Knowledge

Metal–organic framework

Source 📝

2909:
MOF so lower energy excitation sources can be used. Post-synthetic modification (PSM) is one promising strategy. Luo et al. introduced a new family of lanthanide MOFs with functionalized organic linkers. The MOFs, deemed MOF-1114, MOF-1115, MOF-1130, and MOF-1131, are composed of octahedral SBUs bridged by amino functionalized dicarboxylate linkers. The amino groups on the linkers served as sites for covalent PSM reactions with either salicylaldehyde or 3-hydroxynaphthalene-2-carboxaldehyde. Both of these reactions extend the π-conjugation of the linker, causing a redshift in the absorbance wavelength from 450 nm to 650 nm. The authors also propose that this technique could be adapted to similar MOF systems and, by increasing pore volumes with increasing linker lengths, larger pi-conjugated reactants can be used to further redshift the absorption wavelengths. Biological imaging using MOFs has been realized by several groups, namely Foucault-Collet and co-workers. In 2013, they synthesized a NIR-emitting Yb-NMOF using phenylenevinylene dicarboxylate (PVDC) linkers. They observed cellular uptake in both HeLa cells and NIH-3T3 cells using confocal, visible, and NIR spectroscopy. Although low quantum yields persist in water and Hepes buffer solution, the luminescence intensity is still strong enough to image cellular uptake in both the visible and NIR regimes.
2947:
bioavailability studies on the ibuprofen-loaded MOF. They investigated two different methods of loading CD-MOF-1 with ibuprofen; crystallization using the potassium salt of ibuprofen as the alkali cation source for production of the MOF, and absorption and deprotonation of the free-acid of ibuprofen into the MOF. From there the group performed in vitro and in vivo studies to determine the applicability of CD-MOF-1 as a viable delivery method for ibuprofen and other NSAIDs. In vitro studies showed no toxicity or effect on cell viability up to 100 μM. In vivo studies in mice showed the same rapid uptake of ibuprofen as the ibuprofen potassium salt control sample with a peak plasma concentration observed within 20 minutes, and the cocrystal has the added benefit of double the half-life in blood plasma samples. The increase in half-life is due to CD-MOF-1 increasing the solubility of ibuprofen compared to the pure salt form.
440:
rows. With the miniaturized teflon reactors, volumes of up to 2 mL can be used. The reactor block is sealed in a stainless steel autoclave; for this purpose, the filled reactors are inserted into the bottom of the reactor, the teflon reactors are sealed with two teflon films and the reactor top side is put on. The autoclave is then closed in a hydraulic press. The sealed solvothermal reactor can then be subjected to a temperature-time program. The reusable teflon film serves to withstand the mechanical stress, while the disposable teflon film seals the reaction vessels. After the reaction, the products can be isolated and washed in parallel in a vacuum filter device. On the filter paper, the products are then present separately in a so-called sample library and can subsequently be characterized by automated X-ray powder diffraction. The informations obtained are then used to plan further syntheses.
2929:, due to nuclear plant operation and nuclear weapon decommission. Synthesis of novel materials capable of selective actinide sequestration and separation is one of the current challenges acknowledged in the nuclear waste sector. Metal–organic frameworks (MOFs) are a promising class of materials to address this challenge due to their porosity, modularity, crystallinity, and tunability. Every building block of MOF structures can incorporate actinides. First, a MOF can be synthesized starting from actinide salts. In this case the metal nodes are actinides. In addition, metal nodes can be extended, or cation exchange can exchange metals for actinides. Organic linkers can be functionalized with groups capable of actinide uptake. Lastly, the porosity of MOFs can be used to incorporate contained guest molecules and trap them in a structure by installation of additional or capping linkers. 2942:
oligosaccharide that is mass-produced enzymatically from starch and consists of eight asymmetric α-1,4-linked D-glucopyranosyl residues. The molecular structure of these glucose derivatives, which approximates a truncated cone, bucket, or torus, generates a hydrophilic exterior surface and a nonpolar interior cavity. Cyclodextrins can interact with appropriately sized drug molecules to yield an inclusion complex. Smaldone's group proposed a cheap and simple synthesis of the CD-MOF-1 from natural products. They dissolved sugar (γ-cyclodextrin) and an alkali salt (KOH, KCl, potassium benzoate) in distilled bottled water and allowed 190 proof grain alcohol (Everclear) to vapor diffuse into the solution for a week. The synthesis resulted in a cubic (γ-CD)
2956:
accessibility of the drug through the framework". The "controlled release under cutaneous conditions follows different kinetics profiles depending on: (i) the structure of the framework, with either a fast delivery from the very open structure MIL-100 or a slower drug release from the narrow 1D pore system of MIL-127 or (ii) the hydrophobic/hydrophilic nature of the cargo, with a fast (Aspirin) and slow (Ibuprofen) release from the UiO-66 matrix." Moreover, a simple ball milling technique is used to efficiently encapsulate the model drugs 5-fluorouracil, caffeine, para-aminobenzoic acid, and benzocaine. Both computational and experimental studies confirm the suitability of to incorporate high loadings of the studied bioactive molecules.
1578:(ZIFs), Carboxylate MOFs, Zirconium-based MOFs, among others. Generally, the MOFs undergo three processes under compressive loading (which is relevant in a processing context): amorphization, hyperfilling, and/or pressure induced phase transitions. During amorphization linkers buckle and the internal porosity within the MOF collapses. During hyperfilling the MOF which is being hydrostatically compressed in a liquid (typically solvent) will expand rather than contract due to a filling of pores with the loading media. Finally, pressure induced phase transitions where the structure of the crystal is altered during the loading are possible. The response of the MOF is predominantly dependent on the linker species and the inorganic nodes. 3538: 2960:
release of an autophagy inhibitor, 3-methyladenine (3-MA), and prevent it from dissipating in a large quantity before reaching the target." The group performed in vitro studies and determined that "the autophagy-related proteins and autophagy flux in HeLa cells treated with 3-MA@ZIF-8 NPs show that the autophagosome formation is significantly blocked, which reveals that the pH-sensitive dissociation increases the efficiency of autophagy inhibition at the equivalent concentration of 3-MA." This shows promise for future research and applicability with MOFs as drug delivery methods in the fight against cancer.
2845:(hydrogen evolution reaction and oxygen evolution reaction), carbon dioxide reduction, and oxygen reduction reaction. Currently there are two routes: 1. Using MOFs as precursors to prepare electrocatalysts with carbon support. 2. Using MOFs directly as electrocatalysts. However, some results have shown that some MOFs are not stable under electrochemical environment. The electrochemical conversion of MOFs during electrocatalysis may produce the real catalyst materials, and the MOFs are precatalysts under such conditions. Therefore, claiming MOFs as the electrocatalysts requires 743:(II) and Pd(0) intermediates accompanying by drastic changes in coordination number, which would certainly lead to destabilization and potential destruction of the original framework if all the Pd centers are catalytically active. The observation of substrate shape- and size-selectivity implies that the catalytic reactions are heterogeneous and are indeed occurring within the MOF. Nevertheless, at least for hydrogenation, it is difficult to rule out the possibility that catalysis is occurring at the surface of MOF-encapsulated palladium clusters/ 2355:, predict that a microporous material with 7 Å-wide pores will exhibit maximum hydrogen uptake at room temperature. At this width, exactly two layers of hydrogen molecules adsorb on opposing surfaces with no space left in between. 10 Å-wide pores are also of ideal size because at this width, exactly three layers of hydrogen can exist with no space in between. (A hydrogen molecule has a bond length of 0.74 Å with a van der Waals radius of 1.17 Å for each atom; therefore, its effective van der Waals length is 3.08 Å.) 1230:(ED) onto the Cr(III) sites. The uncoordinated ends of ED can act as base catalytic sites. ED-grafted MOF was investigated for Knoevenagel condensation reactions. A significant increase in conversion was observed for ED-grafted MOF compared to untreated framework (98% vs. 36%). Another example of linker modification to generate catalytic site is iodo-functionalized well-known Al-based MOFs (MIL-53 and DUT-5) and Zr-based MOFs (UiO-66 and UiO-67) for the catalytic oxidation of diols. 1812:(DOE) has published a list of yearly technical system targets for on-board hydrogen storage for light-duty fuel cell vehicles which guide researchers in the field (5.5 wt %/40 g L by 2017; 7.5 wt %/70 g L ultimate). Materials with high porosity and high surface area such as MOFs have been designed and synthesized in an effort to meet these targets. These adsorptive materials generally work via physical adsorption rather than chemisorption due to the large 610:, although applications have not been commercialized. Their high surface area, tunable porosity, diversity in metal and functional groups make them especially attractive for use as catalysts. Zeolites are extraordinarily useful in catalysis. Zeolites are limited by the fixed tetrahedral coordination of the Si/Al connecting points and the two-coordinated oxide linkers. Fewer than 200 zeolites are known. In contrast with this limited scope, MOFs exhibit more diverse 2918: 1095:. The metals in MOFs often coordinate to labile solvent molecules or counter ions which can be removed after activation of the framework. The Lewis acidic nature of such unsaturated metal centers can activate the coordinated organic substrates for subsequent organic transformations. The use of unsaturated metal centers was demonstrated in the cyanosilylation of aldehydes and imines by Fujita and coworkers in 2004. They reported MOF of composition { • (NO 1153:; 2) strong solvent inhibition effect; electron donating solvents such as THF competed with aldehydes for coordination to the Cu(II) sites, and no cyanosilylation product was observed in these solvents; 3) the framework instability in some organic solvents. Several other groups have also reported the use of metal centres in MOFs as catalysts. Again, electron-deficient nature of some metals and metal clusters makes the resulting MOFs efficient 696: 31: 1801: 12649: 300: 672: 599: 1126:. The Cd(II) centers in this MOF possess a distorted octahedral geometry having four pyridines in the equatorial positions, and two water molecules in the axial positions to form a two-dimensional infinite network. On activation, two water molecules were removed leaving the metal centers unsaturated and Lewis acidic. The Lewis acidic character of metal center was tested on cyanosilylation reactions of 43: 1693: 1670: 2951:
than CD-MOF-1 through simulated cutaneous administration. The group studied the loading and release of ibuprofen (hydrophobic) and aspirin (hydrophilic) in three biocompatible MOFs (MIL-100(Fe), UiO-66(Zr), and MIL-127(Fe)). Under simulated cutaneous conditions (aqueous media at 37 °C) the six different combinations of drug-loaded MOFs fulfilled "the requirements to be used as
1079: 997:, however, are only marginally accelerated, implying that catalysis takes place chiefly within the material's channels rather than on its exterior. A noteworthy finding is the lack of catalysis by the free strut in homogeneous solution, evidently due to intermolecular H-bonding between bptda molecules. Thus, the MOF architecture elicits catalytic activity not otherwise encountered. 2980:; BTC, benzene-1,3,5-tricarboxylic acid) infiltrated with the molecule 7,7,8,8-tetracyanoquinododimethane) that could be used in applications including photovoltaics, sensors, and electronic materials and a path toward creating semiconductors. The team demonstrated tunable, air-stable electrical conductivity with values as high as 7 siemens per meter, comparable to bronze. 2858: 3041:, also known as THT, 2,3,6,7,10,11-triphenylenehexathiol) and showed high electric mobility at room temperature. In 2020 the same material was integrated in a photo-detecting device, detecting a broad wavelength range from UV to NIR (400–1575 nm). This was the first time a two-dimensional semiconducting MOF was demonstrated to be used in opto-electronic devices. 627:). Furthermore, mild synthetic conditions typically employed for MOF synthesis allow direct incorporation of delicate functionalities into the framework structures. Such a process would not be possible with zeolites or other microporous crystalline oxide-based materials because of the harsh conditions typically used for their synthesis (e.g., 687:. In some cases, they also give a highly enhanced catalyst stability. Additionally, they typically offer substrate-size selectivity. Nevertheless, while clearly important for reactions in living systems, selectivity on the basis of substrate size is of limited value in abiotic catalysis, as reasonably pure feedstocks are generally available. 1642:
mesoporous structure has a lower bulk modulus. However, an increased bulk modulus was observed in systems with a few large mesopores versus many small mesopores even though both pore size distributions had the same total pore volume. The HKUST-1 shows a similar, "hyperfilling" phenomenon to the ZIF structures under hydrostatic loading.
86:
a coordination compound extending, through repeating coordination entities, in one dimension, but with cross-links between two or more individual chains, loops, or spiro-links, or a coordination compound extending through repeating coordination entities in two or three dimensions. Coordination networks including MOFs further belong to
1924:, the first successfully synthesized and structurally characterized MOF consisting of a light main group metal ion, shows high hydrogen storage capacity, but it is too toxic to be employed practically. There is considerable effort being put forth in developing MOFs composed of other light main group metal ions, such as magnesium in Mg 539:
MOF. Similarly to post-synthetic ligand exchange, post-synthetic metal exchange is performed by washing prefabricated MOF crystals with solvent and then soaking the crystal in a solution of the new metal. Post-synthetic metal exchange allows for a simple route to the formation of MOFs with the same framework yet different metal ions.
2594:, the detected mass of adsorbed hydrogen decreases again when a sufficiently high pressure is applied to the system because the density of the surrounding gaseous hydrogen becomes more and more important at higher pressures. Thus, this "weight loss" has to be corrected using the volume of the MOF's frame and the density of hydrogen. 2259:, but weak enough to allow for quick desorption. The interaction between hydrogen and uncharged organic linkers is not this strong, and so a considerable amount of work has gone in synthesis of MOFs with exposed metal sites, to which hydrogen adsorbs with an enthalpy of 5–10 kJ/mol. Synthetically, this may be achieved by using 3523:
via diffusion at nearly 100% selectivity. The specific molecule selectivity properties provided by Cu-BDC surface mounted metal organic framework (SURMOF-2) growth on alumina layer on top of back gated Graphene Field Effect Transistor (GFET) can provide a sensor that is only sensitive to ethanol but not to methanol or isopropanol.
868:(PhIO), rather than TPHP as oxidant. The difference is likely mechanistically significant, thus complicating comparisons. Briefly, PhIO is a single oxygen atom donor, while TBHP is capable of more complex behavior. In addition, for the MOF-based system, it is conceivable that oxidation proceeds via both oxygen transfer from a 322:
inorganic framework. Typical templating ions are quaternary ammonium cations, which are removed later. In MOFs, the framework is templated by the SBU (secondary building unit) and the organic ligands. A templating approach that is useful for MOFs intended for gas storage is the use of metal-binding solvents such as
337:
identification of a small number of preferred topologies that could be targeted in designed synthesis, but was the central point to achieve a permanent porosity. (2) The use of the isoreticular principle where the size and the nature of a structure changes without changing its topology led to MOFs with ultrahigh
3561:
temperature of the moist air at the intake. These fins condense the water, dehydrating the air and thus substantially reducing the air's heat content. The cooler's energy usage is highly dependent on the cooling coil's temperature and would be improved greatly if the temperature of this coil could be
3096:
is a 2D MOF structure, and there are limited examples of materials which are intrinsically conductive, porous, and crystalline. Layered 2D MOFs have porous crystalline structure showing electrical conductivity. These materials are constructed from trigonal linker molecules (phenylene or triphenylene)
2874:
has many unique properties that make them ideal for imaging applications, such as characteristically sharp and generally non-overlapping emission bands in the visible and near-infrared (NIR) regions of the spectrum, resistance to photobleaching or "blinking", and long luminescence lifetimes. However,
2398:
is the process of trapping atoms or molecules that are incident on a surface; therefore the adsorption capacity of a material increases with its surface area. In three dimensions, the maximum surface area will be obtained by a structure which is highly porous, such that atoms and molecules can access
1935:
The following is a list of several MOFs that are considered to have the best properties for hydrogen storage as of May 2012 (in order of decreasing hydrogen storage capacity). While each MOF described has its advantages, none of these MOFs reach all of the standards set by the U.S. DOE. Therefore, it
1816:
gap and low HOMO energy level of molecular hydrogen. A benchmark material to this end is MOF-177 which was found to store hydrogen at 7.5 wt % with a volumetric capacity of 32 g L at 77 K and 70 bar. MOF-177 consists of clusters interconnected by 1,3,5-benzenetribenzoate organic linkers and has
1520:
catalytic centers. In enzymatic systems, protein units show "molecular recognition", high affinity for specific substrates. It seems that molecular recognition effects are limited in zeolites by the rigid zeolite structure. In contrast, dynamic features and guest-shape response make MOFs more similar
808:
MIL-101, a large-cavity MOF having the formula , is a cyanosilylation catalyst. The coordinated water molecules in MIL-101 are easily removed to expose Cr(III) sites. As one might expect, given the greater Lewis acidity of Cr(III) vs. Cu(II), MIL-101 is much more active than HKUST-1 as a catalyst for
525:
or partial ligand exchange. This exchange allows for the pores and, in some cases the overall framework of MOFs, to be tailored for specific purposes. Some of these uses include fine-tuning the material for selective adsorption, gas storage, and catalysis. To perform ligand exchange prefabricated MOF
507:
Although the three-dimensional structure and internal environment of the pores can be in theory controlled through proper selection of nodes and organic linking groups, the direct synthesis of such materials with the desired functionalities can be difficult due to the high sensitivity of MOF systems.
345:
Since ligands in MOFs typically bind reversibly, the slow growth of crystals often allows defects to be redissolved, resulting in a material with millimeter-scale crystals and a near-equilibrium defect density. Solvothermal synthesis is useful for growing crystals suitable to structure determination,
2959:
Recent research involving MOFs as a drug delivery method includes more than just the encapsulation of everyday drugs like ibuprofen and aspirin. In early 2018 Chen et al., published detailing their work on the use of MOF, ZIF-8 (zeolitic imidazolate framework-8) in antitumor research "to control the
2884:
linkers to form infinite rod SBUs coordinated into a three dimensional lattice. As demonstrated by multiple research groups, the BTC linker can effectively sensitize the lanthanide emission, resulting in a MOF with variable emission wavelengths depending on the lanthanide identity. Additionally, the
1148:
with a very low conversion (<5% in 24 h) at 293 K. As the reaction temperature was raised to 313 K, a good conversion of 57% with a selectivity of 89% was obtained after 72 h. In comparison, less than 10% conversion was observed for the background reaction (without MOF) under the same conditions.
631:
at high temperatures to remove organic templates). Metal–organic framework MIL-101 is one of the most used MOFs for catalysis incorporating different transition metals such as Cr. However, the stability of some MOF photocatalysts in aqueous medium and under strongly oxidizing conditions is very low.
560:
In some cases MOF metal nodes have an unsaturated environment, and it is possible to modify this environment using different techniques. If the size of the ligand matches the size of the pore aperture, it is possible to install additional ligands to existing MOF structure. Sometimes metal nodes have
547:
In addition to modifying the functionality of the ligands and metals themselves, post-synthetic modification can be used to expand upon the structure of the MOF. Using post-synthetic modification MOFs can be converted from a highly ordered crystalline material toward a heterogeneous porous material.
85:
More formally, a metal–organic framework is a potentially porous extended structure made from metal ions and organic linkers. An extended structure is a structure whose sub-units occur in a constant ratio and are arranged in a repeating pattern. MOFs are a subclass of coordination networks, which is
10536:
Liu W, Dai X, Bai Z, Wang Y, Yang Z, Zhang L, Xu L, Chen L, Li Y, Gui D, Diwu J, Wang J, Zhou R, Chai Z, Wang S (April 2017). "Highly Sensitive and Selective Uranium Detection in Natural Water Systems Using a Luminescent Mesoporous Metal-Organic Framework Equipped with Abundant Lewis Basic Sites: A
8523:
Bennett, Thomas D.; Todorova, Tanya K.; Baxter, Emma F.; Reid, David G.; Gervais, Christel; Bueken, Bart; Van de Voorde, B.; De Vos, Dirk; Keen, David A.; Mellot-Draznieks, Caroline (2016). "Connecting defects and amorphization in UiO-66 and MIL-140 metal–organic frameworks: a combined experimental
2221:
To date, hydrogen storage in MOFs at room temperature is a battle between maximizing storage capacity and maintaining reasonable desorption rates, while conserving the integrity of the adsorbent framework (e.g. completely evacuating pores, preserving the MOF structure, etc.) over many cycles. There
1788:
The extent to which a gas can adsorb to a MOF's surface depends on the temperature and pressure of the gas. In general, adsorption increases with decreasing temperature and increasing pressure (until a maximum is reached, typically 20–30 bar, after which the adsorption capacity decreases). However,
1759:
of any fuel. However unless the hydrogen gas is compressed, its volumetric energy density is very low, so the transportation and storage of hydrogen require energy-intensive compression and liquefaction processes. Therefore, development of new hydrogen storage methods which decrease the concomitant
1611:
can be precisely tuned by applying adequate pressures. Another study has shown that under hydrostatic loading in solvent the ZIF-8 material expands as opposed to contracting. This is a result of hyperfilling of the internal pores with solvent. A computational study demonstrated that ZIF-4 and ZIF-8
1525:
sites. In photocatalysis, the use of mononuclear complexes is usually limited either because they only undergo single-electron process or from the need for high-energy irradiation. In this case, binuclear systems have a number of attractive features for the development of photocatalysts. For 0D MOF
1143:
The open framework of is built from dimeric cupric tetracarboxylate units (paddle-wheels) with aqua molecules coordinating to the axial positions and btc bridging ligands. The resulting framework after removal of two water molecules from axial positions possesses porous channel. This activated MOF
589:
can bind to the platinum surface through a dissociative mechanism which cleaves the hydrogen molecule into two hydrogen atoms and enables them to travel down the activated carbon onto the surface of the MOF. This innovation produced a threefold increase in the room-temperature storage capacity of a
538:
Post-synthetic modification techniques can also be used to exchange an existing metal ion in a prefabricated MOF with a new metal ion by metal ion exchange. The complete metal metathesis from an integral part of the framework has been achieved without altering the framework or pore structure of the
463:
onto a suitable substrate (e.g. FTO) and subsequent solvothermal microwave synthesis. The aluminum oxide layer serves both as an architecture-directing agent and as a metal source for the backbone of the MOF structure. The construction of the porous 3D metal-organic framework takes place during the
439:
In high-throughput solvothermal synthesis, a solvothermal reactor with (e.g.) 24 cavities for teflon reactors is used. Such a reactor is sometimes referred to as a multiclav. The reactor block or reactor insert is made of stainless steel and contains 24 reaction chambers, which are arranged in four
381:
the morphology of the solvent free synthesised product was the same as the industrially made Basolite C300. It is thought that localised melting of the components due to the high collision energy in the ball mill may assist the reaction. The formation of acetic acid as a by-product in the reactions
6637:
Schröder F, Esken D, Cokoja M, van den Berg MW, Lebedev OI, Van Tendeloo G, Walaszek B, Buntkowsky G, Limbach HH, Chaudret B, Fischer RA (May 2008). "Ruthenium nanoparticles inside porous by hydrogenolysis of adsorbed : a solid-state reference system for surfactant-stabilized ruthenium colloids".
3522:
MOFs are also predicted to be very effective media to separate gases with low energy cost using computational high throughput screening from their adsorption or gas breakthrough/diffusion properties. One example is NbOFFIVE-1-Ni, also referred to as KAUST-7 which can separate propane and propylene
3362:
MOFs could be employed in each of the main three carbon capture configurations for coal-fired power plants: pre-combustion, post-combustion, and oxy-combustion. The post-combustion configuration is the only one that can be retrofitted to existing plants, drawing the most interest and research. The
2950:
Since these developments many groups have done further research into drug delivery with water-soluble, biocompatible MOFs involving common over-the-counter drugs. In March 2018 Sara Rojas and her team published their research on drug incorporation and delivery with various biocompatible MOFs other
2908:
absorption properties has been accomplished by using large, chromophoric linkers. These linkers are often composed of polyaromatic species, leading to large pore sizes and thus decreased stability. To circumvent the use of large linkers, other methods are required to redshift the absorbance of the
1456:
and obtained twofold interpenetrating 3D networks. The orientation of chiral ligand in the frameworks makes all Mn(III) sites accessible through the channels. The resulting open frameworks showed catalytic activity toward asymmetric olefin epoxidation reactions. No significant decrease of catalyst
1444:
Another approach to construct catalytically active homochiral MOFs is to incorporate chiral metal complexes which are either active catalysts or precatalysts directly into the framework structures. For example, Hupp and coworkers have combined a chiral ligand and bpdc (bpdc: biphenyldicarboxylate)
548:
Using post-synthetic techniques, it is possible for the controlled installation of domains within a MOF crystal which exhibit unique structural and functional characteristics. Core-shell MOFs and other layered MOFs have been prepared where layers have unique functionalization but in most cases are
3327:
Biomolecules can be incorporated during the MOF crystallization process. Biomolecules including proteins, DNA, and antibodies could be encapsulated within ZIF-8. Enzymes encapsulated in this way were stable and active even after being exposed to harsh conditions (e.g. aggressive solvents and high
2879:
forbidden f-f transitions. Indirect sensitization of lanthanide emission can be accomplished by employing the "antenna effect", where the organic linkers act as antennae and absorb the excitation energy, transfer the energy to the excited state of the lanthanide, and yield lanthanide luminescence
1550:
Implementing MOFs in industry necessitates a thorough understanding of the mechanical properties since most processing techniques (e.g. extrusion and pelletization) expose the MOFs to substantial mechanical compressive stresses. The mechanical response of porous structures is of interest as these
414:
High-throughput (HT) methods are a part of combinatorial chemistry and a tool for increasing efficiency. There are two synthetic strategies within the HT-methods: In the combinatorial approach, all reactions take place in one vessel, which leads to product mixtures. In the parallel synthesis, the
3261:
form layers with hexagonal structures which look like graphene in larger scale. Stacking of these layers can build one-dimensional pore systems. Graphene-like 2D MOFs have shown decent conductivities. This makes them a good choice to be tested as electrode material for evolution of hydrogen from
1732:
metallic nodes) with increased resistance to heat, solvents, and other harsh conditions, which makes them of interest in terms of mechanical properties. Determinations of shear modulus and pelletization have shown that the UiO-66 MOFs are very mechanically robust and have high tolerance for pore
1344:
growth process. Zheng and coworkers reported the synthesis of homochiral MOFs from achiral ligands by chemically manipulating the statistical fluctuation of the formation of enantiomeric pairs of crystals. Growing MOF crystals under chiral influences is another approach to obtain homochiral MOFs
1130:
where the imine gets attached to the Lewis-acidic metal centre resulting in higher electrophilicity of imines. For the cyanosilylation of imines, most of the reactions were complete within 1 h affording aminonitriles in quantitative yield. Kaskel and coworkers carried out similar cyanosilylation
3501:
MOF membranes such as ZIF-8 and UiO-66 membranes with uniform subnanometer pores consisting of angstrom-scale windows and nanometer-scale cavities displayed ultrafast selective transport of alkali metal ions. The windows acted as ion selectivity filters for alkali metal ions, while the cavities
1641:
exhibit a pore collapse. Although most carboxylate MOFs have a negative thermal expansion (they densify during heating), it was found that the hardness and Young's moduli unexpectedly decrease with increasing temperature from disordering of linkers. It was also found computationally that a more
451:
mineral replacement events occur whenever a mineral phase comes into contact with a fluid with which it is out of equilibrium. Re-equilibration will tend to take place to reduce the free energy and transform the initial phase into a more thermodynamically stable phase, involving dissolution and
2321:
An association energy of 22–25 kJ/mol is typical of charge-induced dipole interactions, and so there is interest in the use of charged linkers and metals. The metal–hydrogen bond strength is diminished in MOFs, probably due to charge diffusion, so 2+ and 3+ metal ions are being studied to
1242:
can be accomplished by grafting on functional groups to the unsaturated metal site on MOFs. Ethylenediamine (ED) has been shown to be grafted on the Cr metal sites and can be further modified to encapsulate noble metals such as Pd. The entrapped Pd has similar catalytic activity as Pd/C in the
405:
Numerous methods have been reported for the growth of MOFs as oriented thin films. However, these methods are suitable only for the synthesis of a small number of MOF topologies. One such example being the vapor-assisted conversion (VAC) which can be used for the thin film synthesis of several
321:
and solid-state inorganic chemistry, but it developed into a new field. In addition, MOFs are constructed from bridging organic ligands that remain intact throughout the synthesis. Zeolite synthesis often makes use of a "template". Templates are ions that influence the structure of the growing
2937:
The synthesis, characterization, and drug-related studies of low toxicity, biocompatible MOFs has shown that they have potential for medical applications. Many groups have synthesized various low toxicity MOFs and have studied their uses in loading and releasing various therapeutic drugs for
2903:
Regarding the first point, nanoscale MOF (NMOF) synthesis has been mentioned in an earlier section. The latter obstacle addresses the limitation of the antenna effect. Smaller linkers tend to improve MOF stability, but have higher energy absorptions, predominantly in the ultraviolet (UV) and
401:
ligand molecules, that induce a phase transformation to the MOF crystal lattice. Formation of water during this reaction plays a crucial role in directing the transformation. This process was successfully scaled up to an integrated cleanroom process, conforming to industrial microfabrication
2946:
repeating motif with a pore size of approximately 1 nm. Subsequently, in 2017 Hartlieb et al. at Northwestern did further research with CD-MOF-1 involving the encapsulation of ibuprofen. The group studied different methods of loading the MOF with ibuprofen as well as performing related
512:
and the removal of solvents allow for some additional functionality but are still limited to the integral parts of the framework. The post-synthetic exchange of organic linkers and metal ions is an expanding area of the field and opens up possibilities for more complex structures, increased
3587:
Some MOFs also exhibit spontaneous electric polarization, which occurs due to the ordering of electric dipoles (polar linkers or guest molecules) below a certain phase transition temperature. If this long-range dipolar order can be controlled by the external electric field, a MOF is called
1435:
to generate the grafted Ti- BINOLate species. The catalytic activity of MOFs can vary depending on the framework structure. Lin and others found that MOFs synthesized from the same materials could have drastically different catalytic activities depending on the framework structure present.
2941:
In 2010 Smaldone et al., an international research group, synthesized a biocompatible MOF termed CD-MOF-1 from cheap edible natural products. CD-MOF-1 consists of repeating base units of 6 γ-cyclodextrin rings bound together by potassium ions. γ-cyclodextrin (γ-CD) is a symmetrical cyclic
156:
MOFs are composed of two main components: an inorganic metal cluster (often referred to as a secondary-building unit or SBU) and an organic molecule called a linker. For this reason, the materials are often referred to as hybrid organic-inorganic materials. The organic units are typically
2955:
systems, such as released payload between 1 and 7 days" and delivering a therapeutic concentration of the drug of choice without causing unwanted side effects. The group discovered that the drug uptake is "governed by the hydrophilic/hydrophobic balance between cargo and matrix" and "the
346:
because crystals grow over the course of hours to days. However, the use of MOFs as storage materials for consumer products demands an immense scale-up of their synthesis. Scale-up of MOFs has not been widely studied, though several groups have demonstrated that microwaves can be used to
336:
Four developments were particularly important in advancing the chemistry of MOFs. (1) The geometric principle of construction where metal-containing units were kept in rigid shapes. Early MOFs contained single atoms linked to ditopic coordinating linkers. The approach not only led to the
3436:
baseline amine-based system would cause an increase of 81% (goal is 35%). The capture cost would be $ 57 / ton, while for the amine system the cost is estimated to be $ 72 / ton. At that rate the capital required to implement such project in a 580 MW power plant would be $ 354 million.
2330:
MOFs are frequently sensitive to moisture in the air. In particular, IRMOF-1 degrades in the presence of small amounts of water at room temperature. Studies on metal analogues have unraveled the ability of metals other than Zn to stand higher water concentrations at high temperatures.
2602:
The changing of amount of hydrogen stored in the MOF is measured by detecting the varied pressure of hydrogen at constant volume. The volume of adsorbed hydrogen in the MOF is then calculated by subtracting the volume of hydrogen in free space from the total volume of dosed hydrogen.
10500:
Wang Y, Li Y, Bai Z, Xiao C, Liu Z, Liu W, Chen L, He W, Diwu J, Chai Z, Albrecht-Schmitt TE, Wang S (November 2015). "Design and synthesis of a chiral uranium-based microporous metal organic framework with high SHG efficiency and sequestration potential for low-valent actinides".
10429:
Li Y, Weng Z, Wang Y, Chen L, Sheng D, Diwu J, Chai Z, Albrecht-Schmitt TE, Wang S (January 2016). "Surprising coordination for low-valent actinides resembling uranyl(vi) in thorium(iv) organic hybrid layered and framework structures based on a graphene-like (6,3) sheet topology".
2322:
strengthen this interaction even further. A problem with this approach is that MOFs with exposed metal surfaces have lower concentrations of linkers; this makes them difficult to synthesize, as they are prone to framework collapse. This may diminish their useful lifetimes as well.
1612:
materials undergo a shear softening mechanism with amorphizing (at ~ 0.34 GPa) of the material under hydrostatic loading, while still possessing a bulk modulus on the order of 6.5 GPa. Additionally, the ZIF-4 and ZIF-8 MOFs are subject to many pressure dependent phase transitions.
2334:
To compensate for this, specially constructed storage containers are required, which can be costly. Strong metal-ligand bonds, such as in metal-imidazolate, -triazolate, and -pyrazolate frameworks, are known to decrease a MOF's sensitivity to air, reducing the expense of storage.
