Knowledge

Nanogel

Source đź“ť

429:
vessel formation. Chitosan-based nanogels have demonstrated an improved wound healing effect in previous studies. Chitosan-based nanogels encapsulating interleukin-2 were successfully used to stimulate the immune system and advance the wound healing process. Additionally, chitosan-based nanogels carrying an antibiotic, silver sulfadiazine, were found to decrease the size of second-degree burns in one in vivo study. In another study, silver-loaded nanogels were synthesized in a natural polymer-based solution containing aloe vera, and the presence of aloe vera led to increased healing and a decrease in wound size. With the goal of preventing infection and accelerating the healing process, one group has also published a new nanogel design consisting of an encapsulating core and a functionalized outer surface capable of targeting bacteria present in wounds.
338:
barrier and accumulated in the brain in a mouse model. With the treatment of cardiovascular diseases in mind, polysaccharide-based nanogels have been functionalized with fucoidan to target overexpressed P-selectin receptors on platelets and endothelial cells. After loading with miRNA, these nanogels bound to platelets and became internalized by an endothelial cell line. Nanogels have also been used to encapsulate phosphorylated nucleoside analogs, or active forms of anticancer therapeutics. In one study, nanogels loaded with nucleoside 5’-triphosphates underwent surface modifications and successfully bound to overexpressed folate receptors on breast cancer cells. These nanogels were then internalized by the cells and produced a significant increase in cytotoxicity compared to control groups.
175:
cues that govern various aspects of cellular behavior.  However, natural-based polymers can still cause an immune response and possess other disadvantages such as variable degradation rates and heterogeneous structures. Conversely, synthetic-based polymers have more defined structures, increased stability, and controlled degradation rates. In comparison to natural-based polymers, synthetic polymers lack biological cues that may be necessary for specific therapeutic applications. Given that natural and synthetic polymers are defined by their own set of advantages and disadvantages, an ongoing area of research aims to create composite hydrogels for nanogel synthesis that combines synthetic and natural polymers to leverage the benefits of both in one nanogel formulation. 
192:
platform. In other nanogel structures, the inner core and outer shell can be made of two different materials, such as a hydrophobic inner core to surround drugs or other small molecules and a hydrophilic outer shell that interacts with the external environment. The addition of a second linear monomer crosslinked to a nanogel is deemed a “hairy nanogel”. Different nanogel synthesis methods can be completed in sequential order to create multilayered nanogels, such as starting with ionotropic gelation and then combining anionic and cationic polymers in an aqueous solution. Functionalized nanogels, in which targeting ligands or stimuli-sensitive functional groups are conjugated to the outer shell of a nanogel, are also important for certain nanogel applications.
317:
nanogels loaded with cisplatin or doxorubicin and delivered these therapeutics to ovarian cancer cells, which overexpress the folate receptor that binds with folic acid. These conjugated nanogels produced a significant decrease in tumor growth in a mouse model compared to vehicle controls and showed a site-specific delivery model for nanogels that may be effective for other types of cancer with upregulated folate receptors. Interestingly, gelatin-based nanogels loaded with cisplatin and conjugated to epidermal growth factor receptor (EGFR) ligands have been reported to successfully target lung cancer cells both in vitro and in vivo, with additional work confirming the effectiveness of these nanogels when transformed into aerosol particles.
218:
swelling rate and stability of a nanogel, thus resulting in the release of encapsulated cargo when exposed to different pH ranges. For example, anionic nanogels with carboxylic acid groups will collapse upon exposure to a pH that is smaller than the pKa of the nanogel polymer. Similarly, cationic nanogels with terminal amino groups will become protonated if the pH of the environment is less than the pKa of the hydrogel. In this case, the swelling rate of the nanogel will change and it will become more hydrophilic. Other groups have also previously cross-linked pH-responsive hydrazone linkages to polysaccharide-based nanogels that released a payload in an acidic environment.
416: 321: 438:
into a critical bone defect and continued to induce the production of new osteoblast cells. To treat the effects of myocardial infarction, one in vivo study loaded temperature-responsive nanogels with cardiac stem cells and observed improved cardiac function through an increase in left ventricular ejection. Blood vessels have been successfully regenerated in an in vivo model of ischemia using nanogels to encapsulate vascular endothelial growth factors. Heparin-based nanogels loaded with growth factors have also been tested in the regeneration of the urethral muscle that causes urinary incontinence.
154: 364: 179: 205: 254: 267:
circulation for an adequate period to deliver cargo and produce a therapeutic effect. To combat a significant immune response, degradable nanogels are the typical default since they are considered less toxic compared to non degradable nanogels. The compliance and small size of degradable nanogels also allows them to travel through blood vessels and reach their target area before consumption by immune cells or filtration by the liver and spleen.
71: 377:
within a nanogel and observed a significant enhancement in relaxivity compared to a clinically available formulation of gadolinium-III. Another group developed pH-responsive nanogels containing both manganese oxide and superparamagnetic iron oxide nanoparticles that successfully imaged small tumors, where the pH was more acidic compared to the surrounding healthy tissues. Fluorine-containing nanogels can also be used as tracers for
227:
groups are typically present in thermoresponsive polymer nanogels that react to temperature decreases, whereas nanogels that respond to temperature increases often have to be prepared by a hydrogen-bonded layering technique. Temperature-responsive nanogels are a potential strategy when a therapeutic is targeting the skin, which has a natural temperature gradient, or a region experiencing inflammation.
276:
common mechanism that starts with the nanogels engulfed by the cellular membrane. The nanogels are transported in intracellular vesicles for delivery to endosomes that eventually combine with lysosomes. Once lysosomes are released into the cytosol of a cell, they deliver their cargo immediately or move to the appropriate cellular compartment. 
131:
polymerization is a similar process that uses a photoinitiator and light to trigger the formation of nanogels. Lithographic microtemplate polymerization can produce smaller nanogels on a length scale of <200 nm, which has a higher resolution compared to microtemplate polymerization that does not require a photoinitiator.
347:
decrease in pH once inside a tumor. When loaded with a chemotherapeutic agent, this technology induced a lower viability in 3D tumor spheroids compared to control groups. Another type of nanogel loaded with osteoarthritis anti-inflammatory drugs was found to significantly increase the amount of drug transported after
122:
solvent and further chemical and physical crosslinking of the droplets, nanogels are formed. The size of nanogels synthesized using this method can vary greatly depending on the type of surfactant and reaction medium used. Purifying nanogels produced using an emulsifying agent may also pose a challenge.
245:
irradiation, light-responsive nanogels can be triggered to degrade with an increased control over crosslinking density. For example, both the swelling and size of light-responsive nanogels with vinyl groups were found to decrease and produce a sustained release of drugs after irradiation with UV light.
376:
Typical MRI contrast agents that contain gadolinium and manganese are quickly excreted from the body and carry risks of increased toxicity. Nanogels aim to circumvent these limitations by encapsulating these agents and increasing their relaxivity, or sensitivity. One study encapsulated gadolinium-III
351:
to the skin and exposure to its natural elevated temperature. One group reported a method to control the release rate of an antiplatelet medication from a nanogel by using UV light to alter the crosslinking density of the polymer and subsequently change the swelling rate. Additionally, other nanogels
275:
After nanogels exit the vasculature, they diffuse through the interstitial space into their target tissue. At the cellular level, nanogels can be internalized by a large number of different types of endocytosis that depend on the particle’s size, shape, and surface properties. Endocytosis is the most
217:
pH responsive nanogels are an attractive form of nanogel technology due to the different pH levels found within the body. Healthy tissues exhibit a pH of 7.4 whereas tumors can be as low as 6.5 and the stomach as low as 1.0. The protonation or deprotonation of certain functional groups can change the
40:
and hydrogel synthesis. Nanogels can be natural, synthetic, or a combination of the two and have a high degree of tunability in terms of their size, shape, surface functionalization, and degradation mechanisms. Given these inherent characteristics in addition to their biocompatibility and capacity to
437:
To repair and regenerate damaged tissue, nanogels have been explored to not only encapsulate drugs and growth factors for local administration, but also to serve as porous scaffolds at a tissue implantation site. Boron-containing temperature-responsive nanogels formed a solid scaffold upon injection
337:
In one study, cationic synthetic nanogels modified with insulin and transferrin were synthesized to transport oligonucleotides, a possible therapeutic and diagnostic tool for neurodegenerative disorders, to the brain. These nanogels successfully localized through an in vitro model of the blood-brain
312:
In 2022, over 1.9 million new cancer cases are projected in the U.S. alone. Nanogels are an attractive drug delivery solution for increasing both the efficacy of cancer therapeutics and their localization to cancer cells. Nanogels are currently being investigated for the treatment of different types
244:
Light-responsive nanogels can be triggered to release their cargo with exposure to light at a certain wavelength. These nanogels are synthesized to contain specific acrylic or coumarin-based bonds that cleave during a photoreaction. With the tunability of the wavelength of light, energy, and time of
235:
Redox-responsive nanogels generally contain crosslinks formed by disulfide bonds or specific crosslinking agents. Nanogels made of bioreducible and bifunctional monomers can also be used. In the presence of reducing agents such as glutathione, thioredoxin and peroxiredoxin, these nanogels respond by
130:
The addition of a monomer precursor solution and crosslinking agent to a microtemplate, or mold-type device, can initiate polymerization and the formation of nanogels. This method can be used to create nanogels in specific shapes and load them with various small molecules. Lithographic microtemplate
428:
Nanogels are a promising technology being explored to aid in the wound healing process. Given their ability to encapsulate various types of cargo, nanogels can strategically deliver anti-inflammatory agents, antimicrobial drugs, and necessary growth factors to facilitate new tissue growth and blood
406:
For in vivo fluorescence-based optical imaging, dyes that emit NIR wavelengths >700 nm are most effective, such as indocyanine green, but encounter limitations with reduced circulation time and nonspecific interactions with other biological factors that affect the fluorescence. pH-sensitive
161:
Since biodegradability is an important characteristic of nanogels, these hydrogels are typically composed of natural or degradable synthetic polymers. Polysaccharides and proteins largely dominate the natural forms of polymers used to synthesize nanogels. Due to the use of thiolated polysaccharides
2673:
Heller, Daniel A.; Levi, Yair; Pelet, Jeisa M.; Doloff, Joshua C.; Wallas, Jasmine; Pratt, George W.; Jiang, Shan; Sahay, Gaurav; Schroeder, Avi; Schroeder, Josh E.; Chyan, Yieu; Zurenko, Christopher; Querbes, William; Manzano, Miguel; Kohane, Daniel S.; Langer, Robert; Anderson, Daniel G. (2013).
