740: 735: 733: 713: 695: 693: 692: 687: 669: 662: 658: 655: 649: 618: 610: 573:plasma stability 552: 546: 538: 532: 232:First operation 202: 194: 120:Making a plasma. 90:heating (ECRH), 21: 2069: 2068: 2064: 2063: 2062: 2060: 2059: 2058: 2044: 2043: 2025: 2020: 2019: 1984: 1980: 1972: 1968: 1921: 1917: 1866: 1862: 1825: 1821: 1808: 1807: 1803: 1750: 1746: 1741: 1737: 1732: 1720: 1691: 1688: 1687: 1664: 1661: 1660: 1644: 1641: 1640: 1624: 1621: 1620: 1604: 1601: 1600: 1584: 1581: 1580: 1550: 1543: 1539: 1530: 1526: 1525: 1523: 1511: 1500: 1496: 1491: 1483: 1480: 1479: 1456: 1453: 1452: 1425: 1420: 1411: 1407: 1398: 1394: 1392: 1389: 1388: 1369: 1366: 1365: 1349: 1346: 1345: 1313: 1309: 1293: 1284: 1279: 1278: 1277: 1273: 1271: 1268: 1267: 1251: 1248: 1247: 1231: 1228: 1227: 1192: 1189: 1188: 1180: 1163: 1160: 1159: 1145: 1128: 1125: 1124: 1122: 1114: 1104: 1087: 1084: 1083: 1081: 1069: 1059: 1042: 1039: 1038: 1036: 1024: 1014: 997: 994: 993: 991: 979: 967: 955:128 (at 0.2MW) 857: 846: 840: 837: 822: 806: 795: 757: 754: 753: 717: 712: 704: 701: 700: 681: 678: 677: 670: 659: 653: 650: 635: 619: 600: 595: 560: 555: 554: 550: 548: 544: 541: 540: 536: 534: 530: 496:Wendelstein 7-X 474: 469: 182: 156:, such as pure 104: 56:burning plasmas 28: 23: 22: 15: 12: 11: 5: 2067: 2057: 2056: 2042: 2041: 2036: 2031: 2024: 2023:External links 2021: 2018: 2017: 1978: 1966: 1915: 1860: 1819: 1816:on 2017-03-24. 1801: 1744: 1734: 1733: 1731: 1728: 1727: 1726: 1719: 1716: 1695: 1668: 1648: 1628: 1608: 1588: 1577: 1576: 1565: 1559: 1556: 1553: 1546: 1542: 1538: 1533: 1529: 1519: 1516: 1507: 1503: 1499: 1495: 1490: 1487: 1460: 1449: 1448: 1437: 1431: 1428: 1424: 1419: 1410: 1406: 1401: 1397: 1373: 1353: 1319: 1316: 1312: 1308: 1305: 1302: 1292: 1287: 1276: 1255: 1235: 1215: 1212: 1209: 1205: 1202: 1199: 1196: 1178: 1167: 1148: 1147: 1143: 1132: 1120: 1112: 1106: 1102: 1091: 1079: 1067: 1061: 1057: 1046: 1034: 1022: 1016: 1012: 1001: 989: 977: 966: 963: 960: 959: 956: 953: 950: 946: 945: 942: 939: 936: 932: 931: 928: 925: 922: 918: 917: 914: 911: 908: 904: 903: 897: 892: 887: 859: 858: 809: 807: 800: 794: 791: 761: 750: 749: 738: 732: 729: 726: 723: 720: 716: 711: 708: 685: 672: 671: 622: 620: 613: 599: 596: 594: 591: 590: 589: 586: 583: 565:air resistance 559: 556: 549: 543: 542: 535: 529: 528: 527: 526: 520: 519: 516: 513: 510: 507: 504: 501: 498: 492: 491: 488: 485: 482: 479: 476: 471: 466: 460: 459: 456: 453: 450: 447: 444: 441: 438: 431: 430: 427: 424: 421: 418: 415: 412: 409: 402: 401: 398: 395: 392: 389: 386: 383: 380: 374: 373: 370: 367: 364: 361: 358: 355: 352: 346: 345: 342: 339: 336: 333: 330: 327: 324: 318: 317: 314: 311: 308: 305: 302: 299: 296: 290: 289: 286: 283: 280: 277: 274: 271: 268: 262: 261: 258: 255: 252: 249: 246: 243: 240: 234: 233: 230: 227: 222: 217: 212: 209: 206: 181: 178: 146: 145: 139: 136:Reneutralizing 133: 123: 103: 100: 26: 9: 6: 4: 3: 2: 2066: 2055: 2052: 2051: 2049: 2040: 2037: 2035: 2032: 2030: 2027: 2026: 2013: 2009: 2005: 2001: 1997: 1993: 1989: 1982: 1975: 1970: 1961: 1960:11577/3227451 1956: 1951: 1946: 1942: 1938: 1935:(4): 045003. 