1661:. While it was shown that the MOF-5 can demonstrate the hyperfilling phenomenon within a loading media of solvent, these MOFs are very sensitive to pressure and undergo amorphization/pressure induced pore collapse at a pressure of 3.5 MPa when there is no fluid in the pores. 2242:
The general trend in MOFs used for hydrogen storage is that the greater the surface area, the more hydrogen the MOF can store. High surface area materials tend to exhibit increased micropore volume and inherently low bulk density, allowing for more hydrogen adsorption to occur.
3574:
and thus regenerate the desiccant for repeated usage. This is accomplished by having two condenser/evaporator units through which the flow of refrigerant can be reversed once the desiccant on the condenser is saturated, thus making the condenser the evaporator and vice versa.
12033:
Pramudya, Yohanes; Bonakala, Satyanarayana; Antypov, Dmytro; Bhatt, Prashant M.; Shkurenko, Aleksander; Eddaoudi, Mohamed; Rosseinsky, Matthew J.; Dyer, Matthew S. (2020). "High-throughput screening of metal–organic frameworks for kinetic separation of propane and propene".
590:
MOF; however, desorption can take upwards of 12 hours, and reversible desorption is sometimes observed for only two cycles. The relationship between hydrogen spillover and hydrogen storage properties in MOFs is not well understood but may prove relevant to hydrogen storage.
747:(i.e., partial decomposition sites) or defect sites, rather than at transiently labile, but otherwise intact, single-atom MOF nodes. "Opportunistic" MOF-based catalysis has been described for the cubic compound, MOF-5. This material comprises coordinatively saturated Zn 1217:
reaction. The pyridine groups on the ligand 4-BTAPA act as ligands binding to the octahedral cadmium centers, while the amide groups can provide the functionality for interaction with the incoming substrates. Specifically, the −NH moiety of the amide group can act as
1263:. In another example, Pd nanoparticles embedded within defective HKUST-1 framework enable the generation of tunable Lewis basic sites. Therefore, this multifunctional Pd/MOF composite is able to perform stepwise benzyl alcohol oxidation and Knoevenagel condensation. 1319:
polymerization. Due to the different linker size the MOF channel size could be tunable on the order of roughly 25 and 100 Å. The channels were shown to stabilize propagating radicals and suppress termination reactions when used as radical polymerization sites.
639:, e.g., for the pharmaceutical, agrochemical, and fragrance industries. Enantiopure chiral ligands or their metal complexes have been incorporated into MOFs to lead to efficient asymmetric catalysts. Even some MOF materials may bridge the gap between zeolites and 418:
Solvothermal synthesis can be carried out conventionally in a teflon reactor in a convection oven or in glass reactors in a microwave oven (high-throughput microwave synthesis). The use of a microwave oven changes, in part dramatically, the reaction parameters.
350:
MOF crystals rapidly from solution. This technique, termed "microwave-assisted solvothermal synthesis", is widely used in the zeolite literature, and produces micron-scale crystals in a matter of seconds to minutes, in yields similar to the slow growth methods.
1833:-benzene-1,3,5-triyltris(1-ethynyl-2-isophthalate) organic linkers and has a measured BET surface area of 3000 m g. Despite these promising MOF examples, the classes of synthetic porous materials with the highest performance for practical hydrogen storage are 341:
and unusually large pore openings. (3) Post- synthetic modification of MOFs increased their functionality by reacting organic units and metal-organic complexes with linkers. (4) Multifunctional MOFs incorporated multiple functionalities in a single framework.
4739:
Virmani, Erika; Rotter, Julian M.; Mähringer, Andre; von Zons, Tobias; Godt, Adelheid; Bein, Thomas; Wuttke, Stefan; Medina, Dana D. (2018-04-11). "On-Surface Synthesis of Highly Oriented Thin Metal–Organic Framework Films through Vapor-Assisted Conversion".
1357:
with chiral cations as reaction media for synthesizing MOFs, and obtained homochiral MOFs. The most straightforward and rational strategy for synthesizing homochiral MOFs is, however, to use the readily available chiral linker ligands for their construction.
3588:
ferroelectric. Some ferroelectric MOFs also exhibit magnetic ordering making them single structural phase multiferroics. This material property is highly interesting for construction of memory devices with high information density. The coupling mechanism of
2378:
Structural defects can also leave metal-containing nodes incompletely coordinated. This enhances the performance of MOFs used for hydrogen storage by increasing the number of accessible metal centers. Finally, structural defects can affect the transport of
1733:
collapse when compared to ZIFs and carboxylate MOFs. Although the UiO-66 MOF shows increased stability under pelletization, the UiO-66 MOFs amorphized fairly rapidly under ball milling conditions due to destruction of linker coordinating inorganic nodes.
11314:
Arora, Himani; Dong, Renhao; Venanzi, Tommaso; Zscharschuch, Jens; Schneider, Harald; Helm, Manfred; Feng, Xinliang; Cánovas, Enrique; Erbe, Artur (2020). "Demonstration of a Broadband Photodetector Based on a Two-Dimensional Metal–Organic Framework".
5433:
Dolgopolova EA, Ejegbavwo OA, Martin CR, Smith MD, Setyawan W, Karakalos SG, Henager CH, Zur Loye HC, Shustova NB (November 2017). "Multifaceted Modularity: A Key for Stepwise Building of Hierarchical Complexity in Actinide Metal-Organic Frameworks".
3578:
MOFs' extremely high surface areas and porosities have made them the subject of much research in water adsorption applications. Chemistry can help tune the optimal relative humidity for adsorption/desorption, and the sharpness of the water uptake.
1821:
surface area of 4630 m g. Another exemplary material is PCN-61 which exhibits a hydrogen uptake of 6.24 wt % and 42.5 g L at 35 bar and 77 K and 2.25 wt % at atmospheric pressure. PCN-61 consists of paddle-wheel units connected through
972:
and co-workers have reported the synthesis of a catalytic MOF having the formula . The MOF is three-dimensional, consisting of an identical catenated pair of networks, yet still featuring pores of molecular dimensions. The nodes consist of single
1570:, makes for novel mechanical responses. MOFs are very structurally diverse meaning that it is challenging to classify all of their mechanical properties. Additionally, variability in MOFs from batch to batch and extreme experimental conditions ( 3497:
in biological channels and it is not energy efficient. The mining industry, uses membrane-based processes to reduce water pollution, and to recover metals. MOFs could be used to extract metals such as lithium from seawater and waste streams.
12557:
Sieradzki A, Mączka M, Simenas M, Zaręba JK, Gągor A, Balciunas S, Kinka M, Ciupa A, Nyk M, Samulionis V, Banys J, Paluch M, Pawlus S (2018-08-13). "On the origin of ferroelectric structural phases in perovskite-like metal-organic formate".
11487:
Hoppe, Bastian; Hindricks, Karen D. J.; Warwas, Dawid P.; Schulze, Hendrik A.; Mohmeyer, Alexander; Pinkvos, Tim J.; Zailskas, Saskia; Krey, Marc R.; Belke, Christopher; König, Sandra; Fröba, Michael; Haug, Rolf J.; Behrens, Peter (2018).
7256:
Furukawa H, Kim J, Ockwig NW, O'Keeffe M, Yaghi OM (September 2008). "Control of vertex geometry, structure dimensionality, functionality, and pore metrics in the reticular synthesis of crystalline metal-organic frameworks and polyhedra".
6148:
Hasegawa S, Horike S, Matsuda R, Furukawa S, Mochizuki K, Kinoshita Y, Kitagawa S (March 2007). "Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand: selective sorption and catalysis".
1594:
and hardness of the ZIFs to decrease as the accessible pore volume increases. The bulk moduli of ZIF-62 series increase with the increasing of benzoimidazolate (bim) concentration. ZIF-62 shows a continuous phase transition from open pore
1430:
O} (L=(R)-6,6'-dichloro-2,2'-dihydroxyl-1,1'-binaphthyl-bipyridine) synthesized by Lin was shown to have a similar catalytic efficiency for the diethylzinc addition reaction as compared to the homogeneous analogue when was pretreated by
2152:
This MOF is the first demonstration of open metal coordination sites increasing strength of hydrogen adsorption, which results in improved performance at 298 K. It has relatively strong metal-hydrogen interactions, attributed to a
8074:
Peterson, Gregory W.; DeCoste, Jared B.; Glover, T. Grant; Huang, Yougui; Jasuja, Himanshu; Walton, Krista S. (September 2013). "Effects of pelletization pressure on the physical and chemical properties of the metal–organic frameworks
1784:
are required when liberating the adsorbed hydrogen. The storage capacity of a MOF is limited by the liquid-phase density of hydrogen because the benefits provided by MOFs can be realized only if the hydrogen is in its gaseous state.
3413:(MEA) solutions, the leading capture method, have a heat capacity between 3-4 J/(g⋅K) since they are mostly water. This high heat capacity contributes to the energy penalty in the solvent regeneration step, i.e. when the adsorbed CO 101:
In most cases for MOFs, the pores are stable during the elimination of the guest molecules (often solvents) and could be refilled with other compounds. Because of this property, MOFs are of interest for the storage of gases such as
8021:
Widmer, Remo N.; Lampronti, Giulio I.; Chibani, Siwar; Wilson, Craig W.; Anzellini, Simone; Farsang, Stefan; Kleppe, Annette K.; Casati, Nicola P. M.; MacLeod, Simon G.; Redfern, Simon A. T.; Coudert, François-Xavier (2019-05-22).
3469:, which provide chemical stability. This is especially important because the gases the MOF will be exposed to are hot, high in humidity, and acidic. Triaminoguanidinium-based POFs and Zn/POFs are new multifunctional materials for 794:-catalyzed pathways, the product selectivity are distinctive for three reactions: isomerization of α-pinene oxide, cyclization of citronellal, and rearrangement of α-bromoacetals, indicating that indeed functions primarily as a 6593:
Tahmouresilerd B, Moody M, Agogo L, Cozzolino AF (Apr 2019). "The impact of an isoreticular expansion strategy on the performance of iodine catalysts supported in multivariate zirconium and aluminum metal–organic frameworks".
2434:
Adsorption of molecular hydrogen in MOFs is physisorptive. Since molecular hydrogen only has two electrons, dispersion forces are weak, typically 4–7 kJ/mol, and are only sufficient for adsorption at temperatures below 298 K.
1775:
to the surface of MOFs. Furthermore, MOFs are free of dead-volume, so there is almost no loss of storage capacity as a result of space-blocking by non-accessible volume. Also, because the hydrogen uptake is based primarily on
1574:) mean that experimental determination of mechanical response to loading is limited, however many computational models have been made to determine structure-property relationships. Main MOF systems that have been explored are 9306:
Sengupta, D; Melix, P; Bose, S; Duncan, J; Wang, X; Mian, MR; Kirlikovali, KO; Joodaki, F; Islamoglu, T; Yildirim, T; Snurr, RQ; Farha, OK (20 September 2023). "Air-Stable Cu(I) Metal-Organic Framework for Hydrogen Storage".
8452:
Chen, Zhijie; Hanna, Sylvia L.; Redfern, Louis R.; Alezi, Dalal; Islamoglu, Timur; Farha, Omar K. (December 2019). "Corrigendum to "Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs" ".
6565:
Tahmouresilerd B, Larson PJ, Unruh DK, Cozzolino AF (July 2018). "Make room for iodine: systematic pore tuning of multivariate metal–organic frameworks for the catalytic oxidation of hydroquinones using hypervalent iodine".
1899:
coordination ability of carboxylate groups favors the high degree of framework connectivity and strong metal-ligand bonds necessary to maintain MOF architecture under the conditions required to evacuate the solvent from the
526:
crystals are washed with solvent and then soaked in a solution of the new linker. The exchange often requires heat and occurs on the time scale of a few days. Post-synthetic ligand exchange also enables the incorporation of
2426:
atoms or molecules (i.e. the particles which adhere to the surface) are attracted to the adsorbent (solid) surface because of the surface energy that results from unoccupied bonding locations at the surface. The degree of
10580:
Wang LL, Luo F, Dang LL, Li JQ, Wu XL, Liu SJ, Luo MB (2015). "Ultrafast high-performance extraction of uranium from seawater without pretreatment using an acylamide- and carboxyl-functionalized metal–organic framework".
9142:
Rowsell JL, Yaghi OM (February 2006). "Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks".
7581:
Gascon J, Hernández-Alonso MD, Almeida AR, van Klink GP, Kapteijn F, Mul G (2008). "Isoreticular MOFs as efficient photocatalysts with tunable band gap: an operando FTIR study of the photoinduced oxidation of propylene".
6187:
Hwang YK, Hong DY, Chang JS, Jhung SH, Seo YK, Kim J, Vimont A, Daturi M, Serre C, Férey G (2008). "Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation".
9463:
Mulfort KL, Farha OK, Stern CL, Sarjeant AA, Hupp JT (March 2009). "Post-synthesis alkoxide formation within metal-organic framework materials: a strategy for incorporating highly coordinatively unsaturated metal ions".
6023:
Chen L, Yang Y, Jiang D (July 2010). "CMPs as scaffolds for constructing porous catalytic frameworks: a built-in heterogeneous catalyst with high activity and selectivity based on nanoporous metalloporphyrin polymers".
2861:
MOF-76 crystal, where oxygen, carbon, and lanthanide atoms are represented by maroon, black, and blue spheres, respectively. Includes metal node connectivity (blue polyhedra), infinite-rod SBU, and 3D representation of
2458:. To obtain the total amount of hydrogen in the MOF, both the amount of hydrogen absorbed on its surface and the amount of hydrogen residing in its pores should be considered. To calculate the absolute absorbed amount ( 2581: 12634:, Weihua Tang, and Xiaojie Lou (2018). "Strain Coupling and Dynamic Relaxation in a Molecular Perovskite-Like Multiferroic Metal–Organic Framework". Adv. Funct. Mater. 2018, 28, 1806013. doi: 10.1002/adfm.201806013. 11050:
Noorian, Seyyed Abbas; Hemmatinejad, Nahid; Navarro, Jorge A. R. (2020). "Bioactive molecule encapsulation on metal-organic framework via simple mechanochemical method for controlled topical drug delivery systems".
7617:
Liu, Yufeng; Cheng, Yuan; Zhang, He; Zhou, Min; Yu, Yijun; Lin, Shichao; Jiang, Bo; Zhao, Xiaozhi; Miao, Leiying; Wei, Chuan-Wan; Liu, Quanyi; Lin, Ying-Wu; Du, Yan; Butch, Christopher J.; Wei, Hui (July 1, 2020).
11437:
Day, Robert W.; Bediako, D. Kwabena; Rezaee, Mehdi; Parent, Lucas R.; Skorupskii, Grigorii; Arguilla, Maxx Q.; Hendon, Christopher H.; Stassen, Ivo; Gianneschi, Nathan C.; Kim, Philip; Dincă, Mircea (2019-12-26).
430:
was used in a continuous flow reactor along the same time scale as the supercritical water-based method, but the lower critical point of carbon dioxide allowed for the synthesis of the zirconium-based MOF UiO-66.
6835:
Ezuhara T, Endo K, Aoyama Y (1999). "Helical Coordination Polymers from Achiral Components in Crystals. Homochiral Crystallization, Homochiral Helix Winding in the Solid State, and Chirality Control by Seeding".
3832:
Fan, Zhiying; Staiger, Lena; Hemmer, Karina; Wang, Zheng; Wang, Weijia; Xie, Qianjie; Zhang, Lunjia; Urstoeger, Alexander; Schuster, Michael; Lercher, Johannes A.; Cokoja, Mirza; Fischer, Roland A. (2022-01-31).
622:
O among others). It is also difficult to obtain zeolites with pore sizes larger than 1 nm, which limits the catalytic applications of zeolites to relatively small organic molecules (typically no larger than
2885:
Yan group has shown that Eu- and Tb- MOF-76 can be used for selective detection of acetophenone from other volatile monoaromatic hydrocarbons. Upon acetophenone uptake, the MOF shows a very sharp decrease, or
774:, also known as HKUST-1, contains large cavities having windows of diameter ~6 Å. The coordinated water molecules are easily removed, leaving open Cu(II) sites. Kaskel and co-workers showed that these 9894:
Liu, Mengjie; Zheng, Weiran; Ran, Sijia; Boles, Steven T.; Lee, Lawrence Yoon Suk (November 2018). "Overall Water-Splitting Electrocatalysts Based on 2D CoNi-Metal-Organic Frameworks and Its Derivative".
397:. This process, MOF-CVD, was first demonstrated for ZIF-8 and consists of two steps. In a first step, metal oxide precursor layers are deposited. In the second step, these precursor layers are exposed to 12714: 7892: 6086:
Mansuy D, Bartoli JF, Momenteau M (1982). "Alkane hydroxylation catalyzed by metalloporhyrins : evidence for different active oxygen species with alkylhydroperoxides and iodosobenzene as oxidants".
3531:
MOFs have been demonstrated that capture water vapor from the air. In 2021 under humid conditions, a polymer-MOF lab prototype yielded 17 liters (4.5 gal) of water per kg per day without added energy.
5348:
Yuan S, Lu W, Chen YP, Zhang Q, Liu TF, Feng D, Wang X, Qin J, Zhou HC (March 2015). "Sequential linker installation: precise placement of functional groups in multivariate metal-organic frameworks".
4281:
Bucar DK, Papaefstathiou GS, Hamilton TD, Chu QL, Georgiev IG, MacGillivray LR (2007). "Template-controlled reactivity in the organic solid state by principles of coordination-driven self-assembly".
530:
into MOFs that otherwise would not survive MOF synthesis, due to temperature, pH, or other reaction conditions, or hinder the synthesis itself by competition with donor groups on the loaning ligand.
288:. For MOFs, typical bridging ligands are di- and tricarboxylic acids. These ligands typically have rigid backbones. Examples are benzene-1,4-dicarboxylic acid (BDC or terephthalic acid), biphenyl-4,4 11086:
Chen X, Tong R, Shi Z, Yang B, Liu H, Ding S, Wang X, Lei Q, Wu J, Fang W (January 2018). "MOF Nanoparticles with Encapsulated Autophagy Inhibitor in Controlled Drug Delivery System for Antitumor".
9643:
Furukawa H, Miller MA, Yaghi OM (2007). "Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal–organic frameworks".
1426:
Lin and coworkers have shown that the postmodification of MOFs can be achieved to produce enantioselective homochiral MOFs for use as catalysts. The resulting 3D homochiral MOF { • 4DMF • 6MeOH • 3H
3510:
selectivity of ~4.6 and ~1.8, respectively, much higher than the 0.6 to 0.8 selectivity in traditional membranes. A 2020 study suggested that a new MOF called PSP-MIL-53 could be used along with
1299:. MOFs have been used to study polymerization in the confined space of MOF channels. Polymerization reactions in confined space might have different properties than polymerization in open space. 382:
in the ball mill may also help in the reaction having a solvent effect in the ball mill. It has been shown that the addition of small quantities of ethanol for the mechanochemical synthesis of Cu
9851:
Cheng, Weiren; Zhao, Xu; Su, Hui; Tang, Fumin; Che, Wei; Zhang, Hui; Liu, Qinghua (14 January 2019). "Lattice-strained metal–organic-framework arrays for bifunctional oxygen electrocatalysis".
11394:
Liu, Jingjuan; Song, Xiaoyu; Zhang, Ting; Liu, Shiyong; Wen, Herui; Chen, Long (2021-03-08). "2D Conductive Metal–Organic Frameworks: An Emerging Platform for Electrochemical Energy Storage".
5383:
Yuan S, Chen YP, Qin JS, Lu W, Zou L, Zhang Q, Wang X, Sun X, Zhou HC (July 2016). "Linker Installation: Engineering Pore Environment with Precisely Placed Functionalities in Zirconium MOFs".
5235:
Sun D, Liu W, Qiu M, Zhang Y, Li Z (February 2015). "Introduction of a mediator for enhancing photocatalytic performance via post-synthetic metal exchange in metal-organic frameworks (MOFs)".
4882:
Biemmi, Enrica; Christian, Sandra; Stock, Norbert; Bein, Thomas (2009), "High-throughput screening of synthesis parameters in the formation of the metal-organic frameworks MOF-5 and HKUST-1",
1653:
has tetranuclear nodes in an octahedral configuration with an overall cubic structure. MOF-5 has a compressibility and Young's modulus (~14.9 GPa) comparable to wood, which was confirmed with
11259:
Dong, Renhao; Han, Peng; Arora, Himani; Ballabio, Marco; Karakus, Melike; Zhang, Zhe; Shekhar, Chandra; Adler, Peter; Petkov, Petko St; Erbe, Artur; Mannsfeld, Stefan C. B. (November 2018).
9940:
Zheng, Weiran; Liu, Mengjie; Lee, Lawrence Yoon Suk (2020). "Electrochemical Instability of Metal–Organic Frameworks: In Situ Spectroelectrochemical Investigation of the Real Active Sites".
7538:
Fuentes-Cabrera M, Nicholson DM, Sumpter BG, Widom M (2005). "Electronic structure and properties of isoreticular metal-organic frameworks: The case of M-IRMOF1 (M=Zn, Cd, Be, Mg, and Ca)".
3398:
is extracted from the MOF through either a temperature swing or a pressure swing. This process is known as regeneration. In a temperature swing regeneration, the MOF would be heated until CO
5728:
Chávez, A.M.; Rey, A.; López, J.; Álvarez, P.M.; Beltrán, F.J. (2021). "Critical aspects of the stability and catalytic activity of MIL-100(Fe) in different advanced oxidation processes".
12677:{Designed metal-organic framework composites for metal-ion batteries and metal-ion capacitors/ Gaurav Tatrari, Rong An, Faiz Ullah Shah Coordination Chemistry Reviews, Volume 512, 215876} 2611:
There are six possible methods that can be used for the reversible storage of hydrogen with a high volumetric and gravimetric density, which are summarized in the following table, (where
12146:
Kumar, Sandeep; Pramudya, Yohanes; Müller, Kai; Chandresh, Abhinav; Dehm, Simone; Heidrich, Shahriar; Fediai, Artem; Parmar, Devang; Perera, Delwin; Rommel, Manuel; Heinke, Lars (2021).
9271:
Bellarosa L, Castillo JM, Vlugt T, Calero S, López N (September 2012). "On the mechanism behind the instability of isoreticular metal-organic frameworks (IRMOFs) in humid environments".
11976:
Banerjee, Debasis; Simon, Cory M.; Plonka, Anna M.; Motkuri, Radha K.; Liu, Jian; Chen, Xianyin; Smit, Berend; Parise, John B.; Haranczyk, Maciej; Thallapally, Praveen K. (2016-06-13).
2938:
potential medical applications. A variety of methods exist for inducing drug release, such as pH-response, magnetic-response, ion-response, temperature-response, and pressure response.
1481:
cavity environment which are characteristics of an enzyme. Some well-known examples of cooperative catalysis involving two metal ions in biological systems include: the diiron sites in
6730:
Pan L, Liu H, Lei X, Huang X, Olson DH, Turro NJ, Li J (February 2003). "RPM-1: a recyclable nanoporous material suitable for ship-in-bottle synthesis and large hydrocarbon sorption".
1684:
due to the flexibility of loading, and the potential for negative linear compressibility when compressing in one direction, due to the ability of the wine rack opening during loading.
6898:
Kepert CJ, Prior TJ, Rosseinsky MJ (2000). "A Versatile Family of Interconvertible Microporous Chiral Molecular Frameworks: The First Example of Ligand Control of Network Chirality".
1457:
activity was observed during the reaction and the catalyst could be recycled and reused several times. Lin and coworkers have reported zirconium phosphonate-derived Ru-BINAP systems.
6999:-substituent effects on binap: Highly enantioselective Ru catalysts for asymmetric hydrogenation of beta-aryl ketoesters and their immobilization in room-temperature ionic liquids". 1521:
to enzymes. Indeed, many hybrid frameworks contain organic parts that can rotate as a result of stimuli, such as light and heat. The porous channels in MOF structures can be used as
6059:
Rahiman AK, Rajesh K, Bharathi KS, Sreedaran S, Narayanan V (2009). "Catalytic oxidation of alkenes by manganese(III) porphyrin-encapsulated Al, V, Si-mesoporous molecular sieves".
4797:
Gimeno-Fabra, Miquel; Munn, Alexis S.; Stevens, Lee A.; Drage, Trevor C.; Grant, David M.; Kashtiban, Reza J.; Sloan, Jeremy; Lester, Edward; Walton, Richard I. (7 September 2012).
8757:
Yuan D, Zhao D, Sun D, Zhou HC (July 2010). "An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity".
3010:. It represents a family of similar compounds. Because of the symmetry and geometry in 2,3,6,7,10,11-hexaiminotriphenylene (HITP), the overall organometallic complex has an almost 2060:
Tetrahedral units are linked by large, triangular tricarboxylate ligands. Six diamond-shaped channels (upper) with diameter of 10.8 Å surround a pore containing eclipsed BTB
1626:
Carboxylate MOFs come in many forms and have been widely studied. Herein, HKUST-1, MOF-5, and the MIL series are discussed as representative examples of the carboxylate MOF class.
10140:
Duan TW, Yan B (2014-06-12). "Hybrids based on lanthanide ions activated yttrium metal–organic frameworks: functional assembly, polymer film preparation and luminescence tuning".
3402:
desorbs. To achieve working capacities comparable to the amine process, the MOF must be heated to around 200 °C. In a pressure swing, the pressure would be decreased until CO
1760:
pressure required for practical volumetric energy density is an active area of research. MOFs attract attention as materials for adsorptive hydrogen storage because of their high
10608:
Demir S, Brune NK, Van Humbeck JF, Mason JA, Plakhova TV, Wang S, Tian G, Minasian SG, Tyliszczak T, Yaita T, Kobayashi T, Kalmykov SN, Shiwaku H, Shuh DK, Long JR (April 2016).
1226:
reported a robust and highly porous MOF (BDC: benzene-1,4-dicarboxylate) where instead of directly using the unsaturated Cr(III) centers as catalytic sites, the authors grafted
508:
Thermal and chemical sensitivity, as well as high reactivity of reaction materials, can make forming desired products challenging to achieve. The exchange of guest molecules and
10882:
Jambhekar SS, Breen P (February 2016). "Cyclodextrins in pharmaceutical formulations I: structure and physicochemical properties, formation of complexes, and types of complex".
3317: 3094: 2399:
internal surfaces. This simple qualitative argument suggests that the highly porous metal-organic frameworks (MOFs) should be excellent candidates for hydrogen storage devices.
5313:
Liu C, Zeng C, Luo TY, Merg AD, Jin R, Rosi NL (September 2016). "Establishing Porosity Gradients within Metal-Organic Frameworks Using Partial Postsynthetic Ligand Exchange".
4942:
Reboul, Julien; Furukawa, Shuhei; Horike, Nao; Tsotsalas, Manuel; Hirai, Kenji; Uehara, Hiromitsu; Kondo, Mio; Louvain, Nicolas; Sakata, Osami; Kitagawa, Susumu (August 2012).
8488:
Wu, Hui; Yildirim, Taner; Zhou, Wei (2013-03-07). "Exceptional Mechanical Stability of Highly Porous Zirconium Metal–Organic Framework UiO-66 and Its Important Implications".
6863:
Wu ST, Wu YR, Kang QQ, Zhang H, Long LS, Zheng Z, Huang RB, Zheng LS (2007). "Chiral symmetry breaking by chemically manipulating statistical fluctuation in crystallization".
2255:
is also important. Theoretical studies have shown that 22–25 kJ/mol interactions are ideal for hydrogen storage at room temperature, as they are strong enough to adsorb H
3259: 3226: 3193: 3160: 1149:
But this strategy suffers from some problems like 1) the decomposition of the framework with increase of the reaction temperature due to the reduction of Cu(II) to Cu(I) by
269:
To describe and organize the structures of MOFs, a system of nomenclature has been developed. Subunits of a MOF, called secondary building units (SBUs), can be described by
10335:
Luo TY, Liu C, Eliseeva SV, Muldoon PF, Petoud S, Rosi NL (July 2017). "2+ Clusters: Rational Design, Directed Synthesis, and Deliberate Tuning of Excitation Wavelengths".
10105:
Rosi NL, Kim J, Eddaoudi M, Chen B, O'Keeffe M, Yaghi OM (February 2005). "Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units".
9757:
Zheng W, Tsang CS, Lee LY, Wong KY (June 2019). "Two-dimensional metal-organic framework and covalent-organic framework: synthesis and their energy-related applications".
9428:
Tsao CS, Yu MS, Wang CY, Liao PY, Chen HL, Jeng US, Tzeng YR, Chung TY, Wu HC (February 2009). "Nanostructure and hydrogen spillover of bridged metal-organic frameworks".
8726:
Thomas KM (March 2009). "Adsorption and desorption of hydrogen on metal-organic framework materials for storage applications: comparison with other nanoporous materials".
5763:
Fujita M, Kwon YJ, Washizu S, Ogura K (1994). "Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(II) and 4,4
1730: 3127: 1418:
positions of the 1,1'-binaphthyl moiety. Moreover, by changing the length of the linker ligands the porosity and framework structure of the MOF can be selectively tuned.
836:. Noteworthy features of this catalyst are high conversion yields (for small substrates) and good substrate-size-selectivity, consistent with channellocalized catalysis. 723:. This investigation centered mainly on size- and shape-selective clathration. A second set of examples was based on a two-dimensional, square-grid MOF containing single 9031:
Dincă M, Dailly A, Liu Y, Brown CM, Neumann DA, Long JR (December 2006). "Hydrogen storage in a microporous metal-organic framework with exposed Mn coordination sites".
8222:
Li, Hailian; Eddaoudi, Mohamed; O'Keeffe, M.; Yaghi, O. M. (November 1999). "Design and synthesis of an exceptionally stable and highly porous metal-organic framework".
2899:
The absorbance and emission wavelengths must occur in regions with minimal overlap from sample autofluorescence, other absorbing species, and maximum tissue penetration.
2821:
Of these, high-pressure gas cylinders and liquid hydrogen in cryogenic tanks are the least practical ways to store hydrogen for the purpose of fuel due to the extremely
2115:
MOF-5 has received much attention from theorists because of the partial charges on the MOF surface, which provide a means of strengthening the binding hydrogen through
8587: 7844:"Tuning the High-Pressure Phase Behaviour of Highly Compressible Zeolitic Imidazolate Frameworks: From Discontinuous to Continuous Pore Closure by Linker Substitution" 5007:
Robatjazi, Hossein; Weinberg, Daniel; Swearer, Dayne F.; Jacobson, Christian; Zhang, Ming; Tian, Shu; Zhou, Linan; Nordlander, Peter; Halas, Naomi J. (February 2019).
2351:
dominate adsorption, the storage density is greatly dependent on the size of the pores. Calculations of idealized homogeneous materials, such as graphitic carbons and
5988:
Horike S, Dinca M, Tamaki K, Long JR (May 2008). "Size-selective Lewis acid catalysis in a microporous metal-organic framework with exposed Mn2+ coordination sites".
8160:
Dürholt, Johannes P.; Keupp, Julian; Schmid, and Rochus (2016-07-27). "The Impact of Mesopores on the Mechanical Stability of HKUST-1: A Multiscale Investigation".
4843:
Rasmussen, Elizabeth G.; Kramlich, John; Novosselov, Igor V. (3 June 2020). "Scalable Continuous Flow Metal–Organic Framework (MOF) Synthesis Using Supercritical CO
1590:(ZIFs), the most widely studied MOF for mechanical properties due to their many similarities to zeolites. General trends for the ZIF family are the tendency of the 90:, which is a coordination compound with repeating coordination entities extending in one, two, or three dimensions. Most of the MOFs reported in the literature are 9228:
Bellarosa L, Calero S, López N (May 2012). "Early stages in the degradation of metal-organic frameworks in liquid water from first-principles molecular dynamics".
8275:
Alexandre, Simone S.; Mattesini, Maurizio; Soler, José M.; Yndurain, Félix (2006-02-22). "Comment on "Magnetism in Atomic-Size Palladium Contacts and Nanowires"".
8187:
Chapman, Karena W.; Halder, Gregory J.; Chupas, Peter J. (2008-07-18). "Guest-Dependent High Pressure Phenomena in a Nanoporous Metal−Organic Framework Material".
12095:
Cadiau, A.; Adil, K.; Bhatt, P. M.; Belmabkhout, Y.; Eddaoudi, M. (2016-07-08). "A metal-organic framework-based splitter for separating propylene from propane".
5064:
Kornienko, Nikolay; Zhao, Yingbo; Kley, Christopher S.; Zhu, Chenhui; Kim, Dohyung; Lin, Song; Chang, Christopher J.; Yaghi, Omar M.; Yang, Peidong (2015-11-11).
1936:
is not yet known whether materials with high surface areas, small pores, or di- or trivalent metal clusters produce the most favorable MOFs for hydrogen storage.
1797:
need to operate efficiently at ambient temperature and pressures between 1 and 100 bar, as these are the values that are deemed safe for automotive applications.
1247:. Ruthenium nanoparticles have catalytic activity in a number of reactions when entrapped in the MOF-5 framework. This Ru-encapsulated MOF catalyzes oxidation of 12857: 6765:
Uemura T, Kitaura R, Ohta Y, Nagaoka M, Kitagawa S (June 2006). "Nanochannel-promoted polymerization of substituted acetylenes in porous coordination polymers".
9499:
Huang BL, Ni Z, Millward A, McGaughey AJ, Uher C, Kaviany M, Yaghi O (2007). "Thermal conductivity of a metal-organic framework (MOF-5): Part II. Measurement".