346:
Nanogels that respond to various stimuli including changes in pH and temperature or the presence of redox and light cues have proven to be useful tools for drug delivery. One such responsive nanogel was designed to switch from a surface negative charge to a surface positive charge upon exposure to
226:
The usage of thermoresponsive polymers in nanogel synthesis allows these systems to respond to changes in temperature. Depending on the chemical groups present, thermoresponsive polymers can either respond to a decrease in temperature or an increase in temperature. Both hydrophobic and hydrophilic
174:
nanogels can be stabilized via intra- and interchain disulfide bonding. Advantages of natural polymer-based nanogels include biocompatibility and degradability by cellular mechanisms in vivo. Natural polymers also tend to be nontoxic and bioactive in which they are more likely to induce biological
87:
In precipitation, initiators and crosslinking agents are added to a homogenous monomer solution to induce a polymerization reaction. When the polymer chain reaches the desired length, the reaction is halted and a polymer colloidal suspension is formed. Surfactants are the final addition to produce
66:
The synthesis of nanogels can be achieved using a vast array of different methods. However, two critical steps typically included in each method are polymerization and crosslinking, with physical and chemical crosslinking the most common. These steps can be completed concomitantly or in sequential
96:
Electrostatic interactions can form nanogels through the combination of anionic and cationic polymers in an aqueous solution.  The size and surface charge of the resulting nanogels can be modulated by changing the molecular weight or the charge ratio of the two different polymers. Ionotropic
316:
In one study, chitosan-based nanogels loaded with doxorubicin, a chemotherapeutic, with a positive surface charge demonstrated a lower colorectal cancer cell viability compared to control groups and a similarly loaded nanogel with a negative surface charge. Another group conjugated folic acid to
266:
One major concern with any form of drug delivery system, including nanogels, is potential side effects and damage to healthy tissue in addition to causing a negative immune response with the introduction of a foreign substance. This has to be balanced with the need for nanogels to remain within
451:
A fluorescent nanogel thermometer was developed to measure temperatures to within 0.5 Â°C (0.90 Â°F) in living cells. The cell absorbs water when colder and squeezes the water out as its internal temperature rises; the relative quantity of water masks or exposes the fluorescence of the
121:
Inverse-emulsion, or reverse miniemulsion, requires an organic solvent and a surfactant or emulsifying agent. Nanosized droplets are produced when an aqueous monomer solution is dispersed in the organic solvent in the presence of the surfactant or emulsifying agent. Upon removal of the organic
200:
Nanogels can be designed to respond to various stimuli including changes in pH and temperature or the presence of redox and light cues. Thoughtfully designed stimuli-responsive nanogels can be leveraged to transport and release different types of cargo to specific tissues within the body with
407:
nanogels with functionalized surface receptors to target cancer cells were loaded with a fluorescent dye that was only released upon endocytosis. These nanogels successfully generated a fluorescent signal from within the cancer cells and many other groups have developed similar technologies.
389:
Similar to MRI imaging, metal radionuclides can be loaded into nanogels and crosslinked to obtain PET radiotracers for imaging. Nanogels containing copper isotopes commonly used for PET imaging demonstrated overall stability and accumulation in tumors, which produced  a higher signal in
191:
The structure of a nanogel is dependent upon the synthesis mechanism and its application. Simple or traditional nanogels are nanoparticle-sized crosslinked polymer networks that swell in water. Hollow nanogels consisting only of an outer shell can increase the amount of cargo loaded into the
83:
In desolvation or coacervation, a non-solvent is added to a homogeneous polymer solution to produce individual, nanosized polymer complexes dispersed in the same solution. These complexes then undergo crosslinking to form nanogels with surface functionalization an optional next step.
352:
have been synthesized to include disulfide cleavable polymers that respond to reductive cues in the surrounding environment. One such nanogel was loaded with a chemotherapeutic agent and demonstrated a decrease in cell viability compared to a free version of the same agent.
333:
Nanogels are advantageous carriers of small, nucleic-acid based molecules that can be employed to treat a variety of diseases. Examples of three different types of molecules that fall into this category, oligonucleotides, miRNA, and nucleoside analogs, are discussed here.
1457:
Kolouchova, Kristyna; Jirak, Daniel; Groborz, Ondrej; Sedlacek, Ondrej; Ziolkowska, Natalia; Vit, Martin; Sticova, Eva; Galisova, Andrea; Svec, Pavel; Trousil, Jiri; Hajek, Milan; Hruby, Martin (2020). "Implant-forming polymeric 19F MRI-tracer with tunable dissolution".
390:
comparison to nearby tissue. Other studies have explored similar technologies with redox-responsive nanogels loaded with an isotope of gallium and other trivalent metals for PET imaging. Nanogels composed of dextran have also been developed for imaging tumor-associated
2481:
Babuka, David; Kolouchova, Kristyna; Hruby, Martin; Groborz, Ondrej; Tosner, Zdenek; Zhigunov, Alexander; Stepanek, Petr (2019). "Investigation of the internal structure of thermoresponsive diblock poly(2-methyl-2-oxazoline)-b-poly copolymer nanoparticles".
236:
releasing their cargo. Given that these reducing agents and several others are found in larger concentrations inside cells compared to their external environment, redox-responsive nanogels are a promising strategy for targeted intracellular delivery.
100:
Hydrophobic interactions rely heavily on physical crosslinking to form nanogels. In this method, hydrophobic groups are added to hydrophilic polymers in an aqueous solution to induce their self-assembly into nanogels. When thiolated polymers
139:
Polymer-based micelles that undergo crosslinking reactions can induce the formation of nanogels. Crosslinking either the core or the shell of a preexisting micelles can synthesize nanogels with a “high degree of spatial organization”.
41:
encapsulate small drugs and molecules, nanogels are a promising strategy to treat disease and dysfunction by serving as delivery vehicles capable of navigating across challenging physiological barriers within the body. 
3396:
Du, Jin-Zhi; Sun, Tian-Meng; Song, Wen-Jing; Wu, Juan; Wang, Jun (2010). "A Tumor-Acidity-Activated Charge-Conversional Nanogel as an Intelligent Vehicle for Promoted Tumoral-Cell Uptake and Drug Delivery".
381:, because their aggregation and tissue binding has only minor effect on their F MRI signal. Furthermore, they can carry drugs and their physico-chemical properties of the polymers can be highly modulated. 2424:"Internal Structure of Thermoresponsive Physically Crosslinked Nanogel of Poly[N-(2-hydroxypropyl)methacrylamide]-Block-Poly[N-(2,2-difluoroethyl)acrylamide], Prominent 19F MRI Tracer" 3026:"Nanogel-based scaffolds fabricated for bone regeneration with mesoporous bioactive glass and strontium: In vitro and in vivo characterization: BIOACTIVE SCAFFOLDS FOR THE REPAIR OF BONE DEFECTS" 419:
Various applications of nanogels in regenerative medicine contexts including as injectable delivery vehicles and as components of  implantable polymeric scaffolds. Created with BioRender.
1867:
Moraes, Fernanda C.; Marcelo Forero Ramirez, Laura; Aid, Rachida; Benadda, Samira; Maire, Murielle; Chauvierre, Cédric; Antunes, Joana C.; Chaubet, Frédéric; Letourneur, Didier (March 2021).
1124:
Hajebi, Sakineh; Rabiee, Navid; Bagherzadeh, Mojtaba; Ahmadi, Sepideh; Rabiee, Mohammad; Roghani-Mamaqani, Hossein; Tahriri, Mohammadreza; Tayebi, Lobat; Hamblin, Michael R. (July 2019).