1934: 1930: 1926: 1919: 1911: 1907: 1903: 1899: 1895: 1891: 1887: 1883: 1880:(8): 085029. 1879: 1875: 1871: 1864: 1855: 1850: 1846: 1842: 1839:(1): 060002. 1838: 1834: 1830: 1823: 1815: 1811: 1805: 1797: 1793: 1788: 1783: 1779: 1775: 1771: 1767: 1764:(8): 083025. 1763: 1759: 1755: 1748: 1739: 1735: 1725: 1722: 1721: 1715: 1713: 1709: 1693: 1685: 1680: 1666: 1646: 1626: 1606: 1586: 1563: 1557: 1554: 1551: 1544: 1540: 1536: 1531: 1527: 1517: 1514: 1505: 1501: 1497: 1493: 1488: 1485: 1478: 1477: 1476: 1474: 1458: 1435: 1429: 1426: 1422: 1417: 1408: 1404: 1399: 1395: 1387: 1386: 1385: 1371: 1351: 1337: 1333: 1317: 1314: 1310: 1306: 1303: 1300: 1290: 1285: 1274: 1253: 1233: 1213: 1210: 1207: 1203: 1200: 1197: 1194: 1185: 1182: 1165: 1157: 1153: 1130: 1118: 1110: 1107: 1089: 1077: 1073: 1065: 1062: 1044: 1032: 1028: 1020: 1017: 999: 987: 983: 975: 972: 971: 970: 957: 954: 951: 948: 947: 943: 940: 937: 934: 933: 929: 926: 923: 920: 919: 915: 912: 909: 906: 905: 901: 898: 896: 893: 891: 888: 886: 885: 879: 876: 874: 870: 866: 855: 852: 844: 841:December 2020 834: 830: 826: 820: 819: 815: 810:This section 808: 804: 799: 798: 790: 788: 783: 779: 775: 759: 736: 730: 727: 724: 721: 718: 714: 709: 706: 699: 698: 697: 683: 668: 665: 657: 654:December 2020 647: 643: 639: 633: 632: 628: 623:This section 621: 617: 612: 611: 604: 587: 584: 581: 580: 579: 576: 574: 568: 566: 547: Retired 524: 523: 517: 514: 511: 508: 505: 502: 499: 497: 494: 493: 489: 486: 483: 480: 477: 472: 467: 465: 462: 461: 457: 454: 451: 448: 445: 442: 439: 436: 433: 432: 428: 425: 422: 419: 416: 413: 410: 407: 404: 403: 399: 396: 393: 390: 387: 384: 381: 379: 376: 375: 371: 368: 365: 362: 359: 356: 353: 351: 348: 347: 343: 340: 337: 334: 331: 328: 325: 323: 320: 319: 315: 312: 309: 306: 303: 300: 297: 295: 292: 291: 287: 284: 281: 278: 275: 272: 269: 267: 264: 263: 259: 256: 253: 250: 247: 244: 241: 239: 236: 235: 231: 228: 226: 223: 221: 218: 216: 213: 210: 207: 204: 203: 199: 193: 191: 187: 177: 175: 171: 170:electrostatic 167: 163: 159: 155: 151: 143: 140: 137: 134: 131: 127: 124: 121: 118: 117: 116: 108: 99: 97: 93: 89: 85: 81: 77: 73: 69: 65: 61: 57: 52: 48: 44: 43:fusion device 40: 36: 32: 19: 2054:Fusion power 1995: 1991: 1981: 1969: 1932: 1928: 1918: 1877: 1873: 1863: 1836: 1832: 1822: 1814:the original 1804: 1761: 1758:Nucl. Fusion 1757: 1747: 1738: 1684:vacuum pumps 1681: 1578: 1450: 1342: 1186: 1183: 1155: 1151: 1149: 1116: 1108: 1075: 1071: 1063: 1030: 1026: 1018: 985: 981: 973: 968: 877: 862: 847: 838: 823:Please help 811: 787:negative ion 781: 777: 773: 751: 675: 660: 651: 636:Please help 624: 577: 569: 561: 533: Active 515:Stellarator 487:Stellarator 198:fusion power 183: 160:or a mix of 147: 141: 135: 125: 119: 114: 94:(ICRH), and 64:negative ion 34: 30: 29: 1787:10281/96413 598:Beam energy 1730:References 1902:0741-3335 1796:124477971 1537:⋅ 1315:− 1307:⋅ 1301:≈ 1286:− 1275:τ 1201:∫ 1195:τ 1166:σ 1131:σ 1090:σ 1045:σ 1000:σ 812:does not 760:λ 728:⋅ 722:⋅ 707:λ 684:λ 625:does not 162:deuterium 158:deuterium 142:Injecting 102:Mechanism 86:heating, 80:prototype 60:ion beams 41:inside a 2048:Category 1910:33934446 1718:See also 1712:ITER HNB 1115:→ 1070:→ 1025:→ 980:→ 455:Tokamak 426:Tokamak 397:Tokamak 369:Tokamak 341:Tokamak 313:Tokamak 285:Tokamak 257:Tokamak 154:hydrogen 150:isotopes 111:machine. 