12816: 12765: 12721: 10847:
Smaldone RA, Forgan RS, Furukawa H, Gassensmith JJ, Slawin AM, Yaghi OM, Stoddart JF (November 2010). "Metal-organic frameworks from edible natural products".
561:
a good binding affinity for inorganic species. For instance, it was shown that metal nodes can perform an extension, and create a bond with the uranyl cation.
361:
A solvent-free synthesis of a range of crystalline MOFs has been described. Usually the metal acetate and the organic proligand are mixed and ground up with a
7842:
Song, Jianbo; Pallach, Roman; Frentzel-Beyme, Louis; Kolodzeiski, Pascal; Kieslich, Gregor; Vervoorts, Pia; Hobday, Claire L.; Henke, Sebastian (2022-05-16).
7406:
Degnan T (2003). "The implications of the fundamentals of shape selectivity for the development of catalysts for the petroleum and petrochemical industries".
4013:
Mon M, Bruno R, Ferrando-Soria J, Armentano D, Pardo E (2018). "Metal–organic framework technologies for water remediation: towards a sustainable ecosystem".
12843: 6800:
Uemura T, Hiramatsu D, Kubota Y, Takata M, Kitagawa S (2007). "Topotactic linear radical polymerization of divinylbenzenes in porous coordination polymers".
7679:"Study of the scale-up, formulation, ageing and ammonia adsorption capacity of MIL-100(Fe), Cu-BTC and CPO-27(Ni) for use in respiratory protection filters" 7292:
Surblé S, Serre C, Mellot-Draznieks C, Millange F, Férey G (January 2006). "A new isoreticular class of metal-organic-frameworks with the MIL-88 topology".
6925:
Bradshaw D, Prior TJ, Cussen EJ, Claridge JB, Rosseinsky MJ (May 2004). "Permanent microporosity and enantioselective sorption in a chiral open framework".
12831: 8843:
Sumida K, Hill MR, Horike S, Dailly A, Long JR (October 2009). "Synthesis and hydrogen storage properties of Be(12)(OH)(12)(1,3,5-benzenetribenzoate)(4)".
426:
as a solvent in a continuous flow reactor. Supercritical water was first used in 2012 to synthesize copper and nickel-based MOFs in just seconds. In 2020,
8588:
Committee on Alternatives and Strategies for Future Hydrogen Production and Use, National Research Council, National Academy of Engineering, eds. (2004).
12780: 6226:, Whang D, Lee H, Jun SI, Oh J, Jeon YJ, Kim K (April 2000). "A homochiral metal-organic porous material for enantioselective separation and catalysis". 3566:. This makes it desirable to handle dehumidification through means other than condensation. One such means is by adsorbing the water from the air into a 1058:, the remaining three are protonated and directed toward the channel interior. When neutralized, the noncoordinated pyridyl groups are found to catalyze 9342:
Stern AC, Belof JL, Eddaoudi M, Space B (January 2012). "Understanding hydrogen sorption in a polar metal-organic framework with constricted channels".
2442:
sorption mechanism in MOFs was achieved by statistical averaging in the grand canonical ensemble, exploring a wide range of pressures and temperatures.
1340:
and are racemic. Aoyama and coworkers successfully obtained homochiral MOFs in the bulk from achiral ligands by carefully controlling nucleation in the
12739: 7034:
Wu CD, Hu A, Zhang L, Lin W (June 2005). "A homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis".
6441:-1,4-cyclohexanedicarboxylate: heterogeneous oxidation catalysis with hydrogen peroxide and X-ray powder structure of peroxo copper(II) intermediate". 3775:
Semrau, Anna Lisa; Stanley, Philip M.; Huber, Dominik; Schuster, Michael; Albada, Bauke; Zuilhof, Han; Cokoja, Mirza; Fischer, Roland A. (2022-02-14).
1542:
of IRMOF-type samples can be tuned by varying the functionality of the linker. An integrated MOF nanozyme was developed for anti-inflammation therapy.
1345:
using achiral linker ligands. Rosseinsky and coworkers have introduced a chiral coligand to direct the formation of homochiral MOFs by controlling the
78:
to form one-, two- or three-dimensional structures. The organic ligands included are sometimes referred to as "struts" or "linkers", one example being
12491:
Jeremias F, Khutia A, Henninger SK, Janiak C (2012). "MIL-100 (Al, Fe) as water adsorbents for heat transformation purposes—a promising application".
12195: 5120:(March 2009). "Metathesis in single crystal: complete and reversible exchange of metal ions constituting the frameworks of metal-organic frameworks". 3328:
temperature). ZIF-8, MIL-88A, HKUST-1, and several luminescent MOFs containing lanthanide metals were used for the biomimetic mineralization process.
11649:
Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae TH, Long JR (February 2012). "Carbon dioxide capture in metal-organic frameworks".
10958:
Noorian, Seyyed Abbas; Hemmatinejad, Nahid; Navarro, Jorge A. R. (2019-12-01). "BioMOF@cellulose fabric composites for bioactive molecule delivery".
2146:
Consists of truncated octahedral cages that share square faces, leading to pores of about 10 Å in diameter. Contains open Mn coordination sites.
7069:
Wu CD, Lin W (2007). "Heterogeneous asymmetric catalysis with homochiral metal-organic frameworks: network-structure-dependent catalytic activity".
6114:
Ingleson MJ, Barrio JP, Bacsa J, Dickinson C, Park H, Rosseinsky MJ (March 2008). "Generation of a solid Brønsted acid site in a chiral framework".
1538:
with band gaps between 1.0 and 5.5 eV which can be altered by changing the degree of conjugation in the ligands. Experimental results show that the
1070:. The absence of significant catalysis when large alcohols are employed strongly suggests that the catalysis occurs within the channels of the MOF. 813:. Additionally, the Kaskel group observed that the catalytic sites of MIL-101, in contrast to those of HKUST-1, are immune to unwanted reduction by 6312:
Schlichte K, Kratzke T, Kaskel S (2004). "Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu
11802:
Hussain, MD. Waseem; Bhardwaj, V.; Giri, A.; Chande, A.; Patra, A. (2019). "Functional Ionic Porous Frameworks Based on Triaminoguanidinium for CO
3734:
Gao, Pan; Mukherjee, Soumya; Zahid Hussain, Mian; Ye, Song; Wang, Xusheng; Li, Weijin; Cao, Rong; Elsner, Martin; Fischer, Roland A (2024-07-15).
11957:
Ranwen Ou; et al. (2020). "A sunlight-responsive metal–organic framework system for sustainable water desalination". Nature Sustainability.
11121:
Talin AA, Centrone A, Ford AC, Foster ME, Stavila V, Haney P, Kinney RA, Szalai V, El Gabaly F, Yoon HP, Léonard F, Allendorf MD (January 2014).
4904: 2488: 1849:
Practical applications of MOFs for hydrogen storage are met with several challenges. For hydrogen adsorption near room temperature, the hydrogen
1046:(II) source they were able to synthesize a 2D MOF termed POST-1. POST-1 possesses 1D channels whose cross sections are defined by six trinuclear 828:. This material contains a three-dimensional pore structure, with the pore diameter equaling 10 Å. In principle, either of the two types of 10202:
Lian X, Yan B (2016-01-26). "A lanthanide metal–organic framework (MOF-76) for adsorbing dyes and fluorescence detecting aromatic pollutants".
5200:
Li T, Kozlowski MT, Doud EA, Blakely MN, Rosi NL (August 2013). "Stepwise ligand exchange for the preparation of a family of mesoporous MOFs".
1621: 8403:
Serra-Crespo, Pablo; Dikhtiarenko, Alla; Stavitski, Eli; Juan-Alcañiz, Jana; Kapteijn, Freek; Coudert, François-Xavier; Gascon, Jorge (2015).
7981:"Investigating the Pressure-Induced Amorphization of Zeolitic Imidazolate Framework ZIF-8: Mechanical Instability Due to Shear Mode Softening" 7944:; Halder, Gregory J.; Chupas, Peter J. (2009-11-16). "Pressure-Induced Amorphization and Porosity Modification in a Metal−Organic Framework". 7503:
Yang C, Messerschmidt M, Coppens P, Omary MA (August 2006). "Trinuclear gold(I) triazolates: a new class of wide-band phosphors and sensors".
7209:
Eddaoudi M, Kim J, Wachter J, Chae HK, O'Keeffe M, Yaghi OM (2001). "Porous Metal-Organic Polyhedra: 25 Å Cuboctahedron Constructed from 12 Cu
7139:
Hu A, Ngo HL, Lin W (September 2003). "Chiral porous hybrid solids for practical heterogeneous asymmetric hydrogenation of aromatic ketones".
879:-initiated radical chain reaction pathway. Regardless of mechanism, the approach is a promising one for isolating and thereby stabilizing the 12378:
Chua KJ, Chou SK, Yang WM, Yan J (April 2013). "Achieving better energy-efficient air conditioning–a review of technologies and strategies".
11490:"Graphene-like metal–organic frameworks: morphology control, optimization of thin film electrical conductivity and fast sensing applications" 8977:
Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O'Keeffe M, Yaghi OM (May 2003). "Hydrogen storage in microporous metal-organic frameworks".
5794:
Llabresixamena F, Abad A, Corma A, Garcia H (2007). "MOFs as catalysts: Activity, reusability and shape-selectivity of a Pd-containing MOF".
4586:"Mechanochemical defect engineering of HKUST-1 and impact of the resulting defects on carbon dioxide sorption and catalytic cyclopropanation" 4259: 805:) have also been shown to be impacted by defective sites, such as Cu(I) or incompletely deprotonated carboxylic acid moities of the linkers. 521:
Post-synthetic modification techniques can be used to exchange an existing organic linking group in a prefabricated MOF with a new linker by
472:
O 3:1 mixture (v/v) at elevated temperature. Analogous, Kornienko and coworkers described in 2015 the synthesis of a cobalt-porphyrin MOF (Al
1295:-MeDBK) was extensively studied. This molecule was found to have a variety of photochemical reaction properties including the production of 751:
O nodes and fully complexed BDC struts (see above for abbreviation); yet it apparently catalyzes the Friedel–Crafts tert-butylation of both
8708: 10696:
Li B, Dong X, Wang H, Ma D, Tan K, Jensen S, Deibert BJ, Butler J, Cure J, Shi Z, Thonhauser T, Chabal YJ, Han Y, Li J (September 2017).
4552:
Braga D, Giaffreda SL, Grepioni F, Chierotti MR, Gobetto R, Palladino G, Polito M (2007). "Solvent effect in a "solvent free" reaction".
6277:
Ohmori O, Fujita M (July 2004). "Heterogeneous catalysis of a coordination network: cyanosilylation of imines catalyzed by a Cd(II)-(4,4
9541:
Belof JL, Stern AC, Eddaoudi M, Space B (December 2007). "On the mechanism of hydrogen storage in a metal-organic framework material".
5821:
Ravon U, Domine ME, Gaudillère C, Desmartin-Chomel A, Farrusseng D (2008). "MOFs as acid catalysts with shape selectivity properties".
4488:
Steenhaut, Timothy; Hermans, Sophie; Filinchuk, Yaroslav (2020). "Green synthesis of a large series of bimetallic MIL-100(Fe,M) MOFs".
1055: 739:
hydrogenation, and Suzuki C–C coupling. At a minimum, these reactions necessarily entail redox oscillations of the metal nodes between
488:,4″,4‴-(porphyrin-5,10,15,20-tetrayl)tetrabenzoate), the first MOF catalyst constructed for the electrocatalytic conversion of aqueous 11003:"Toward Understanding Drug Incorporation and Delivery from Biocompatible Metal-Organic Frameworks in View of Cutaneous Administration" 3014:
nature that allows it to perfectly self-organize. By contrast, graphene must be doped to give it the properties of a semiconductor. Ni
1173:
as the oxidant. It also catalyzed the oxidation of primary alcohol, secondary alcohol and benzyl alcohols with high selectivity. Hill
787: 273:
common to several structures. Each topology, also called a net, is assigned a symbol, consisting of three lower-case letters in bold.
12518:
Rupam, Tahmid Hasan; Steenhaut, Timothy; Palash, Mujib L.; Filinchuk, Yaroslav; Hermans, Sophie; Saha, Bidyut Baran (November 2022).
11440:"Single Crystals of Electrically Conductive Two-Dimensional Metal–Organic Frameworks: Structural and Electrical Transport Properties" 46: 7433:
Kuc A, Enyashin A, Seifert G (July 2007). "Metal-organic frameworks: structural, energetic, electronic, and mechanical properties".
4310:
Parnham ER, Morris RE (October 2007). "Ionothermal synthesis of zeolites, metal-organic frameworks, and inorganic-organic hybrids".
4113:
Côté AP, Benin AI, Ockwig NW, O'Keeffe M, Matzger AJ, Yaghi OM (November 2005). "Porous, crystalline, covalent organic frameworks".
3489:
supplied more than half of global desalination capacity, and the last stage of most water treatment processes. Osmosis does not use
2307:. MOFs, therefore, should avoid orbital interactions that lead to such strong metal-hydrogen bonds and employ simple charge-induced 1131:
reactions with coordinatively unsaturated metals in three-dimensional (3D) MOFs as heterogeneous catalysts. The 3D framework (btc:
962:
behave as Brønsted acidic catalysts, facilitating (in the copper cases) the ring-opening methanolysis of a small, cavity-accessible
12771: 10610:"Extraction of Lanthanide and Actinide Ions from Aqueous Mixtures Using a Carboxylic Acid-Functionalized Porous Aromatic Framework" 10370:
Foucault-Collet A, Gogick KA, White KA, Villette S, Pallier A, Collet G, Kieda C, Li T, Geib SJ, Rosi NL, Petoud S (October 2013).
4523:
Pichon A, James SL (2008). "An array-based study of reactivity under solvent-free mechanochemical conditions—insights and trends".
4210:
Cheetham AK, Rao CN, Feller RK (2006). "Structural diversity and chemical trends in hybrid inorganic–organic framework materials".
11611:
Choi S, Drese JH, Jones CW (2009-09-21). "Adsorbent materials for carbon dioxide capture from large anthropogenic point sources".
2925:
The development of new pathways for efficient nuclear waste administration is essential in wake of increased public concern about
1530:
which can be activated upon photostimuli with the linkers serving as photon antennae. Theoretical calculations show that MOFs are
4283: 2070:
MOF-177 has larger pores, so hydrogen is compressed within holes rather than adsorbed to the surface. This leads to higher total
165:
preference influences the size and shape of pores by dictating how many ligands can bind to the metal, and in which orientation.
17: 6675:"Lewis basicity generated by localised charge imbalance in noble metal nanoparticle-embedded defective metal-organic frameworks" 4461:
Choi JS, Son WJ, Kim J, Ahn WS (2008). "Metal–organic framework MOF-5 prepared by microwave heating: Factors to be considered".
4423:
Ni Z, Masel RI (September 2006). "Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis".
2880:
upon relaxation. A prime example of the antenna effect is demonstrated by MOF-76, which combines trivalent lanthanide ions and
573:
becomes possible. This functionality has been introduced by making a composite material, which contains a MOF and a complex of
10239:"Review of Long-Wavelength Optical and NIR Imaging Materials: Contrast Agents, Fluorophores and Multifunctional Nano Carriers" 3367:
would be fed through a MOF in a packed-bed reactor setup. Flue gas is generally 40 to 60 °C with a partial pressure of CO
2267:
metal-bound solvent molecules over the course of synthesis, and by post-synthetic impregnation with additional metal cations.
2119:-induced intermolecular interactions; however, MOF-5 has poor performance at room temperature (9.1 g/L at 100 bar). 12707: 11730: 9687: 8607: 8110:
Heinen, Jurn; Ready, Austin D.; Bennett, Thomas D.; Dubbeldam, David; Friddle, Raymond W.; Burtch, Nicholas C. (2018-06-06).
5622: 5162:
Burrows AD, Frost CG, Mahon MF, Richardson C (2008-10-20). "Post-synthetic modification of tagged metal-organic frameworks".
4404: 4053: 3433: 7893:"The Effect of Pressure on ZIF-8: Increasing Pore Size with Pressure and the Formation of a High-Pressure Phase at 1.47 GPa" 7785:"Chemical structure, network topology, and porosity effects on the mechanical properties of Zeolitic Imidazolate Frameworks" 415:
reactions take place in different vessels. Furthermore, a distinction is made between thin films and solvent-based methods.
333:
and water. In these cases, metal sites are exposed when the solvent is evacuated, allowing hydrogen to bind at these sites.
12685: 4643:
Stassen I, Styles M, Grenci G, Gorp HV, Vanderlinden W, Feyter SD, Falcaro P, Vos DD, Vereecken P, Ameloot R (March 2016).
2590:
The increased mass of the MOF due to the stored hydrogen is directly calculated by a highly sensitive microbalance. Due to
1696:
Electron micrograph and structure of UiO-66. Color codes: red – oxygen, brown – carbon, green – zirconium, gray – hydrogen.
12456:
Henninger SK, Habib HA, Janiak C (March 2009). "MOFs as adsorbents for low temperature heating and cooling applications".
11578: 11521:
Liang K, Ricco R, Doherty CM, Styles MJ, Bell S, Kirby N, Mudie S, Haylock D, Hill AJ, Doonan CJ, Falcaro P (June 2015).
7108:(June 2006). "A metal-organic framework material that functions as an enantioselective catalyst for olefin epoxidation". 6960:
Lin Z, Slawin AM, Morris RE (April 2007). "Chiral induction in the ionothermal synthesis of a 3-D coordination polymer".
3541:
Schematic diagram for MOF dehumidification, featuring MIL-100(Fe), a MOF with particularly high water adsorption capacity
3007: 161:
ligands. The choice of metal and linker dictates the structure and hence properties of the MOF. For example, the metal's
5589: 4692:"An integrated cleanroom process for the vapor-phase deposition of large-area zeolitic imidazolate framework thin films" 2363:
Structural defects also play an important role in the performance of MOFs. Room-temperature hydrogen uptake via bridged
2299:
are great examples of increased binding energy due to open metal coordination sites; however, their high metal-hydrogen
1222:
acceptor whereas the C=O group can act as electron donor to activate organic substrates for subsequent reactions. Ferey
8942:
Rowsell JL, Millward AR, Park KS, Yaghi OM (May 2004). "Hydrogen sorption in functionalized metal-organic frameworks".
3704: 1809: 1465:
precatalysts showed excellent enantioselectivity (up to 99.2% ee) in the asymmetric hydrogenation of aromatic ketones.
1019:
molecules. The free non-coordinated ends of the ethylenediamines were then used as Brønsted basic catalysts, again for
303:
SBUs are often derived from basic zinc acetate structure, the acetates being replaced by rigid di- and tricarboxylates.
10473:
Carboni M, Abney CW, Liu S, Lin W (2013). "Highly porous and stable metal–organic frameworks for uranium extraction".
12894: 9804:"Recent Progress in Metal-Organic Frameworks for Applications in Electrocatalytic and Photocatalytic Water Splitting" 8885:
Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E, Yazaydin AO, Snurr RQ, O'Keeffe M, Kim J, Yaghi OM (July 2010).
8634: 8318:
Hu, Yun Hang; Zhang, Lei (2010). "Amorphization of metal-organic framework MOF-5 at unusually low applied pressure".
4775:
Sebastian Bauer, Norbert Stock (October 2007), "Hochdurchsatz-Methoden in der Festkörperchemie. Schneller zum Ziel",
3694: 3689: 3659: 2829:
temperature required for storing hydrogen liquid. The other methods are all being studied and developed extensively.
464:
microwave synthesis, when the atomic layer deposited substrate is exposed to a solution of the requisite linker in a
8112:"Elucidating the Variable-Temperature Mechanical Properties of a Negative Thermal Expansion Metal–Organic Framework" 4584:
Steenhaut, Timothy; Grégoire, Nicolas; Barozzino-Consiglio, Gabriella; Filinchuk, Yaroslav; Hermans, Sophie (2020).
1892:
the metal-carboxylate bond formation is reversible, facilitating the formation of well-ordered crystalline MOFs, and
844:
The MOF encapsulation approach invites comparison to earlier studies of oxidative catalysis by zeolite-encapsulated
763:
is strongly favored over ortho alkylation, a behavior thought to reflect the encapsulation of reactants by the MOF.
12672: 4078: 3877:
Batten SR, Champness NR, Chen XM, Garcia-Martinez J, Kitagawa S, Öhrström L, O'Keeffe M, Suh MP, Reedijk J (2013).
3639: 10167:
Xu H, Cao CS, Kang XM, Zhao B (November 2016). "Lanthanide-based metal-organic frameworks as luminescent probes".
6357:
Chui SS, Lo SM, Charmant JP, Orpen AG, Williams ID (1999). "A Chemically Functionalizable Nanoporous Material n".
12871: 11746:
Lesch, David A (2010). Carbon Dioxide Removal from Flue Gas Using Microporous Metal Organic Frameworks (Report).
5561: 3714: 3554: 2450:
Two hydrogen-uptake measurement methods are used for the characterization of MOFs as hydrogen storage materials:
651:
cavity environment. MOFs might be useful for making semi-conductors. Theoretical calculations show that MOFs are
12405:
Zhang JP, Zhu AX, Lin RB, Qi XL, Chen XM (March 2011). "Pore surface tailored SOD-type metal-organic zeolites".
8354: 1607:) phase when bim concentration is over 0.35 per formular unit. The accessible pore size and volume of ZIF-62-bim 354:
Some MOFs, such as the mesoporous MIL-100(Fe), can be obtained under mild conditions at room temperature and in
7323:
Sudik AC, Millward AR, Ockwig NW, Côté AP, Kim J, Yaghi OM (May 2005). "Design, synthesis, structure, and gas (
5640:"Metal–Organic Framework MIL-101(Cr) as an Efficient Heterogeneous Catalyst for Clean Synthesis of Benzoazoles" 3609: 3432:
loading capacity. Applied to a large scale power plant, the cost of energy would increase by 65%, while a U.S.
2414:, and bond enthalpies typically less than 20 kJ/mol. Chemisorption, alternatively, is defined by stronger 1587: 1575: 398: 11778: 8665:
Storage Using Chelation of Abundant Transition Metals in Covalent Organic Frameworks for 0–700 bar at 298 K".
5848:
Chui SS, Lo SM, Charmant JP, Orpen AG, Williams ID (1999). "A Chemically Functionalizable Nanoporous Material
4352:
Dincă M, Long JR (2008). "Hydrogen storage in microporous metal-organic frameworks with exposed metal sites".
11829: 7919: 5697:"Insights into the Stability and Activity of MIL-53(Fe) in Solar Photocatalytic Oxidation Processes in Water" 3777:"Vectorial Catalysis in Surface-Anchored Nanometer-Sized Metal–Organic Frameworks-Based Microfluidic Devices" 3674: 2374:
2) lattice defects can create an intricate array of new pores and channels causing increased hydrogen uptake.
1566:) can give some insights into the mechanical response of MOFs, the presence of organic linkers as opposed to 1336:
linker ligands is one of the way to accomplish such a goal. However, the resulting bulk samples contain both
12238:
Yilmaz, G.; Meng, F. L.; Lu, W.; Abed, J.; Peh, C. K. N.; Gao, M.; Sargent, E. H.; Ho, G. W. (2020-10-01).
10753:
Abney CW, Mayes RT, Saito T, Dai S (December 2017). "Materials for the Recovery of Uranium from Seawater".
9178:
Garrone E, Bonelli B, Arean CO (2008). "Enthalpy-entropy correlation for hydrogen adsorption on zeolites".
3570:
coated onto the heat exchangers, using the waste heat exhausted from the unit to desorb the water from the
1132: 427: 10796:
Wu MX, Yang YW (June 2017). "Metal-Organic Framework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy".
8355:"Metal–organic frameworks with wine-rack motif: What determines their flexibility and elastic properties?" 7105: 2896:
MOFs must be synthesized on the nanoscale so as not to affect the target's normal interactions or behavior
2193:
Consists of octahedral cages that share paddlewheel units to define pores of about 9.8 Å in diameter.
11378:"Charge transport in two-dimensional materials and their electronic applications (Doctoral dissertation)" 9576:
Belof J, Stern A, Space B (2009). "A predictive model of hydrogen sorption for metal-organic materials".
1838: 602:
Electron micrograph and structure of MIL-101. Color codes: red – oxygen, brown – carbon, blue – chromium.
11902:"Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores" 11186: 10917:
Hartlieb KJ, Ferris DP, Holcroft JM, Kandela I, Stern CL, Nassar MS, Botros YY, Stoddart JF (May 2017).
1493:
which have analogy with polynuclear clusters found in the 0D coordination polymers, such as binuclear Cu
12214: 8405:"Experimental evidence of negative linear compressibility in the MIL-53 metal–organic framework family" 3886: 3624: 3380: 3337: 3269: 3046: 2411: 2300: 1865: 1390:) as chiral ligands. These ligands can coordinate with catalytically active metal sites to enhance the 981:
standpoint, however, the most interesting feature of this material is the presence of guest-accessible
635:
Zeolites still cannot be obtained in enantiopure form, which precludes their applications in catalytic
393:
A recent advancement in the solvent-free preparation of MOF films and composites is their synthesis by
145: 12306:"Metal-Organic Frameworks as advanced moisture sorbents for energy-efficient high temperature cooling" 11261:"High-mobility band-like charge transport in a semiconducting two-dimensional metal–organic framework" 6508: 3735: 3534:
MOFs could also be used to increase energy efficiency in room temperature space cooling applications.
1700:
Zirconium-based MOFs such as UiO-66 are a very robust class of MOFs (attributed to strong hexanuclear
11204:
Sheberla D, Sun L, Blood-Forsythe MA, Er S, Wade CR, Brozek CK, Aspuru-Guzik A, Dincă M (June 2014).
9608:
Zhao D, Yan D, Zhou HC (2008). "The current status of hydrogen storage in metal–organic frameworks".
6507:
Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I (September 2005).
3470: 3263: 2926: 1654: 1637:
consists of a dimeric Cu-paddlewheel that possesses two pore types. Under pelletization MOFs such as
394: 11523:"Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules" 5520: 4798: 3956:
Bennett, Thomas D.; Coudert, François-Xavier; James, Stuart L.; Cooper, Andrew I. (September 2021).
3231: 3198: 3165: 3132: 2841:, especially energy-related ones. Until now, MOFs have been used extensively as electrocatalyst for 2202:
from multiple copper paddle-wheel units: each Cu(II) center can potentially lose a terminal solvent
9066:
Lee J, Li J, Jagiello J (2005). "Gas sorption properties of microporous metal organic frameworks".
7980: 6437:
Kato C, Hasegawa M, Sato T, Yoshizawa A, Inoue T, Mori W (2005). "Microporous dinuclear copper(II)
5638:
Niknam, Esmaeil; Panahi, Farhad; Daneshgar, Fatemeh; Bahrami, Foroogh; Khalafi-Nezhad, Ali (2018).
5559:
Li Y, Yang RT (2007). "Hydrogen Storage on Platinum Nanoparticles Doped on Superactivated Carbon".
3684: 3347:
MOF's small, tunable pore sizes and high void fractions are promising as an adsorbent to capture CO
2886: 2371:
1) a partially collapsed framework can block access to pores; thereby reducing hydrogen uptake, and
1771:, a MOF-filled gas cylinder can store more hydrogen at a given pressure because hydrogen molecules 1361: 1214: 1165:. The catalytic activity of the resulting MOF was examined by carrying out alcohol oxidation with H 1020: 11900:
Zhang H, Hou J, Hu Y, Wang P, Ou R, Jiang L, Liu JZ, Freeman BD, Hill AJ, Wang H (February 2018).
6402:
Evans OR, Ngo HL, Lin W (2001). "Chiral Porous Solids Based on Lamellar Lanthanide Phosphonates".
5954:
Henschel A, Gedrich K, Kraehnert R, Kaskel S (September 2008). "Catalytic properties of MIL-101".
4944:"Mesoscopic architectures of porous coordination polymers fabricated by pseudomorphic replication" 3537: 12519: 12362: 7174:
Farrusseng D, Aguado S, Pinel C (2009). "Metal-organic frameworks: opportunities for catalysis".
4212: 4175:
Czaja AU, Trukhan N, Müller U (May 2009). "Industrial applications of metal-organic frameworks".
3669: 1703: 1535: 728: 680: 656: 456: 119: 11001:
Rojas S, Colinet I, Cunha D, Hidalgo T, Salles F, Serre C, Guillou N, Horcajada P (March 2018).
10698:"Capture of organic iodides from nuclear waste by metal-organic framework-based molecular traps" 4691: 3879:"Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013)" 3878: 3100: 2837:
The high surface area and atomic metal sites feature of MOFs make them a suitable candidate for
10537:
Combined Batch, X-ray Absorption Spectroscopy, and First Principles Simulation Investigation".
5515: 3614: 2264: 1869: 1853:
would need to be increased considerably. Several classes of MOFs have been explored, including
611: 607: 318: 12658: 2968:
In 2014 researchers proved that they can create electrically conductive thin films of MOFs (Cu
2303:
result in a tremendous release of heat upon loading with hydrogen, which is not favorable for
455:
Inspired by such geological processes, MOF thin films can be grown through the combination of
11830:"Researchers discover efficient and sustainable way to filter salt and metal ions from water" 9512: 3921:
Bennett, Thomas D.; Cheetham, Anthony K. (2014-05-20). "Amorphous Metal–Organic Frameworks".
3709: 3619: 2952: 2842: 2229:
2) to bring the operating conditions closer to ambient temperature and pressure. Rowsell and
1761: 1482: 1255:, although degradation of the MOF occurs. The same catalyst was used in the hydrogenation of 684: 7620:"Integrated cascade nanozyme catalyzes in vivo ROS scavenging for anti-inflammatory therapy" 1279:
reactions due to the tuneability of the size and shape of their pores. A 3D MOF { • 4DMF • H
569:
Another approach to increasing adsorption in MOFs is to alter the system in such a way that
12414: 12317: 12251: 12159: 12104: 12043: 11989: 11913: 11534: 11403: 11324: 11272: 11134: 10805: 10709: 10546: 10383: 10211: 9860: 9715: 9351: 9237: 9187: 9075: 8986: 8898: 8589: 8543: 8369: 8327: 8284: 8231: 7796: 7690: 7631: 7547: 6686: 6523: 6368: 6235: 5897:
Alaerts L, Séguin E, Poelman H, Thibault-Starzyk F, Jacobs PA, De Vos DE (September 2006).
5863: 5279: 5020: 4955: 4916: 4656: 4597: 4122: 4087: 3969: 3319:
has exhibited the lowest conductivity, but also the strongest reaction in sensing of VOCs.
3129:, or –SH. The trigonal linker molecules and square-planarly coordinated metal ions such as 2792:
Complex compounds ( or ); desorption at elevated temperature, adsorption at high pressures
2384: 2364: 2348: 2158: 1556: 1486: 1213:-dimethylformamide) constructed by tridentate amide linkers and cadmium salt catalyzes the 985:
functionalities. The amides are capable of base-catalyzing the Knoevenagel condensation of
920: 636: 148:(COFs) are made entirely from light elements (H, B, C, N, and O) with extended structures. 133:
The synthesis and properties of MOFs constitute the primary focus of the discipline called
87: 6342: 4070: 3835:"Enhanced catalytic performance of palladium nanoparticles in MOFs by channel engineering" 3481:
MOF membranes can mimic substantial ion selectivity. This offers the potential for use in
2921:
Schematic representation of different ways to incorporate actinide species inside the MOF.
8: 11377: 7979:
Ortiz, Aurélie U.; Boutin, Anne; Fuchs, Alain H.; Coudert, François-Xavier (2013-05-20).
7468:
Esswein AJ, Nocera DG (October 2007). "Hydrogen production by molecular photocatalysis".
7371:) sorption properties of porous metal-organic tetrahedral and heterocuboidal polyhedra". 6509:"A chromium terephthalate-based solid with unusually large pore volumes and surface area" 1943:
MOFs that are considered to have the best properties for hydrogen storage as of May 2012
1316: 1162: 1067: 1059: 423: 162: 158: 12654: 12631: 12418: 12321: 12255: 12163: 12108: 12047: 11993: 11917: 11538: 11407: 11328: 11276: 11138: 10809: 10713: 10550: 10387: 10372:"Lanthanide near infrared imaging in living cells with Yb nano metal organic frameworks" 10215: 9864: 9719: 9355: 9241: 9191: 9079: 8990: 8902: 8547: 8373: 8331: 8288: 8235: 7800: 7694: 7635: 7551: 6690: 6527: 6372: 6239: 5899:"Probing the Lewis acidity and catalytic activity of the metal-organic framework [Cu 5867: 5506:
Murray LJ, Dincă M, Long JR (May 2009). "Hydrogen storage in metal-organic frameworks".
5283: 5024: 4959: 4920: 4799:"Instant MOFs: continuous synthesis of metal–organic frameworks by rapid solvent mixing" 4660: 4601: 4126: 4091: 3973: 12610: 12539: 12438: 12338: 12305: 12274: 12239: 12128: 12077: 12010: 11977: 11934: 11901: 11555: 11522: 11464: 11439: 11419: 11358: 11296: 11241: 11168: 11068: 11027: 11002: 10983: 10829: 10730: 10697: 10634: 10609: 10455: 10406: 10371: 10312: 10287: 10263: 10238: 9967: 9922: 9876: 9828: 9803: 9784: 9739: 9625: 9010: 8924: 8690: 8567: 8533: 8470: 8429: 8404: 8353:
Ortiz, Aurélie U.; Boutin, A.; Fuchs, Alain H.; Coudert, François-Xavier (2013-05-07).
