Knowledge

Mycorrhizal bioremediation

Source đź“ť

113:
Mycorrhizae remain functional underground following extreme conditions, such as a forest fire. Researchers believe that this allows them to obtain minerals and nutrients that are released during a fire before they are leached out of the soil. This likely increases the ability to recover quickly after
104:
The fungi can prevent heavy metals from traveling past the roots of the plant. They can also store heavy metals in their vacuoles. However, in some cases, the fungi do not decrease the uptake of heavy metals by plants but increase their tolerance. In some cases, this is done by increasing the overall
769:
Vogel-Mikuš, Katarina; Drobne, Damjana; Regvar, Marjana (2005). "Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia".
425:
Vangronsveld, J; Colpaert, JV; Van Tichelen, KK (1996). "Reclamation of a bare industrial area contaminated by non-ferrous metals: physico-chemical and biological evaluation of the durability of soil treatment and revegetation".
124:
helps plants increase their magnesium uptake in soils with low amounts of magnesium. However, plants in serpentine soils inoculated with fungus either showed no effect on magnesium concentration or decreased magnesium uptake.
167:
is expanding and is not well controlled. This area is characterized by soil depletion, soil erosion and droughts. It is very difficult for plants to grow in this region, and it is mostly filled with
599:
Doubková, Pavla; Suda, Jan; Sudová, Radka (2011-08-01). "Arbuscular mycorrhizal symbiosis on serpentine soils: the effect of native fungal communities on different Knautia arvensis ecotypes".
105:
biomass of the plant so that there is a lower concentration of metals. They can also modify the response of the plant to heavy metals at the level of plant transcription and translation.
133:
Studies show that mycorrhizal symbionts of poplar seedlings are capable of preventing heavy metals reaching vulnerable parts of the plant by keeping the toxins in the
344:
Luo, Zhi-Bin; Wu, Chenhan; Zhang, Chao; Li, Hong; Lipka, Ulrike; Polle, Andrea (2014). "The role of ectomycorrhizas in heavy metal stress tolerance of host plants".
564:
Buchholz, Kenneth; Motto, Harry (1981). "Abundances and Vertical Distributions of Mycorrhizae in Plains and Barrens Forest Soils from the New Jersey Pine Barrens".
494:
Rajkumar, M.; Sandhya, S.; Prasad, M.N.V.; Freitas, H. (November 2012). "Perspectives of plant-associated microbes in heavy metal phytoremediation".
721: 186:
commonly known as a mulberry, is a drought-resistant tree that can tolerate barren soils. It has been found that mulberry inoculated with
677:
Salemaa, Maija; Monni, Satu (2003). "Copper resistance of the evergreen dwarf shrub Arctostaphylos uva-ursi: an experimental exposure".
529:
Meharg, Andrew A. (November 2003). "The Mechanistic Basis of Interactions Between Mycorrhizal Associations and Toxic Metal Cations".
143:
plants in symbiotic relationships were more resistant to toxins because the fungi helped the plants grow below toxic layers of soil.
220:
which had been selected for increased uptake and sequestration of heavy metals. Analysis showed elevated cadmium concentrations in
202: 250:
growing in contaminated regions had higher rates of certain arbuscular mycorrhizal fungi when compared to non-contaminated
301:
Hildebrandt, Ulrich; Regvar, Marjana; Bothe, Hermann (January 2007). "Arbuscular mycorrhiza and heavy metal tolerance".
464:
SHEORAN, Vimla; SHEORAN, Attar Singh; POONIA, Poonam (April 2016). "Factors Affecting Phytoextraction: A Review".
650:
Lux, Heidi B.; Cumming, Jonathan R. (n.d.). "Mycorrhizae Confer Aluminum Resistance to Tulip-Poplar Seedlings".
246:
from contaminated soils near a lead mine showed increased levels of cadmium, lead, and zinc. Furthermore,
386:"The heavy metal paradox in arbuscular mycorrhizas: from mechanisms to biotechnological applications" 50:
clade of fungi. Other types of fungi have been documented. For example, there is a case where zinc