3122:"Differentiation of endothelial progenitor cells into endothelial cells by heparin-modified supramolecular pluronic nanogels encapsulating bFGF and complexed with VEGF165 genes" 3063:
Tang, Junnan; Cui, Xiaolin; Caranasos, Thomas G.; Hensley, M. Taylor; Vandergriff, Adam C.; Hartanto, Yusak; Shen, Deliang; Zhang, Hu; Zhang, Jinying; Cheng, Ke (2017-10-24).
3367:
Hasegawa, Urara; Nomura, Shin-Ichiro M.; Kaul, Sunil C.; Hirano, Takashi; Akiyoshi, Kazunari (2005). "Nanogel-quantum dot hybrid nanoparticles for live cell imaging".
360:
In addition to drug delivery applications, nanogels have been utilized as a type of imaging modality as they can encapsulate small dyes and other reporter molecules.
3295:
Reese, Chad E.; Mikhonin, Alexander V.; Kamenjicki, Marta; Tikhonov, Alexander; Asher, Sanford A. (2004). "Nanogel Nanosecond Photonic Crystal Optical Switching".
3206:
Gota, Chie; Okabe, Kohki; Funatsu, Takashi; Harada, Yoshie; Uchiyama, Seiichi (2009). "Hydrophilic Fluorescent Nanogel Thermometer for Intracellular Thermometry".
1427:
Oh, Jung Kwon; Drumright, Ray; Siegwart, Daniel J.; Matyjaszewski, Krzysztof (2008). "The development of microgels/nanogels for drug delivery applications".
866:
Bernkop-SchnĂĽrch, A; Heinrich, A; Greimel, A (2006). "Development of a novel method for the preparation of submicron particles based on thiolated chitosan".
2624:
Keliher, Edmund J.; Yoo, Jeongsoo; Nahrendorf, Matthias; Lewis, Jason S.; Marinelli, Brett; Newton, Andita; Pittet, Mikael J.; Weissleder, Ralph (2011).
3266:
Yan, Ming; Ge, Jun; Liu, Zheng; Ouyang, Pingkai (2006). "Encapsulation of Single Enzyme in Nanogel with Enhanced Biocatalytic Activity and Stability".
556:
Suhail, Muhammad; Rosenholm, Jessica M; Minhas, Muhammad Usman; Badshah, Syed Faisal; Naeem, Abid; Khan, Kifayat Ullah; Fahad, Muhammad (2019-11-01).
2835:"Development of Interleukin-2 Loaded Chitosan-Based Nanogels Using Artificial Neural Networks and Investigating the Effects on Wound Healing in Rats" 58:, which are nanomaterial-filled, hydrated, polymeric networks that exhibit higher elasticity and strength relative to traditionally made hydrogels. 480:
Cuggino, Julio César; Blanco, Ernesto Rafael Osorio; Gugliotta, Luis Marcelino; Alvarez Igarzabal, Cecilia Inés; Calderón, Marcelo (August 2019).
2375:
Soleimani, Abdolrasoul; MartĂ­nez, Francisco; Economopoulos, Vasiliki; Foster, Paula J.; Scholl, Timothy J.; Gillies, Elizabeth R. (2013-01-23).
67:
order depending on the synthesis method and eventual nanogel application. Here, several different synthesis mechanisms are described briefly.
2018:
Zavgorodnya, Oleksandra; Carmona-Moran, Carlos A.; Kozlovskaya, Veronika; Liu, Fei; Wick, Timothy M.; Kharlampieva, Eugenia (November 2017).
1038:"Thiolated Hyaluronic Acid as Versatile Mucoadhesive Polymer: From the Chemistry Behind to Product Developments-What Are the Capabilities?" 823:
Greindl, M; Bernkop-SchnĂĽrch, A (2006). "Development of a novel method for the preparation of thiolated polyacrylic acid nanoparticles".
2204:
Xiao, J.; Tian, X. M.; Yang, C.; Liu, P.; Luo, N. Q.; Liang, Y.; Li, H. B.; Chen, D. H.; Wang, C. X.; Li, L.; Yang, G. W. (2013-12-05).
2930:
Anjum, Sadiya; Gupta, Amlan; Sharma, Deepika; Gautam, Deepti; Bhan, Surya; Sharma, Anupama; Kapil, Arti; Gupta, Bhuvanesh (July 2016).
1702:"The use of biotinylated-EGF-modified gelatin nanoparticle carrier to enhance cisplatin accumulation in cancerous lungs via inhalation" 2422:
Babuka, David; Kolouchova, Kristyna; Groborz, Ondrej; Tosner, Zdenek; Zhigunov, Alexander; Stepanek, Petr; Hruby, Martin (2020).
2318:
Jacques, Vincent; Dumas, Stéphane; Sun, Wei-Chuan; Troughton, Jeffrey S.; Greenfield, Matthew T.; Caravan, Peter (October 2010).
2932:"Development of novel wound care systems based on nanosilver nanohydrogels of polymethacrylic acid with Aloe vera and curcumin" 2530:"Nanogels from Metal-Chelating Crosslinkers as Versatile Platforms Applied to Copper-64 PET Imaging of Tumors and Metastases" 208:
Stimuli-responsive nanogels with different examples of stimuli and two potential release mechanisms. Created with BioRender.
2585:
Singh, Smriti; Bingöl, Bahar; Morgenroth, Agnieszka; Mottaghy, Felix M.; Möller, Martin; Schmaljohann, Jörn (2013-04-12).
2320:"High-Relaxivity Magnetic Resonance Imaging Contrast Agents Part 2: Optimization of Inner- and Second-Sphere Relaxivity" 3024:
Zhang, Qiao; Chen, Xiaohui; Geng, Shinan; Wei, Lingfei; Miron, Richard J.; Zhao, Yanbing; Zhang, Yufeng (April 2017).
1747:
Nukolova, Natalia V.; Oberoi, Hardeep S.; Cohen, Samuel M.; Kabanov, Alexander V.; Bronich, Tatiana K. (August 2011).
105:) are used for this preparation process, nanogels can be further stabilized by the formation of inter- and intrachain 3159:
Park, Kyung Min; Son, Joo Young; Choi, Jong Hoon; Kim, In Gul; Lee, Yunki; Lee, Ji Youl; Park, Ki Dong (2014-06-09).
1643:
Nukolova, Natalia V.; Oberoi, Hardeep S.; Cohen, Samuel M.; Kabanov, Alexander V.; Bronich, Tatiana K. (2011-08-01).
3161:"Macro/Nano-Gel Composite as an Injectable and Bioactive Bulking Material for the Treatment of Urinary Incontinence" 1971:"Intelligent nanogels with self-adaptive responsiveness for improved tumor drug delivery and augmented chemotherapy" 1601:
Feng, Chao; Li, Jing; Kong, Ming; Liu, Ya; Cheng, Xiao Jie; Li, Yang; Park, Hyun Jin; Chen, Xi Guang (April 2015).
2165:
Wang, Xia; Niu, Dechao; Wu, Qing; Bao, Song; Su, Teng; Liu, Xiaohang; Zhang, Shengjian; Wang, Qigang (June 2015).
1603:"Surface charge effect on mucoadhesion of chitosan based nanogels for local anti-colorectal cancer drug delivery" 1414:
Editors: Arti Vashist, Ajeet K Kaushik, Sharif Ahmad, Madhavan Nair, Royal Society of Chemistry, Cambridge 2018,
1509:
Raemdonck, Koen; Demeester, Joseph; De Smedt, Stefaan (2009). "Advanced nanogel engineering for drug delivery".
324:
Example of using a therapeutic nanoparticle for targeted drug delivery to cancer cells. Created with BioRender.
97:
gelation can also leverage electrostatic interactions between multivalent anions and cations to form nanogels.
74:
Graphical representation of seven different methods of synthesizing polymeric nanogels. Created with BioRender.
3065:"Heart Repair Using Nanogel-Encapsulated Human Cardiac Stem Cells in Mice and Pigs with Myocardial Infarction" 1173:
Alkanawati, Mohammad Shafee; Machtakova, Marina; Landfester, Katharina; Thérien-Aubin, Héloïse (2021-07-12).
3245:
Ye, Yanqi; Yu, Jicheng; Gu, Zhen (2015). "Versatile Protein Nanogels Prepared by In Situ Polymerization".
2167:"Iron oxide/manganese oxide co-loaded hybrid nanogels as pH-responsive magnetic resonance contrast agents" 2117:"Nanogels comprising reduction-cleavable polymers for glutathione-induced intracellular curcumin delivery" 2737:
Park, Hye Sun; Lee, Jung Eun; Cho, Mi Young; Hong, Ji Hyeon; Cho, Sang Hee; Lim, Yong Taik (2012-09-26).
3440: 3120:
Yang, Han Na; Choi, Jong Hoon; Park, Ji Sun; Jeon, Su Yeon; Park, Ki Dong; Park, Keun-Hong (May 2014).
2891:
El-Feky, Gina S.; El-Banna, Sally T.; El-Bahy, G.S.; Abdelrazek, E.M.; Kamal, Mustafa (December 2017).