8257: 8142: 8048: 8023: 7868: 7843: 7819: 7784: 7757: 7732: 7654: 7619: 6707: 6674: 6619: 6547: 6259: 5745: 5677: 5664: 5639: 5541: 5093: 5041: 5008: 4989: 4864: 4721: 4620: 4585: 4505: 4246:
Cheetham AK, Férey G, Loiseau T (November 1999). "Open-Framework Inorganic Materials".
4146: 3995: 3903: 3809: 3776: 3352: 2905: 2061: 1909: 1681: 1591: 1571: 1391: 582: 12304:
Cui S, Qin M, Marandi A, Steggles V, Wang S, Feng X, Nouar F, Serre C (October 2018).
11876: 11205: 10935: 10918: 10657:
Banerjee D, Kim D, Schweiger MJ, Kruger AA, Thallapally PK (May 2016). "Removal of TcO
7419: 6100: 4099: 1680:
MOFs possess a "wine rack" structure. These MOFs have been explored for anisotropy in
38:
consists of one Cr atom in the center and six oxygen atoms (red balls) at the corners.
12602: 12543: 12473: 12430: 12343: 12279: 12177: 12120: 12081: 12069: 12015: 11939: 11757: 11726: 11666: 11628: 11560: 11469: 11423: 11362: 11350: 11288: 11233: 11172: 11160: 11152: 11103: 11072: 11032: 10987: 10975: 10940: 10899: 10864: 10821: 10778: 10770: 10735: 10678: 10639: 10562: 10518: 10447: 10411: 10352: 10317: 10268: 10184: 10122: 10087: 10045: 10028:
Bünzli JC (May 2010). "Lanthanide luminescence for biomedical analyses and imaging".
9971: 9926: 9880: 9833: 9788: 9731: 9683: 9558: 9481: 9445: 9367: 9324: 9288: 9253: 9160: 9124: 9048: 9002: 8959: 8916: 8860: 8774: 8739: 8682: 8630: 8603: 8559: 8505: 8474: 8434: 8385: 8300: 8204: 8134: 8053: 8003: 7961: 7923: 7873: 7824: 7762: 7708: 7659: 7599: 7563: 7520: 7485: 7450: 7388: 7305: 7274: 7238: 7191: 7156: 7121: 7086: 7051: 7016: 6977: 6942: 6880: 6817: 6782: 6747: 6712: 6655: 6623: 6611: 6539: 6489: 6419: 6384: 6359: 6294: 6251: 6205: 6166: 6127: 6041: 6005: 5967: 5936: 5879: 5854: 5749: 5681: 5669: 5618: 5533: 5451: 5408: 5400: 5365: 5330: 5295: 5252: 5217: 5179: 5137: 5085: 5046: 4993: 4981: 4868: 4818: 4757: 4725: 4672: 4644: 4625: 4509: 4440: 4400: 4369: 4327: 4263: 4225: 4192: 4138: 4049: 3999: 3987: 3938: 3856: 3814: 3796: 3757: 3644: 3507: 2871: 2867: 1905: 1781: 1202: 1001: 884: 660: 659:
with band gaps between 1.0 and 5.5 eV which can be altered by changing the degree of
465: 79: 12614: 12442: 12148:"Sensing Molecules with Metal–Organic Framework Functionalized Graphene Transistors" 12132: 11851: 11300: 11260: 11064: 10971: 10833: 9629: 8928: 8694: 8571: 8146: 8096: 6551: 6333: 5545: 5097: 4891: 4474: 4150: 3907: 1461:
phosphonate-based chiral porous hybrid materials containing the Ru(BINAP)(diamine)Cl
12594: 12567: 12531: 12500: 12465: 12422: 12391: 12387: 12333: 12325: 12269: 12259: 12167: 12112: 12059: 12051: 12005: 11997: 11958: 11929: 11921: 11811: 11747: 11701: 11658: 11620: 11550: 11542: 11501: 11459: 11451: 11411: 11340: 11332: 11280: 11245: 11225: 11142: 11095: 11060: 11022: 11014: 10967: 10930: 10891: 10856: 10813: 10762: 10725: 10717: 10670: 10629: 10621: 10590: 10554: 10510: 10482: 10459: 10439: 10401: 10391: 10344: 10307: 10299: 10258: 10250: 10219: 10176: 10149: 10114: 10079: 10037: 10008: 9998: 9957: 9949: 9912: 9904: 9868: 9823: 9815: 9774: 9766: 9743: 9723: 9675: 9652: 9617: 9585: 9550: 9508: 9473: 9437: 9414: 9410: 9359: 9316: 9280: 9245: 9195: 9152: 9114: 9083: 9040: 9014: 8994: 8951: 8906: 8852: 8825: 8766: 8731: 8674: 8595: 8551: 8497: 8462: 8424: 8416: 8377: 8335: 8292: 8261: 8247: 8239: 8196: 8169: 8126: 8111: 8092: 8043: 8035: 7995: 7953: 7915: 7907: 7863: 7855: 7814: 7804: 7752: 7744: 7698: 7649: 7639: 7591: 7555: 7512: 7477: 7442: 7415: 7380: 7297: 7266: 7230: 7183: 7148: 7113: 7078: 7043: 7008: 6969: 6934: 6907: 6872: 6845: 6809: 6774: 6739: 6702: 6694: 6647: 6603: 6575: 6531: 6481: 6450: 6411: 6376: 6337: 6329: 6286: 6263: 6243: 6197: 6158: 6119: 6096: 6068: 6033: 5997: 5959: 5926: 5918: 5871: 5830: 5803: 5776: 5737: 5708: 5659: 5651: 5570: 5525: 5443: 5392: 5357: 5322: 5287: 5244: 5209: 5171: 5129: 5077: 5036: 5028: 4971: 4963: 4924: 4887: 4856: 4810: 4780: 4749: 4711: 4703: 4664: 4615: 4605: 4563: 4534: 4497: 4470: 4432: 4392: 4361: 4319: 4292: 4255: 4217: 4184: 4130: 4095: 4022: 3977: 3930: 3895: 3846: 3804: 3788: 3747: 3649: 3503: 2875:
lanthanide emissions are difficult to sensitize directly because they must undergo
2207: 2199: 1834: 1790: 1747: 1287:-bipyridine) was synthesized by Li and coworkers. Using this MOF photochemistry of 802: 578: 527: 323: 72: 68: 11978:"Metal–organic framework with optimally selective xenon adsorption and separation" 10003: 9986: 9672:
Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density
8296: 6380: 5875: 4860: 4707: 2101:
Square openings are either 13.8 or 9.2 Å depending on the orientation of the
911:-containing MOFs synthesized by Rosseinsky and co-workers. These compounds employ 390:
significantly reduces the amounts of structural defects in the obtained material.
12699: 12689: 11779:"New metal organic framework can produce valuable chemicals out of factory smoke" 11706: 11685: 10895: 9770: 9389:? Comments on the paper 'AM1 treatment of endohedrally hydrogen doped fullerene, 9199: 8829: 5741: 5612: 3699: 3664: 3634: 3594:
molecular multiferroic is spontaneous elastic strain mediated indirect coupling.
3494: 3486: 3461:(ring-shaped molecules with many applications). They can also remove carbon from 3458: 3446: 2838: 2428: 2352: 1756: 1658: 1560: 1403: 1399: 1312: 1227: 1016: 969: 959: 549: 522: 496: 460: 355: 285: 170: 95: 12682: 12627: 12520:"Thermochemical energy applications of green transition metal doped MIL–100(Fe)" 10766: 5065: 4387:
Gitis, Vitaly; Rothenberg, Gadi (2020). Gitis, Vitaly; Rothenberg, Gadi (eds.).
4260:
10.1002/(SICI)1521-3773(19991115)38:22<3268::AID-ANIE3268>3.0.CO;2-U
1477:
when they combine isolated polynuclear sites, dynamic host–guest responses, and
1362:
Homochiral MOFs with interesting functionalities and reagent-accessible channels
12329: 11815: 11686:"Comparing physisorption and chemisorption solid sorbents for use separating CO 11590: 11455: 10721: 10625: 10376:
Proceedings of the National Academy of Sciences of the United States of America
9087: 8339: 7941: 6698: 6454: 5807: 3982: 3957: 3851: 3557:(VCAC) units manage the latent heat in air through cooling fins held below the 3006:, making it a semiconductor, and is able to self-assemble. It is an example of 2154: 1850: 1673:
MIL-53 MOF wine rack structure illustrating potential for anisotropy in loading
1522: 1304: 1276: 1248: 1233: 865: 845: 652: 489: 373:
can be quickly synthesised in this way in quantitative yield. In the case of Cu
138: 127: 115: 107: 61: 12535: 11962: 11284: 11123:"Tunable electrical conductivity in metal-organic framework thin-film devices" 9872: 9727: 9679: 8466: 8024:"Rich Polymorphism of a Metal–Organic Framework in Pressure–Temperature Space" 6072: 5270:
Liu C, Rosi NL (September 2017). "Ternary gradient metal-organic frameworks".
3752: 1764:
and surface to volume ratios, as well as their chemically tunable structures.
824:
has also been carried out by Long and co-workers using a MOF of the formula Mn
12888: 12630:, Zhiying Zhang, Michael A. Carpenter, Ming Zhang, Feng Jin, Qingming Zhang, 12585:
Zhang W, Xiong RG (February 2012). "Ferroelectric metal-organic frameworks".
11018: 10288:"Nanoscale metal-organic frameworks for biomedical imaging and drug delivery" 9953: 8402: 5898: 5655: 4583: 3899: 3860: 3834: 3800: 3761: 3679: 3546: 3388: 3384: 3376: 3022:
pellets had a conductivity of 2 S/cm, a record for a metal-organic compound.
2892:
For use in biological imaging, however, two main obstacles must be overcome:
2881: 2407: 2403: 2344: 2263:
whose geometries prevent the metal from being fully coordinated, by removing
2233:
have identified several directions to these ends in some of the early papers.
2230: 1777: 1531: 1296: 1272: 1244: 1063: 990: 703:
Among the earliest reports of MOF-based catalysis was the cyanosilylation of
570: 293: 12116: 11147: 11122: 10558: 10396: 8998: 8911: 8886: 8709:"DOE Technical Targets for Onboard Hydrogen Storage for Light-Duty Vehicles" 7891:
Moggach, Stephen A.; Bennett, Thomas D.; Cheetham, Anthony K. (2009-09-07).
7809: 6535: 4134: 2870:. A large subset of luminescent MOFs use lanthanides in the metal clusters. 2431:
then determines if the interactions will be physisorptive or chemisorptive.
2222:
are two major strategies governing the design of MOFs for hydrogen storage:
1497:
paddlewheel units found in MOP-1 and (btc=benzene-1,3,5-tricarboxylate) in
683:, MOFs may allow for easier post-reaction separation and recyclability than 12606: 12477: 12434: 12426: 12347: 12283: 12264: 12181: 12172: 12147: 12124: 12073: 12019: 11943: 11925: 11670: 11632: 11624: 11564: 11473: 11415: 11354: 11336: 11292: 11237: 11164: 11107: 11099: 11036: 10979: 10944: 10903: 10868: 10860: 10825: 10817: 10782: 10739: 10682: 10643: 10566: 10522: 10451: 10415: 10356: 10321: 10272: 10188: 10126: 10091: 10049: 9908: 9837: 9819: 9735: 9562: 9485: 9449: 9371: 9328: 9292: 9284: 9257: 9164: 9128: 9119: 9102: 9052: 9006: 8963: 8920: 8864: 8778: 8770: 8743: 8686: 8563: 8509: 8438: 8389: 8304: 8208: 8173: 8138: 8130: 8057: 8007: 7965: 7927: 7911: 7877: 7859: 7828: 7766: 7712: 7663: 7644: 7603: 7595: 7567: 7524: 7489: 7454: 7392: 7309: 7278: 7242: 7195: 7187: 7160: 7125: 7090: 7082: 7055: 7020: 7012: 6981: 6946: 6884: 6876: 6821: 6813: 6786: 6778: 6751: 6743: 6716: 6659: 6615: 6543: 6493: 6423: 6388: 6298: 6255: 6209: 6201: 6170: 6131: 6045: 6009: 5971: 5940: 5922: 5883: 5673: 5537: 5455: 5412: 5369: 5334: 5299: 5256: 5221: 5183: 5175: 5141: 5089: 5066:"Metal–Organic Frameworks for Electrocatalytic Reduction of Carbon Dioxide" 5050: 5032: 4985: 4943: 4822: 4784: 4761: 4676: 4629: 4554: 4525: 4444: 4373: 4365: 4331: 4296: 4267: 4229: 4196: 4142: 3991: 3942: 3818: 3792: 3502:
functioned as pores for transport. The ZIF-8 and UiO-66 membranes showed a
3482: 3410: 2876: 2576:{\displaystyle N_{\rm {abs}}=N_{\rm {ex}}+\rho _{\rm {bulk}}V_{\rm {pore}}} 2422:, with bond enthalpies between 250 and 500 kJ/mol. In both cases, the 1858: 1768: 1527: 1354: 1337: 1252: 1197:
Functional linkers can be also utilized as catalytic sites. A 3D MOF { • 6H
1145: 1024: 986: 814: 779: 744: 727:(II) ions as nodes and 2-hydroxypyrimidinolates as struts. Despite initial 10919:"Encapsulation of Ibuprofen in CD-MOF and Related Bioavailability Studies" 5931: 5713: 5696: 4928: 3428:
using a vacuum pressure swing process. The MOF Mg(dobdc) has a 21.7 wt% CO
1780:, many MOFs have a fully reversible uptake-and-release behavior. No large 644: 11345: 10348: 10064: 9987:"Metal–Organic Frameworks for Electrocatalysis: Catalyst or Precatalyst?" 9320: 8678: 8594:. Washington, D.C.: The National Academies Press. pp. 11–24, 37–44. 8252: 8039: 6468:
Han JW, Hill CL (December 2007). "A coordination network that catalyzes O
5447: 5396: 5326: 5081: 5009:"Metal-organic frameworks tailor the properties of aluminum nanocrystals" 4753: 4645:"Chemical vapour deposition of zeolitic imidazolate framework thin films" 3550: 3490: 2451: 2071: 1854: 1478: 1260: 1239: 935: 912: 648: 628: 448: 422:
In addition to solvothermal synthesis, there have been advances in using
12064: 12001: 11696:. 10th International Conference on Greenhouse Gas Control Technologies. 10013: 9962: 9917: 9779: 9215:
Metal Dihydrogen and s-Bond Complexes: Structure, Theory, and Reactivity
8624: 5780: 3025:
In 2018 researchers synthesized a two-dimensional semiconducting MOF (Fe
2917: 12571: 12504: 12055: 11546: 11506: 11489: 10674: 10594: 10514: 10486: 10443: 10223: 10180: 10153: 10083: 9249: 8653:
Praya Y, Mendoza-Cortes JL (October 2009). "Design Principles for High
8591:
The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs
8555: 8420: 7783:
Tan, Jin Chong; Bennett, Thomas D.; Cheetham, Anthony K. (2010-05-17).
7748: 7703: 7678: 6607: 6579: 6223: 5291: 5248: 5117: 4976: 4814: 4716: 4610: 4501: 4026: 3629: 3604: 3545:
When cooling outdoor air, a cooling unit must deal with both the air's
3466: 2866:
A potential application for MOFs is biological imaging and sensing via
2455: 2419: 2395: 2109: 2075: 1818: 1517: 1439: 1346: 1329: 1112: 1092: 1035: 943: 939: 872: 795: 791: 775: 760: 509: 270: 35: 12598: 12469: 11762: 11662: 11229: 11156: 10774: 10303: 10254: 10118: 10041: 9589: 9554: 9477: 9441: 9385:
Dolgonos G (2005). "How many hydrogen molecules can be inserted into C
9363: 9156: 9044: 8955: 8856: 8792:
Liu J (2 November 2016). "Recent developments in porous materials for
8501: 8381: 8200: 7999: 7957: 7580: 7559: 7516: 7481: 7446: 7384: 7270: 7234: 7152: 7047: 6973: 6938: 6911: 6849: 6651: 6485: 6415: 6162: 6037: 6001: 5574: 5404: 5361: 5213: 5133: 4436: 4323: 3934: 2367:
is mainly governed by structural defects, which can have two effects:
12694: 9656: 9621: 8735: 7301: 7117: 6290: 6247: 6123: 5963: 5834: 5820: 5529: 4967: 4668: 4567: 4538: 4221: 4188: 4045: 3567: 3563: 3558: 2423: 2304: 1896: 1813: 1794: 1458: 1308: 1178: 1154: 978: 932: 924: 916: 900: 896: 880: 876: 869: 857: 853: 849: 829: 740: 732: 724: 362: 123: 11752: 7841: 7537: 5896: 3421:
capture, has a heat capacity of 0.5 J/(g⋅K) at ambient temperature.
2226:
1) to increase the theoretical storage capacity of the material, and
2210:
position, providing an open coordination site for hydrogen binding.
786:. The anhydrous version of HKUST-1 is an acid catalyst. Compared to 695: 663:
in the ligands indicating its possibility for being photocatalysts.
12863: 8599: 8538: 7291: 4042:
Metal-Organic Frameworks Applications from Catalysis to Gas Storage
3654: 3511: 3450: 3364: 3262:
water, oxygen reduction reactions, supercapacitors, and sensing of
3003: 2999: 2591: 2415: 2252: 2102: 1752: 1539: 1395: 1219: 1161:
paddle wheel units as heterogeneous catalysts for the oxidation of
1150: 1051: 1039: 1009: 1005: 833: 821: 818: 810: 798: 756: 704: 574: 347: 338: 103: 30: 10369: 8243: 6564: 6506: 5695:
López, Jorge; Chávez, Ana M.; Rey, Ana; Álvarez, Pedro M. (2021).
4396: 3876: 2216: 1332:
MOFs. Crystallization of homochiral MOFs via self-resolution from
1311:, methyl methacrylate, and vinyl acetate have all been studied by 966:
at up to 65% yield. Superior homogeneous catalysts exist however.
958:
versions are clearly porous. The Rosseinsky group showed that the
12849: 12745: 10846: 10236: 6592: 3571: 3351:. MOFs could provide a more efficient alternative to traditional 3011: 2977: 2260: 1885: 1638: 1634: 1567: 1563: 1552: 1551:
structures can exhibit unusual response to high pressures. While
1498: 1490: 1350: 1341: 1333: 1300: 1256: 1136: 1028: 994: 974: 963: 861: 801:. The product selectivity and yield of catalytic reactions (e.g. 783: 772: 752: 624: 299: 91: 75: 9802:
Wang, Wei; Xu, Xiaomin; Zhou, Wei; Shao, Zongping (April 2017).
5006: 3417:
is removed from the MEA solution. MOF-177, a MOF designed for CO
2402:
Adsorption can be broadly classified as being one of two types:
2030:
7.4 excess wt% (16.3 total wt%) at 77 K and 80 bar. 36 total g H
1991:
8.6 excess wt% (17.6 total wt%) at 77 K and 80 bar. 44 total g H
1908:
employed in carboxylate-based frameworks are Cu and Zn. Lighter
12822: 12753: 12215:"Sponge-like aerogel turns airborne vapor into drinkable water" 8274: 6636: 5432: 4551: 4012: 3462: 2380: 2308: 2203: 2116: 1772: 1677: 1474: 955: 951: 947: 908: 904: 736: 671: 640: 615: 598: 71:(also known as Secondary Building Units - SBUs) coordinated to 6058: 5953: 4774: 4738: 4391:. Vol. 4. Singapore: WORLD SCIENTIFIC. pp. 110–111. 4280: 1004:
and coworkers were able to modify the interior of MIL-101 via
42: 12757: 12749: 12517: 12490: 10916: 9103:"Strategies for hydrogen storage in metal—organic frameworks" 7502: 7255: 6147: 5793: 5614:
Zeolites and Catalysis: Synthesis, Reactions and Applications
5590:"Materials Chemistry: Metal-Organic Frameworks Go Commercial" 4941: 2904:
high-energy visible regions. A design strategy for MOFs with
2198:
High hydrogen uptake is attributed to overlapping attractive
2083: 1876:
they are either commercially available or easily synthesized,
1861: 1692: 1650: 1586:
Several different mechanical phenomena have been observed in
1387: 1375: 1366:
Homochiral MOFs have been made by Lin and coworkers using 2,2
1201:
O • 2DMF} (4-BTAPA = 1,3,5-benzene tricarboxylic acid tris ,
1127: 1012: 982: 274: 65: 12556: 12145: 12032: 11313: 9270: 8020: 6113: 5637: 4886:(in German), vol. 117, no. 1–2, pp. 111–117, 4796: 3409:
Another relevant MOF property is their low heat capacities.
2825:
pressure required for storing hydrogen gas or the extremely
2472:) is added to the product of the bulk density of hydrogen (ρ 1234:
Entrapment of catalytically active noble metal nanoparticles
1107:
O} which was obtained by treating linear bridging ligand 4,4
11486: 11203: 10237:
Pansare V, Hejazi S, Faenza W, Prud'homme RK (March 2012).
8221: 8109: 6924: 6799: 5161: 4842: 4112: 3736:"Porphyrin-based MOFs for sensing environmental pollutants" 3733: 3526: 2812:
Chemical oxidation of metals with water and liberation of H
1669: 1078: 1047: 1043: 903:
or atoms as active sites. Among the few exceptions are two
12094: 11975: 11187:"2D self-assembling semiconductor could beat out graphene" 11049: 10957: 10656: 10607: 9669: 8073: 3774: 1800: 11801: 9462: 8522: 6436: 4779:(in German), vol. 41, no. 5, pp. 390–398, 4487: 3955: 3305: 3284: 3115: 3082: 3061: 2857: 1718: 1581: 1516:} in MIL-88, and IRMOP-51. Thus, 0D MOFs have accessible 1353:
during the crystal growth. Morris and coworkers utilized
928: 434: 111: 12196:"Researchers Find A New Way To Make Water From Thin Air" 11720: 11648: 11000: 9498: 8941: 6764: 4881: 2445: 2149:
60 g/L at 77 K and 90 bar; 12.1 g/L at 90 bar and 298 K.
2067:
7.1 wt% at 77 K and 40 bar; 11.4 wt% at 78 bar and 77 K.
1526:
structures, polycationic nodes can act as semiconductor
1192: 977:
ions, octahedrally ligated by pyridyl nitrogens. From a
942:
can exist in a form that is not accessible for the free
11520: 11120: 9540: 9341: 9305: 8976: 8880: 8878: 8876: 8874: 8629:. Louvain-la-Neuve: Presses Universitaires de Louvain. 8352: 7978: 7322: 4642: 1468: 1266: 11436: 8842: 7890: 7208: 6311: 6085: 5762: 5199: 1421: 890: 292:-dicarboxylic acid (BPDC), and the tricarboxylic acid 12303: 10334: 8451: 7173: 6897: 5987: 5727: 5694: 3272: 3234: 3201: 3168: 3135: 3103: 3049: 2491: 1706: 358:(water, ethanol) through scalable synthesis methods. 12455: 11258: 9985:
Zheng, Weiran; Lee, Lawrence Yoon Suk (2021-07-22).
9227: 8871: 8626:
Energie, pollution de l'air et developpement durable
5063: 4245: 3831: 2606: 2039:
3.24 delivery wt% (1–100 bar) at 298 K and 100 bar.
2000:
2.90 delivery wt% (1–100 bar) at 298 K and 100 bar.