2000:Bibcode 1937:Bibcode 1882:Bibcode 1841:Bibcode 1766:Bibcode 869:caesium 833:removed 818:sources 646:removed 631:sources 473:15 (H) 470:20 (D) 406:JT60-SA 378:ASDEX-U 190:ASDEX-U 188:and in 174:ionized 166:tritium 1992:Vacuum 1908:  1900:  1794:  1708:JT-60U 916:H / D 913:H / D 890:JT-60U 551:  545:  537:  531:  525:Legend 475:6 (D) 468:9 (H) 350:DIII-D 266:JT-60U 211:N-NBI 208:P-NBI 98:(LH). 72:JT-60U 39:plasma 1906:S2CID 1792:S2CID 1295:1 MeV 1226:with 944:16.7 930:1000 752:with 518:2015 490:1998 458:2026 429:2020 400:1991 372:1986 344:2006 316:1982 288:1985 260:1983 229:Type 1898:ISSN 1837:2011 1451:and 1413:tank 941:6.4 938:5.8 927:190 924:400 900:ITER 816:any 814:cite 629:any 627:cite 435:ITER 332:0.5 322:EAST 294:TFTR 220:ICRH 215:ECRH 164:and 130:work 76:ITER 2008:doi 1955:hdl 1945:doi 1890:doi 1849:doi 1782:hdl 1774:doi 1494:9.7 1471:in 1332:m. 1304:1.4 1119:+ D 1111:+ D 1078:+ D 1066:+ D 1058:−11 1033:+ D 1021:+ D 1013:−10 988:+ D 976:+ D 902:** 895:LHD 827:by 640:by 506:10 464:LHD 449:20 446:20 443:33 414:10 411:24 382:20 354:20 307:11 298:40 270:40 251:10 242:34 238:JET 186:JET 152:of 68:LHD 35:NBI 2050:: 2006:. 1996:37 1994:. 1990:. 1953:. 1943:. 1933:19 1931:. 1927:. 1904:. 1896:. 1888:. 1878:53 1876:. 1872:. 1847:. 1831:. 1790:. 1780:. 1772:. 1762:55 1760:. 1756:. 1619:, 1599:, 1384:: 1318:16 1311:10 1179:ij 1154:, 1144:10 1103:01 1074:+ 1029:+ 984:+ 910:D 719:18 512:— 509:? 503:— 500:8 484:? 481:? 478:? 452:— 440:— 437:* 423:— 420:— 417:7 408:* 394:— 391:8 388:6 385:— 366:— 363:4 360:5 357:— 338:4 335:3 329:— 326:8 310:— 304:— 301:— 282:8 279:7 276:4 273:3 254:7 248:— 245:— 225:LH 84:RF 2014:. 2010:: 2002:: 1976:. 1963:. 1957:: 1947:: 1939:: 1912:. 1892:: 1884:: 1857:. 1851:: 1843:: 1798:. 1784:: 1776:: 1768:: 1694:L 1667:T 1647:m 1627:b 1607:a 1587:L 1564:, 1558:b 1555:+ 1552:a 1545:2 1541:b 1532:2 1528:a 1518:m 1515:T 1506:2 1502:/ 1498:L 1489:= 1486:C 1459:C 1436:, 1430:C 1427:2 1423:Q 1418:+ 1409:P 1405:= 1400:0 1396:P 1372:C 1352:Q 1291:, 1281:D 1254:l 1234:n 1214:, 1211:l 1208:d 1204:n 1198:= 1156:j 1152:i 1121:2 1117:D 1113:2 1109:D 1080:2 1076:e 1072:D 1068:2 1064:D 1035:2 1031:e 1027:D 1023:2 1019:D 990:2 986:e 982:D 978:2 974:D 854:) 848:( 843:) 839:( 835:. 821:. 782:E 778:M 774:n 737:, 731:M 725:n 715:E 710:= 667:) 661:( 656:) 652:( 648:. 634:. 33:( 20:)

Index

Neutral Beam Injection
plasma
fusion device
neutral particles
magnetic confinement
burning plasmas
ion beams
negative ion
LHD
JT-60U
ITER
prototype
RF
electron cyclotron resonance
ion cyclotron resonance heating
lower hybrid resonance heating
First, plasma is formed by microwaving gas. Next, the plasma is accelerated across a voltage drop. This heats the ions to fusion conditions. After this the ions are re-neutralizing. Lastly, the neutrals are injected into the machine.
work
isotopes
hydrogen
deuterium
deuterium
tritium
electrostatic
ionized
JET
ASDEX-U
fusion power
ECRH
ICRH

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.