2739:"Hyaluronic Acid/Poly(β-Amino Ester) Polymer Nanogels for Cancer-Cell-Specific NIR Fluorescence Switch" 296: 2675: 1701: 2971:"Enhanced antimicrobial effect of berberine in nanogel carriers with cationic surface functionality" 2970: 2376: 940:"Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation" 2969:
Al-Awady, Mohammed J.; Fauchet, Adelaide; Greenway, Gillian M.; Paunov, Vesselin N. (2017-10-04).
2020:"Temperature-responsive nanogel multilayers of poly(N-vinylcaprolactam) for topical drug delivery" 1969:
Li, Xin; Li, Helin; Zhang, Changchang; Pich, Andrij; Xing, Lingxi; Shi, Xiangyang (October 2021).
415: 3121: 2931: 2892: 2784: 2166: 2019: 1868: 1602: 481: 320: 53: 3435: 2528:
Lux, Jacques; White, Alexander G.; Chan, Minnie; Anderson, Carolyn J.; Almutairi, Adah (2015).
1279:
Hock, N; Racaniello, GF; Aspinall, S; Denora, N; Khutoryanskiy, V; Bernkop-SchnĂĽrch, A (2022).
1230:
Hock, N; Racaniello, GF; Aspinall, S; Denora, N; Khutoryanskiy, V; Bernkop-SchnĂĽrch, A (2022).
2377:"Polymer cross-linking: a nanogel approach to enhancing the relaxivity of MRI contrast agents" 2893:"Alginate coated chitosan nanogel for the controlled topical delivery of Silver sulfadiazine" 2738: 2586: 348: 1700:
Tseng, Ching-Li; Su, Wen-Yun; Yen, Ko-Chung; Yang, Kai-Chiang; Lin, Feng-Huei (2009-07-01).
2690: 2217: 2206:"Ultrahigh relaxivity and safe probes of manganese oxide nanoparticles for in vivo imaging" 2078: 2031: 1518: 1281:"Thiolated Nanoparticles for Biomedical Applications: Mimicking the Workhorses of our Body" 1232:"Thiolated Nanoparticles for Biomedical Applications: Mimicking the Workhorses of our Body" 557: 3025: 2115:
Lee, Pei-Yuan; Tuan-Mu, Ho-Yi; Hsiao, Li-Wen; Hu, Jin-Jia; Jan, Jeng-Shiung (April 2017).
1544:
Siegel, Rebecca L.; Miller, Kimberly D.; Fuchs, Hannah E.; Jemal, Ahmedin (January 2022).
1415: 8: 367:
An example of pH-responsive nanogels to increase MRI sensitivity. Created with BioRender.
2694: 2221: 2082: 2035: 1522: 153: 3350: 3325: 3137: 3097: 3064: 3006: 2870: 2833:
Aslan, Canan; Çelebi, Nevin; Değim, İ. Tuncer; Atak, Ayşegül; Özer, Çiğdem (May 2017).
2812: 2711: 2650: 2625: 2562: 2507: 2458: 2423: 2352: 2295: 2270: 2246: 2205: 2182: 2144: 1995: 1970: 1943: 1918: 1896: 1841: 1808: 1781: 1764: 1748: 1717: 1677: 1660: 1644: 1583: 1491: 1440: 1354: 1329: 1305: 1280: 1256: 1231: 1207: 1174: 1150: 1125: 1064: 1037: 1013: 988: 964: 939: 848: 800: 767: 729: 593: 509: 32:
scale. These complex networks of polymers present a unique opportunity in the field of
2271:"Biodistribution of gadolinium-based contrast agents, including gadolinium deposition" 692:
Li, Yulin; Maciel, Dina; Rodrigues, João; Shi, Xiangyang; Tomás, Helena (2015-08-26).
3414: 3384: 3355: 3312: 3283: 3223: 3188: 3180: 3141: 3102: 3084: 3045: 2998: 2990: 2951: 2912: 2862: 2854: 2834: 2816: 2804: 2758: 2716: 2655: 2606: 2567: 2549: 2511: 2499: 2463: 2445: 2404: 2396: 2357: 2339: 2300: 2251: 2233: 2186: 2136: 2116: 2094: 2047: 2000: 1948: 1900: 1888: 1846: 1828: 1786: 1768: 1729: 1721: 1682: 1664: 1622: 1587: 1575: 1567: 1495: 1483: 1475: 1394: 1359: 1310: 1261: 1212: 1194: 1155: 1069: 1018: 969: 883: 840: 805: 787: 721: 713: 597: 585: 577: 513: 501: 3010: 2495: 2148: 1986: 852: 363: 257:
Example of an endocytosis process for a drug-loaded nanogel. Created with BioRender.
3406: 3376: 3345: 3337: 3304: 3275: 3254: 3215: 3172: 3133: 3092: 3076: 3037: 2982: 2943: 2904: 2874: 2846: 2796: 2783:
Grimaudo, Maria Aurora; Concheiro, Angel; Alvarez-Lorenzo, Carmen (November 2019).
2750: 2706: 2698: 2645: 2637: 2598: 2557: 2541: 2491: 2453: 2435: 2388: 2347: 2331: 2319: 2290: 2282: 2241: 2225: 2178: 2128: 2086: 2039: 1990: 1982: 1938: 1930: 1880: 1836: 1820: 1776: 1760: 1713: 1672: 1656: 1618: 1614: 1557: 1526: 1467: 1436: 1386: 1349: 1341: 1300: 1292: 1251: 1243: 1202: 1186: 1145: 1137: 1059: 1049: 1008: 1000: 959: 951: 875: 832: 795: 779: 733: 705: 569: 493: 2908: 2800: 1934: 1884: 1471: 989:"Thiolated Chitosans: A Multi-talented Class of Polymers for Various Applications" 955: 783: 497: 113:. In the following the oppositely charged oligo- or polymers can even be removed. 3324:
Lee, Eun Seong; Kim, Dongin; Youn, Yu Seok; Oh, Kyung Taek; Bae, You Han (2008).
2335: 1919:"Polyplex Nanogel formulations for drug delivery of cytotoxic nucleoside analogs" 1807:
Vinogradov, Serguei V.; Batrakova, Elena V.; Kabanov, Alexander V. (2004-01-01).
1141: 482:"Crossing biological barriers with nanogels to improve drug delivery performance" 178: 171: 182:
Various types of natural and synthetic biomaterials used to synthesize nanogels.
3380: 2947: 2043: 1330:"Nanogels as Pharmaceutical Carriers: Finite Networks of Infinite Capabilities" 1190: 1004: 879: 289: 2850: 2132: 836: 204: 3429: 3184: 3160: 3088: 2994: 2858: 2553: 2503: 2449: 2400: 2343: 2237: 2140: 2098: 2066: 1832: 1772: 1725: 1668: 1571: 1479: 1198: 791: 717: 693: 581: 395: 285: 33: 3080: 70: 3418: 3410: 3388: 3359: 3341: 3316: 3287: 3258: 3227: 3192: 3145: 3106: 3049: 3002: 2955: 2916: 2866: 2808: 2762: 2754: 2720: 2702: 2659: 2610: 2602: 2571: 2467: 2408: 2361: 2304: 2255: 2190: 2051: 2004: 1952: 1892: 1850: 1790: 1733: 1686: 1626: 1579: 1487: 1398: 1363: 1345: 1314: 1296: 1265: 1247: 1216: 1172: 1159: 1073: 1022: 973: 887: 844: 809: 725: 589: 505: 253: 37: 1054: 573: 261: 2440: 391: 3041: 1377:
Vinogradov, Serguei V (2010). "Nanogels in the race for drug delivery".
938:
Soni, Kruti S.; Desale, Swapnil S.; Bronich, Tatiana K. (October 2016).
2986: 2545: 2392: 2286: 1869:"P-selectin targeting polysaccharide-based nanogels for miRNA delivery" 1562: 1545: 1390: 1126:"Stimulus-responsive polymeric nanogels as smart drug delivery systems" 479: 3308: 3279: 3219: 3176: 2641: 2229: 2090: 2017: 1866: 1824: 709: 2626:"89Zr-Labeled Dextran Nanoparticles Allow in Vivo Macrophage Imaging" 1530: 110: 106: 2374: 2529: 293: 167: 25: 1749:"Folate-Decorated Nanogels for Targeted Therapy of Ovarian Cancer" 1645:"Folate-decorated nanogels for targeted therapy of ovarian cancer" 766:
Li, Cuixia; Obireddy, Sreekanth Reddy; Lai, Wing-Fu (2021-01-01).
2067:"Photoresponsive Nanogels Based on Photocontrollable Cross-Links" 163: 102: 47: 21: 2890: 2782: 1917:
Vinogradov, S; Zeman, A; Batrakova, E; Kabanov, A (2005-09-20).
1426: 341: 3294: 1916: 1035: 986: 865: 694:"Biodegradable Polymer Nanogels for Drug/Nucleic Acid Delivery" 29: 1456: 2968: 2584: 2421: 1123: 558:"Nanogels as drug-delivery systems: a comprehensive overview" 91: 78: 2480: 1278: 1229: 555: 1806: 1746: 1642: 1508: 2623: 378: 3366: 2317: 157:
Six different types of nanogels. Created with BioRender.