1440:
Homochiral MOFs with precatalysts as building blocks
1139:) used in this study was first reported by Williams 707:
by a 2D MOF (layered square grids) of formula Cd(4,4
11214:, a semiconducting metal-organic graphene analogue" 10661:ions from solution: materials and future outlook". 10104: 9706:Züttel A (April 2004). "Hydrogen storage methods". 9670:Lowell S, Shields JE, Thomas MA, Thommes M (2004). 9642: 9177: 9030: 8884: 8652: 8186: 7940: 7733:"Mechanical properties of metal–organic frameworks" 6356: 6186: 5847: 4690:Cruz A, Stassen I, Ameloot, R, et al. (2019). 4689: 3582: 2325: 1157:
catalysts. Mori and coworkers reported MOFs with Cu
12729: 11721:Smit B, Reimer JA, Oldenburg CM, Bourg IC (2014). 10752: 10472: 8159: 7782: 7432: 4174: 4071:"Reticular chemistry—Present and future prospects" 3311: 3253: 3220: 3187: 3154: 3121: 3088: 2772:Atomic hydrogen reversibly adsorbs in host metals 2575: 1724: 1042:-functionalized derivative of tartaric acid and a 12240:"Autonomous atmospheric water seeping MOF matrix" 11690:from flue gas using temperature swing adsorption" 10285: 9756: 7920:20.500.11820/198bee14-febb-4c8e-b6b4-eb424b7ebac0 7616: 6834: 4209: 4068: 2852: 1315:and coworkers as possible activated monomers for 12886: 12237: 11723:Introduction to Carbon Capture and Sequestration 9893: 8887:"Ultrahigh porosity in metal-organic frameworks" 7676: 4579: 4577: 1872:have by far received the most attention because 1050:clusters and six struts. While three of the six 735:centers in this MOF catalyze alcohol oxidation, 49:of a MIL-101 crystal showing its supertetrahedra 12377: 11393: 11085: 10065:"Using lanthanide ions in molecular bioimaging" 9850: 9575: 9501:International Journal of Heat and Mass Transfer 8756: 7789:Proceedings of the National Academy of Sciences 7103: 6995:Hu A, Ngo HL, Lin W (May 2004). "Remarkable 4,4 6959: 5610: 5505: 5347: 4907:(2009-01-01). "Mineral Replacement Reactions". 4386: 3920: 2246: 2217:Structural impacts on hydrogen storage capacity 2108:7.1 wt% at 77 K and 40 bar; 10 wt% at 100 bar; 1008:(III) coordination of one of the two available 690: 11899: 11610: 10881: 10428: 9801: 9525: 9427: 8487: 6729: 6222: 6182: 6180: 5604: 5312: 5234: 4062: 3476: 2912: 2757:Adsorbed on interstitial sites in a host metal 923:chemistry is such that the amine group of the 817:. The Lewis-acid-catalyzed cyanosilylation of 643:when they combine isolated polynuclear sites, 502: 12715: 12449: 12404: 10579: 10535: 10499: 10166: 9534: 9264: 9065: 8583: 8581: 7467: 6862: 6022: 5983: 5981: 5587: 5382: 4574: 4460: 4309: 4241: 4239: 3322: 1091:The metals in the MOF structure often act as 954:, on account of tiny channel dimensions, the 110:. Other possible applications of MOFs are in 12299: 12297: 12295: 12293: 10695: 10286:Della Rocca J, Liu D, Lin W (October 2011). 9701: 9699: 9519: 9221: 9141: 9100: 7730: 7033: 6276: 5501: 5499: 5497: 5495: 5493: 5491: 5489: 5487: 5485: 1086: 778:sites could catalyze the cyanosilylation of 443: 409: 12398: 11683: 10062: 9939: 9636: 9607: 9569: 9378: 9026: 9024: 8648: 8646: 6401: 6177: 5483: 5481: 5479: 5477: 5475: 5473: 5471: 5469: 5467: 5465: 4849:ACS Sustainable Chemistry & Engineering 4522: 3375:can bind to the MOF surface through either 1181:using a MOF based on vanadium-oxo cluster V 513:functionality, and greater system control. 12722: 12708: 12584: 9603: 9601: 9599: 9530:. Sausalito, CA: University Science Books. 9456: 9171: 9135: 9094: 8935: 8578: 7731:Redfern, Louis R.; Farha, Omar K. (2019). 5978: 4768: 4347: 4345: 4343: 4341: 4236: 4170: 4168: 4166: 4164: 4162: 4160: 3872: 3870: 2849:techniques coupled with electrocatalysis. 1622:Carboxylate-based metal–organic frameworks 1328:Several strategies exist for constructing 1144:catalyzes the trimethylcyanosilylation of 919:) together with dipyridyls as struts. The 555: 12337: 12290: 12273: 12263: 12171: 12063: 12009: 11956: 11933: 11761: 11751: 11705: 11554: 11505: 11463: 11344: 11146: 11026: 10934: 10729: 10633: 10405: 10395: 10311: 10262: 10012: 10002: 9961: 9916: 9827: 9778: 9696: 9663: 9299: 9118: 8910: 8836: 8537: 8490:The Journal of Physical Chemistry Letters 8428: 8251: 8047: 7988:The Journal of Physical Chemistry Letters 7867: 7818: 7808: 7756: 7702: 7653: 7643: 6706: 6341: 5930: 5907:] (BTC=benzene-1,3,5-tricarboxylate)" 5712: 5663: 5611:Cejka J, Corma A, Zones S (27 May 2010). 5519: 5115: 5040: 4975: 4715: 4619: 4609: 4456: 4454: 4351: 4303: 3981: 3850: 3808: 3751: 3244: 3211: 3178: 3145: 2410:. Physisorption is characterized by weak 1615: 1283:O} (bpdc: biphenyldicarboxylate, bpy: 4,4 839: 34:Synthesis of the MIL-101 MOF. Each green 12458:Journal of the American Chemical Society 11218:Journal of the American Chemical Society 10337:Journal of the American Chemical Society 10107:Journal of the American Chemical Society 9984: 9543:Journal of the American Chemical Society 9528:Physical Chemistry: A Molecular Approach 9513:10.1016/j.ijheatmasstransfer.2006.10.001 9492: 9466:Journal of the American Chemical Society 9430:Journal of the American Chemical Society 9403:Journal of Molecular Structure: THEOCHEM 9384: 9309:Journal of the American Chemical Society 9206: 9145:Journal of the American Chemical Society 9033:Journal of the American Chemical Society 9021: 8944:Journal of the American Chemical Society 8845:Journal of the American Chemical Society 8667:Journal of the American Chemical Society 8643: 8189:Journal of the American Chemical Society 8028:Journal of the American Chemical Society 7946:Journal of the American Chemical Society 7373:Journal of the American Chemical Society 7259:Journal of the American Chemical Society 7223:Journal of the American Chemical Society 7141:Journal of the American Chemical Society 7138: 7036:Journal of the American Chemical Society 6994: 6962:Journal of the American Chemical Society 6927:Journal of the American Chemical Society 6900:Journal of the American Chemical Society 6838:Journal of the American Chemical Society 6640:Journal of the American Chemical Society 6474:Journal of the American Chemical Society 6404:Journal of the American Chemical Society 6270: 6151:Journal of the American Chemical Society 6143: 6141: 6026:Journal of the American Chemical Society 5990:Journal of the American Chemical Society 5769:Journal of the American Chemical Society 5462: 5436:Journal of the American Chemical Society 5385:Journal of the American Chemical Society 5350:Journal of the American Chemical Society 5315:Journal of the American Chemical Society 5202:Journal of the American Chemical Society 5122:Journal of the American Chemical Society 5070:Journal of the American Chemical Society 4742:Journal of the American Chemical Society 4425:Journal of the American Chemical Society 3958:"The changing state of porous materials" 3536: 3527:Water vapor capture and dehumidification 2932: 2916: 2856: 1799: 1691: 1668: 1545: 1406:can be selectively introduced to the 3,3 1077: 1000:In an interesting alternative approach, 694: 670: 597: 298: 41: 29: 10201: 10139: 9596: 9421: 8970: 8622: 8317: 8162:European Journal of Inorganic Chemistry 7900:Angewandte Chemie International Edition 7848:Angewandte Chemie International Edition 6672: 6467: 5269: 4422: 4418: 4416: 4338: 4284:European Journal of Inorganic Chemistry 4274: 4157: 3867: 3781:Angewandte Chemie International Edition 2797:Metal and complexes together with water 2724:; continuous loss of a few percent of H 2483:), as shown in the following equation: 1687: 1323: 1238:The entrapment of catalytically active 1177:have demonstrated the sulfoxidation of 1034:A third approach has been described by 542: 14: 12887: 12413:(10). Deerfield Beach, Fla.: 1268–71. 12212: 11644: 11642: 11088:ACS Applied Materials & Interfaces 10795: 10539:Environmental Science & Technology 10027: 9705: 9335: 9059: 8725: 8119:ACS Applied Materials & Interfaces 8069: 8067: 7778: 7776: 7726: 7724: 7722: 7405: 6988: 6793: 6758: 6723: 5730:Separation and Purification Technology 5558: 4909:Reviews in Mineralogy and Geochemistry 4903: 4451: 3514:to purify water in just half an hour. 3359:capture from coal-fired power plants. 2700:gas in lightweight composite cylinder 2390: 2157:change upon binding or to a classical 1912:metal ions have also been explored. Be 1582:Zeolitic imidazolate frameworks (ZIFs) 1394:. A variety of linking groups such as 1062:reactions, presumably by facilitating 938:can. Thus, the framework-incorporated 564: 435:High-throughput solvothermal synthesis 12703: 12360: 11745: 11375: 11210:(2,3,6,7,10,11-hexaiminotriphenylene) 9212: 7068: 7027: 6138: 5428: 5426: 5424: 5422: 5195: 5193: 5157: 5155: 5153: 5151: 5111: 5109: 5107: 4039: 2994:(2,3,6,7,10,11-hexaiminotriphenylene) 2585: 2446:Determining hydrogen storage capacity 2358: 1979:,4″-tribenzoate and BPDC=biphenyl-4,4 1864:-based MOFs, metal-cyanide MOFs, and 1193:Functional linkers as catalytic sites 887:formation and oxidative degradation. 245:Mixed Inorganic-Organic 3-D Framework 232:Mixed Inorganic-Organic 3-D Framework 177: 144:, "small net"). In contrast to MOFs, 11806:Conversion and Combating Microbes". 11776: 11053:Microporous and Mesoporous Materials 8085:Microporous and Mesoporous Materials 6322:Microporous and Mesoporous Materials 5552: 4884:Microporous and Mesoporous Materials 4463:Microporous and Mesoporous Materials 4413: 4006: 2597: 2098:, where BDC=1,4-benzenedicarboxylate 2057:, where BTB=1,3,5-benzenetribenzoate 1844: 1469:Biomimetic design and photocatalysis 1267:Reaction hosts with size selectivity 1073: 766: 312: 12036:Physical Chemistry Chemical Physics 11874: 11849: 11639: 11206:"High electrical conductivity in Ni 9230:Physical Chemistry Chemical Physics 8791: 8526:Physical Chemistry Chemical Physics 8064: 7773: 7719: 7677:Hindocha, S.; Poulston, S. (2017). 7435:The Journal of Physical Chemistry B 6281:-bipyridine) square grid complex". 3097:and six functional groups of –OH, - 2832: 2311:interactions, as demonstrated in Mn 2190:BTC=1,3,5-benzenetricarboxylic acid 2078:storage density compared to MOF-5. 1741: 1422:Postmodification of homochiral MOFs 1082:Schematic Diagram for MOF Catalysis 891:Metal-free organic cavity modifiers 614:, polytopic linkers, and ancillary 98:MOFs, and other disordered phases. 24: 12367:. The International Energy Agency. 11725:. London: Imperial College Press. 11684:Berger AH, Bhown AS (2011-01-01). 9610:Energy & Environmental Science 9101:Rowsell JL, Yaghi OM (July 2005). 8283:(7): 079701, author reply 079702. 7104:Cho SH, Ma B, Nguyen ST, Hupp JT, 6568:Catalysis Science & Technology 5419: 5190: 5148: 5104: 3705:United States Department of Energy 3555:vapor-compression air-conditioning 3312:{\displaystyle {\ce {Cu3(HHTP)2}}} 3089:{\displaystyle {\ce {Cu3(HHTP)2}}} 3008:conductive metal-organic framework 2705:Liquid hydrogen in cryogenic tanks 2567: 2564: 2561: 2558: 2546: 2543: 2540: 2537: 2522: 2519: 2504: 2501: 2498: 2476:) and the pore volume of the MOF ( 516: 25: 12906: 12640: 10960:Journal of Inorganic Biochemistry 10936:10.1021/acs.molpharmaceut.7b00168 10063:Amoroso AJ, Pope SJ (July 2015). 3695:Solid sorbents for carbon capture 3660:Hydrogen-bonded organic framework 3517: 3394:Once the MOF is saturated, the CO 3331: 2963: 2889:, of the luminescence intensity. 2882:1,3,5-benzenetricarboxylate (BTC) 2607:Other methods of hydrogen storage 1271:MOFs might prove useful for both 533: 12695:MOF physical property calculator 12647: 12621: 12578: 12560:Journal of Materials Chemistry C 12550: 12511: 12484: 12371: 12354: 12231: 12206: 12188: 12139: 12088: 12026: 11969: 11950: 11893: 11877:"UiO-66 Metal Organic Framework" 11868: 11843: 11822: 11795: 11770: 11739: 11714: 11677: 11604: 11571: 11514: 11480: 11430: 11387: 11369: 11307: 11252: 11197: 11179: 11114: 11079: 11043: 10994: 10951: 10910: 10875: 10840: 10789: 10746: 10689: 10650: 10601: 10583:Journal of Materials Chemistry A 10573: 10529: 10493: 10466: 10422: 10363: 10328: 10279: 10230: 10195: 10160: 10133: 10098: 10056: 10021: 9978: 9933: 9887: 9844: 9795: 9750: 9068:Journal of Solid State Chemistry 8785: 8750: 8719: 8701: 8616: 8516: 8481: 8445: 8396: 8346: 8311: 8268: 8215: 8180: 8153: 8103: 8014: 7972: 7934: 7884: 7835: 7670: 7610: 6673:Tan YC, Zeng HC (October 2018). 4079:Journal of Solid State Chemistry 4015:Journal of Materials Chemistry A 3640:Flexible metal-organic framework 3583:Ferroelectrics and multiferroics 3485:and water treatment. As of 2018 2998:was shown to be a metal-organic 2629:is the working temperature, and 2343:In a microporous material where 2326:Sensitivity to airborne moisture 1473:Some MOF materials may resemble 950:-based compounds are marginally 552:compatible from layer to layer. 159:mono-, di-, tri-, or tetravalent 12872:Zeolitic imidazolate frameworks 11852:"ZIF-8 Metal Organic Framework" 11376:Arora, Himani (June 21, 2021). 11065:10.1016/j.micromeso.2020.110199 10972:10.1016/j.jinorgbio.2019.110818 9578:Journal of Physical Chemistry C 9526:McQuarrie DA, Simon JD (1997). 9401:' by L. Türker and S. Erkoç'". 9344:The Journal of Chemical Physics 8362:The Journal of Chemical Physics 8097:10.1016/j.micromeso.2013.02.025 7574: 7540:The Journal of Chemical Physics 7531: 7496: 7461: 7426: 7399: 7316: 7285: 7249: 7221:Paddle-Wheel Building Blocks". 7202: 7167: 7132: 7097: 7062: 6953: 6918: 6891: 6856: 6828: 6666: 6630: 6586: 6558: 6500: 6461: 6430: 6395: 6350: 6334:10.1016/j.micromeso.2003.12.027 6305: 6216: 6107: 6079: 6052: 6016: 5947: 5890: 5841: 5814: 5787: 5756: 5721: 5688: 5631: 5594:Chemical & Engineering News 5581: 5562:Journal of Physical Chemistry C 5376: 5341: 5306: 5263: 5228: 5057: 5000: 4935: 4897: 4892:10.1016/j.micromeso.2008.06.040 4875: 4836: 4790: 4732: 4683: 4636: 4545: 4516: 4481: 4475:10.1016/j.micromeso.2008.04.033 4380: 4203: 4106: 3715:Zeolitic imidazolate frameworks 3254:{\displaystyle {\ce {Pt^{2+}}}} 3221:{\displaystyle {\ce {Co^{2+}}}} 3188:{\displaystyle {\ce {Ni^{2+}}}} 3155:{\displaystyle {\ce {Cu^{2+}}}} 2438:A complete explanation of the H 2237: 1736: 1588:zeolitic imidazolate frameworks 1576:zeolitic imidazolate frameworks 832:(II) sites could function as a 317:The study of MOFs has roots in 12493:Journal of Materials Chemistry 12392:10.1016/j.apenergy.2012.10.037 11777:Micu, Alexandru (2022-01-04). 9645:Journal of Materials Chemistry 9415:10.1016/j.theochem.2005.02.017 8455:Coordination Chemistry Reviews 6343:11858/00-001M-0000-000F-9785-0 4033: 3949: 3914: 3825: 3768: 3727: 3690:Crystal nets (periodic graphs) 3610:Conjugated microporous polymer 3295: 3289: 3072: 3066: 2853:Biological imaging and sensing 2465:), the surface excess amount ( 927:cannot be protonated by added 771:The porous-framework material 452:reprecipitation subprocesses. 229:Mixed Inorganic-Organic Layers 126:, as conducting solids and as 13: 1: 10292:Accounts of Chemical Research 10004:10.1021/acsenergylett.1c01350 9897:Advanced Materials Interfaces 9273:Chemistry: A European Journal 8297:10.1103/physrevlett.96.079701 7420:10.1016/S0021-9517(02)00105-7 6381:10.1126/science.283.5405.1148 6101:10.1016/S0040-4039(00)87457-2 5911:Chemistry: A European Journal 5876:10.1126/science.283.5405.1148 4861:10.1021/acssuschemeng.0c01429 4708:10.1021/acs.chemmater.9b03435 4312:Accounts of Chemical Research 4100:10.1016/S0022-4596(05)00368-3 4069:O'Keeffe M, Yaghi OM (2005). 3923:Accounts of Chemical Research 3839:Cell Reports Physical Science 3721: 3473:and biomedical applications. 1501:or trinuclear units such as { 12524:Chemical Engineering Journal 11707:10.1016/j.egypro.2011.01.089 10896:10.1016/j.drudis.2015.11.017 9771:10.1016/j.mtchem.2018.12.002 9217:. New York: Kluwer Academic. 9200:10.1016/j.cplett.2008.03.014 8830:10.1016/j.tetlet.2016.09.085 5742:10.1016/j.seppur.2020.117660 4389:Handbook of Porous Materials 3740:Chemical Engineering Journal 3342: 3002:analogue that has a natural 2872:Lanthanide photoluminescence 2618:is the gravimetric density, 2338: 2247:Hydrogen adsorption enthalpy 1725:{\displaystyle {\ce {Zr_6}}} 1133:benzene-1,3,5-tricarboxylate 691:Metal ions or metal clusters 647:host–guest responses, and a 593: 428:supercritical carbon dioxide 307: 242:Layered Coordination Polymer 180:Dimensionality of Inorganic 151: 80:1,4-benzenedicarboxylic acid 7: 12213:Lavars, Nick (2021-01-20). 10767:10.1021/acs.chemrev.7b00355 3597: 3477:Desalination/ion separation 3440: 3353:amine solvent-based methods 3122:{\displaystyle {\ce {NH2}}} 2913:Nuclear wasteform materials 2681:High-pressure gas cylinders 2625:is the volumetric density, 1866:covalent organic frameworks 1839:covalent organic frameworks 1370:-bis(diphenylphosphino)-1,1 895:Most examples of MOF-based 864:studies generally employed 699:Example of zeolite catalyst 503:Post-synthetic modification 226:Chain Coordination Polymers 146:covalent organic frameworks 27:Class of chemical substance 10: 12911: 12683:Hypothetical MOFs Database 12673:MOF pore characterizations 12330:10.1038/s41598-018-33704-4 11816:10.26434/chemrxiv.10332431 11456:10.1021/acscentsci.9b01006 10722:10.1038/s41467-017-00526-3 10626:10.1021/acscentsci.6b00066 9088:10.1016/j.jssc.2005.07.002 8524:and computational study". 8340:10.1103/PhysRevB.81.174103 6699:10.1038/s41467-018-06828-4 6455:10.1016/j.jcat.2004.11.032 5808:10.1016/j.jcat.2007.06.004 3983:10.1038/s41563-021-00957-w 3887:Pure and Applied Chemistry 3852:10.1016/j.xcrp.2022.100757 3625:Covalent organic framework 3381:Van der Waals interactions 3338:Carbon capture and storage 3335: 3323:Bio-mimetic mineralization 3266:(VOCs). Among these MOFs, 3264:volatile organic compounds 2633:is the working pressure): 2412:van der Waals interactions 2301:bond dissociation energies 2112:storage density of 66 g/L. 1879:they have high acidity (pK 1745: 1629: 1619: 875:intermediate as well as a 12870: 12856: 12842: 12830: 12815: 12779: 12764: 12738: 12536:10.1016/j.cej.2022.137590 11963:10.1038/s41893-020-0590-x 11285:10.1038/s41563-018-0189-z 9873:10.1038/s41560-018-0308-8 9759:Materials Today Chemistry 9728:10.1007/s00114-004-0516-x 9680:10.1007/978-1-4020-2303-3 8467:10.1016/j.ccr.2019.213050 6073:10.1016/j.ica.2008.07.011 5617:. John Wiley & Sons. 3753:10.1016/j.cej.2024.152377 3675:Metal–inorganic framework 3471:environmental remediation 3424:MOFs adsorb 90% of the CO 2927:radioactive contamination 2251:High hydrogen adsorption 1957:Hydrogen storage capacity 1883:~ 4) allowing for facile 1810:U.S. Department of Energy 1755:hydrogen has the highest 1664: 1655:density functional theory 1291:-methyl dibenzyl ketone ( 1087:Metals as catalytic sites 883:against both oxo-bridged 666: 444:Pseudomorphic replication 410:High-throughput synthesis 395:chemical vapor deposition 284:Attached to the SBUs are 257:3-D Coordination Polymers 198: 179: 12895:Metal-organic frameworks 12731:Metal–organic frameworks 12660:Metal-organic framework 11019:10.1021/acsomega.8b00185 10663:Chemical Society Reviews 10072:Chemical Society Reviews 9954:10.1021/acscatal.9b03790 9674:. Springer Netherlands. 9180:Chemical Physics Letters 8623:Ronneau C (2004-11-29). 5823:New Journal of Chemistry 5656:10.1021/acsomega.8b02309 5508:Chemical Society Reviews 4490:New Journal of Chemistry 4177:Chemical Society Reviews 3900:10.1351/PAC-REC-12-11-20 3685:Organometallic chemistry 2139:BTT=benzene-1,3,5-tris(1 1645: 1215:Knoevenagel condensation 1021:Knoevenagel condensation 993:. Reactions with larger 581:. In an effect known as 173:based on dimensionality 54:Metal–organic frameworks 12117:10.1126/science.aaf6323 11148:10.1126/science.1246738 10923:Molecular Pharmaceutics 10559:10.1021/acs.est.6b06305 10397:10.1073/pnas.1305910110 9708:Die Naturwissenschaften 8999:10.1126/science.1083440 8912:10.1126/science.1192160 8277:Physical Review Letters 7810:10.1073/pnas.1003205107 7294:Chemical Communications 7110:Chemical Communications 6536:10.1126/science.1116275 6283:Chemical Communications 6116:Chemical Communications 6061:Inorganica Chimica Acta 5956:Chemical Communications 5237:Chemical Communications 4803:Chemical Communications 4213:Chemical Communications 4135:10.1126/science.1120411 3670:Macromolecular assembly 3465:. This MOF is based on 1038:and coworkers. Using a 809:the cyanosilylation of 729:coordinative saturation 681:heterogeneous catalysts 612:coordination geometries 608:heterogeneous catalysts 606:MOFs have potential as 556:Open coordination sites 457:atomic layer deposition 215:Hybrid Inorganic Layers 212:Hybrid Inorganic Chains 18:Metal-organic framework 12740:Carboxylate–based MOFs 12427:10.1002/adma.201004028 12265:10.1126/sciadv.abc8605 12173:10.1002/adma.202103316 11926:10.1126/sciadv.aaq0066 11625:10.1002/cssc.200900036 11416:10.1002/ange.202006102 11337:10.1002/adma.201907063 11100:10.1021/acsami.7b16522 10861:10.1002/anie.201002343 10818:10.1002/adma.201606134 10243:Chemistry of Materials 9909:10.1002/admi.201800849 9820:10.1002/advs.201600371 9285:10.1002/chem.201201212 9120:10.1002/anie.200462786 8771:10.1002/anie.201001009 8174:10.1002/ejic.201600566 8131:10.1021/acsami.8b06604 7912:10.1002/anie.200902643 7860:10.1002/anie.202117565 7645:10.1126/sciadv.abb2695 7596:10.1002/cssc.200800203 7188:10.1002/anie.200806063 7083:10.1002/anie.200602099 7013:10.1002/anie.200353415 6877:10.1002/anie.200703443 6814:10.1002/anie.200700242 6779:10.1002/anie.200600333 6744:10.1002/anie.200390156 6202:10.1002/anie.200705998 5923:10.1002/chem.200600220 5588:Jacoby, Mitch (2013). 5176:10.1002/anie.200802908 5033:10.1126/sciadv.aav5340 4785:10.1002/ciuz.200700404 4777:Chemie in unserer Zeit 4696:Chemistry of Materials 4366:10.1002/anie.200801163 4297:10.1002/ejic.200700442 3793:10.1002/anie.202115100 3615:Coordination chemistry 3542: 3493:of ions, or selective 3371:at 0.13 – 0.16 bar. CO 3313: 3255: 3222: 3189: 3156: 3123: 3090: 2922: 2863: 2728:per day at 25 °C 2577: 2034:/L at 80 bar and 77 K. 1995:/L at 80 bar and 77 K. 1870:Carboxylate-based MOFs 1805: 1762:specific surface areas 1726: 1697: 1674: 1616:Carboxylate-based MOFs 1083: 840:Encapsulated catalysts 700: 676: 603: 319:coordination chemistry 304: 218:3-D Inorganic Hybrids 50: 39: 12858:Molybdenum-based MOFs 12364:The Future of Cooling 12200:National Public Radio 11982:Nature Communications 11527:Nature Communications 10702:Nature Communications 9213:Kubas, G. J. (2001). 6679:Nature Communications 5714:10.3390/catal11040448 4929:10.2138/rmg.2009.70.3 4040:Cejka J, ed. (2011). 3710:X-ray Crystallography 3620:Coordination polymers 3540: 3314: 3256: 3223: 3190: 3157: 3124: 3091: 2953:topical drug delivery 2933:Drug delivery systems 2920: 2860: 2578: 1803: 1767:Compared to an empty 1727: 1695: 1672: 1546:Mechanical properties 1483:methane monooxygenase 1081: 698: 685:homogeneous catalysts 674: 601: 302: 277:, for example, has a 94:, but there are also 92:crystalline compounds 88:coordination polymers 45: 33: 12817:Aluminium-based MOFs 12766:Zirconium-based MOFs 10884:Drug Discovery Today 10349:10.1021/jacs.7b04532 9321:10.1021/jacs.3c06393 8679:10.1021/jacs.6b08803 8673:(138): 15204–15213. 8040:10.1021/jacs.9b03234 7408:Journal of Catalysis 6472:-based oxidations". 6443:Journal of Catalysis 5796:Journal of Catalysis 5448:10.1021/jacs.7b09496 5397:10.1021/jacs.6b04501 5327:10.1021/jacs.6b07445 5082:10.1021/jacs.5b08212 4754:10.1021/jacs.7b08174 3270: 3232: 3199: 3166: 3133: 3101: 3047: 2489: 2385:thermal conductivity 2383:, which affects the 2349:van der Waals forces 2159:Coulombic attraction 1789:MOFs to be used for 1704: 1688:Zirconium-based MOFs 1487:cytochrome c oxidase 1324:Asymmetric catalysis 759:. Furthermore, para 637:asymmetric synthesis 550:crystallographically 543:Stratified synthesis 12844:Vanadium-based MOFs 12419:2011AdM....23.1268Z 12322:2018NatSR...815284C 12256:2020SciA....6.8605Y 12164:2021AdM....3303316K 12109:2016Sci...353..137C 12048:2020PCCP...2223073P 12042:(40): 23073–23082. 12002:10.1038/ncomms11831 11994:2016NatCo...711831B 11918:2018SciA....4...66Z 11539:2015NatCo...6.7240L 11444:ACS Central Science 11408:2021AngCh.133.5672L 11329:2020AdM....3207063A 11277:2018NatMa..17.1027D 11139:2014Sci...343...66T 10810:2017AdM....2906134W 10761:(23): 13935–14013. 10714:2017NatCo...8..485L 10614:ACS Central Science 10589:(26): 13724–13730. 10551:2017EnST...51.3911L 10503:Dalton Transactions 10432:Dalton Transactions 10388:2013PNAS..11017199F 10216:2016RSCAd...611570L 10210:(14): 11570–11576. 10175:(45): 18003–18017. 10169:Dalton Transactions 9865:2019NatEn...4..115C 9720:2004NW.....91..157Z 9356:2012JChPh.136c4705S 9315:(37): 20492–20502. 9242:2012PCCP...14.7240B 9192:2008CPL...456...68G 9080:2005JSSCh.178.2527L 8991:2003Sci...300.1127R 8903:2010Sci...329..424F 8818:Tetrahedron Letters 8728:Dalton Transactions 8548:2016PCCP...18.2192B 8374:2013JChPh.138q4703O 8332:2010PhRvB..81q4103H 8289:2006PhRvL..96g9701A 8236:1999Natur.402..276L 8195:(32): 10524–10526. 8125:(25): 21079–21083. 7952:(48): 17546–17547. 7801:2010PNAS..107.9938T 7743:(46): 10666–10679. 