819: 139: 51: 722:"Research of Ecological Restoration of Mycorrhizal Mulberry in Karst Rocky Desertification Area" 76:
The mycorrhizae allow the plants to increase their biomass, which increases their tolerance to
43: 206: 187: 121: 205:
agronomist Dr. Rufus Chaney in an effort to detoxify Pigs Eye Landfill, a superfund site in
779: 686: 608: 353: 310: 30:
relationship with plants can sequester toxic compounds from the environment, as a form of
8: 27: 783: 690: 612: 357: 314: 194:
desert areas and, therefore, an increased rate of soil improvement and reduced erosion.
632: 581: 235: 64: 743: 698: 477: 439: 795: 702: 624: 546: 511: 507: 443: 407: 326: 120:
are in part characterized by a low calcium-to-magnesium ratio. Studies indicate that
636: 365: 322: 787: 694: 659: 616: 573: 538: 503: 473: 435: 397: 361: 318: 281: 254:. Since manual clean-up is usually inefficient and expensive, mycorrhiza colonized 176: 791: 276: 164: 117: 271: 259: 31: 620: 542: 813: 628: 59: 47: 799: 706: 550: 515: 447: 411: 330: 77: 402: 385: 134: 89: 23: 585: 181: 172: 93: 210: 168: 96:) that they excrete into their surroundings in order to digest them. 81: 663: 577: 243: 234:
has many heavy metal mines, which have caused significant regional
231: 198: 384:
Ferrol, Nuria; Tamayo, Elisabeth; Vargas, Paola (December 2016).
215: 160: 152: 85: 424: 156: 80:. The fungi also stimulate the uptake of heavy metals (such as 55: 42:
These symbiotic relationships are generally between plants and
191: 493: 748:
United States Department of Agriculture AgResearch Magazine
768: 300: 20:
Mycorrhizal amelioration of heavy metals or pollutants
228:
has a significant arbuscular mycorrhiza association.
463: 598: 383: 99: 811: 146: 489: 487: 459: 457: 108: 88:) with the enzymes and organic acids (such as 71: 563: 379: 377: 375: 37: 676: 484: 343: 454: 744:"USDA ARS Online Magazine Vol. 43, No. 11" 649: 372: 401: 128: 720:Xing, Dan; et al. (November 2014). 812: 732:(11): 1998–2002 – via EBSCOhost. 528: 726:Agricultural Science & Technology 566:Bulletin of the Torrey Botanical Club 346:Environmental and Experimental Botany 719: 652:Canadian Journal of Forest Research 13: 137:. Another study demonstrates that 16:Process involving plants and fungi 14: 831: 508:10.1016/j.biotechadv.2012.04.011 224:biomass. It has been found that 762: 736: 713: 670: 643: 366:10.1016/j.envexpbot.2013.10.018 323:10.1016/j.phytochem.2006.09.023 190:has increased survivability in 100:Mycorrhizae on plant toleration 592: 557: 522: 418: 390:Journal of Experimental Botany 337: 294: 1: 699:10.1016/s0269-7491(03)00235-5 478:10.1016/S1002-0160(15)60032-7 440:10.1016/S0269-7491(96)00082-6 287: 147:Application in bioremediation 792:10.1016/j.envpol.2004.06.021 68:was inoculated in the soil. 7: 265: 109:Colonization of barren soil 72:Mechanisms of the symbiosis 10: 836: 38:Mycorrhizae-plant partners 621:10.1007/s11104-011-0785-z 543:10.1017/S0953756203008608 169:drought-resistant plants 151:In China's provinces of 58:was increased after the 772:Environmental Pollution 679:Environmental Pollution 428:Environmental Pollution 140:Arctostaphylos uva-ursi 496:Biotechnology Advances 129:Resistance to toxicity 44:arbuscular mycorrhizae 22:is a process by which 188:arbuscular mycorrhiza 122:arbuscular mycorrhiza 531:Mycological Research 784:2005EPoll.133..233V 691:2003EPoll.126..435S 613:2011PlSoi.345..325D 358:2014EnvEB.108...47L 315:2007PChem..68..139H 213:. The team planted 403:10.1093/jxb/erw403 236:soil contamination 201:collaborated with 65:Paxillus involutus 537:(11): 1253–1265. 396:(22): 6253–6265. 258:may be useful in 827: 804: 803: 766: 760: 759: 757: 755: 740: 734: 733: 717: 711: 710: 674: 668: 667: 647: 641: 640: 607:(1–2): 325–338. 596: 590: 589: 561: 555: 554: 526: 520: 519: 502:(6): 1562–1574. 