3062: 1416:
https://pubs.rsc.org/en/content/ebook/978-1-78801-048-1
822: 262:
Biocompatibility, Biodegradability, and Biodistribution
3205: 2929: 1543: 1452: 1450: 1328:
Kabanov, Alexander V.; Vinogradov, Serguei V. (2009).
1321: 768:"Preparation and use of nanogels as carriers of drugs" 248: 2672: 2587:"Radiolabeled Nanogels for Nuclear Molecular Imaging" 1175:"Bio-Orthogonal Nanogels for Multiresponsive Release" 1036:
Griesser, J; Hetényi, G; Bernkop-Schnürch, A (2018).
987:
Federer, C; Kurpiers, M; Bernkop-SchnĂĽrch, A (2021).
2832: 2676:"Modular 'Click-in-Emulsion' Bone-Targeted Nanogels" 2527: 1809:"Nanogels for Oligonucleotide Delivery to the Brain" 691: 313:
of cancer, of which a few examples are listed here.
3369:
Biochemical and Biophysical Research Communications
1447: 221: 2114: 1327: 937: 3427: 3119: 3023: 79:Desolvation/Coacervation and Precipitation  3030:Journal of Biomedical Materials Research Part A 2203: 2160: 2158: 328: 125: 3265: 3158: 2736: 2269:Aime, Silvio; Caravan, Peter (December 2009). 1699: 195: 1968: 1600: 765: 342:Stimuli-responsive Nanogels for Drug Delivery 270: 3323: 2164: 2155: 2065:He, Jie; Tong, Xia; Zhao, Yue (2009-07-14). 239: 230: 143: 3395: 2268: 284:Potential applications of nanogels include 51:, a lightweight thermal insulator, or with 2474: 2415: 2064: 1376: 355: 92:Electrostatic and Hydrophobic Interactions 3349: 3096: 2710: 2649: 2561: 2457: 2439: 2351: 2294: 2245: 1994: 1942: 1840: 1780: 1676: 1561: 1353: 1304: 1255: 1206: 1149: 1063: 1053: 1012: 963: 799: 212: 134: 3297:Journal of the American Chemical Society 3268:Journal of the American Chemical Society 3208:Journal of the American Chemical Society 2024:Journal of Colloid and Interface Science 414: 410: 401: 362: 319: 252: 203: 177: 152: 69: 3399:Angewandte Chemie International Edition 3330:Angewandte Chemie International Edition 1334:Angewandte Chemie International Edition 3428: 3244: 2886: 2884: 2828: 2826: 2778: 2776: 2774: 2772: 2732: 2730: 2523: 2521: 2110: 2108: 1964: 1962: 1873:International Journal of Pharmaceutics 1607:Colloids and Surfaces B: Biointerfaces 1119: 1117: 1115: 1113: 1111: 1109: 1107: 1105: 1103: 432: 307: 201:increasing spatiotemporal resolution. 2275:Journal of Magnetic Resonance Imaging 1912: 1910: 1862: 1860: 1802: 1800: 1638: 1636: 1412:Nanogels for Biomedical Applications, 1101: 1099: 1097: 1095: 1093: 1091: 1089: 1087: 1085: 1083: 933: 931: 929: 927: 925: 923: 921: 919: 917: 687: 685: 683: 681: 679: 677: 675: 673: 671: 669: 667: 665: 663: 661: 659: 657: 655: 653: 651: 649: 647: 645: 643: 641: 639: 637: 635: 633: 631: 629: 627: 551: 549: 547: 545: 543: 441: 299:tracers, nanoactuators, and sensors. 44:Nanogels are not to be confused with 3247:Macromolecular Chemistry and Physics 2936:Materials Science and Engineering: C 2785:"Nanogels for regenerative medicine" 915: 913: 911: 909: 907: 905: 903: 901: 899: 897: 761: 759: 757: 755: 753: 751: 749: 747: 745: 743: 625: 623: 621: 619: 617: 615: 613: 611: 609: 607: 541: 539: 537: 535: 533: 531: 529: 527: 525: 523: 475: 473: 471: 469: 467: 465: 2881: 2823: 2769: 2743:Macromolecular Rapid Communications 2727: 2591:Macromolecular Rapid Communications 2518: 2105: 1959: 1550:CA: A Cancer Journal for Clinicians 249:Physiological Responses to Nanogels 116: 13: 3238: 3138:10.1016/j.biomaterials.2014.02.038 2183:10.1016/j.biomaterials.2015.02.101 1907: 1857: 1797: 1765:10.1016/j.biomaterials.2011.04.006 1718:10.1016/j.biomaterials.2009.03.010 1661:10.1016/j.biomaterials.2011.04.006 1633: 1441:10.1016/j.progpolymsci.2008.01.002 1080: 14: 3452: 3326:"A Virus-Mimetic Nanogel Vehicle" 894: 740: 604: 520: 462: 2975:Journal of Materials Chemistry B 2381:Journal of Materials Chemistry B 423: 302: 3199: 3152: 3113: 3056: 3017: 2962: 2923: 2666: 2617: 2578: 2496:10.1016/j.eurpolymj.2019.109306 2368: 2311: 2262: 2197: 2058: 2011: 1987:10.1016/j.bioactmat.2021.03.021 1740: 1693: 1594: 1537: 1502: 1420: 1405: 1370: 1272: 1223: 1166: 279: 222:Temperature-responsive Nanogels 1619:10.1016/j.colsurfb.2015.02.042 1029: 980: 859: 816: 384: 371: 1: 2909:10.1016/j.carbpol.2017.08.104 2801:10.1016/j.jconrel.2019.09.015 2789:Journal of Controlled Release 1935:10.1016/j.jconrel.2005.06.002 1923:Journal of Controlled Release 1885:10.1016/j.ijpharm.2021.120302 1472:10.1016/j.jconrel.2020.07.026 1460:Journal of Controlled Release 956:10.1016/j.jconrel.2015.11.009 944:Journal of Controlled Release 784:10.1080/10717544.2021.1955042 498:10.1016/j.jconrel.2019.06.005 486:Journal of Controlled Release 455: 2336:10.1097/RLI.0b013e3181ee6a49 1142:10.1016/j.actbio.2019.05.018 329:Nucleic Acid-based Molecules 186: 148: 126:Microtemplate Polymerization 61: 7: 2121:Journal of Polymer Research 1429:Progress in Polymer Science 196:Stimuli-responsive Nanogels 10: 3457: 3381:10.1016/j.bbrc.2005.03.228 2948:10.1016/j.msec.2016.03.069 2044:10.1016/j.jcis.2017.07.084 1191:10.1021/acs.biomac.1c00378 1005:10.1021/acs.biomac.0c00663 880:10.1016/j.ejpb.2006.01.002 446: 271:Cellular Uptake Mechanisms 2851:10.1208/s12249-016-0662-4 2133:10.1007/s10965-017-1207-6 1546:"Cancer statistics, 2022" 837:10.1007/s11095-006-9087-1 240:Light-responsive Nanogels 231:Redox-responsive Nanogels 144:Composition and Structure 2484:European Polymer Journal 398:and targeting the bone. 3081:10.1021/acsnano.7b01008 2324:Investigative Radiology 356:Imaging and Diagnostics 292:for medical imaging or 54:nanocomposite hydrogels 36:at the intersection of 3411:10.1002/anie.200907210 3342:10.1002/anie.200704121 3259:10.1002/macp.201500296 2755:10.1002/marc.201200246 2703:10.1002/adma.201202881 2630:Bioconjugate Chemistry 2603:10.1002/marc.201200744 1813:Bioconjugate Chemistry 1346:10.1002/anie.200900441 1297:10.1002/advs.202102451 1248:10.1002/advs.202102451 420: 368: 325: 258: 213:pH-responsive Nanogels 209: 183: 158: 135:Cross-linking Micelles 75: 2897:Carbohydrate Polymers 1055:10.3390/polym10030243 574:10.4155/tde-2019-0010 418: 411:Regenerative Medicine 402:Other Optical Imaging 366: 323: 256: 207: 181: 156: 73: 2441:10.3390/nano10112231 868:Eur J Pharm Biopharm 562:Therapeutic Delivery 166:) such as thiolated 88:nanosized polymers. 