7695:2017FaDi..201..113H 7683:Faraday Discussions 7636:2020SciA....6.2695L 7552:2005JChPh.123l4713F 7505:Inorganic Chemistry 7106:Albrecht-Schmitt TE 6691:2018NatCo...9.4326T 6596:Dalton Transactions 6528:2005Sci...309.2040F 6373:1999Sci...283.1148C 6367:(5405): 1148–1150. 6240:2000Natur.404..982S 6089:Tetrahedron Letters 5868:1999Sci...283.1148C 5781:10.1021/ja00082a055 5650:(12): 17135–17144. 5569:(29): 11086–11094. 5442:(46): 16852–16861. 5284:2017FaDi..201..163L 5272:Faraday Discussions 5076:(44): 14129–14135. 5025:2019SciA....5.5340R 4960:2012NatMa..11..717R 4921:2009RvMG...70...87P 4661:2016NatMa..15..304S 4602:2020RSCAd..1019822S 4596:(34): 19822–19831. 4127:2005Sci...310.1166C 4092:2005JSSCh.178D...5. 3974:2021NatMa..20.1179B 3307: 3286: 3117: 3084: 3063: 2391:Hydrogen adsorption 1944: 1782:activation barriers 1720: 1572:diamond anvil cells 1060:transesterification 1054:are coordinated by 1015:of each of several 565:Composite materials 424:supercritical fluid 209:Molecular Complexes 174: 135:reticular chemistry 47:Electron micrograph 12832:Azolate-based MOFs 12688:2019-02-19 at the 12657:has a profile for 12572:10.1039/C8TC02421A 12505:10.1039/C2JM15615F 12407:Advanced Materials 12310:Scientific Reports 12152:Advanced Materials 12056:10.1039/D0CP03790G 11988:(1): ncomms11831. 11881:www.chemtube3d.com 11856:www.chemtube3d.com 11832:. February 9, 2018 11547:10.1038/ncomms8240 11507:10.1039/C8CE01264D 11317:Advanced Materials 10798:Advanced Materials 10675:10.1039/C5CS00330J 10595:10.1039/C5TA01972A 10515:10.1039/C5DT02337H 10487:10.1039/c3sc50230a 10444:10.1039/C5DT04183J 10224:10.1039/c5ra23681a 10181:10.1039/c6dt02213h 10154:10.1039/c4tc00414k 10084:10.1039/c4cs00293h 9991:ACS Energy Letters 9250:10.1039/C2CP40339K 8556:10.1039/c5cp06798g 8421:10.1039/c4ce00436a 7942:Chapman, Karena W. 7854:(21): e202117565. 7749:10.1039/C9SC04249K 7704:10.1039/c7fd00090a 6608:10.1039/C9DT00368A 6580:10.1039/C8CY00794B 5292:10.1039/c7fd00045f 5249:10.1039/c4cc09407g 4815:10.1039/C2CC34493A 4611:10.1039/C9RA10412G 4502:10.1039/D0NJ00257G 4027:10.1039/c8ta00264a 3543: 3445:A MOF loaded with 3309: 3287: 3274: 3251: 3218: 3185: 3152: 3119: 3105: 3086: 3064: 3051: 2923: 2864: 2748:Physisorption of H 2586:Gravimetric method 2573: 2359:Structural defects 1942: 1806: 1722: 1708: 1698: 1675: 1392:enantioselectivity 1084: 701: 677: 604: 583:hydrogen spillover 305: 169:Classification of 168: 51: 40: 12882: 12881: 12781:Nickel-based MOFs 12663: 12599:10.1021/cr200174w 12566:(35): 9420–9429. 12470:10.1021/ja808444z 12103:(6295): 137–140. 11732:978-1-78326-328-8 11663:10.1021/cr2003272 11500:(41): 6458–6471. 11450:(12): 1959–1964. 11402:(11): 5672–5684. 11396:Angewandte Chemie 11271:(11): 1027–1032. 11230:10.1021/ja502765n 10849:Angewandte Chemie 10382:(43): 17199–204. 10343:(27): 9333–9340. 10304:10.1021/ar200028a 10255:10.1021/cm2028367 10148:(26): 5098–5104. 10142:J. Mater. Chem. C 10119:10.1021/ja045123o 10042:10.1021/cr900362e 9689:978-90-481-6633-6 9651:(30): 3197–3204. 9590:10.1021/jp901988e 9584:(21): 9316–9320. 9555:10.1021/ja0737164 9478:10.1021/ja809954r 9442:10.1021/ja802741b 9364:10.1063/1.3668138 9157:10.1021/ja056639q 9107:Angewandte Chemie 9045:10.1021/ja0656853 8956:10.1021/ja049408c 8857:10.1021/ja9072707 8824:(44): 4873–4881. 8759:Angewandte Chemie 8609:978-0-309-09163-3 8502:10.1021/jz4002345 8382:10.1063/1.4802770 8320:Physical Review B 8230:(6759): 276–279. 8201:10.1021/ja804079z 8168:(27): 4517–4523. 8034:(23): 9330–9337. 8000:10.1021/jz400880p 7994:(11): 1861–1865. 7958:10.1021/ja908415z 7906:(38): 7087–7089. 7795:(22): 9938–9943. 7560:10.1063/1.2037587 7517:10.1021/ic060943i 7482:10.1021/cr050193e 7447:10.1021/jp072085x 7385:10.1021/ja042802q 7271:10.1021/ja803783c 7235:10.1021/ja0104352 7176:Angewandte Chemie 7153:10.1021/ja0348344 7071:Angewandte Chemie 7048:10.1021/ja052431t 7001:Angewandte Chemie 6974:10.1021/ja070671y 6939:10.1021/ja0316420 6912:10.1021/ja993814s 6906:(21): 5158–5168. 6865:Angewandte Chemie 6850:10.1021/ja9819918 6802:Angewandte Chemie 6767:Angewandte Chemie 6732:Angewandte Chemie 6652:10.1021/ja078231u 6602:(19): 6445–6454. 6574:(17): 4349–4357. 6486:10.1021/ja069319v 6416:10.1021/ja0163772 6190:Angewandte Chemie 6163:10.1021/ja067374y 6095:(27): 2781–2784. 6038:10.1021/ja1028556 6002:10.1021/ja800669j 5862:(5405): 1148–50. 5624:978-3-527-63030-1 5575:10.1021/jp072867q 5362:10.1021/ja512762r 5214:10.1021/ja403810k 5164:Angewandte Chemie 5134:10.1021/ja808995d 4855:(26): 9680–9689. 4748:(14): 4812–4819. 4702:(22): 9462–9471. 4533:(12): 1839–1847. 4496:(10): 3847–3855. 4437:10.1021/ja0635231 4406:978-981-12-2328-0 4354:Angewandte Chemie 4324:10.1021/ar700025k 4291:(29): 4559–4568. 4254:(22): 3268–3292. 4248:Angewandte Chemie 4216:(46): 4780–4795. 4121:(5751): 1166–70. 4055:978-3-527-32870-3 4021:(12): 4912–4947. 3935:10.1021/ar5000314 3787:(8): e202115100. 3562:raised above the 3459:cyclic carbonates 3294: 3277: 3239: 3206: 3173: 3140: 3108: 3071: 3054: 2945: 2868:photoluminescence 2819: 2818: 2777:Complex compounds 2733:Adsorbed hydrogen 2598:Volumetric method 2214: 2213: 2074:uptake but lower 1906:transition metals 1845:Design principles 1711: 1601:) to close pore ( 1074:Achiral catalysis 931:, but one of the 767:Functional struts 528:functional groups 331:-diethylformamide 313:General synthesis 267: 266: 120:water remediation 114:purification, in 60:) are a class of 16:(Redirected from 12902: 12724: 12717: 12710: 12701: 12700: 12661: 12651: 12650: 12635: 12625: 12619: 12618: 12587:Chemical Reviews 12582: 12576: 12575: 12554: 12548: 12547: 12515: 12509: 12508: 12499:(20): 10148–51. 12488: 12482: 12481: 12453: 12447: 12446: 12402: 12396: 12395: 12375: 12369: 12368: 12361:Birol F (2018). 12358: 12352: 12351: 12341: 12301: 12288: 12287: 12277: 12267: 12250:(42): eabc8605. 12244:Science Advances 12235: 12229: 12228: 12226: 12225: 12210: 12204: 12203: 12202:. 14 April 2017. 12192: 12186: 12185: 12175: 12143: 12137: 12136: 12092: 12086: 12085: 12067: 12030: 12024: 12023: 12013: 11973: 11967: 11966: 11954: 11948: 11947: 11937: 11906:Science Advances 11897: 11891: 11890: 11888: 11887: 11872: 11866: 11865: 11863: 11862: 11847: 11841: 11840: 11838: 11837: 11826: 11820: 11819: 11799: 11793: 11792: 11790: 11789: 11774: 11768: 11767: 11765: 11755: 11743: 11737: 11736: 11718: 11712: 11711: 11709: 11681: 11675: 11674: 11651:Chemical Reviews 11646: 11637: 11636: 11608: 11602: 11601: 11599: 11598: 11589:. Archived from 11587:MOF Technologies 11575: 11569: 11568: 11558: 11518: 11512: 11511: 11509: 11484: 11478: 11477: 11467: 11434: 11428: 11427: 11391: 11385: 11384: 11382: 11373: 11367: 11366: 11348: 11311: 11305: 11304: 11265:Nature Materials 11256: 11250: 11249: 11201: 11195: 11194: 11183: 11177: 11176: 11150: 11118: 11112: 11111: 11094:(3): 2328–2337. 11083: 11077: 11076: 11047: 11041: 11040: 11030: 11013:(3): 2994–3003. 10998: 10992: 10991: 10955: 10949: 10948: 10938: 10929:(5): 1831–1839. 10914: 10908: 10907: 10879: 10873: 10872: 10844: 10838: 10837: 10793: 10787: 10786: 10755:Chemical Reviews 10750: 10744: 10743: 10733: 10693: 10687: 10686: 10654: 10648: 10647: 10637: 10605: 10599: 10598: 10577: 10571: 10570: 10545:(7): 3911–3921. 10533: 10527: 10526: 10497: 10491: 10490: 10475:Chemical Science 10470: 10464: 10463: 10426: 10420: 10419: 10409: 10399: 10367: 10361: 10360: 10332: 10326: 10325: 10315: 10283: 10277: 10276: 10266: 10234: 10228: 10227: 10199: 10193: 10192: 10164: 10158: 10157: 10137: 10131: 10130: 10102: 10096: 10095: 10069: 10060: 10054: 10053: 10030:Chemical Reviews 10025: 10019: 10018: 10016: 10006: 9997:(8): 2838–2843. 9982: 9976: 9975: 9965: 9937: 9931: 9930: 9920: 9891: 9885: 9884: 9848: 9842: 9841: 9831: 9808:Advanced Science 9799: 9793: 9792: 9782: 9754: 9748: 9747: 9703: 9694: 9693: 9667: 9661: 9660: 9657:10.1039/b703608f 9640: 9634: 9633: 9622:10.1039/b808322n 9605: 9594: 9593: 9573: 9567: 9566: 9549:(49): 15202–10. 9538: 9532: 9531: 9523: 9517: 9516: 9507:(3–4): 405–411. 9496: 9490: 9489: 9460: 9454: 9453: 9425: 9419: 9418: 9409:(1–3): 239–241. 9382: 9376: 9375: 9339: 9333: 9332: 9303: 9297: 9296: 9268: 9262: 9261: 9225: 9219: 9218: 9210: 9204: 9203: 9175: 9169: 9168: 9139: 9133: 9132: 9122: 9098: 9092: 9091: 9074:(8): 2527–2532. 9063: 9057: 9056: 9039:(51): 16876–83. 9028: 9019: 9018: 8985:(5622): 1127–9. 8974: 8968: 8967: 8939: 8933: 8932: 8914: 8882: 8869: 8868: 8840: 8834: 8833: 8815: 8814: 8813: 8803: 8802: 8801: 8789: 8783: 8782: 8754: 8748: 8747: 8736:10.1039/B815583F 8723: 8717: 8716: 8705: 8699: 8698: 8664: 8663: 8662: 8650: 8641: 8640: 8620: 8614: 8613: 8585: 8576: 8575: 8541: 8532:(3): 2192–2201. 8520: 8514: 8513: 8485: 8479: 8478: 8449: 8443: 8442: 8432: 8400: 8394: 8393: 8359: 8350: 8344: 8343: 8315: 8309: 8308: 8272: 8266: 8265: 8255: 8219: 8213: 8212: 8184: 8178: 8177: 8157: 8151: 8150: 8116: 8107: 8101: 8100: 8071: 8062: 8061: 8051: 8018: 8012: 8011: 7985: 7976: 7970: 7969: 7938: 7932: 7931: 7897: 7888: 7882: 7881: 7871: 7839: 7833: 7832: 7822: 7812: 7780: 7771: 7770: 7760: 7737:Chemical Science 7728: 7717: 7716: 7706: 7674: 7668: 7667: 7657: 7647: 7630:(29): eabb2695. 7624:Science Advances 7614: 7608: 7607: 7578: 7572: 7571: 7535: 7529: 7528: 7500: 7494: 7493: 7470:Chemical Reviews 7465: 7459: 7458: 7430: 7424: 7423: 7403: 7397: 7396: 7370: 7369: 7368: 7358: 7357: 7356: 7346: 7345: 7344: 7334: 7333: 7332: 7320: 7314: 7313: 7302:10.1039/B512169H 7289: 7283: 7282: 7265:(35): 11650–61. 7253: 7247: 7246: 7206: 7200: 7199: 7171: 7165: 7164: 7136: 7130: 7129: 7118:10.1039/b600408c 7101: 7095: 7094: 7066: 7060: 7059: 7031: 7025: 7024: 6998: 6992: 6986: 6985: 6957: 6951: 6950: 6922: 6916: 6915: 6895: 6889: 6888: 6860: 6854: 6853: 6832: 6826: 6825: 6797: 6791: 6790: 6762: 6756: 6755: 6727: 6721: 6720: 6710: 6670: 6664: 6663: 6634: 6628: 6627: 6590: 6584: 6583: 6562: 6556: 6555: 6522:(5743): 2040–2. 6513: 6504: 6498: 6497: 6465: 6459: 6458: 6434: 6428: 6427: 6399: 6393: 6392: 6354: 6348: 6347: 6345: 6309: 6303: 6302: 6291:10.1039/B406114B 6280: 6274: 6268: 6267: 6248:10.1038/35010088 6220: 6214: 6213: 6184: 6175: 6174: 6145: 6136: 6135: 6124:10.1039/B718443C 6111: 6105: 6104: 6083: 6077: 6076: 6067:(5): 1491–1500. 6056: 6050: 6049: 6020: 6014: 6013: 5985: 5976: 5975: 5964:10.1039/B718371B 5951: 5945: 5944: 5934: 5894: 5888: 5887: 5845: 5839: 5838: 5835:10.1039/B803953B 5818: 5812: 5811: 5791: 5785: 5784: 5766: 5760: 5754: 5753: 5725: 5719: 5718: 5716: 5692: 5686: 5685: 5667: 5635: 5629: 5628: 5608: 5602: 5601: 5585: 5579: 5578: 5556: 5550: 5549: 5530:10.1039/b802256a 5523: 5503: 5460: 5459: 5430: 5417: 5416: 5380: 5374: 5373: 5345: 5339: 5338: 5310: 5304: 5303: 5267: 5261: 5260: 5232: 5226: 5225: 5208:(32): 11688–91. 5197: 5188: 5187: 5159: 5146: 5145: 5113: 5102: 5101: 5061: 5055: 5054: 5044: 5013:Science Advances 5004: 4998: 4997: 4979: 4968:10.1038/nmat3359 4948:Nature Materials 4939: 4933: 4932: 4901: 4895: 4894: 4879: 4873: 4872: 4840: 4834: 4833: 4831: 4829: 4794: 4788: 4787: 4772: 4766: 4765: 4736: 4730: 4729: 4719: 4687: 4681: 4680: 4669:10.1038/nmat4509 4649:Nature Materials 4640: 4634: 4633: 4623: 4613: 4581: 4572: 4571: 4568:10.1039/B711983F 4549: 4543: 4542: 4539:10.1039/B810857A 4520: 4514: 4513: 4485: 4479: 4478: 4469:(1–3): 727–731. 4458: 4449: 4448: 4420: 4411: 4410: 4384: 4378: 4377: 4349: 4336: 4335: 4307: 4301: 4300: 4278: 4272: 4271: 4243: 4234: 4233: 4222:10.1039/b610264f 4207: 4201: 4200: 4189:10.1039/b804680h 4172: 4155: 4154: 4110: 4104: 4103: 4075: 4066: 4060: 4059: 4037: 4031: 4030: 4010: 4004: 4003: 3985: 3968:(9): 1179–1187. 3962:Nature Materials 3953: 3947: 3946: 3929:(5): 1555–1562. 3918: 3912: 3911: 3894:(8): 1715–1724. 3883: 3874: 3865: 3864: 3854: 3829: 3823: 3822: 3812: 3772: 3766: 3765: 3755: 3731: 3650:Hydrogen economy 3411:Monoethanolamine 3318: 3316: 3315: 3310: 3308: 3306: 3303: 3298: 3292: 3285: 3282: 3275: 3260: 3258: 3257: 3252: 3250: 3249: 3248: 3237: 3227: 3225: 3224: 3219: 3217: 3216: 3215: 3204: 3194: 3192: 3191: 3186: 3184: 3183: 3182: 3171: 3161: 3159: 3158: 3153: 3151: 3150: 3149: 3138: 3128: 3126: 3125: 3120: 3118: 3116: 3113: 3106: 3095: 3093: 3092: 3087: 3085: 3083: 3080: 3075: 3069: 3062: 3059: 3052: 2993: 2992: 2991: 2943: 2839:electrocatalysts 2833:Electrocatalysis 2656: 2647: 2636: 2635: 2624: 2617: 2582: 2580: 2579: 2574: 2572: 2571: 2570: 2551: 2550: 2549: 2527: 2526: 2525: 2509: 2508: 2507: 2353:carbon nanotubes 2298: 2286: 2021: 1982: 1978: 1945: 1941: 1904:The most common 1835:activated carbon 1832: 1829: 1825: 1791:hydrogen storage 1748:Hydrogen storage 1742:Hydrogen storage 1731: 1729: 1728: 1723: 1721: 1719: 1716: 1709: 1515: 1489:, and tricopper 1455: 1417: 1413: 1409: 1385: 1381: 1373: 1369: 1286: 1189:building units. 1125: 1110: 1066:of the reactant 960:carboxylic acids 803:cyclopropanation 710: 675:Example of MOF-5 579:activated carbon 487: 291: 286:bridging ligands 175: 171:hybrid materials 167: 21: 12910: 12909: 12905: 12904: 12903: 12901: 12900: 12899: 12885: 12884: 12883: 12878: 12866: 12852: 12838: 12837:MFU-4l, NU-2100 12826: 12811: 12810: 12803: 12796: 12789: 12775: 12760: 12734: 12728: 12690:Wayback Machine 12669: 12668: 12667: 12652: 12648: 12643: 12638: 12626: 12622: 12583: 12579: 12555: 12551: 12516: 12512: 12489: 12485: 12454: 12450: 12403: 12399: 12376: 12372: 12359: 12355: 12302: 12291: 12236: 12232: 12223: 12221: 12211: 12207: 12194: 12193: 12189: 12158:(43): 2103316. 12144: 12140: 12093: 12089: 12031: 12027: 11974: 11970: 11955: 11951: 11912:(2): eaaq0066. 11898: 11894: 11885: 11883: 11873: 11869: 11860: 11858: 11848: 11844: 11835: 11833: 11828: 11827: 11823: 11805: 11800: 11796: 11787: 11785: 11775: 11771: 11753:10.2172/1003992 11744: 11740: 11733: 11719: 11715: 11694:Energy Procedia 11689: 11682: 11678: 11647: 11640: 11609: 11605: 11596: 11594: 11582: 11577: 11576: 11572: 11519: 11515: 11485: 11481: 11435: 11431: 11392: 11388: 11380: 11374: 11370: 11312: 11308: 11257: 11253: 11224:(25): 8859–62. 11213: 11209: 11202: 11198: 11185: 11184: 11180: 11119: 11115: 11084: 11080: 11048: 11044: 10999: 10995: 10956: 10952: 10915: 10911: 10880: 10876: 10845: 10841: 10804:(23): 1606134. 10794: 10790: 10751: 10747: 10694: 10690: 10669:(10): 2724–39. 10660: 10655: 10651: 10606: 10602: 10578: 10574: 10534: 10530: 10509:(43): 18810–4. 10498: 10494: 10471: 10467: 10427: 10423: 10368: 10364: 10333: 10329: 10284: 10280: 10235: 10231: 10200: 10196: 10165: 10161: 10138: 10134: 10103: 10099: 10078:(14): 4723–42. 10067: 10061: 10057: 10026: 10022: 9983: 9979: 9938: 9934: 9903:(21): 1800849. 9892: 9888: 9849: 9845: 9800: 9796: 9755: 9751: 9704: 9697: 9690: 9668: 9664: 9641: 9637: 9606: 9597: 9574: 9570: 9539: 9535: 9524: 9520: 9497: 9493: 9461: 9457: 9426: 9422: 9400: 9396: 9388: 9383: 9379: 9340: 9336: 9304: 9300: 9279:(39): 12260–6. 9269: 9265: 9226: 9222: 9211: 9207: 9176: 9172: 9140: 9136: 9099: 9095: 9064: 9060: 9029: 9022: 8975: 8971: 8940: 8936: 8897:(5990): 424–8. 8883: 8872: 8851:(42): 15120–1. 8841: 8837: 8812: 8809: 8808: 8807: 8805: 8800: 8797: 8796: 8795: 8793: 8790: 8786: 8765:(31): 5357–61. 8755: 8751: 8730:(9): 1487–505. 8724: 8720: 8707: 8706: 8702: 8661: 8658: 8657: 8656: 8654: 8651: 8644: 8637: 8621: 8617: 8610: 8586: 8579: 8521: 8517: 8486: 8482: 8450: 8446: 8401: 8397: 8357: 8351: 8347: 8316: 8312: 8273: 8269: 8220: 8216: 8185: 8181: 8158: 8154: 8114: 8108: 8104: 8082: 8078: 8072: 8065: 8019: 8015: 7983: 7977: 7973: 7939: 7935: 7895: 7889: 7885: 7840: 7836: 7781: 7774: 7729: 7720: 7675: 7671: 7615: 7611: 7579: 7575: 7536: 7532: 7501: 7497: 7476:(10): 4022–47. 7466: 7462: 7441:(28): 8179–86. 7431: 7427: 7404: 7400: 7367: 7364: 7363: 7362: 7360: 7355: 7352: 7351: 7350: 7348: 7343: 7340: 7339: 7338: 7336: 7331: 7328: 7327: 7326: 7324: 7321: 7317: 7290: 7286: 7254: 7250: 7220: 7216: 7212: 7207: 7203: 7182:(41): 7502–13. 7172: 7168: 7147:(38): 11490–1. 7137: 7133: 7102: 7098: 7067: 7063: 7032: 7028: 6996: 6993: 6989: 6958: 6954: 6933:(19): 6106–14. 6923: 6919: 6896: 6892: 6861: 6857: 6833: 6829: 6808:(26): 4987–90. 6798: 6794: 6763: 6759: 6728: 6724: 6671: 6667: 6646:(19): 6119–30. 6635: 6631: 6591: 6587: 6563: 6559: 6511: 6505: 6501: 6480:(49): 15094–5. 6471: 6466: 6462: 6435: 6431: 6410:(42): 10395–6. 6400: 6396: 6355: 6351: 6319: 6315: 6310: 6306: 6278: 6275: 6271: 6234:(6781): 982–6. 6221: 6217: 6185: 6178: 6146: 6139: 6112: 6108: 6084: 6080: 6057: 6053: 6032:(26): 9138–43. 6021: 6017: 5986: 5979: 5952: 5948: 5917:(28): 7353–63. 5906: 5902: 5895: 5891: 5851: 5846: 5842: 5819: 5815: 5792: 5788: 5764: 5761: 5757: 5726: 5722: 5693: 5689: 5636: 5632: 5625: 5609: 5605: 5586: 5582: 5557: 5553: 5521:10.1.1.549.4404 5514:(5): 1294–314. 5504: 5463: 5431: 5420: 5381: 5377: 5346: 5342: 5321:(37): 12045–8. 5311: 5307: 5268: 5264: 5233: 5229: 5198: 5191: 5160: 5149: 5114: 5105: 5062: 5058: 5019:(2): eaav5340. 5005: 5001: 4940: 4936: 4902: 4898: 4880: 4876: 4846: 4841: 4837: 4827: 4825: 4809:(86): 10642–4. 4795: 4791: 4773: 4769: 4737: 4733: 4688: 4684: 4641: 4637: 4582: 4575: 4562:(10): 879–881. 4550: 4546: 4521: 4517: 4486: 4482: 4459: 4452: 4431:(38): 12394–5. 4421: 4414: 4407: 4385: 4381: 4360:(36): 6766–79. 4350: 4339: 4318:(10): 1005–13. 4308: 4304: 4279: 4275: 4244: 4237: 4208: 4204: 4173: 4158: 4111: 4107: 4073: 4067: 4063: 4056: 4038: 4034: 4011: 4007: 3954: 3950: 3919: 3915: 3881: 3875: 3868: 3830: 3826: 3773: 3769: 3732: 3728: 3724: 3719: 3700:Susumu Kitagawa 3665:Liquid hydrogen 3635:Electrocatalyst 3600: 3585: 3529: 3520: 3487:reverse osmosis 3479: 3456: 3453:, converting CO 3447:propylene oxide 3443: 3431: 3427: 3420: 3416: 3405: 3401: 3397: 3374: 3370: 3358: 3350: 3345: 3340: 3334: 3325: 3304: 3299: 3288: 3283: 3278: 3273: 3271: 3268: 3267: 3240: 3236: 3235: 3233: 3230: 3229: 3207: 3203: 3202: 3200: 3197: 3196: 3174: 3170: 3169: 3167: 3164: 3163: 3141: 3137: 3136: 3134: 3131: 3130: 3114: 3109: 3104: 3102: 3099: 3098: 3081: 3076: 3065: 3060: 3055: 3050: 3048: 3045: 3044: 3040: 3036: 3032: 3028: 3021: 3017: 2997: 2990: 2987: 2986: 2985: 2983: 2976:(also known as 2975: 2971: 2966: 2935: 2915: 2855: 2843:water splitting 2835: 2815: 2751: 2727: 2723: 2699: 2660: 2655: 2651: 2646: 2642: 2623: 2619: 2616: 2612: 2609: 2600: 2588: 2583: 2557: 2556: 2552: 2536: 2535: 2531: 2518: 2517: 2513: 2497: 2496: 2492: 2490: 2487: 2486: 2482: 2475: 2471: 2464: 2448: 2441: 2429:orbital overlap 2393: 2361: 2341: 2328: 2317: 2314: 2296: 2292: 2288: 2284: 2280: 2276: 2272: 2268: 2258: 2249: 2240: 2219: 2189: 2184: 2180: 2176: 2172: 2138: 2133: 2130: 2096: 2092: 2055: 2051: 2035: 2033: 2022:,4″-tribenzoate 2019: 2018:, where BBC=4,4 2016: 2012: 1996: 1994: 1980: 1976: 1975:, where BTE=4,4 1972: 1939: 1931: 1927: 1923: 1919: 1915: 1882: 1847: 1830: 1827: 1823: 1757:specific energy 1750: 1744: 1739: 1717: 1712: 1707: 1705: 1702: 1701: 1690: 1682:Young's modulus 1667: 1659:nanoindentation 1648: 1632: 1624: 1618: 1610: 1592:Young's modulus 1584: 1561:aluminosilicate 1548: 1514: 1510: 1506: 1502: 1496: 1471: 1464: 1454: 1450: 1446: 1442: 1434: 1429: 1424: 1415: 1411: 1407: 1404:carboxylic acid 1400:phosphonic acid 1383: 1379: 1371: 1367: 1364: 1326: 1284: 1282: 1269: 1236: 1228:ethylenediamine 1200: 1195: 1188: 1184: 1172: 1168: 1160: 1124: 1120: 1116: 1108: 1106: 1102: 1098: 1089: 1076: 1017:ethylenediamine 893: 860:) systems. The 842: 827: 769: 750: 722: 718: 714: 708: 693: 669: 621: 596: 588: 567: 558: 545: 536: 523:ligand exchange 519: 517:Ligand exchange 505: 493: 485: 483: 480:TCPP-Co; TCPP-H 479: 475: 471: 446: 437: 412: 406:UiO-type MOFs. 389: 385: 380: 376: 372: 368: 315: 310: 289: 203: 201: 154: 128:supercapacitors 62:porous polymers 28: 23: 22: 15: 12: 11: 5: 12908: 12898: 12897: 12880: 12879: 12876: 12874: 12868: 12867: 12862: 12860: 12854: 12853: 12848: 12846: 12840: 12839: 12836: 12834: 12828: 12827: 12821: 12819: 12813: 12812: 12808: 12801: 12794: 12787: 12785: 12783: 12777: 12776: 12770: 12768: 12762: 12761: 12744: 12742: 12736: 12735: 12727: 12726: 12719: 12712: 12704: 12698: 12697: 12692: 12679: 12678: 12675: 12653: 12646: 12645: 12644: 12642: 12641:External links 12639: 12637: 12636: 12620: 12593:(2): 1163–95. 12577: 12549: 12510: 12483: 12448: 12397: 12380:Applied Energy 12370: 12353: 12289: 12230: 12205: 12187: 12138: 12087: 12025: 11968: 11949: 11892: 11867: 11842: 11821: 11803: 11794: 11769: 11738: 11731: 11713: 11687: 11676: 11638: 11619:(9): 796–854. 11603: 11580: 11570: 11513: 11479: 11429: 11386: 11368: 11323:(9): 1907063. 11306: 11251: 11211: 11207: 11196: 11191:www.gizmag.com 11178: 11133:(6166): 66–9. 11113: 11078: 11042: 10993: 10950: 10909: 10874: 10855:(46): 8630–4. 10839: 10788: 10745: 10688: 10658: 10649: 10600: 10572: 10528: 10492: 10465: 10421: 10362: 10327: 10298:(10): 957–68. 10278: 10249:(5): 812–827. 10229: 10194: 10159: 10132: 10113:(5): 1504–18. 10097: 10055: 10036:(5): 2729–55. 10020: 9977: 9932: 9886: 9859:(2): 115–122. 9843: 9814:(4): 1600371. 9794: 9749: 9695: 9688: 9662: 9635: 9616:(2): 225–235. 9595: 9568: 9533: 9518: 9491: 9472:(11): 3866–8. 9455: 9420: 9398: 9394: 9386: 9377: 9334: 9298: 9263: 9236:(20): 7240–5. 9220: 9205: 9186:(1–3): 68–70. 9170: 9151:(4): 1304–15. 9134: 9113:(30): 4670–9. 9093: 9058: 9020: 8969: 8950:(18): 5666–7. 8934: 8870: 8835: 8810: 8798: 8784: 8749: 8718: 8700: 8659: 8642: 8635: 8615: 8608: 8600:10.2172/882095 8577: 8515: 8496:(6): 925–930. 8480: 8444: 8415:(2): 276–280. 8395: 8368:(17): 174703. 8345: 8326:(17): 174103. 8310: 8267: 8214: 8179: 8152: 8102: 8080: 8076: 8063: 8013: 7971: 7933: 7883: 7834: 7772: 7718: 7669: 7609: 7573: 7546:(12): 124713. 7530: 7511:(17): 6592–4. 7495: 7460: 7425: 7414:(1–2): 32–46. 7398: 7379:(19): 7110–8. 7365: 7353: 7341: 7329: 7315: 7284: 7248: 7229:(18): 4368–9. 7218: 7214: 7210: 7201: 7166: 7131: 7112:(24): 2563–5. 7096: 7061: 7042:(25): 8940–1. 7026: 7007:(19): 2501–4. 6987: 6968:(16): 4880–1. 6952: 6917: 6890: 6871:(44): 8475–9. 6855: 6827: 6792: 6773:(25): 4112–6. 6757: 6722: 6665: 6629: 6585: 6557: 6499: 6469: 6460: 6429: 6394: 6349: 6328:(1–2): 81–85. 6317: 6313: 6304: 6285:(14): 1586–7. 6269: 6215: 6196:(22): 4144–8. 6176: 6157:(9): 2607–14. 6137: 6118:(11): 1287–9. 6106: 6078: 6051: 6015: 5996:(18): 5854–5. 5977: 5958:(35): 4192–4. 5946: 5932:1854/LU-351275 5904: 5900: 5889: 5849: 5840: 5813: 5802:(2): 294–298. 5786: 5767:-Bipyridine". 5755: 5720: 5687: 5630: 5623: 5603: 5580: 5551: 5461: 5418: 5391:(28): 8912–9. 5375: 5356:(9): 3177–80. 5340: 5305: 5262: 5243:(11): 2056–9. 5227: 5189: 5170:(44): 8482–6. 5147: 5128:(11): 3814–5. 5116:Das S, Kim H, 5103: 5056: 4999: 4954:(8): 717–723. 4934: 4905:Putnis, Andrew 4896: 4874: 4844: 4835: 4789: 4767: 4731: 4682: 4635: 4573: 4544: 4515: 4480: 4450: 4412: 4405: 4379: 4337: 4302: 4273: 4235: 4202: 4183:(5): 1284–93. 4156: 4105: 4061: 4054: 4032: 4005: 3948: 3913: 3866: 3824: 3767: 3725: 3723: 3720: 3718: 3717: 3712: 3707: 3702: 3697: 3692: 3687: 3682: 3677: 3672: 3667: 3662: 3657: 3652: 3647: 3642: 3637: 3632: 3627: 3622: 3617: 3612: 3607: 3601: 3599: 3596: 3584: 3581: 3528: 3525: 3519: 3518:Gas separation 3516: 3478: 3475: 3454: 3442: 3439: 3429: 3425: 3418: 3414: 3403: 3399: 3395: 3372: 3368: 3356: 3348: 3344: 3341: 3336:Main article: 3333: 3332:Carbon capture 3330: 3324: 3321: 3302: 3297: 3291: 3281: 3247: 3243: 3214: 3210: 3181: 3177: 3148: 3144: 3112: 3079: 3074: 3068: 3058: 3038: 3034: 3030: 3026: 3019: 3015: 2995: 2988: 2973: 2969: 2965: 2964:Semiconductors 2962: 2934: 2931: 2914: 2911: 2901: 2900: 2897: 2854: 2851: 2834: 2831: 2817: 2816: 2813: 2810: 2807: 2804: 2801: 2798: 2794: 2793: 2790: 2787: 2784: 2781: 2778: 2774: 2773: 2770: 2767: 2764: 2761: 2758: 2754: 2753: 2749: 2746: 2743: 2740: 2737: 2734: 2730: 2729: 2725: 2721: 2718: 2715: 2712: 2709: 2708:size-dependent 2706: 2702: 2701: 2697: 2694: 2691: 2688: 2685: 2682: 2678: 2677: 2674: 2668: 2662: 2658: 2653: 2649: 2644: 2640: 2639:Storage method 2621: 2614: 2608: 2605: 2599: 2596: 2587: 2584: 2569: 2566: 2563: 2560: 2555: 2548: 2545: 2542: 2539: 2534: 2530: 2524: 2521: 2516: 2512: 2506: 2503: 2500: 2495: 2485: 2480: 2473: 2469: 2462: 2447: 2444: 2439: 2392: 2389: 2376: 2375: 2372: 2360: 2357: 2340: 2337: 2327: 2324: 2315: 2312: 2294: 2290: 2282: 2278: 2274: 2270: 2256: 2248: 2245: 2239: 2236: 2235: 2234: 2227: 2218: 2215: 2212: 2211: 2196: 2194: 2191: 2187: 2182: 2178: 2174: 2170: 2166: 2163: 2162: 2150: 2147: 2144: 2136: 2131: 2128: 2124: 2121: 2120: 2113: 2106: 2099: 2094: 2090: 2086: 2080: 2079: 2068: 2065: 2058: 2053: 2049: 2045: 2041: 2040: 2031: 2025: 2023: 2014: 2010: 2006: 2002: 2001: 1992: 1986: 1984: 1983:-dicarboxylate 1970: 1966: 1962: 1961: 1958: 1955: 1952: 1949: 1929: 1925: 1921: 1917: 1913: 1902: 1901: 1893: 1890: 1889:deprotonation, 1880: 1877: 1851:binding energy 1846: 1843: 1793:in automotive 1746:Main article: 1743: 1740: 1738: 1735: 1715: 1689: 1686: 1666: 1663: 1647: 1644: 1631: 1628: 1620:Main article: 1617: 1614: 1608: 1583: 1580: 1547: 1544: 1532:semiconductors 1523:photocatalysis 1512: 1508: 1504: 1494: 1485:, dicopper in 1470: 1467: 1462: 1452: 1448: 1441: 1438: 1432: 1427: 1423: 1420: 1363: 1360: 1325: 1322: 1307:, substituted 1305:divinylbenzene 1280: 1277:polymerization 1268: 1265: 1249:benzyl alcohol 1235: 1232: 1198: 1194: 1191: 1186: 1182: 1170: 1166: 1158: 1122: 1118: 1104: 1100: 1096: 1088: 1085: 1075: 1072: 892: 889: 866:iodosylbenzene 841: 838: 825: 768: 765: 748: 720: 716: 712: 692: 689: 668: 665: 653:semiconductors 619: 595: 592: 586: 566: 563: 557: 554: 544: 541: 535: 534:Metal exchange 532: 518: 515: 504: 501: 491: 481: 477: 473: 469: 461:aluminum oxide 445: 442: 436: 433: 411: 408: 387: 383: 378: 374: 370: 366: 356:green solvents 314: 311: 309: 306: 265: 264: 262: 260: 258: 255: 251: 250: 248: 246: 243: 240: 236: 235: 233: 230: 227: 224: 220: 219: 216: 213: 210: 207: 204: 200:Dimensionality 199: 196: 195: 192: 189: 186: 182: 181: 178: 153: 150: 143: 136: 116:gas separation 108:carbon dioxide 64:consisting of 26: 9: 6: 4: 3: 2: 12907: 12896: 12893: 12892: 12890: 12875: 12873: 12869: 12865: 12861: 12859: 12855: 12851: 12847: 12845: 12841: 12835: 12833: 12829: 12824: 12820: 12818: 12814: 12806: 12799: 12792: 12784: 12782: 12778: 12773: 12769: 12767: 12763: 12759: 12755: 12751: 12747: 12743: 12741: 12737: 12732: 12725: 12720: 12718: 12713: 12711: 12706: 12705: 12702: 12696: 12693: 12691: 12687: 12684: 12681: 12680: 12676: 12674: 12671: 12670: 12665: 12664: 12656: 12633: 12632:Xiaoming Wang 12629: 12624: 12616: 12612: 12608: 12604: 12600: 12596: 12592: 12588: 12581: 12573: 12569: 12565: 12561: 12553: 12545: 12541: 12537: 12533: 12529: 12525: 12521: 12514: 12506: 12502: 12498: 12494: 12487: 12479: 12475: 12471: 12467: 12464:(8): 2776–7. 