491: 482: 481: 461: 452: 451: 422: 416: 415: 405: 381: 370: 369: 341: 335: 334: 298: 282:Phytoremediation 197:In 1993, artist 177:calciphilopteris 118:Serpentine soils 835: 834: 830: 829: 828: 826: 825: 824: 810: 809: 808: 807: 767: 763: 753: 751: 742: 741: 737: 718: 714: 675: 671: 664:10.1139/x01-004 648: 644: 597: 593: 578:10.2307/2484905 562: 558: 527: 523: 492: 485: 462: 455: 423: 419: 382: 373: 342: 338: 299: 295: 290: 277:Mycoremediation 268: 165:desertification 149: 131: 111: 102: 74: 52:phytoextraction 40: 17: 12: 11: 5: 833: 823: 822: 820:Bioremediation 806: 805: 778:(2): 233–242. 761: 735: 712: 685:(3): 435–443. 669: 658:(4): 694–702. 642: 601:Plant and Soil 591: 572:(2): 268–271. 556: 521: 483: 472:(2): 148–166. 453: 417: 371: 336: 309:(1): 139–146. 303:Phytochemistry 292: 291: 289: 286: 285: 284: 279: 274: 272:Bioremediation 267: 264: 260:bioremediation 148: 145: 130: 127: 114:forest fires. 110: 107: 101: 98: 73: 70: 39: 36: 32:bioremediation 15: 9: 6: 4: 3: 2: 832: 821: 818: 817: 815: 801: 797: 793: 789: 785: 781: 777: 773: 765: 749: 745: 739: 731: 727: 723: 716: 708: 704: 700: 696: 692: 688: 684: 680: 673: 665: 661: 657: 653: 646: 638: 634: 630: 626: 622: 618: 614: 610: 606: 602: 595: 587: 583: 579: 575: 571: 567: 560: 552: 548: 544: 540: 536: 532: 525: 517: 513: 509: 505: 501: 497: 490: 488: 479: 475: 471: 467: 460: 458: 449: 445: 441: 437: 434:(2): 131–40. 433: 429: 421: 413: 409: 404: 399: 395: 391: 387: 380: 378: 376: 367: 363: 359: 355: 351: 347: 340: 332: 328: 324: 320: 316: 312: 308: 304: 297: 293: 283: 280: 278: 275: 273: 270: 269: 263: 261: 257: 253: 249: 245: 242:harvested in 241: 238:. Samples of 237: 233: 229: 227: 223: 219: 217: 212: 208: 204: 200: 195: 193: 189: 185: 183: 178: 174: 170: 166: 162: 158: 154: 144: 142: 141: 136: 126: 123: 119: 115: 106: 97: 95: 91: 87: 83: 79: 69: 67: 66: 61: 60:Basidiomycete 57: 53: 49: 48:Glomeromycota 45: 35: 33: 29: 25: 21: 775: 771: 764: 752:. Retrieved 747: 738: 729: 725: 715: 682: 678: 672: 655: 651: 645: 604: 600: 594: 569: 565: 559: 534: 530: 524: 499: 495: 469: 465: 431: 427: 420: 393: 389: 349: 345: 339: 306: 302: 296: 255: 251: 247: 239: 230: 225: 221: 214: 196: 180: 150: 138: 132: 116: 112: 103: 78:heavy metals 75: 63: 41: 19: 18: 173:lithophytes 135:rhizosphere 90:acetic acid 28:mutualistic 26:fungi in a 24:mycorrhizal 466:Pedosphere 288:References 207:Saint Paul 182:Morus alba 94:malic acid 629:0032-079X 352:: 47–62. 262:efforts. 211:Minnesota 82:manganese 814:Category 800:15519454 707:12963307 637:29085114 551:15000228 516:22580219 448:15093499 412:27799283 331:17078985 266:See also 244:Slovakia 232:Slovakia 199:Mel Chin 179:plants. 163:, rocky 780:Bibcode 687:Bibcode 609:Bibcode 586:2484905 354:Bibcode 311:Bibcode 256:Thlaspi 252:Thlaspi 248:Thlaspi 240:Thlaspi 226:Thlaspi 222:Thlaspi 216:Thlaspi 161:Guangxi 153:Guizhou 86:cadmium 62:fungus 56:willows 46:in the 798:  754:May 9, 750:. 1995 705:  635:  627:  584:  549:  514:  446:  410:  329:  157:Yunnan 633:S2CID 582:JSTOR 192:karst 54:from 796:PMID 756:2020 703:PMID 625:ISSN 547:PMID 512:PMID 444:PMID 408:PMID 327:PMID 203:USDA 175:and 159:and 92:and 84:and 788:doi 776:133 695:doi 683:126 660:doi 617:doi 605:345 574:doi 570:108 539:doi 535:107 504:doi 474:doi 436:doi 398:doi 362:doi 350:108 319:doi 816:: 794:. 786:. 774:. 746:. 730:15 728:. 724:. 701:. 693:. 681:. 656:31 654:. 631:. 623:. 615:. 603:. 580:. 568:. 545:. 533:. 510:. 500:30 498:. 486:^ 470:26 468:. 456:^ 442:. 432:94 430:. 406:. 394:67 392:. 388:. 374:^ 360:. 348:. 325:. 317:. 307:68 305:. 209:, 171:, 155:, 34:. 802:. 790:: 782:: 758:. 709:. 697:: 689:: 666:. 662:: 639:. 619:: 611:: 588:. 576:: 553:. 541:: 518:. 506:: 480:. 476:: 450:. 438:: 414:. 400:: 368:. 364:: 356:: 333:. 321:: 313:: 218:, 184:,

Index

mycorrhizal
mutualistic
bioremediation
arbuscular mycorrhizae
Glomeromycota
phytoextraction
willows
Basidiomycete
Paxillus involutus
heavy metals
manganese
cadmium
acetic acid
malic acid
Serpentine soils
arbuscular mycorrhiza
rhizosphere
Arctostaphylos uva-ursi
Guizhou
Yunnan
Guangxi
desertification
drought-resistant plants
lithophytes
calciphilopteris
Morus alba
arbuscular mycorrhiza
karst
Mel Chin
USDA

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