28:particle on the sub- 24:-based, crosslinked 3042:10.1002/jbm.a.35980 2695:2013AdM....25.1449H 2222:2013NatSR...3E3424X 2083:2009MaMol..42.4845H 2036:2017JCIS..506..589Z 1975:Bioactive Materials 1523:2009SMat....5..707R 433:Tissue Regeneration 349:topical application 308:Cancer Therapeutics 2987:10.1039/C7TB02262J 2683:Advanced Materials 2546:10.7150/thno.10904 2393:10.1039/C2TB00352J 2287:10.1002/jmri.21969 2210:Scientific Reports 1563:10.3322/caac.21708 1391:10.2217/nnm.09.103 1130:Acta Biomaterialia 442:Other Applications 421: 369: 326: 259: 210: 184: 159: 76: 3441:Protein complexes 3309:10.1021/ja037118a 3280:10.1021/ja064126t 3220:10.1021/ja807714j 3177:10.1021/bm401787u 3165:Biomacromolecules 3132:(16): 4716–4728. 3075:(10): 9738–9749. 2981:(38): 7885–7897. 2839:AAPS PharmSciTech 2749:(18): 1549–1555. 2642:10.1021/bc200405d 2230:10.1038/srep03424 2091:10.1021/ma900665v 2077:(13): 4845–4852. 1981:(10): 3473–3484. 1825:10.1021/bc034164r 1759:(23): 5417–5426. 1712:(20): 3476–3485. 1655:(23): 5417–5426. 1179:Biomacromolecules 993:Biomacromolecules 710:10.1021/cr500131f 704:(16): 8564–8608. 3448: 3422: 3392: 3363: 3353: 3320: 3291: 3262: 3232: 3231: 3203: 3197: 3196: 3171:(6): 1979–1984. 3156: 3150: 3149: 3117: 3111: 3110: 3100: 3060: 3054: 3053: 3036:(4): 1175–1183. 3021: 3015: 3014: 2966: 2960: 2959: 2927: 2921: 2920: 2888: 2879: 2878: 2845:(4): 1019–1030. 2830: 2821: 2820: 2780: 2767: 2766: 2734: 2725: 2724: 2714: 2680: 2670: 2664: 2663: 2653: 2621: 2615: 2614: 2582: 2576: 2575: 2565: 2525: 2516: 2515: 2478: 2472: 2471: 2461: 2443: 2419: 2413: 2412: 2387:(7): 1027–1034. 2372: 2366: 2365: 2355: 2315: 2309: 2308: 2298: 2281:(6): 1259–1267. 2266: 2260: 2259: 2249: 2201: 2195: 2194: 2162: 2153: 2152: 2112: 2103: 2102: 2062: 2056: 2055: 2015: 2009: 2008: 1998: 1966: 1957: 1956: 1946: 1914: 1905: 1904: 1864: 1855: 1854: 1844: 1804: 1795: 1794: 1784: 1744: 1738: 1737: 1697: 1691: 1690: 1680: 1640: 1631: 1630: 1598: 1592: 1591: 1565: 1541: 1535: 1534: 1531:10.1039/b811923f 1506: 1500: 1499: 1454: 1445: 1444: 1424: 1418: 1409: 1403: 1402: 1374: 1368: 1367: 1357: 1325: 1319: 1318: 1308: 1276: 1270: 1269: 1259: 1227: 1221: 1220: 1210: 1185:(7): 2976–2984. 1170: 1164: 1163: 1153: 1121: 1078: 1077: 1067: 1057: 1033: 1027: 1026: 1016: 984: 978: 977: 967: 935: 892: 891: 863: 857: 856: 820: 814: 813: 803: 778:(1): 1594–1602. 763: 738: 737: 698:Chemical Reviews 689: 602: 601: 553: 518: 517: 477: 117:Inverse-emulsion 3456: 3455: 3451: 3450: 3449: 3447: 3446: 3445: 3426: 3425: 3336:(13): 2418–21. 3274:(34): 11008–9. 3241: 3239:Further reading 3236: 3235: 3204: 3200: 3157: 3153: 3118: 3114: 3061: 3057: 3022: 3018: 2967: 2963: 2928: 2924: 2889: 2882: 2831: 2824: 2781: 2770: 2735: 2728: 2689:(10): 1449–54. 2678: 2671: 2667: 2622: 2618: 2583: 2579: 2526: 2519: 2479: 2475: 2420: 2416: 2373: 2369: 2330:(10): 613–624. 2316: 2312: 2267: 2263: 2202: 2198: 2163: 2156: 2113: 2106: 2063: 2059: 2016: 2012: 1967: 1960: 1915: 1908: 1865: 1858: 1805: 1798: 1745: 1741: 1698: 1694: 1641: 1634: 1599: 1595: 1542: 1538: 1507: 1503: 1455: 1448: 1425: 1421: 1410: 1406: 1375: 1371: 1340:(30): 5418–29. 1326: 1322: 1285:Adv Sci (Weinh) 1277: 1273: 1236:Adv Sci (Weinh) 1228: 1224: 1171: 1167: 1122: 1081: 1034: 1030: 985: 981: 936: 895: 864: 860: 821: 817: 764: 741: 690: 605: 568:(11): 697–717. 554: 521: 478: 463: 458: 449: 444: 435: 426: 413: 404: 387: 374: 358: 344: 331: 310: 305: 290:contrast agents 282: 273: 264: 251: 242: 233: 224: 215: 198: 189: 172:hyaluronic acid 151: 146: 137: 128: 119: 94: 81: 64: 12: 11: 5: 3454: 3444: 3443: 3438: 3424: 3423: 3405:(21): 3621–6. 3393: 3364: 3321: 3292: 3263: 3253:(3): 333–343. 3240: 3237: 3234: 3233: 3198: 3151: 3112: 3055: 3016: 2961: 2922: 2880: 2822: 2768: 2726: 2665: 2636:(12): 2383–9. 2616: 2597:(7): 562–567. 2577: 2540:(3): 277–288. 2517: 2473: 2414: 2367: 2310: 2261: 2196: 2154: 2104: 2071:Macromolecules 2057: 2010: 1958: 1929:(1): 143–157. 1906: 1856: 1796: 1739: 1692: 1632: 1593: 1536: 1517:(4): 707–715. 1501: 1446: 1419: 1404: 1369: 1320: 1291:(1): 2102451. 1271: 1242:(1): 2102451. 1222: 1165: 1079: 1028: 979: 893: 858: 815: 739: 603: 519: 460: 459: 457: 454: 448: 445: 443: 440: 434: 431: 425: 422: 412: 409: 403: 400: 386: 383: 373: 370: 357: 354: 343: 340: 330: 327: 309: 306: 304: 301: 281: 278: 272: 269: 263: 260: 250: 247: 241: 238: 232: 229: 223: 220: 214: 211: 197: 194: 188: 185: 150: 147: 145: 142: 136: 133: 127: 124: 118: 115: 93: 90: 80: 77: 63: 60: 9: 6: 4: 3: 2: 3453: 3442: 3439: 3437: 3436:Nanomaterials 3434: 3433: 3431: 3420: 3416: 3412: 3408: 3404: 3400: 3394: 3390: 3386: 3382: 3378: 3375:(4): 917–21. 3374: 3370: 3365: 3361: 3357: 3352: 3347: 3343: 3339: 3335: 3331: 3327: 3322: 3318: 3314: 3310: 3306: 3303:(5): 1493–6. 3302: 3298: 3293: 3289: 3285: 3281: 3277: 3273: 3269: 3264: 3260: 3256: 3252: 3248: 3243: 3242: 3229: 3225: 3221: 3217: 3214:(8): 2766–7. 3213: 3209: 3202: 3194: 3190: 3186: 3182: 3178: 3174: 3170: 3166: 3162: 3155: 3147: 3143: 3139: 3135: 3131: 3127: 3123: 3116: 3108: 3104: 3099: 3094: 3090: 3086: 3082: 3078: 3074: 3070: 3066: 3059: 3051: 3047: 3043: 3039: 3035: 3031: 3027: 3020: 3012: 3008: 3004: 3000: 2996: 2992: 2988: 2984: 2980: 2976: 2972: 2965: 2957: 2953: 2949: 2945: 2941: 2937: 2933: 2926: 2918: 2914: 2910: 2906: 2902: 2898: 2894: 2887: 2885: 2876: 2872: 2868: 2864: 2860: 2856: 2852: 2848: 2844: 2840: 2836: 2829: 2827: 2818: 2814: 2810: 2806: 2802: 2798: 2794: 2790: 2786: 2779: 2777: 2775: 2773: 2764: 2760: 2756: 2752: 2748: 2744: 2740: 2733: 2731: 2722: 2718: 2713: 2708: 2704: 2700: 2696: 2692: 2688: 2684: 2677: 2669: 2661: 2657: 2652: 2647: 2643: 2639: 2635: 2631: 2627: 2620: 2612: 2608: 2604: 2600: 2596: 2592: 2588: 2581: 2573: 2569: 2564: 2559: 2555: 2551: 2547: 2543: 2539: 2535: 2531: 2524: 2522: 2513: 2509: 2505: 2501: 2497: 2493: 2489: 2485: 2477: 2469: 2465: 2460: 2455: 2451: 2447: 2442: 2437: 2433: 2429: 2428:Nanomaterials 2425: 2418: 2410: 2406: 2402: 2398: 2394: 2390: 2386: 2382: 2378: 2371: 2363: 2359: 2354: 2349: 2345: 2341: 