12463: 12459: 12452: 12444: 12440: 12436: 12432: 12428: 12424: 12420: 12416: 12412: 12408: 12401: 12393: 12389: 12385: 12381: 12374: 12366: 12365: 12357: 12349: 12345: 12340: 12335: 12331: 12327: 12323: 12319: 12315: 12311: 12307: 12300: 12298: 12296: 12294: 12285: 12281: 12276: 12271: 12266: 12261: 12257: 12253: 12249: 12245: 12241: 12234: 12220: 12216: 12209: 12201: 12197: 12191: 12183: 12179: 12174: 12169: 12165: 12161: 12157: 12153: 12149: 12142: 12134: 12130: 12126: 12122: 12118: 12114: 12110: 12106: 12102: 12098: 12091: 12083: 12079: 12075: 12071: 12066: 12061: 12057: 12053: 12049: 12045: 12041: 12037: 12029: 12021: 12017: 12012: 12007: 12003: 11999: 11995: 11991: 11987: 11983: 11979: 11972: 11964: 11960: 11953: 11945: 11941: 11936: 11931: 11927: 11923: 11919: 11915: 11911: 11907: 11903: 11896: 11882: 11878: 11871: 11857: 11853: 11846: 11831: 11825: 11817: 11813: 11809: 11798: 11784: 11780: 11773: 11764: 11759: 11754: 11749: 11742: 11734: 11728: 11724: 11717: 11708: 11703: 11699: 11695: 11691: 11680: 11672: 11668: 11664: 11660: 11657:(2): 724–81. 11656: 11652: 11645: 11643: 11634: 11630: 11626: 11622: 11618: 11614: 11607: 11593:on 2021-02-27 11592: 11588: 11584: 11574: 11566: 11562: 11557: 11552: 11548: 11544: 11540: 11536: 11532: 11528: 11524: 11517: 11508: 11503: 11499: 11495: 11491: 11483: 11475: 11471: 11466: 11461: 11457: 11453: 11449: 11445: 11441: 11433: 11425: 11421: 11417: 11413: 11409: 11405: 11401: 11397: 11390: 11379: 11372: 11364: 11360: 11356: 11352: 11347: 11346:11573/1555186 11342: 11338: 11334: 11330: 11326: 11322: 11318: 11310: 11302: 11298: 11294: 11290: 11286: 11282: 11278: 11274: 11270: 11266: 11262: 11255: 11247: 11243: 11239: 11235: 11231: 11227: 11223: 11219: 11215: 11200: 11193:. 2 May 2014. 11192: 11188: 11182: 11174: 11170: 11166: 11162: 11158: 11154: 11149: 11144: 11140: 11136: 11132: 11128: 11124: 11117: 11109: 11105: 11101: 11097: 11093: 11089: 11082: 11074: 11070: 11066: 11062: 11058: 11054: 11046: 11038: 11034: 11029: 11024: 11020: 11016: 11012: 11008: 11004: 10997: 10989: 10985: 10981: 10977: 10973: 10969: 10965: 10961: 10954: 10946: 10942: 10937: 10932: 10928: 10924: 10920: 10913: 10905: 10901: 10897: 10893: 10890:(2): 356–62. 10889: 10885: 10878: 10870: 10866: 10862: 10858: 10854: 10850: 10843: 10835: 10831: 10827: 10823: 10819: 10815: 10811: 10807: 10803: 10799: 10792: 10784: 10780: 10776: 10772: 10768: 10764: 10760: 10756: 10749: 10741: 10737: 10732: 10727: 10723: 10719: 10715: 10711: 10707: 10703: 10699: 10692: 10684: 10680: 10676: 10672: 10668: 10664: 10653: 10645: 10641: 10636: 10631: 10627: 10623: 10620:(4): 253–65. 10619: 10615: 10611: 10604: 10596: 10592: 10588: 10584: 10576: 10568: 10564: 10560: 10556: 10552: 10548: 10544: 10540: 10532: 10524: 10520: 10516: 10512: 10508: 10504: 10496: 10488: 10484: 10480: 10476: 10469: 10461: 10457: 10453: 10449: 10445: 10441: 10438:(3): 918–21. 10437: 10433: 10425: 10417: 10413: 10408: 10403: 10398: 10393: 10389: 10385: 10381: 10377: 10373: 10366: 10358: 10354: 10350: 10346: 10342: 10338: 10331: 10323: 10319: 10314: 10309: 10305: 10301: 10297: 10293: 10289: 10282: 10274: 10270: 10265: 10260: 10256: 10252: 10248: 10244: 10240: 10233: 10225: 10221: 10217: 10213: 10209: 10205: 10198: 10190: 10186: 10182: 10178: 10174: 10170: 10163: 10155: 10151: 10147: 10143: 10136: 10128: 10124: 10120: 10116: 10112: 10108: 10101: 10093: 10089: 10085: 10081: 10077: 10073: 10066: 10059: 10051: 10047: 10043: 10039: 10035: 10031: 10024: 10015: 10010: 10005: 10000: 9996: 9992: 9988: 9981: 9973: 9969: 9964: 9959: 9955: 9951: 9947: 9943: 9942:ACS Catalysis 9936: 9928: 9924: 9919: 9914: 9910: 9906: 9902: 9898: 9890: 9882: 9878: 9874: 9870: 9866: 9862: 9858: 9854: 9853:Nature Energy 9847: 9839: 9835: 9830: 9825: 9821: 9817: 9813: 9809: 9805: 9798: 9790: 9786: 9781: 9776: 9772: 9768: 9764: 9760: 9753: 9745: 9741: 9737: 9733: 9729: 9725: 9721: 9717: 9714:(4): 157–72. 9713: 9709: 9702: 9700: 9691: 9685: 9681: 9677: 9673: 9666: 9658: 9654: 9650: 9646: 9639: 9631: 9627: 9623: 9619: 9615: 9611: 9604: 9602: 9600: 9591: 9587: 9583: 9579: 9572: 9564: 9560: 9556: 9552: 9548: 9544: 9537: 9529: 9522: 9514: 9510: 9506: 9502: 9495: 9487: 9483: 9479: 9475: 9471: 9467: 9459: 9451: 9447: 9443: 9439: 9436:(4): 1404–6. 9435: 9431: 9424: 9416: 9412: 9408: 9404: 9392: 9381: 9373: 9369: 9365: 9361: 9357: 9353: 9350:(3): 034705. 9349: 9345: 9338: 9330: 9326: 9322: 9318: 9314: 9310: 9302: 9294: 9290: 9286: 9282: 9278: 9274: 9267: 9259: 9255: 9251: 9247: 9243: 9239: 9235: 9231: 9224: 9216: 9209: 9201: 9197: 9193: 9189: 9185: 9181: 9174: 9166: 9162: 9158: 9154: 9150: 9146: 9138: 9130: 9126: 9121: 9116: 9112: 9108: 9104: 9097: 9089: 9085: 9081: 9077: 9073: 9069: 9062: 9054: 9050: 9046: 9042: 9038: 9034: 9027: 9025: 9016: 9012: 9008: 9004: 9000: 8996: 8992: 8988: 8984: 8980: 8973: 8965: 8961: 8957: 8953: 8949: 8945: 8938: 8930: 8926: 8922: 8918: 8913: 8908: 8904: 8900: 8896: 8892: 8888: 8881: 8879: 8877: 8875: 8866: 8862: 8858: 8854: 8850: 8846: 8839: 8831: 8827: 8823: 8819: 8788: 8780: 8776: 8772: 8768: 8764: 8760: 8753: 8745: 8741: 8737: 8733: 8729: 8722: 8714: 8710: 8704: 8696: 8692: 8688: 8684: 8680: 8676: 8672: 8668: 8649: 8647: 8638: 8636:9782875581716 8632: 8628: 8627: 8619: 8611: 8605: 8601: 8597: 8593: 8592: 8584: 8582: 8573: 8569: 8565: 8561: 8557: 8553: 8549: 8545: 8540: 8535: 8531: 8527: 8519: 8511: 8507: 8503: 8499: 8495: 8491: 8484: 8476: 8472: 8468: 8464: 8460: 8456: 8448: 8440: 8436: 8431: 8426: 8422: 8418: 8414: 8410: 8406: 8399: 8391: 8387: 8383: 8379: 8375: 8371: 8367: 8363: 8356: 8349: 8341: 8337: 8333: 8329: 8325: 8321: 8314: 8306: 8302: 8298: 8294: 8290: 8286: 8282: 8278: 8271: 8263: 8259: 8254: 8253:2027.42/62847 8249: 8245: 8244:10.1038/46248 8241: 8237: 8233: 8229: 8225: 8218: 8210: 8206: 8202: 8198: 8194: 8190: 8183: 8175: 8171: 8167: 8163: 8156: 8148: 8144: 8140: 8136: 8132: 8128: 8124: 8120: 8113: 8106: 8098: 8094: 8090: 8086: 8083:and UiO-66". 8070: 8068: 8059: 8055: 8050: 8045: 8041: 8037: 8033: 8029: 8025: 8017: 8009: 8005: 8001: 7997: 7993: 7989: 7982: 7975: 7967: 7963: 7959: 7955: 7951: 7947: 7943: 7937: 7929: 7925: 7921: 7917: 7913: 7909: 7905: 7901: 7894: 7887: 7879: 7875: 7870: 7865: 7861: 7857: 7853: 7849: 7845: 7838: 7830: 7826: 7821: 7816: 7811: 7806: 7802: 7798: 7794: 7790: 7786: 7779: 7777: 7768: 7764: 7759: 7754: 7750: 7746: 7742: 7738: 7734: 7727: 7725: 7723: 7714: 7710: 7705: 7700: 7696: 7692: 7688: 7684: 7680: 7673: 7665: 7661: 7656: 7651: 7646: 7641: 7637: 7633: 7629: 7625: 7621: 7613: 7605: 7601: 7597: 7593: 7590:(12): 981–3. 7589: 7585: 7577: 7569: 7565: 7561: 7557: 7553: 7549: 7545: 7541: 7534: 7526: 7522: 7518: 7514: 7510: 7506: 7499: 7491: 7487: 7483: 7479: 7475: 7471: 7464: 7456: 7452: 7448: 7444: 7440: 7436: 7429: 7421: 7417: 7413: 7409: 7402: 7394: 7390: 7386: 7382: 7378: 7374: 7319: 7311: 7307: 7303: 7299: 7295: 7288: 7280: 7276: 7272: 7268: 7264: 7260: 7252: 7244: 7240: 7236: 7232: 7228: 7224: 7205: 7197: 7193: 7189: 7185: 7181: 7177: 7170: 7162: 7158: 7154: 7150: 7146: 7142: 7135: 7127: 7123: 7119: 7115: 7111: 7107: 7100: 7092: 7088: 7084: 7080: 7077:(7): 1075–8. 7076: 7072: 7065: 7057: 7053: 7049: 7045: 7041: 7037: 7030: 7022: 7018: 7014: 7010: 7006: 7002: 6991: 6983: 6979: 6975: 6971: 6967: 6963: 6956: 6948: 6944: 6940: 6936: 6932: 6928: 6921: 6913: 6909: 6905: 6901: 6894: 6886: 6882: 6878: 6874: 6870: 6866: 6859: 6851: 6847: 6843: 6839: 6831: 6823: 6819: 6815: 6811: 6807: 6803: 6796: 6788: 6784: 6780: 6776: 6772: 6768: 6761: 6753: 6749: 6745: 6741: 6737: 6733: 6726: 6718: 6714: 6709: 6704: 6700: 6696: 6692: 6688: 6684: 6680: 6676: 6669: 6661: 6657: 6653: 6649: 6645: 6641: 6633: 6625: 6621: 6617: 6613: 6609: 6605: 6601: 6597: 6589: 6581: 6577: 6573: 6569: 6561: 6553: 6549: 6545: 6541: 6537: 6533: 6529: 6525: 6521: 6517: 6510: 6503: 6495: 6491: 6487: 6483: 6479: 6475: 6464: 6456: 6452: 6448: 6444: 6440: 6433: 6425: 6421: 6417: 6413: 6409: 6405: 6398: 6390: 6386: 6382: 6378: 6374: 6370: 6366: 6362: 6361: 6353: 6344: 6339: 6335: 6331: 6327: 6323: 6308: 6300: 6296: 6292: 6288: 6284: 6273: 6265: 6261: 6257: 6253: 6249: 6245: 6241: 6237: 6233: 6229: 6225: 6219: 6211: 6207: 6203: 6199: 6195: 6191: 6183: 6181: 6172: 6168: 6164: 6160: 6156: 6152: 6144: 6142: 6133: 6129: 6125: 6121: 6117: 6110: 6102: 6098: 6094: 6090: 6082: 6074: 6070: 6066: 6062: 6055: 6047: 6043: 6039: 6035: 6031: 6027: 6019: 6011: 6007: 6003: 5999: 5995: 5991: 5984: 5982: 5973: 5969: 5965: 5961: 5957: 5950: 5942: 5938: 5933: 5928: 5924: 5920: 5916: 5912: 5908: 5893: 5885: 5881: 5877: 5873: 5869: 5865: 5861: 5857: 5856: 5844: 5836: 5832: 5828: 5824: 5817: 5809: 5805: 5801: 5797: 5790: 5782: 5778: 5774: 5770: 5759: 5751: 5747: 5743: 5739: 5735: 5731: 5724: 5715: 5710: 5706: 5702: 5698: 5691: 5683: 5679: 5675: 5671: 5666: 5661: 5657: 5653: 5649: 5645: 5641: 5634: 5626: 5620: 5616: 5615: 5607: 5599: 5595: 5591: 5584: 5576: 5572: 5568: 5564: 5563: 5555: 5547: 5543: 5539: 5535: 5531: 5527: 5522: 5517: 5513: 5509: 5502: 5500: 5498: 5496: 5494: 5492: 5490: 5488: 5486: 5484: 5482: 5480: 5478: 5476: 5474: 5472: 5470: 5468: 5466: 5457: 5453: 5449: 5445: 5441: 5437: 5429: 5427: 5425: 5423: 5414: 5410: 5406: 5402: 5398: 5394: 5390: 5386: 5379: 5371: 5367: 5363: 5359: 5355: 5351: 5344: 5336: 5332: 5328: 5324: 5320: 5316: 5309: 5301: 5297: 5293: 5289: 5285: 5281: 5277: 5273: 5266: 5258: 5254: 5250: 5246: 5242: 5238: 5231: 5223: 5219: 5215: 5211: 5207: 5203: 5196: 5194: 5185: 5181: 5177: 5173: 5169: 5165: 5158: 5156: 5154: 5152: 5143: 5139: 5135: 5131: 5127: 5123: 5119: 5112: 5110: 5108: 5099: 5095: 5091: 5087: 5083: 5079: 5075: 5071: 5067: 5060: 5052: 5048: 5043: 5038: 5034: 5030: 5026: 5022: 5018: 5014: 5010: 5003: 4995: 4991: 4987: 4983: 4978: 4973: 4969: 4965: 4961: 4957: 4953: 4949: 4945: 4938: 4930: 4926: 4922: 4918: 4915:(1): 87–124. 4914: 4910: 4906: 4900: 4893: 4889: 4885: 4878: 4870: 4866: 4862: 4858: 4854: 4850: 4839: 4824: 4820: 4816: 4812: 4808: 4804: 4800: 4793: 4786: 4782: 4778: 4771: 4763: 4759: 4755: 4751: 4747: 4743: 4735: 4727: 4723: 4718: 4713: 4709: 4705: 4701: 4697: 4693: 4686: 4678: 4674: 4670: 4666: 4662: 4658: 4655:(3): 304–10. 4654: 4650: 4646: 4639: 4631: 4627: 4622: 4617: 4612: 4607: 4603: 4599: 4595: 4591: 4587: 4580: 4578: 4569: 4565: 4561: 4557: 4556: 4548: 4540: 4536: 4532: 4528: 4527: 4519: 4511: 4507: 4503: 4499: 4495: 4491: 4484: 4476: 4472: 4468: 4464: 4457: 4455: 4446: 4442: 4438: 4434: 4430: 4426: 4419: 4417: 4408: 4402: 4398: 4397:10.1142/11909 4394: 4390: 4383: 4375: 4371: 4367: 4363: 4359: 4355: 4348: 4346: 4344: 4342: 4333: 4329: 4325: 4321: 4317: 4313: 4306: 4298: 4294: 4290: 4286: 4285: 4277: 4269: 4265: 4261: 4257: 4253: 4249: 4242: 4240: 4231: 4227: 4223: 4219: 4215: 4214: 4206: 4198: 4194: 4190: 4186: 4182: 4178: 4171: 4169: 4167: 4165: 4163: 4161: 4152: 4148: 4144: 4140: 4136: 4132: 4128: 4124: 4120: 4116: 4109: 4101: 4097: 4093: 4089: 4085: 4081: 4080: 4072: 4065: 4057: 4051: 4047: 4043: 4036: 4028: 4024: 4020: 4016: 4009: 4001: 3997: 3993: 3989: 3984: 3979: 3975: 3971: 3967: 3963: 3959: 3952: 3944: 3940: 3936: 3932: 3928: 3924: 3917: 3909: 3905: 3901: 3897: 3893: 3889: 3888: 3880: 3873: 3871: 3862: 3858: 3853: 3848: 3845:(2): 100757. 3844: 3840: 3836: 3828: 3820: 3816: 3811: 3806: 3802: 3798: 3794: 3790: 3786: 3782: 3778: 3771: 3763: 3759: 3754: 3749: 3745: 3741: 3737: 3730: 3726: 3716: 3713: 3711: 3708: 3706: 3703: 3701: 3698: 3696: 3693: 3691: 3688: 3686: 3683: 3681: 3680:Omar M. Yaghi 3678: 3676: 3673: 3671: 3668: 3666: 3663: 3661: 3658: 3656: 3653: 3651: 3648: 3646: 3643: 3641: 3638: 3636: 3633: 3631: 3628: 3626: 3623: 3621: 3618: 3616: 3613: 3611: 3608: 3606: 3603: 3602: 3595: 3593: 3591: 3580: 3576: 3573: 3569: 3565: 3560: 3556: 3552: 3548: 3547:sensible heat 3539: 3535: 3532: 3524: 3515: 3513: 3509: 3505: 3499: 3496: 3495:ion transport 3492: 3488: 3484: 3474: 3472: 3468: 3464: 3460: 3452: 3449:can act as a 3448: 3438: 3435: 3422: 3412: 3407: 3392: 3390: 3389:covalent bond 3386: 3385:chemisorption 3382: 3378: 3377:physisorption 3366: 3360: 3354: 3339: 3329: 3320: 3300: 3279: 3265: 3245: 3241: 3212: 3208: 3179: 3175: 3146: 3142: 3110: 3077: 3056: 3042: 3023: 3013: 3009: 3005: 3001: 2981: 2979: 2961: 2957: 2954: 2948: 2939: 2930: 2928: 2919: 2910: 2907: 2898: 2895: 2894: 2893: 2890: 2888: 2883: 2878: 2873: 2869: 2859: 2850: 2848: 2844: 2840: 2830: 2828: 2824: 2811: 2808: 2805: 2802: 2799: 2796: 2795: 2791: 2788: 2785: 2782: 2779: 2776: 2775: 2771: 2768: 2765: 2762: 2759: 2756: 2755: 2752:on materials 2747: 2744: 2741: 2738: 2735: 2732: 2731: 2719: 2716: 2713: 2710: 2707: 2704: 2703: 2695: 2692: 2689: 2686: 2683: 2680: 2679: 2675: 2672: 2669: 2666: 2663: 2650: 2648: (mass%) 2641: 2638: 2637: 2634: 2632: 2628: 2604: 2595: 2593: 2553: 2532: 2528: 2514: 2510: 2493: 2484: 2479: 2468: 2461: 2457: 2453: 2443: 2436: 2432: 2430: 2425: 2421: 2417: 2413: 2409: 2408:chemisorption 2405: 2404:physisorption 2400: 2397: 2388: 2386: 2382: 2373: 2370: 2369: 2368: 2366: 2356: 2354: 2350: 2346: 2345:physisorption 2336: 2332: 2323: 2319: 2310: 2306: 2302: 2266: 2262: 2254: 2244: 2232: 2228: 2225: 2224: 2223: 2209: 2206:bound in the 2205: 2201: 2197: 2195: 2192: 2185: 2167: 2165: 2164: 2160: 2156: 2151: 2148: 2145: 2142: 2134: 2125: 2123: 2122: 2118: 2114: 2111: 2107: 2104: 2100: 2097: 2087: 2085: 2082: 2081: 2077: 2073: 2069: 2066: 2063: 2059: 2056: 2046: 2043: 2042: 2038: 2029: 2026: 2024: 2017: 2007: 2004: 2003: 1999: 1990: 1987: 1985: 1974: 1967: 1964: 1963: 1959: 1956: 1953: 1950: 1947: 1946: 1940: 1937: 1933: 1911: 1907: 1898: 1895:the bridging 1894: 1891: 1888: 1887: 1878: 1875: 1874: 1873: 1871: 1867: 1863: 1860: 1857:-based MOFs, 1856: 1852: 1842: 1840: 1836: 1820: 1815: 1811: 1802: 1798: 1796: 1792: 1786: 1783: 1779: 1778:physisorption 1774: 1770: 1765: 1763: 1758: 1754: 1749: 1734: 1713: 1694: 1685: 1683: 1679: 1671: 1662: 1660: 1656: 1652: 1643: 1640: 1636: 1627: 1623: 1613: 1606: 1605: 1600: 1599: 1593: 1589: 1579: 1577: 1573: 1569: 1565: 1562: 1558: 1554: 1543: 1541: 1537: 1533: 1529: 1524: 1519: 1500: 1492: 1488: 1484: 1480: 1476: 1466: 1460: 1437: 1419: 1414:, and the 6,6 1405: 1401: 1397: 1393: 1389: 1377: 1374:-binaphthyl ( 1359: 1356: 1352: 1348: 1343: 1339: 1338:enantiomorphs 1335: 1331: 1321: 1318: 1314: 1310: 1306: 1302: 1298: 1297:cyclopentanol 1294: 1290: 1278: 1274: 1273:photochemical 1264: 1262: 1258: 1254: 1250: 1246: 1245:Heck reaction 1241: 1231: 1229: 1225: 1221: 1216: 1212: 1208: 1204: 1190: 1180: 1176: 1164: 1156: 1152: 1147: 1146:benzaldehydes 1142: 1138: 1134: 1129: 1114: 1094: 1080: 1071: 1069: 1065: 1064:deprotonation 1061: 1057: 1053: 1049: 1045: 1041: 1037: 1032: 1030: 1026: 1022: 1018: 1014: 1011: 1007: 1003: 998: 996: 992: 991:malononitrile 988: 984: 980: 976: 971: 967: 965: 961: 957: 953: 949: 945: 941: 937: 934: 930: 926: 922: 918: 914: 910: 906: 902: 898: 888: 886: 882: 878: 874: 871: 867: 863: 859: 855: 852:) as well as 851: 847: 837: 835: 831: 823: 820: 816: 812: 806: 804: 800: 797: 793: 789: 785: 781: 777: 773: 764: 762: 758: 754: 746: 745:nanoparticles 742: 738: 734: 730: 726: 706: 697: 688: 686: 682: 673: 664: 662: 658: 654: 650: 646: 642: 638: 633: 630: 626: 617: 613: 609: 600: 591: 584: 580: 576: 572: 571:chemisorption 562: 553: 551: 540: 531: 529: 524: 514: 511: 500: 498: 494: 467: 462: 458: 453: 450: 449:Pseudomorphic 441: 432: 429: 425: 420: 416: 407: 403: 400: 396: 391: 364: 359: 357: 352: 349: 343: 340: 334: 332: 330: 326: 320: 301: 297: 295: 294:trimesic acid 287: 282: 280: 276: 272: 263: 261: 259: 256: 253: 252: 249: 247: 244: 241: 238: 237: 234: 231: 228: 225: 222: 221: 217: 214: 211: 208: 205: 197: 193: 190: 187: 184: 183: 176: 172: 166: 164: 160: 149: 147: 141: 140: 134: 131: 129: 125: 121: 117: 113: 109: 105: 99: 97: 93: 89: 83: 81: 77: 74: 70: 67: 63: 59: 55: 48: 44: 37: 32: 19: 12804: 12797: 12790: 12730: 12659: 12623: 12590: 12586: 12580: 12563: 12559: 12552: 12527: 12523: 12513: 12496: 12492: 12486: 12461: 12457: 12451: 12410: 12406: 12400: 12383: 12379: 12373: 12363: 12356: 12316:(1): 15284. 12313: 12309: 12247: 12243: 12233: 12222:. Retrieved 12218: 12208: 12199: 12190: 12155: 12151: 12141: 12100: 12096: 12090: 12065:10754/665527 12039: 12035: 12028: 11985: 11981: 11971: 11952: 11909: 11905: 11895: 11884:. Retrieved 11880: 11870: 11859:. Retrieved 11855: 11845: 11834:. Retrieved 11824: 11807: 11797: 11786:. Retrieved 11782: 11772: 11741: 11722: 11716: 11697: 11693: 11679: 11654: 11650: 11616: 11612: 11606: 11595:. Retrieved 11591:the original 11586: 11579:"MOFs for CO 11573: 11530: 11526: 11516: 11497: 11494:CrystEngComm 11493: 11482: 11447: 11443: 11432: 11399: 11395: 11389: 11371: 11320: 11316: 11309: 11268: 11264: 11254: 11221: 11217: 11199: 11190: 11181: 11130: 11126: 11116: 11091: 11087: 11081: 11056: 11052: 11045: 11010: 11006: 10996: 10963: 10959: 10953: 10926: 10922: 10912: 10887: 10883: 10877: 10852: 10848: 10842: 10801: 10797: 10791: 10758: 10754: 10748: 10705: 10701: 10691: 10666: 10662: 10652: 10617: 10613: 10603: 10586: 10582: 10575: 10542: 10538: 10531: 10506: 10502: 10495: 10478: 10474: 10468: 10435: 10431: 10424: 10379: 10375: 10365: 10340: 10336: 10330: 10295: 10291: 10281: 10246: 10242: 10232: 10207: 10204:RSC Advances 10203: 10197: 10172: 10168: 10162: 10145: 10141: 10135: 10110: 10106: 10100: 10075: 10071: 10058: 10033: 10029: 10023: 10014:10397/100058 9994: 9990: 9980: 9963:10397/100175 9945: 9941: 9935: 9918:10397/101550 9900: 9896: 9889: 9856: 9852: 9846: 9811: 9807: 9797: 9780:10397/101525 9762: 9758: 9752: 9711: 9707: 9671: 9665: 9648: 9644: 9638: 9613: 9609: 9581: 9577: 9571: 9546: 9542: 9536: 9527: 9521: 9504: 9500: 9494: 9469: 9465: 9458: 9433: 9429: 9423: 9406: 9402: 9390: 9380: 9347: 9343: 9337: 9312: 9308: 9301: 9276: 9272: 9266: 9233: 9229: 9223: 9214: 9208: 9183: 9179: 9173: 9148: 9144: 9137: 9110: 9106: 9096: 9071: 9067: 9061: 9036: 9032: 8982: 8978: 8972: 8947: 8943: 8937: 8894: 8890: 8848: 8844: 8838: 8821: 8817: 8787: 8762: 8758: 8752: 8727: 8721: 8712: 8703: 8670: 8666: 8625: 8618: 8590: 8529: 8525: 8518: 8493: 8489: 8483: 8458: 8454: 8447: 8412: 8409:CrystEngComm 8408: 8398: 8365: 8361: 8348: 8323: 8319: 8313: 8280: 8276: 8270: 8227: 8223: 8217: 8192: 8188: 8182: 8165: 8161: 8155: 8122: 8118: 8105: 8088: 8084: 8031: 8027: 8016: 7991: 7987: 7974: 7949: 7945: 7936: 7903: 7899: 7886: 7851: 7847: 7837: 7792: 7788: 7740: 7736: 7686: 7682: 7672: 7627: 7623: 7612: 7587: 7583: 7576: 7543: 7539: 7533: 7508: 7504: 7498: 7473: 7469: 7463: 7438: 7434: 7428: 7411: 7407: 7401: 7376: 7372: 7318: 7296:(3): 284–6. 7293: 7287: 7262: 7258: 7251: 7226: 7222: 7204: 7179: 7175: 7169: 7144: 7140: 7134: 7109: 7099: 7074: 7070: 7064: 7039: 7035: 7029: 7004: 7000: 6990: 6965: 6961: 6955: 6930: 6926: 6920: 6903: 6899: 6893: 6868: 6864: 6858: 6844:(14): 3279. 6841: 6837: 6830: 6805: 6801: 6795: 6770: 6766: 6760: 6738:(5): 542–6. 6735: 6731: 6725: 6682: 6678: 6668: 6643: 6639: 6632: 6599: 6595: 6588: 6571: 6567: 6560: 6519: 6515: 6502: 6477: 6473: 6463: 6446: 6442: 6438: 6432: 6407: 6403: 6397: 6364: 6358: 6352: 6325: 6321: 6307: 6282: 6272: 6231: 6227: 6218: 6193: 6189: 6154: 6150: 6115: 6109: 6092: 6088: 6081: 6064: 6060: 6054: 6029: 6025: 6018: 5993: 5989: 5955: 5949: 5914: 5910: 5892: 5859: 5853: 5843: 5826: 5822: 5816: 5799: 5795: 5789: 5772: 5768: 5758: 5733: 5729: 5723: 5704: 5700: 5690: 5647: 5643: 5633: 5613: 5606: 5597: 5593: 5583: 5566: 5560: 5554: 5511: 5507: 5439: 5435: 5388: 5384: 5378: 5353: 5349: 5343: 5318: 5314: 5308: 5275: 5271: 5265: 5240: 5236: 5230: 5205: 5201: 5167: 5163: 5125: 5121: 5073: 5069: 5059: 5016: 5012: 5002: 4951: 4947: 4937: 4912: 4908: 4899: 4883: 4877: 4852: 4848: 4838: 4826:. Retrieved 4806: 4802: 4792: 4776: 4770: 4745: 4741: 4734: 4699: 4695: 4685: 4652: 4648: 4638: 4593: 4590:RSC Advances 4589: 4559: 4555:CrystEngComm 4553: 4547: 4530: 4526:CrystEngComm 4524: 4518: 4493: 4489: 4483: 4466: 4462: 4428: 4424: 4388: 4382: 4357: 4353: 4315: 4311: 4305: 4288: 4282: 4276: 4251: 4247: 4211: 4205: 4180: 4176: 4118: 4114: 4108: 4083: 4077: 4064: 4041: 4035: 4018: 4014: 4008: 3965: 3961: 3951: 3926: 3922: 3916: 3891: 3885: 3842: 3838: 3827: 3784: 3780: 3770: 3743: 3739: 3729: 3645:Gérard Férey 3592: 3589: 3586: 3577: 3544: 3533: 3530: 3521: 3500: 3483:desalination 3480: 3444: 3423: 3408: 3393: 3391:formation). 3361: 3346: 3326: 3043: 3024: 2982: 2967: 2958: 2949: 2940: 2936: 2924: 2902: 2891: 2865: 2846: 2836: 2826: 2822: 2820: 2696:Compressed H 2670: 2664: 2630: 2626: 2610: 2601: 2589: 2477: 2466: 2459: 2449: 2437: 2433: 2401: 2394: 2387:of the MOF. 2377: 2362: 2342: 2333: 2329: 2320: 2250: 2241: 2238:Surface area 2220: 2168: 2140: 2126: 2088: 2047: 2036: 2027: 2008: 1997: 1988: 1973:O(BTE)(BPDC) 1968: 1938: 1934: 1903: 1884: 1859:heterocyclic 1848: 1807: 1787: 1769:gas cylinder 1766: 1751: 1737:Applications 1699: 1676: 1649: 1633: 1625: 1603: 1602: 1597: 1596: 1585: 1549: 1528:quantum dots 1472: 1443: 1425: 1365: 1355:ionic liquid 1327: 1292: 1288: 1270: 1253:benzaldehyde 1240:noble metals 1237: 1223: 1210: 1206: 1196: 1174: 1140: 1090: 1033: 1025:benzaldehyde 999: 987:benzaldehyde 968: 946:. While the 936:carboxylates 921:coordination 899:make use of 894: 843: 815:benzaldehyde 807: 780:benzaldehyde 770: 702: 678: 634: 605: 568: 559: 546: 537: 520: 510:counter-ions 506: 454: 447: 438: 421: 417: 413: 404: 392: 360: 353: 344: 335: 328: 324: 316: 283: 278: 268: 163:coordination 155: 132: 100: 84: 57: 53: 52: 11875:Greeves N. 11850:Greeves N. 11783:ZME Science 11700:: 562–567. 11613:ChemSusChem 10481:(6): 2396. 7689:: 113–125. 7584:ChemSusChem 6685:(1): 4326. 6449:: 226–236. 5775:(3): 1151. 5278:: 163–174. 4977:2433/158311 4717:10550/74201 4086:(8): v–vi. 3551:latent heat 3491:dehydration 3467:lanthanides 2673: (bar) 2657: (kg H 2452:gravimetric 2420:ionic bonds 2143:-tetrazole) 2072:gravimetric 1855:carboxylate 1817:a measured 1557:microporous 1479:hydrophobic 1386:-naphthol ( 1261:cyclohexane 1115:(bpy) with 1093:Lewis acids 913:amino acids 679:Like other 661:conjugation 649:hydrophobic 629:calcination 402:standards. 12628:Lipeng Xin 12530:: 137590. 12386:: 87–104. 12224:2021-01-22 11886:2018-02-12 11861:2018-02-12 11836:2018-02-11 11788:2022-01-07 11597:2021-04-07 11059:: 110199. 10966:: 110818. 10708:(1): 485. 8816:storage". 8713:Energy.gov 8539:1510.08220 8461:: 213050. 5829:(6): 937. 5736:: 117660. 5707:(4): 448. 3746:: 152377. 3722:References 3630:Cryogenics 3605:BET theory 3553:. Typical 2906:redshifted 2667: (°C) 2456:volumetric 2396:Adsorption 2305:fuel cells 2200:potentials 2155:spin state 2110:volumetric 2076:volumetric 1910:main-group 1795:fuel cells 1657:(DFT) and 1536:insulators 1518:biomimetic 1347:handedness 1330:homochiral 1309:acetylenes 1179:thioethers 1113:bipyridine 1036:Kim Kimoon 944:amino acid 940:amino acid 907:- and two 901:metal ions 881:porphyrins 796:Lewis acid 792:Lewis acid 776:Lewis acid 761:alkylation 657:insulators 271:topologies 202:of Organic 36:octahedron 12800:Ni(2-ain) 12793:Ni(3-ain) 12662:(Q909212) 12544:249814876 12219:New Atlas 12082:222318003 11424:240999292 11363:210882482 11173:206552714 11073:216532709 11007:ACS Omega 10988:202571262 9972:212979103 9948:: 81–92. 9927:104572148 9881:139760912 9789:139305086 9765:: 34–60. 8475:203136239 8091:: 48–53. 6624:129944197 5750:224863042 5701:Catalysts 5682:104347751 5644:ACS Omega 5516:CiteSeerX 4994:205407412 4869:219915159 4726:208737085 4510:214492546 4046:Wiley-VCH 4000:233239286 3861:2666-3864 3801:1433-7851 3762:1385-8947 3568:desiccant 3564:dew point 3559:dew point 3406:desorbs. 3343:Adsorbent 2887:quenching 2533:ρ 2424:adsorbate 2365:spillover 2347:and weak 2339:Pore size 2186:, where H 2135:, where H 2037:At 298 K: 1998:At 298 K: 1960:Comments 1954:Structure 1897:bidentate 1814:HOMO-LUMO 1753:Molecular 1459:Zirconium 1378:) and 1,1 1155:oxidation 1151:aldehydes 1056:zinc ions 1052:pyridines 979:catalysis 933:aspartate 925:aspartate 917:aspartate 915:(L- or D- 897:catalysis 877:manganese 870:manganese 858:porphyrin 850:porphyrin 822:aldehydes 811:aldehydes 733:palladium 705:aldehydes 618:(F, OH, H 594:Catalysis 459:(ALD) of 363:ball mill 308:Synthesis 152:Structure 142:reticulum 124:catalysis 96:amorphous 12889:Category 12864:TUDMOF-1 12774:, UiO-67 12686:Archived 12615:20303181 12607:21939288 12478:19206233 12443:22414091 12435:21381128 12348:30327543 12284:33067237 12182:34496451 12133:25946621 12125:27387945 12074:33047772 12020:27291101 11944:29487910 11808:ChemRxiv 11671:22204561 11633:19731282 11565:26041070 11533:: 7240. 11474:31893225 11355:31975468 11301:53027396 11293:30323335 11238:24750124 11165:24310609 11108:29286625 11037:29623304 10980:31518870 10945:28355489 10904:26686054 10869:20715239 10834:30958347 10826:28370555 10783:29165997 10740:28883637 10683:26947251 10644:27163056 10567:28271891 10523:26459775 10452:26672441 10416:24108356 10357:28618777 10322:21648429 10273:22919122 10189:27470090 10127:15686384 10092:25588358 10050:20151630 9838:28435777 9736:15085273 9630:44187103 9563:17999501 9486:19292487 9450:19140765 9372:22280775 9329:37672758 9293:22907782 9258:22513503 9165:16433549 9129:16028207 9053:17177438 9007:12750515 8964:15125649 8929:25072457 8921:20595583 8865:19799422 8779:20544763 8744:19421589 8695:21366076 8687:27792339 8572:45890138 8564:27144237 8510:26291357 8439:25722647 8390:23656148 8305:16606151 8209:18636710 8147:46942254 8139:29873475 8058:31117654 8008:26283122 7966:19916507 7928:19681088 7878:35119185 7829:20479264 7767:32190239 7713:28612864 7664:32832640 7604:19053135 7568:16392517 7525:16903710 7490:17927155 7455:17585800 7393:15884953 7310:16391735 7279:18693690 7243:11457217 7196:19691074 7161:13129339 7126:16779478 7091:17183496 7056:15969557 7021:15127435 6982:17394325 6947:15137776 6885:17912730 6822:17514689 6787:16721889 6752:12569485 6717:30337531 6660:18402452 6616:31017171 6552:29483796 6544:16179475 6494:18020331 6424:11603994 6389:10024237 6299:15263930 6256:10801124 6210:18435442 6171:17288419 6132:18389109 6046:20536239 6010:18399629 5972:18802526 5941:16881030 5884:10024237 5674:31458334 5546:10443172 5538:19384439 5456:29069547 5413:27345035 5370:25714137 5335:27593173 5300:28621353 5257:25532612 5222:23688075 5184:18825761 5142:19256486 5098:14793796 5090:26509213 5051:30783628 4986:22728321 4823:23000779 4762:29542320 4677:26657328 4630:35520409 4445:16984171 4374:18688902 4332:17580979 4268:10602176 4230:17345731 4197:19384438 4151:35798005 4143:16293756 3992:33859380 3943:24707980 3908:96853486 3819:34825766 3655:Hydrogen 3598:See also 3512:sunlight 3451:catalyst 3441:Catalyst 3365:flue gas 3004:band gap 3000:graphene 2720:Liquid H 2676:Remarks 2592:buoyancy 2416:covalent 2265:volatile 2253:enthalpy 2103:aromatic 2064:(lower). 2062:moieties 2028:At 77 K: 1989:At 77 K: 1841:(COFs). 1568:zeolites 1564:minerals 1553:zeolites 1540:band gap 1491:oxidases 1396:pyridine 1313:Kitagawa 1220:electron 1163:alcohols 1040:pyridine 1029:nitriles 1010:nitrogen 995:nitriles 970:Kitagawa 834:catalyst 819:aromatic 799:catalyst 788:Brønsted 757:biphenyl 575:platinum 399:sublimed 348:nucleate 339:porosity 104:hydrogen 69:clusters 12850:COMOC-2 12825:, DUT-5 12807:Ni(pba) 12786:Ni(ina) 12746:HKUST-1 12655:Scholia 12415:Bibcode 12339:6191459 12318:Bibcode 12275:7567601 12252:Bibcode 12160:Bibcode 12105:Bibcode 12097:Science 12044:Bibcode 12011:4909987 11990:Bibcode 11935:5817922 11914:Bibcode 11763:1003992 11556:4468859 11535:Bibcode 11465:6936098 11404:Bibcode 11325:Bibcode 11273:Bibcode 11246:5714037 11157:1254264 11135:Bibcode 11127:Science 11028:5879486 10806:Bibcode 10775:1412046 10731:5589857 10710:Bibcode 10635:4850516 10547:Bibcode 10460:2618108 10407:3808657 10384:Bibcode 10313:3777245 10264:3423226 10212:Bibcode 9861:Bibcode 9829:5396165 9744:6985612 9716:Bibcode 9352:Bibcode 9238:Bibcode 9188:Bibcode 9076:Bibcode 9015:3025509 8987:Bibcode 8979:Science 8899:Bibcode 8891:Science 8544:Bibcode 8430:4338503 8370:Bibcode 8328:Bibcode 8285:Bibcode 8262:4310761 8232:Bibcode 8049:7007208 7869:9401003 7820:2890448 7797:Bibcode 7758:7066669 7691:Bibcode 7655:7439611 7632:Bibcode 7548:Bibcode 6708:6194069 6687:Bibcode 6524:Bibcode 6516:Science 6369:Bibcode 6360:Science 6264:1159701 6236:Bibcode 5864:Bibcode 5855:Science 5665:6643801 5405:1388673 5280:Bibcode 5042:6368424 5021:Bibcode 4956:Bibcode 4917:Bibcode 4828:22 June 4657:Bibcode 4621:9054116 4598:Bibcode 4123:Bibcode 4115:Science 4088:Bibcode 3970:Bibcode 3810:9300199 3572:sorbent 3012:fractal 2978:HKUST-1 2877:LaPorte 2862:MOF-76. 2847:in situ 2803:>150 2786:>100 2381:phonons 2261:ligands 2044:MOF-177 2005:MOF-200 1965:MOF-210 1951:Formula 1886:in situ 1862:azolate 1804:MOF-177 1639:HKUST-1 1635:HKUST-1 1630:HKUST-1 1499:HKUST-1 1475:enzymes 1431:Ti(OPr) 1382:-bi-2,2 1351:helices 1349:of the 1342:crystal 1334:achiral 1317:radical 1301:Styrene 1257:benzene 1137:HKUST-1 1068:alcohol 975:cadmium 964:epoxide 862:zeolite 784:acetone 753:toluene 645:dynamic 641:enzymes 625:xylenes 616:ligands 82:(BDC). 76:ligands 73:organic 12823:MIL-53 12772:UIO-66 12754:MIL-53 12613:  12605:  12542:  12476:  12441:  12433:  12346:  12336:  12282:  12272:  12180:  12131:  12123:  12080:  12072:  12018:  12008:  11942:  11932:  11760:  11729:  11669:  11631:  11563:  11553:  11472:  11462:  11422:  11361:  11353:  11299:  11291:  11244:  11236:  11171:  11163:  11155:  11106:  11071:  11035:  11025:  10986:  10978:  10943:  10902:  10867:  10832:  10824:  10781:  10773:  10738:  10728:  10681:  10642:  10632:  10565:  10521:  10458:  10450:  10414:  10404:  10355:  10320:  10310:  10271:  10261:  10187:  10125:  10090:  10048:  9970:  9925:  9879:  9836:  9826:  9787:  9742:  9734:  9686:  9628:  9561:  9484:  9448:  9370:  9327:  9291:  9256:  9163:  9127:  9051:  9013:  9005:  8962:  8927:  8919:  8863:  8777:  8742:  8693:  8685:  8633:  8606:  8570:  8562:  8508:  8473:  8437:  8427:  8388:  8303:  8260:  8224:Nature 8207:  8145:  8137:  8056:  8046:  8006:  7964:  7926:  7876:  7866:  7827:  7817:  7765:  7755:  7711:  7662:  7652:  7602:  7566:  7523:  7488:  7453:  7391:  7359:, and 7335:, Ar, 7308:  7277:  7241:  7194:  7159:  7124:  7089:  7054:  7019:  6980:  6945:  6883:  6820:  6785:  6750:  6715:  6705:  6658:  6622:  6614:  6550:  6542:  6492:  6422:  6387:  6297:  6262:  6254:  6228:Nature 6224:Seo JS 6208:  6169:  6130:  6044:  6008:  5970:  5939:  5882:  5748:  5680:  5672:  5662:  5621:  5544:  5536:  5518:  5454:  5411:  5403:  5368:  5333:  5298:  5255:  5220:  5182:  5140:  5096:  5088:  5049:  5039:  4992:  4984:  4867:  4821:  4760:  4724:  4675:  4628:  4618:  4508:  4443:  4403:  4372:  4330:  4266:  4228:  4195:  4149:  4141:  4052:  3998:  3990:  3941:  3906:  3859:  3817:  3807:  3799:  3760:  3590:type-I 3463:biogas 3228:, and 3018:(HITP) 2800:<40 2780:<18 2687:<40 2309:dipole 2289:Mo(CO) 2277:)V(CO) 2204:ligand 2117:dipole 2105:rings. 2093:O(BDC) 2052:O(BTB) 2013:O(BBC) 1900:pores. 1773:adsorb 1678:MIL-53 1665:MIL-53 1402:, and 1224:et al. 1175:et al. 1141:et al. 956:copper 952:porous 948:nickel 909:copper 905:nickel 737:olefin 731:, the 667:Design 137:(from 12877:ZIF-8 12758:DUT-5 12750:MOF-5 12733:(MOF) 12611:S2CID 12540:S2CID 12439:S2CID 12129:S2CID 12078:S2CID 11420:S2CID 11381:(PDF) 11359:S2CID 11297:S2CID 11242:S2CID 11169:S2CID 11069:S2CID 10984:S2CID 10830:S2CID 10456:S2CID 10068:(PDF) 9968:S2CID 9923:S2CID 9877:S2CID 9785:S2CID 9740:S2CID 9626:S2CID 9011:S2CID 8925:S2CID 8691:S2CID 8568:S2CID 8534:arXiv 8471:S2CID 8358:(PDF) 8258:S2CID 8143:S2CID 8115:(PDF) 8079:(BTC) 7984:(PDF) 7896:(PDF) 6620:S2CID 6548:S2CID 6512:(PDF) 6439:trans 6316:(BTC) 6260:S2CID 5903:(btc) 5746:S2CID 5678:S2CID 5600:(51). 5542:S2CID 5118:Kim K 5094:S2CID 4990:S2CID 4865:S2CID 4722:S2CID 4506:S2CID 4147:S2CID 4074:(PDF) 3996:S2CID 3904:S2CID 3882:(PDF) 3457:into 3387:(via 3383:) or 3379:(via 3355:in CO 3029:(THT) 2972:(BTC) 2231:Yaghi 2208:axial 2173:(BTC) 2084:MOF-5 1928:(BDC) 1920:(BTB) 1651:MOF-5 1646:MOF-5 1447:Zn(NO 1445:with 1410:, 4,4 1388:BINOL 1376:BINAP 1128:imine 1117:Cd(NO 1027:with 1013:atoms 1002:Férey 989:with 983:amide 885:dimer 711:-bpy) 577:with 386:(BTC) 377:(BTC) 369:(BTC) 281:net. 275:MOF-5 139:Latin 122:, in 118:, in 66:metal 12603:PMID 12474:PMID 12431:PMID 12344:PMID 12280:PMID 12178:PMID 12121:PMID 12070:PMID 12016:PMID 11940:PMID 11758:OSTI 11727:ISBN 11667:PMID 11629:PMID 11561:PMID 11470:PMID 11351:PMID 11289:PMID 11234:PMID 11161:PMID 11153:OSTI 11104:PMID 11033:PMID 10976:PMID 10941:PMID 10900:PMID 10865:PMID 10822:PMID 10779:PMID 10771:OSTI 10736:PMID 10679:PMID 10640:PMID 10563:PMID 10519:PMID 10448:PMID 10412:PMID 10353:PMID 10318:PMID 10269:PMID 10185:PMID 10123:PMID 10088:PMID 10046:PMID 9834:PMID 9732:PMID 9684:ISBN 9559:PMID 9482:PMID 9446:PMID 9368:PMID 9325:PMID 9289:PMID 9254:PMID 9161:PMID 9125:PMID 9049:PMID 9003:PMID 8960:PMID 8917:PMID 8861:PMID 8804:and 8775:PMID 8740:PMID 8683:PMID 8631:ISBN 8604:ISBN 8560:PMID 8506:PMID 8435:PMID 8386:PMID 8301:PMID 8205:PMID 8166:2016 8135:PMID 8054:PMID 8004:PMID 7962:PMID 7924:PMID 7874:PMID 7825:PMID 7763:PMID 7709:PMID 7660:PMID 7600:PMID 7564:PMID 7521:PMID 7486:PMID 7451:PMID 7389:PMID 7306:PMID 7275:PMID 7239:PMID 7192:PMID 7157:PMID 7122:PMID 7087:PMID 7052:PMID 7017:PMID 6978:PMID 6943:PMID 6881:PMID 6818:PMID 6783:PMID 6748:PMID 6713:PMID 6656:PMID 6612:PMID 6540:PMID 6490:PMID 6420:PMID 6385:PMID 6295:PMID 6252:PMID 6206:PMID 6167:PMID 6128:PMID 6042:PMID 6006:PMID 5968:PMID 5937:PMID 5880:PMID 5670:PMID 5619:ISBN 5534:PMID 5452:PMID 5409:PMID 5401:OSTI 5366:PMID 5331:PMID 5296:PMID 5253:PMID 5218:PMID 5180:PMID 5138:PMID 5086:PMID 5047:PMID 4982:PMID 4830:2020 4819:PMID 4758:PMID 4673:PMID 4626:PMID 4441:PMID 4401:ISBN 4370:PMID 4328:PMID 4289:2007 4264:PMID 4226:PMID 4193:PMID 4139:PMID 4050:ISBN 3988:PMID 3939:PMID 3857:ISSN 3815:PMID 3797:ISSN 3758:ISSN 3549:and 3508:RbCl 3504:LiCl 3434:NETL 3293:HHTP 3070:HHTP 2823:high 2714:−252 2711:70.8 2481:pore 2474:bulk 2454:and 2418:and 2287:and 1948:Name 1916:(OH) 1837:and 1808:The 1609:0.35 1507:O(CO 1275:and 1103:• 4H 1048:zinc 790:vs. 755:and 484:=4,4 476:(OH) 365:. Cu 106:and 58:MOFs 12595:doi 12591:112 12568:doi 12532:doi 12528:448 12501:doi 12466:doi 12462:131 12423:doi 12388:doi 12384:104 12334:PMC 12326:doi 12270:PMC 12260:doi 12168:doi 12113:doi 12101:353 12060:hdl 12052:doi 12006:PMC 11998:doi 11959:doi 11930:PMC 11922:doi 11812:doi 11748:doi 11702:doi 11659:doi 11655:112 11621:doi 11551:PMC 11543:doi 11502:doi 11460:PMC 11452:doi 11412:doi 11400:133 11341:hdl 11333:doi 11281:doi 11226:doi 11222:136 11143:doi 11131:343 11096:doi 11061:doi 11057:302 11023:PMC 11015:doi 10968:doi 10964:201 10931:doi 10892:doi 10857:doi 10814:doi 10763:doi 10759:117 10726:PMC 10718:doi 10671:doi 10630:PMC 10622:doi 10591:doi 10555:doi 10511:doi 10483:doi 10440:doi 10402:PMC 10392:doi 10380:110 10345:doi 10341:139 10308:PMC 10300:doi 10259:PMC 10251:doi 10220:doi 10177:doi 10150:doi 10115:doi 10111:127 10080:doi 10038:doi 10034:110 10009:hdl 9999:doi 9958:hdl 9950:doi 9913:hdl 9905:doi 9869:doi 9824:PMC 9816:doi 9775:hdl 9767:doi 9724:doi 9676:doi 9653:doi 9618:doi 9586:doi 9582:113 9551:doi 9547:129 9509:doi 9474:doi 9470:131 9438:doi 9434:131 9411:doi 9407:723 9360:doi 9348:136 9317:doi 9313:145 9281:doi 9246:doi 9196:doi 9184:456 9153:doi 9149:128 9115:doi 9084:doi 9072:178 9041:doi 9037:128 8995:doi 8983:300 8952:doi 8948:126 8907:doi 8895:329 8853:doi 8849:131 8826:doi 8767:doi 8732:doi 8675:doi 8596:doi 8552:doi 8498:doi 8463:doi 8459:400 8425:PMC 8417:doi 8378:doi 8366:138 8336:doi 8293:doi 8248:hdl 8240:doi 8228:402 8197:doi 8193:130 8170:doi 8127:doi 8093:doi 8089:179 8044:PMC 8036:doi 8032:141 7996:doi 7954:doi 7950:131 7916:hdl 7908:doi 7864:PMC 7856:doi 7815:PMC 7805:doi 7793:107 7753:PMC 7745:doi 7699:doi 7687:201 7650:PMC 7640:doi 7592:doi 7556:doi 7544:123 7513:doi 7478:doi 7474:107 7443:doi 7439:111 7416:doi 7412:216 7381:doi 7377:127 7298:doi 7267:doi 7263:130 7231:doi 7227:123 7213:(CO 7184:doi 7149:doi 7145:125 7114:doi 7079:doi 7044:doi 7040:127 7009:doi 6970:doi 6966:129 6935:doi 6931:126 6908:doi 6904:122 6873:doi 6846:doi 6842:121 6810:doi 6775:doi 6740:doi 6703:PMC 6695:doi 6648:doi 6644:130 6604:doi 6576:doi 6532:doi 6520:309 6482:doi 6478:129 6451:doi 6447:230 6412:doi 6408:123 6377:doi 6365:283 6338:hdl 6330:doi 6320:". 6287:doi 6244:doi 6232:404 6198:doi 6159:doi 6155:129 6120:doi 6097:doi 6069:doi 6065:352 6034:doi 6030:132 5998:doi 5994:130 5960:doi 5927:hdl 5919:doi 5872:doi 5860:283 5852:". 5831:doi 5804:doi 5800:250 5777:doi 5773:116 5738:doi 5734:255 5709:doi 5660:PMC 5652:doi 5571:doi 5567:111 5526:doi 5444:doi 5440:139 5393:doi 5389:138 5358:doi 5354:137 5323:doi 5319:138 5288:doi 5276:201 5245:doi 5210:doi 5206:135 5172:doi 5130:doi 5126:131 5078:doi 5074:137 5037:PMC 5029:doi 4972:hdl 4964:doi 4925:doi 4888:doi 4857:doi 4847:". 4811:doi 4781:doi 4750:doi 4746:140 4712:hdl 4704:doi 4665:doi 4616:PMC 4606:doi 4564:doi 4535:doi 4498:doi 4471:doi 4467:116 4433:doi 4429:128 4393:doi 4362:doi 4320:doi 4293:doi 4256:doi 4218:doi 4185:doi 4131:doi 4119:310 4096:doi 4084:178 4023:doi 3978:doi 3931:doi 3896:doi 3847:doi 3805:PMC 3789:doi 3748:doi 3744:492 3033:(NH 2827:low 2783:150 2763:150 2745:100 2742:−80 2693:800 2661:/m) 2463:abs 2406:or 1822:5,5 1819:BET 1534:or 1259:to 1251:to 1203:DMF 1135:) ( 1023:of 929:HCl 873:oxo 782:or 715:(NO 655:or 585:, H 495:to 466:DMF 279:pcu 112:gas 12891:: 12805:, 12798:, 12791:, 12756:, 12752:, 12748:, 12609:. 12601:. 12589:. 12562:. 12538:. 12526:. 12522:. 12497:22 12495:. 12472:. 12460:. 12437:. 12429:. 12421:. 12411:23 12409:. 12382:. 12342:. 12332:. 12324:. 12312:. 12308:. 12292:^ 12278:. 12268:. 12258:. 12246:. 12242:. 12217:. 12198:. 12176:. 12166:. 12156:33 12154:. 12150:. 12127:. 12119:. 12111:. 12099:. 12076:. 12068:. 12058:. 12050:. 12040:22 12038:. 12014:. 12004:. 11996:. 11984:. 11980:. 11938:. 11928:. 11920:. 11908:. 11904:. 11879:. 11854:. 11810:. 11781:. 11756:. 11692:. 11665:. 11653:. 11641:^ 11627:. 11615:. 11585:. 11559:. 11549:. 11541:. 11529:. 11525:. 11498:20 11496:. 11492:. 11468:. 11458:. 11446:. 11442:. 11418:. 11410:. 11398:. 11357:. 11349:. 11339:. 11331:. 11321:32 11319:. 11295:. 11287:. 11279:. 11269:17 11267:. 11263:. 11240:. 11232:. 11220:. 11216:. 11189:. 11167:. 11159:. 11151:. 11141:. 11129:. 11125:. 11102:. 11092:10 11090:. 11067:. 11055:. 11031:. 11021:. 11009:. 11005:. 10982:. 10974:. 10962:. 10939:. 10927:14 10925:. 10921:. 10898:. 10888:21 10886:. 10863:. 10853:49 10851:. 10828:. 10820:. 10812:. 10802:29 10800:. 10777:. 10769:. 10757:. 10734:. 10724:. 10716:. 10704:. 10700:. 10677:. 10667:45 10665:. 10638:. 10628:. 10616:. 10612:. 10585:. 10561:. 10553:. 10543:51 10541:. 10517:. 10507:44 10505:. 10477:. 10454:. 10446:. 10436:45 10434:. 10410:. 10400:. 10390:. 10378:. 10374:. 10351:. 10339:. 10316:. 10306:. 10296:44 10294:. 10290:. 10267:. 10257:. 10247:24 10245:. 10241:. 10218:. 10206:. 10183:. 10173:45 10171:. 10144:. 10121:. 10109:. 10086:. 10076:44 10074:. 10070:. 10044:. 10032:. 10007:. 9993:. 9989:. 9966:. 9956:. 9946:10 9944:. 9921:. 9911:. 9899:. 9875:. 9867:. 9855:. 9832:. 9822:. 9810:. 9806:. 9783:. 9773:. 9763:12 9761:. 9738:. 9730:. 9722:. 9712:91 9710:. 9698:^ 9682:. 9649:17 9647:. 9624:. 9612:. 9598:^ 9580:. 9557:. 9545:. 9505:50 9503:. 9480:. 9468:. 9444:. 9432:. 9405:. 9399:60 9397:@C 9387:60 9366:. 9358:. 9346:. 9323:. 9311:. 9287:. 9277:18 9275:. 9252:. 9244:. 9234:14 9232:. 9194:. 9182:. 9159:. 9147:. 9123:. 9111:44 9109:. 9105:. 9082:. 9070:. 9047:. 9035:. 9023:^ 9009:. 9001:. 8993:. 8981:. 8958:. 8946:. 8923:. 8915:. 8905:. 8893:. 8889:. 8873:^ 8859:. 8847:. 8822:57 8820:. 8806:CH 8794:H 8773:. 8763:49 8761:. 8738:. 8711:. 8689:. 8681:. 8671:46 8669:. 8655:H 8645:^ 8602:. 8580:^ 8566:. 8558:. 8550:. 8542:. 8530:18 8528:. 8504:. 8492:. 8469:. 8457:. 8433:. 8423:. 8413:17 8411:. 8407:. 8384:. 8376:. 8364:. 8360:. 8334:. 8324:81 8322:. 8299:. 8291:. 8281:96 8279:. 8256:. 8246:. 8238:. 8226:. 8203:. 8191:. 8164:. 8141:. 8133:. 8123:10 8121:. 8117:. 8087:. 8075:Cu 8066:^ 8052:. 8042:. 8030:. 8026:. 8002:. 7990:. 7986:. 7960:. 7948:. 7922:. 7914:. 7904:48 7902:. 7898:. 7872:. 7862:. 7852:61 7850:. 7846:. 7823:. 7813:. 7803:. 7791:. 7787:. 7775:^ 7761:. 7751:. 7741:10 7739:. 7735:. 7721:^ 7707:. 7697:. 7685:. 7681:. 7658:. 7648:. 7638:. 7626:. 7622:. 7598:. 7586:. 7562:. 7554:. 7542:. 7519:. 7509:45 7507:. 7484:. 7472:. 7449:. 7437:. 7410:. 7387:. 7375:. 7349:CH 7347:, 7337:CO 7325:N 7304:. 7273:. 7261:. 7237:. 7225:. 7190:. 7180:48 7178:. 7155:. 7143:. 7120:. 7085:. 7075:46 7073:. 7050:. 7038:. 7015:. 7005:43 7003:. 6976:. 6964:. 6941:. 6929:. 6902:. 6879:. 6869:46 6867:. 6840:. 6816:. 6806:46 6804:. 6781:. 6771:45 6769:. 6746:. 6736:42 6734:. 6711:. 6701:. 6693:. 6681:. 6677:. 6654:. 6642:. 6618:. 6610:. 6600:48 6598:. 6570:. 6546:. 6538:. 6530:. 6518:. 6514:. 6488:. 6476:. 6445:. 6418:. 6406:. 6383:. 6375:. 6363:. 6336:. 6326:73 6324:. 6293:. 6258:. 6250:. 6242:. 6230:. 6204:. 6194:47 6192:. 6179:^ 6165:. 6153:. 6140:^ 6126:. 6093:23 6091:. 6063:. 6040:. 6028:. 6004:. 5992:. 5980:^ 5966:. 5935:. 5925:. 5915:12 5913:. 5909:. 5878:. 5870:. 5858:. 5827:32 5825:. 5798:. 5771:. 5744:. 5732:. 5705:11 5703:. 5699:. 5676:. 5668:. 5658:. 5646:. 5642:. 5598:91 5596:. 5592:. 5565:. 5540:. 5532:. 5524:. 5512:38 5510:. 5464:^ 5450:. 5438:. 5421:^ 5407:. 5399:. 5387:. 5364:. 5352:. 5329:. 5317:. 5294:. 5286:. 5274:. 5251:. 5241:51 5239:. 5216:. 5204:. 5192:^ 5178:. 5168:47 5166:. 5150:^ 5136:. 5124:. 5106:^ 5092:. 5084:. 5072:. 5068:. 5045:. 5035:. 5027:. 5015:. 5011:. 4988:. 4980:. 4970:. 4962:. 4952:11 4950:. 4946:. 4923:. 4913:70 4911:. 4863:. 4851:. 4817:. 4807:48 4805:. 4801:. 4756:. 4744:. 4720:. 4710:. 4700:31 4698:. 4694:. 4671:. 4663:. 4653:15 4651:. 4647:. 4624:. 4614:. 4604:. 4594:10 4592:. 4588:. 4576:^ 4558:. 4531:10 4529:. 4504:. 4494:44 4492:. 4465:. 4453:^ 4439:. 4427:. 4415:^ 4399:. 4368:. 4358:47 4356:. 4340:^ 4326:. 4316:40 4314:. 4287:. 4262:. 4252:38 4250:. 4238:^ 4224:. 4191:. 4181:38 4179:. 4159:^ 4145:. 4137:. 4129:. 4117:. 4094:. 4082:. 4076:. 4048:. 4044:. 4017:. 3994:. 3986:. 3976:. 3966:20 3964:. 3960:. 3937:. 3927:47 3925:. 3902:. 3892:85 3890:. 3884:. 3869:^ 3855:. 3841:. 3837:. 3813:. 3803:. 3795:. 3785:61 3783:. 3779:. 3756:. 3742:. 3738:. 3276:Cu 3238:Pt 3205:Co 3195:, 3172:Ni 3162:, 3139:Cu 3107:NH 3053:Cu 2984:Ni 2806:25 2766:25 2760:~2 2739:20 2736:~2 2690:25 2684:13 2470:ex 2318:. 2293:(H 2281:(H 2269:(C 2181:O) 2177:(H 2169:Cu 2161:. 2127:Mn 2089:Zn 2048:Zn 2009:Zn 1969:Zn 1932:. 1918:12 1914:12 1868:. 1826:,5 1710:Zr 1604:cp 1598:op 1559:, 1503:Fe 1398:, 1303:, 1205:= 1187:13 1044:Zn 1031:. 1006:Cr 854:Mn 846:Fe 830:Mn 741:Pd 725:Pd 499:. 497:CO 490:CO 468:/H 296:. 254:3 239:2 223:1 206:0 194:3 130:. 12809:2 12802:2 12795:2 12788:2 12723:e 12716:t 12709:v 12666:. 12617:. 12597:: 12574:. 12570:: 12564:6 12546:. 12534:: 12507:. 12503:: 12480:. 12468:: 12445:. 12425:: 12417:: 12394:. 12390:: 12350:. 12328:: 12320:: 12314:8 12286:. 12262:: 12254:: 12248:6 12227:. 12184:. 12170:: 12162:: 12135:. 12115:: 12107:: 12084:. 12062:: 12054:: 12046:: 12022:. 12000:: 11992:: 11986:7 11965:. 11961:: 11946:. 11924:: 11916:: 11910:4 11889:. 11864:. 11839:. 11818:. 11814:: 11804:2 11791:. 11766:. 11750:: 11735:. 11710:. 11704:: 11698:4 11688:2 11673:. 11661:: 11635:. 11623:: 11617:2 11600:. 11583:" 11581:2 11567:. 11545:: 11537:: 11531:6 11510:. 11504:: 11476:. 11454:: 11448:5 11426:. 11414:: 11406:: 11383:. 11365:. 11343:: 11335:: 11327:: 11303:. 11283:: 11275:: 11248:. 11228:: 11212:2 11208:3 11175:. 11145:: 11137:: 11110:. 11098:: 11075:. 11063:: 11039:. 11017:: 11011:3 10990:. 10970:: 10947:. 10933:: 10906:. 10894:: 10871:. 10859:: 10836:. 10816:: 10808:: 10785:. 10765:: 10742:. 10720:: 10712:: 10706:8 10685:. 10673:: 10659:4 10646:. 10624:: 10618:2 10597:. 10593:: 10587:3 10569:. 10557:: 10549:: 10525:. 10513:: 10489:. 10485:: 10479:4 10462:. 10442:: 10418:. 10394:: 10386:: 10359:. 10347:: 10324:. 10302:: 10275:. 10253:: 10226:. 10222:: 10214:: 10208:6 10191:. 10179:: 10156:. 10152:: 10146:2 10129:. 10117:: 10094:. 10082:: 10052:. 10040:: 10017:. 10011:: 10001:: 9995:6 9974:. 9960:: 9952:: 9929:. 9915:: 9907:: 9901:5 9883:. 9871:: 9863:: 9857:4 9840:. 9818:: 9812:4 9791:. 9777:: 9769:: 9746:. 9726:: 9718:: 9692:. 9678:: 9659:. 9655:: 9632:. 9620:: 9614:1 9592:. 9588:: 9565:. 9553:: 9515:. 9511:: 9488:. 9476:: 9452:. 9440:: 9417:. 9413:: 9395:2 9393:H 9391:n 9374:. 9362:: 9354:: 9331:. 9319:: 9295:. 9283:: 9260:. 9248:: 9240:: 9202:. 9198:: 9190:: 9167:. 9155:: 9131:. 9117:: 9090:. 9086:: 9078:: 9055:. 9043:: 9017:. 8997:: 8989:: 8966:. 8954:: 8931:. 8909:: 8901:: 8867:. 8855:: 8832:. 8828:: 8811:4 8799:2 8781:. 8769:: 8746:. 8734:: 8715:. 8697:. 8677:: 8660:2 8639:. 8612:. 8598:: 8574:. 8554:: 8546:: 8536:: 8512:. 8500:: 8494:4 8477:. 8465:: 8441:. 8419:: 8392:. 8380:: 8372:: 8342:. 8338:: 8330:: 8307:. 8295:: 8287:: 8264:. 8250:: 8242:: 8234:: 8211:. 8199:: 8176:. 8172:: 8149:. 8129:: 8099:. 8095:: 8081:2 8077:3 8060:. 8038:: 8010:. 7998:: 7992:4 7968:. 7956:: 7930:. 7918:: 7910:: 7880:. 7858:: 7831:. 7807:: 7799:: 7769:. 7747:: 7715:. 7701:: 7693:: 7666:. 7642:: 7634:: 7628:6 7606:. 7594:: 7588:1 7570:. 7558:: 7550:: 7527:. 7515:: 7492:. 7480:: 7457:. 7445:: 7422:. 7418:: 7395:. 7383:: 7366:2 7361:H 7354:4 7342:2 7330:2 7312:. 7300:: 7281:. 7269:: 7245:. 7233:: 7219:4 7217:) 7215:2 7211:2 7198:. 7186:: 7163:. 7151:: 7128:. 7116:: 7093:. 7081:: 7058:. 7046:: 7023:. 7011:: 6997:′ 6984:. 6972:: 6949:. 6937:: 6914:. 6910:: 6887:. 6875:: 6852:. 6848:: 6824:. 6812:: 6789:. 6777:: 6754:. 6742:: 6719:. 6697:: 6689:: 6683:9 6662:. 6650:: 6626:. 6606:: 6582:. 6578:: 6572:8 6554:. 6534:: 6526:: 6496:. 6484:: 6470:2 6457:. 6453:: 6426:. 6414:: 6391:. 6379:: 6371:: 6346:. 6340:: 6332:: 6318:2 6314:3 6301:. 6289:: 6279:′ 6266:. 6246:: 6238:: 6212:. 6200:: 6173:. 6161:: 6134:. 6122:: 6103:. 6099:: 6075:. 6071:: 6048:. 6036:: 6012:. 6000:: 5974:. 5962:: 5943:. 5929:: 5921:: 5905:2 5901:3 5886:. 5874:: 5866:: 5850:n 5837:. 5833:: 5810:. 5806:: 5783:. 5779:: 5765:′ 5752:. 5740:: 5717:. 5711:: 5684:. 5654:: 5648:3 5627:. 5577:. 5573:: 5548:. 5528:: 5458:. 5446:: 5415:. 5395:: 5372:. 5360:: 5337:. 5325:: 5302:. 5290:: 5282:: 5259:. 5247:: 5224:. 5212:: 5186:. 5174:: 5144:. 5132:: 5100:. 5080:: 5053:. 5031:: 5023:: 5017:5 4996:. 4974:: 4966:: 4958:: 4931:. 4927:: 4919:: 4890:: 4871:. 4859:: 4853:8 4845:2 4832:. 4813:: 4783:: 4764:. 4752:: 4728:. 4714:: 4706:: 4679:. 4667:: 4659:: 4632:. 4608:: 4600:: 4570:. 4566:: 4560:9 4541:. 4537:: 4512:. 4500:: 4477:. 4473:: 4447:. 4435:: 4409:. 4395:: 4376:. 4364:: 4334:. 4322:: 4299:. 4295:: 4270:. 4258:: 4232:. 4220:: 4199:. 4187:: 4153:. 4133:: 4125:: 4102:. 4098:: 4090:: 4058:. 4029:. 4025:: 4019:6 4002:. 3980:: 3972:: 3945:. 3933:: 3910:. 3898:: 3863:. 3849:: 3843:3 3821:. 3791:: 3764:. 3750:: 3506:/ 3455:2 3430:2 3426:2 3419:2 3415:2 3404:2 3400:2 3396:2 3373:2 3369:2 3357:2 3349:2 3301:2 3296:) 3290:( 3280:3 3246:+ 3242:2 3213:+ 3209:2 3180:+ 3176:2 3147:+ 3143:2 3111:2 3078:2 3073:) 3067:( 3057:3 3039:3 3037:) 3035:4 3031:2 3027:3 3020:2 3016:3 2996:2 2989:3 2974:2 2970:3 2944:6 2814:2 2809:1 2789:1 2769:1 2750:2 2726:2 2722:2 2717:1 2698:2 2671:P 2665:T 2659:2 2654:v 2652:ρ 2645:m 2643:ρ 2631:P 2627:T 2622:v 2620:ρ 2615:m 2613:ρ 2568:e 2565:r 2562:o 2559:p 2554:V 2547:k 2544:l 2541:u 2538:b 2529:+ 2523:x 2520:e 2515:N 2511:= 2505:s 2502:b 2499:a 2494:N 2478:V 2467:N 2460:N 2440:2 2316:2 2313:3 2297:) 2295:2 2291:5 2285:) 2283:2 2279:3 2275:5 2273:H 2271:5 2257:2 2188:3 2183:3 2179:2 2175:2 2171:3 2141:H 2137:3 2132:2 2129:3 2095:3 2091:4 2054:2 2050:4 2032:2 2020:′ 2015:2 2011:4 1993:2 1981:′ 1977:′ 1971:4 1930:3 1926:4 1922:4 1881:a 1831:′ 1828:′ 1824:′ 1714:6 1595:( 1555:( 1513:6 1511:) 1509:2 1505:3 1495:2 1463:2 1453:2 1451:) 1449:3 1433:4 1428:2 1416:′ 1412:′ 1408:′ 1384:′ 1380:′ 1372:′ 1368:′ 1293:o 1289:o 1285:′ 1281:2 1211:N 1209:, 1207:N 1199:2 1185:O 1183:6 1171:2 1169:O 1167:2 1159:2 1123:2 1121:) 1119:3 1111:- 1109:′ 1105:2 1101:2 1099:) 1097:3 856:( 848:( 826:3 749:4 721:2 719:) 717:3 713:2 709:′ 620:2 587:2 492:2 486:′ 482:2 478:2 474:2 470:2 388:2 384:3 379:2 375:3 371:2 367:3 329:N 327:, 325:N 290:′ 191:2 188:1 185:0 56:( 20:)

Index

Metal-organic framework

octahedron

Electron micrograph
porous polymers
metal
clusters
organic
ligands
1,4-benzenedicarboxylic acid
coordination polymers
crystalline compounds
amorphous
hydrogen
carbon dioxide
gas
gas separation
water remediation
catalysis
supercapacitors
Latin
covalent organic frameworks
mono-, di-, tri-, or tetravalent
coordination
hybrid materials
topologies
MOF-5
bridging ligands
trimesic acid

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.