2337: 2333: 2329: 2325: 2321: 2314: 2306: 2302: 2297: 2292: 2288: 2284: 2280: 2276: 2272: 2265: 2257: 2253: 2248: 2243: 2239: 2235: 2231: 2227: 2223: 2219: 2215: 2211: 2207: 2200: 2192: 2188: 2184: 2180: 2176: 2172: 2168: 2161: 2159: 2150: 2146: 2142: 2138: 2134: 2130: 2126: 2122: 2118: 2111: 2109: 2100: 2096: 2092: 2088: 2084: 2080: 2076: 2072: 2068: 2061: 2053: 2049: 2045: 2041: 2037: 2033: 2029: 2025: 2021: 2014: 2006: 2002: 1997: 1992: 1988: 1984: 1980: 1976: 1972: 1965: 1963: 1954: 1950: 1945: 1940: 1936: 1932: 1928: 1924: 1920: 1913: 1911: 1902: 1898: 1894: 1890: 1886: 1882: 1878: 1874: 1870: 1863: 1861: 1852: 1848: 1843: 1838: 1834: 1830: 1826: 1822: 1818: 1814: 1810: 1803: 1801: 1792: 1788: 1783: 1778: 1774: 1770: 1766: 1762: 1758: 1754: 1750: 1743: 1735: 1731: 1727: 1723: 1719: 1715: 1711: 1707: 1703: 1696: 1688: 1684: 1679: 1674: 1670: 1666: 1662: 1658: 1654: 1650: 1646: 1639: 1637: 1628: 1624: 1620: 1616: 1612: 1608: 1604: 1597: 1589: 1585: 1581: 1577: 1573: 1569: 1564: 1559: 1555: 1551: 1547: 1540: 1532: 1528: 1524: 1520: 1516: 1512: 1505: 1497: 1493: 1489: 1485: 1481: 1477: 1473: 1469: 1465: 1461: 1453: 1451: 1442: 1438: 1435:(4): 448–77. 1434: 1430: 1423: 1417: 1413: 1408: 1400: 1396: 1392: 1388: 1384: 1380: 1373: 1365: 1361: 1356: 1351: 1347: 1343: 1339: 1335: 1331: 1324: 1316: 1312: 1307: 1302: 1298: 1294: 1290: 1286: 1282: 1275: 1267: 1263: 1258: 1253: 1249: 1245: 1241: 1237: 1233: 1226: 1218: 1214: 1209: 1204: 1200: 1196: 1192: 1188: 1184: 1180: 1176: 1169: 1161: 1157: 1152: 1147: 1143: 1139: 1135: 1131: 1127: 1120: 1118: 1116: 1114: 1112: 1110: 1108: 1106: 1104: 1102: 1100: 1098: 1096: 1094: 1092: 1090: 1088: 1086: 1084: 1075: 1071: 1066: 1061: 1056: 1051: 1047: 1043: 1039: 1032: 1024: 1020: 1015: 1010: 1006: 1002: 998: 994: 990: 983: 975: 971: 966: 961: 957: 953: 949: 945: 941: 934: 932: 930: 928: 926: 924: 922: 920: 918: 916: 914: 912: 910: 908: 906: 904: 902: 900: 898: 889: 885: 881: 877: 874:(2): 166–72. 873: 869: 862: 854: 850: 846: 842: 838: 834: 831:(9): 2183–9. 830: 826: 819: 811: 807: 802: 797: 793: 789: 785: 781: 777: 773: 772:Drug Delivery 769: 762: 760: 758: 756: 754: 752: 750: 748: 746: 744: 735: 731: 727: 723: 719: 715: 711: 707: 703: 699: 695: 688: 686: 684: 682: 680: 678: 676: 674: 672: 670: 668: 666: 664: 662: 660: 658: 656: 654: 652: 650: 648: 646: 644: 642: 640: 638: 636: 634: 632: 630: 628: 626: 624: 622: 620: 618: 616: 614: 612: 610: 608: 599: 595: 591: 587: 583: 579: 575: 571: 567: 563: 559: 552: 550: 548: 546: 544: 542: 540: 538: 536: 534: 532: 530: 528: 526: 524: 515: 511: 507: 503: 499: 495: 491: 487: 483: 476: 474: 472: 470: 468: 466: 461: 453: 439: 430: 424:Wound Healing 417: 408: 399: 397: 396:radionuclides 393: 382: 380: 365: 361: 353: 350: 339: 335: 322: 318: 314: 303:Drug Delivery 300: 298: 295: 291: 287: 286:drug delivery 277: 268: 255: 246: 237: 228: 219: 206: 202: 193: 180: 176: 173: 170:or thiolated 169: 165: 155: 141: 132: 123: 114: 112: 109:bonds due to 108: 104: 98: 89: 85: 72: 68: 59: 57: 55: 50: 49: 42: 39: 38:nanoparticles 35: 34:drug delivery 31: 27: 23: 19: 3402: 3398: 3372: 3368: 3333: 3329: 3300: 3296: 3271: 3267: 3250: 3246: 3211: 3207: 3201: 3168: 3164: 3154: 3129: 3126:Biomaterials 3125: 3115: 3072: 3068: 3058: 3033: 3029: 3019: 2978: 2974: 2964: 2939: 2935: 2925: 2900: 2896: 2842: 2838: 2792: 2788: 2746: 2742: 2686: 2682: 2668: 2633: 2629: 2619: 2594: 2590: 2580: 2537: 2534:Theranostics 2533: 2487: 2483: 2476: 2434:(11): 2231. 2431: 2427: 2417: 2384: 2380: 2370: 2327: 2323: 2313: 2278: 2274: 2264: 2213: 2209: 2199: 2174: 2171:Biomaterials 2170: 2124: 2120: 2074: 2070: 2060: 2027: 2023: 2013: 1978: 1974: 1926: 1922: 1876: 1872: 1819:(1): 50–60. 1816: 1812: 1756: 1753:Biomaterials 1752: 1742: 1709: 1706:Biomaterials 1705: 1695: 1652: 1649:Biomaterials 1648: 1610: 1606: 1596: 1553: 1549: 1539: 1514: 1510: 1504: 1463: 1459: 1432: 1428: 1422: 1411: 1407: 1385:(2): 165–8. 1382: 1379:Nanomedicine 1378: 1372: 1337: 1333: 1323: 1288: 1284: 1274: 1239: 1235: 1225: 1182: 1178: 1168: 1133: 1129: 1045: 1041: 1031: 999:(1): 24–56. 996: 992: 982: 947: 943: 871: 867: 861: 828: 824: 818: 775: 771: 701: 697: 565: 561: 489: 485: 450: 436: 427: 405: 388: 375: 359: 345: 336: 332: 315: 311: 283: 280:Applications 274: 265: 243: 234: 225: 216: 199: 190: 160: 138: 129: 120: 99: 95: 86: 82: 65: 52: 45: 43: 17: 15: 2942:: 157–166. 2903:: 194–202. 2795:: 148–160. 2216:(1): 3424. 2177:: 349–357. 2030:: 589–602. 1613:: 439–447. 1556:(1): 7–33. 1511:Soft Matter 950:: 109–126. 492:: 221–246. 392:macrophages 385:PET Imaging 372:MRI Imaging 3430:Categories 2490:: 109306. 1879:: 120302. 1048:(3): 243. 456:References 3185:1525-7797 3089:1936-0851 2995:2050-7518 2859:1530-9932 2817:204799512 2554:1838-7640 2512:208729238 2504:0014-3057 2450:2079-4991 2401:2050-7518 2344:0020-9996 2238:2045-2322 2141:1022-9760 2127:(5): 66. 2099:0024-9297 1901:231821009 1833:1043-1802 1773:0142-9612 1726:0142-9612 1669:0142-9612 1588:245878846 1572:0007-9235 1496:220889066 1480:0168-3659 1466:: 50–60. 1199:1525-7797 825:Pharm Res 792:1071-7544 718:0009-2665 598:208536874 582:2041-5990 514:182947913 452:nanogel. 187:Structure 149:Materials 111:oxidation 107:disulfide 62:Synthesis 56:(NC gels) 3419:20391548 3389:15882965 3360:18236507 3317:14759207 3288:16925402 3228:19199610 3193:24739122 3146:24630837 3107:28929735 3069:ACS Nano 3050:27998017 3011:55012690 3003:32264390 2956:27127040 2917:28962758 2867:27853994 2809:31629040 2763:22753358 2721:23280931 2660:22035047 2611:23423755 2572:25553115 2468:33182714 2409:32262367 2362:20808234 2305:19938038 2256:24305731 2191:25890733 2149:89633225 2052:28759859 2005:33869898 1953:16039001 1893:33540032 1851:14733583 1791:21536326 1734:19345990 1687:21536326 1627:25769283 1580:35020204 1488:32730953 1399:20148627 1364:19562807 1315:34773391 1266:34773391 1217:34129319 1160:31096042 1136:: 1–18. 1074:30966278 1042:Polymers 1023:32567846 974:26571000 888:16527469 853:23769149 845:16952008 810:34308729 726:26259712 590:31789106 506:31175895 288:agents, 168:chitosan 164:thiomers 103:thiomers 46:Nanogel 26:hydrogel 3351:3118583 3098:5656981 2875:4728172 2712:3815631 2691:Bibcode 2651:3244512 2563:4279191 2459:7698257 2353:3024144 2296:2822463 2247:4070373 2218:Bibcode 2079:Bibcode 2032:Bibcode 1996:8024537 1944:1357595 1842:2837941 1782:3255291 1678:3255291 1519:Bibcode 1355:2872506 1306:8728822 1257:8728822 1208:8278386 1151:6661071 1065:6414859 1014:7805012 965:4862943 801:8317930 734:1651110 447:Sensors 48:aerogel 22:polymer 18:nanogel 3417:  3387:  3358:  3348:  3315:  3286:  3226:  3191:  3183:  3144:  3105:  3095:  3087:  3048:  3009:  3001:  2993:  2954:  2915:  2873:  2865:  2857:  2815:  2807:  2761:  2719:  2709:  2658:  2648:  2609:  2570:  2560:  2552:  2510:  2502:  2466:  2456:  2448:  2407:  2399:  2360:  2350:  2342:  2303:  2293:  2254:  2244:  2236:  2189:  2147:  2139:  2097:  2050:  2003:  1993:  1951:  1941:  1899:  1891:  1849:  1839:  1831:  1789:  1779:  1771:  1732:  1724:  1685:  1675:  1667:  1625:  1586:  1578:  1570:  1494:  1486:  1478:  1397:  1362:  1352:  1313:  1303:  1264:  1254:  1215:  1205:  1197:  1158:  1148:  1072:  1062:  1021:  1011:  972:  962:  886:  851:  843:  808:  798:  790:  732:  724:  716:  596:  588:  580:  512:  504:  30:micron 3007:S2CID 2871:S2CID 2813:S2CID 2679:(PDF) 2508:S2CID 2145:S2CID 1897:S2CID 1584:S2CID 1492:S2CID 849:S2CID 730:S2CID 594:S2CID 510:S2CID 394:with 379:F MRI 20:is a 3415:PMID 3385:PMID 3356:PMID 3313:PMID 3284:PMID 3224:PMID 3189:PMID 3181:ISSN 3142:PMID 3103:PMID 3085:ISSN 3046:PMID 2999:PMID 2991:ISSN 2952:PMID 2913:PMID 2863:PMID 2855:ISSN 2805:PMID 2759:PMID 2717:PMID 2656:PMID 2607:PMID 2568:PMID 2550:ISSN 2500:ISSN 2464:PMID 2446:ISSN 2405:PMID 2397:ISSN 2358:PMID 2340:ISSN 2301:PMID 2252:PMID 2234:ISSN 2187:PMID 2137:ISSN 2095:ISSN 2048:PMID 2001:PMID 1949:PMID 1889:PMID 1847:PMID 1829:ISSN 1787:PMID 1769:ISSN 1730:PMID 1722:ISSN 1683:PMID 1665:ISSN 1623:PMID 1576:PMID 1568:ISSN 1484:PMID 1476:ISSN 1395:PMID 1360:PMID 1311:PMID 1262:PMID 1213:PMID 1195:ISSN 1156:PMID 1070:PMID 1019:PMID 970:PMID 884:PMID 841:PMID 806:PMID 788:ISSN 722:PMID 714:ISSN 586:PMID 578:ISSN 502:PMID 3407:doi 3377:doi 3373:331 3346:PMC 3338:doi 3305:doi 3301:126 3276:doi 3272:128 3255:doi 3251:217 3216:doi 3212:131 3173:doi 3134:doi 3093:PMC 3077:doi 3038:doi 3034:105 2983:doi 2944:doi 2905:doi 2901:177 2847:doi 2797:doi 2793:313 2751:doi 2707:PMC 2699:doi 2646:PMC 2638:doi 2599:doi 2558:PMC 2542:doi 2492:doi 2488:121 2454:PMC 2436:doi 2389:doi 2348:PMC 2332:doi 2291:PMC 2283:doi 2242:PMC 2226:doi 2179:doi 2129:doi 2087:doi 2040:doi 2028:506 1991:PMC 1983:doi 1939:PMC 1931:doi 1927:107 1881:doi 1877:597 1837:PMC 1821:doi 1777:PMC 1761:doi 1714:doi 1673:PMC 1657:doi 1615:doi 1611:128 1558:doi 1527:doi 1468:doi 1464:327 1437:doi 1387:doi 1350:PMC 1342:doi 1301:PMC 1293:doi 1252:PMC 1244:doi 1203:PMC 1187:doi 1146:PMC 1138:doi 1060:PMC 1050:doi 1009:PMC 1001:doi 960:PMC 952:doi 948:240 876:doi 833:doi 796:PMC 780:doi 706:doi 702:115 570:doi 494:doi 490:307 297:MRI 3432:: 3413:. 3403:49 3401:. 3383:. 3371:. 3354:. 3344:. 3334:47 3332:. 3328:. 3311:. 3299:. 3282:. 3270:. 3249:. 3222:. 3210:. 3187:. 3179:. 3169:15 3167:. 3163:. 3140:. 3130:35 3128:. 3124:. 3101:. 3091:. 3083:. 3073:11 3071:. 3067:. 3044:. 3032:. 3028:. 3005:. 2997:. 2989:. 2977:. 2973:. 2950:. 2940:64 2938:. 2934:. 2911:. 2899:. 2895:. 2883:^ 2869:. 2861:. 2853:. 2843:18 2841:. 2837:. 2825:^ 2811:. 2803:. 2791:. 2787:. 2771:^ 2757:. 2747:33 2745:. 2741:. 2729:^ 2715:. 2705:. 2697:. 2687:25 2685:. 2681:. 2654:. 2644:. 2634:22 2632:. 2628:. 2605:. 2595:34 2593:. 2589:. 2566:. 2556:. 2548:. 2536:. 2532:. 2520:^ 2506:. 2498:. 2486:. 2462:. 2452:. 2444:. 2432:10 2430:. 2426:. 2403:. 2395:. 2383:. 2379:. 2356:. 2346:. 2338:. 2328:45 2326:. 2322:. 2299:. 2289:. 2279:30 2277:. 2273:. 2250:. 2240:. 2232:. 2224:. 2212:. 2208:. 2185:. 2175:53 2173:. 2169:. 2157:^ 2143:. 2135:. 2125:24 2123:. 2119:. 2107:^ 2093:. 2085:. 2075:42 2073:. 2069:. 2046:. 2038:. 2026:. 2022:. 1999:. 1989:. 1977:. 1973:. 1961:^ 1947:. 1937:. 1925:. 1921:. 1909:^ 1895:. 1887:. 1875:. 1871:. 1859:^ 1845:. 1835:. 1827:. 1817:15 1815:. 1811:. 1799:^ 1785:. 1775:. 1767:. 1757:32 1755:. 1751:. 1728:. 1720:. 1710:30 1708:. 1704:. 1681:. 1671:. 1663:. 1653:32 1651:. 1647:. 1635:^ 1621:. 1609:. 1605:. 1582:. 1574:. 1566:. 1554:72 1552:. 1548:. 1525:. 1513:. 1490:. 1482:. 1474:. 1462:. 1449:^ 1433:33 1431:. 1393:. 1381:. 1358:. 1348:. 1338:48 1336:. 1332:. 1309:. 1299:. 1287:. 1283:. 1260:. 1250:. 1238:. 1234:. 1211:. 1201:. 1193:. 1183:22 1181:. 1177:. 1154:. 1144:. 1134:92 1132:. 1128:. 1082:^ 1068:. 1058:. 1046:10 1044:. 1040:. 1017:. 1007:. 997:22 995:. 991:. 968:. 958:. 946:. 942:. 896:^ 882:. 872:63 870:. 847:. 839:. 829:23 827:. 804:. 794:. 786:. 776:28 774:. 770:. 742:^ 728:. 720:. 712:. 700:. 696:. 606:^ 592:. 584:. 576:. 566:10 564:. 560:. 522:^ 508:. 500:. 488:. 484:. 464:^ 16:A 3421:. 3409:: 3391:. 3379:: 3362:. 3340:: 3319:. 3307:: 3290:. 3278:: 3261:. 3257:: 3230:. 3218:: 3195:. 3175:: 3148:. 3136:: 3109:. 3079:: 3052:. 3040:: 3013:. 2985:: 2979:5 2958:. 2946:: 2919:. 2907:: 2877:. 2849:: 2819:. 2799:: 2765:. 2753:: 2723:. 2701:: 2693:: 2662:. 2640:: 2613:. 2601:: 2574:. 2544:: 2538:5 2514:. 2494:: 2470:. 2438:: 2411:. 2391:: 2385:1 2364:. 2334:: 2307:. 2285:: 2258:. 2228:: 2220:: 2214:3 2193:. 2181:: 2151:. 2131:: 2101:. 2089:: 2081:: 2054:. 2042:: 2034:: 2007:. 1985:: 1979:6 1955:. 1933:: 1903:. 1883:: 1853:. 1823:: 1793:. 1763:: 1736:. 1716:: 1689:. 1659:: 1629:. 1617:: 1590:. 1560:: 1533:. 1529:: 1521:: 1515:5 1498:. 1470:: 1443:. 1439:: 1401:. 1389:: 1383:5 1366:. 1344:: 1317:. 1295:: 1289:9 1268:. 1246:: 1240:9 1219:. 1189:: 1162:. 1140:: 1076:. 1052:: 1025:. 1003:: 976:. 954:: 890:. 878:: 855:. 835:: 812:. 782:: 736:. 708:: 600:. 572:: 516:. 496:: 294:F 162:( 101:(

Index

polymer
hydrogel
micron
drug delivery
nanoparticles
aerogel
nanocomposite hydrogels

thiomers
disulfide
oxidation

thiomers
chitosan
hyaluronic acid



drug delivery
contrast agents
F
MRI

topical application

F MRI
macrophages
radionuclides

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