Knowledge

Graphene

Source 📝

2596:), measured refractive index and extinction coefficient values are 3.135 and 0.897, respectively. Thickness determination yielded 3.7Å across a 0.5mm area, consistent with the 3.35Å reported for layer-to-layer carbon atom distance of graphite crystals. This method is applicable for real-time label-free interactions of graphene with organic and inorganic substances. The existence of unidirectional surface plasmons in nonreciprocal graphene-based gyrotropic interfaces has been theoretically demonstrated, offering tunability from THz to near-infrared and visible frequencies by controlling graphene's chemical potential. Particularly, the unidirectional frequency bandwidth can be 1– 2 orders of magnitude larger than that achievable with metal under similar magnetic field conditions, stemming from graphene's extremely small effective electron mass. 3119:. This shows that the amplitude of long-wavelength fluctuations grows logarithmically with the scale of a 2D structure, and would therefore be unbounded in structures of infinite size. Local deformation and elastic strain are negligibly affected by this long-range divergence in relative displacement. It is believed that a sufficiently large 2D structure, in the absence of applied lateral tension, will bend and crumple to form a fluctuating 3D structure. Researchers have observed ripples in suspended layers of graphene, and it has been proposed that the ripples are caused by thermal fluctuations in the material. As a consequence of these dynamical deformations, it is debatable whether graphene is truly a 2D structure. These ripples, when amplified by vacancy defects, induce a negative 3691:. It was shown the graphene oxide at low doses was evaluated for its biological effects on larvae and the imago of Drosophila melanogaster. Oral administration of graphene oxide at concentrations of 0.02-1% has a beneficial effect on the developmental rate and hatching ability of larvae. Long-term administration of a low dose of graphene oxide extends Drosophila lifespan and significantly enhances resistance to environmental stresses. These suggest about graphene oxide affects carbohydrate and lipid metabolism in adult Drosophila. These findings might provide a useful reference to assess the biological effects of graphene oxide, which could play an important role in a variety of graphene-based biomedical applications. 3224:
does not significantly affect the strength. Second, in 2013, Z. Song et al. used MD simulations to study the mechanical properties of polycrystalline graphene with uniform-sized hexagon-shaped grains. The hexagon grains were oriented in various lattice directions and the GBs consisted of only heptagon, pentagon, and hexagonal carbon rings. The motivation behind such model was that similar systems had been experimentally observed in graphene flakes grown on the surface of liquid copper. While they also noted that crack is typically initiated at the triple junctions, they found that as the grain size decreases, the yield strength of graphene increases. Based on this finding, they proposed that polycrystalline follows pseudo
690: 3187:
tilt-angle increases, the grain boundary strength also increases. They showed that the weakest link in the grain boundary is at the critical bonds of the heptagon rings. As the grain boundary angle increases, the strain in these heptagon rings decreases, causing the grain-boundary to be stronger than lower-angle GBs. They proposed that, in fact, for sufficiently large angle GB, the strength of the GB is similar to pristine graphene. In 2012, it was further shown that the strength can increase or decrease, depending on the detailed arrangements of the defects. These predictions have since been supported by experimental evidences. In a 2013 study led by James Hone's group, researchers probed the elastic
2305: 4886:, graphene nanoplatelets and graphene nano–onions are non-toxic at concentrations up to 50 μg/ml. These nanoparticles do not alter the differentiation of human bone marrow stem cells towards osteoblasts (bone) or adipocytes (fat) suggesting that at low doses graphene nanoparticles are safe for biomedical applications. In 2013 research at Brown University found that 10 μm few-layered graphene flakes are able to pierce cell membranes in solution. They were observed to enter initially via sharp and jagged points, allowing graphene to be internalized in the cell. The physiological effects of this remain unknown, and this remains a relatively unexplored field. 569: 3580:
stacking graphene and its related forms. The energy band in layer-stacked superlattices is found to be more sensitive to the barrier width than that in conventional III–V semiconductor superlattices. When adding more than one atomic layer to the barrier in each period, the coupling of electronic wavefunctions in neighboring potential wells can be significantly reduced, which leads to the degeneration of continuous subbands into quantized energy levels. When varying the well width, the energy levels in the potential wells along the L-M direction behave distinctly from those along the K-H direction.
3232:. The GBs in this model consisted of heptagon, pentagon, and hexagon, as well as squares, octagons, and vacancies. Through MD simulation, contrary to the fore-mentioned study, they found inverse Hall-Petch relationship, where the strength of graphene increases as the grain size increases. Experimental observations and other theoretical predictions also gave differing conclusions, similar to the three given above. Such discrepancies show the complexity of the effects that grain size, arrangements of defects, and the nature of defects have on the mechanical properties of polycrystalline graphene. 23060: 4025:(UIUC) developed a new approach for forming 3D shapes from flat, 2D sheets of graphene. A film of graphene that had been soaked in solvent to make it swell and become malleable was overlaid on an underlying substrate "former". The solvent evaporated over time, leaving behind a layer of graphene that had taken on the shape of the underlying structure. In this way they were able to produce a range of relatively intricate micro-structured shapes. Features vary from 3.5 to 50 μm. Pure graphene and gold-decorated graphene were each successfully integrated with the substrate. 887: 3424:. Defects within a sheet increase its chemical reactivity. The onset temperature of reaction between the basal plane of single-layer graphene and oxygen gas is below 260 °C (530 K). Graphene burns at very low temperature (e.g., 350 °C (620 K)). Graphene is commonly modified with oxygen- and nitrogen-containing functional groups and analyzed by infrared spectroscopy and X-ray photoelectron spectroscopy. However, determination of structures of graphene with oxygen- and nitrogen- functional groups requires the structures to be well controlled. 1668: 1989: 3906:
fabrication of the 3D structure of graphene and other related two-dimensional materials. In 2013, researchers at Stony Brook University reported a novel radical-initiated crosslinking method to fabricate porous 3D free-standing architectures of graphene and carbon nanotubes using nanomaterials as building blocks without any polymer matrix as support. These 3D graphene (all-carbon) scaffolds/foams have applications in several fields such as energy storage, filtration, thermal management and biomedical devices and implants.
710: 3684:. The chemical property of graphite oxide is related to the functional groups attached to graphene sheets. These can change the polymerization pathway and similar chemical processes. Graphene oxide flakes in polymers display enhanced photo-conducting properties. Graphene is normally hydrophobic and impermeable to all gases and liquids (vacuum-tight). However, when formed into graphene oxide-based capillary membrane, both liquid water and water vapor flow through as quickly as if the membrane was not present. 4517: 4056:, with the graphene surface approximately perpendicular to the axis. When voltage is applied to such a coil, current flows around the spiral, producing a magnetic field. The phenomenon applies to spirals with either zigzag or armchair patterns, although with different current distributions. Computer simulations indicated that a conventional spiral inductor of 205 microns in diameter could be matched by a nanocoil just 70 nanometers wide, with a field strength reaching as much as 1 345: 24289: 23042: 3598: 24253: 4569:
delaminates, or spreads, at the oil/water interface to produce few-layer graphene in a thermodynamically favorable process in much the same way as small molecule surfactants spread to minimize the interfacial energy. In this way, graphene behaves like a 2D surfactant. SITM has been reported for a variety of applications such conductive polymer-graphene foams, conductive polymer-graphene microspheres, conductive thin films and conductive inks.
22786: 322:(International Union for Pure and Applied Chemistry) recommends use of the name "graphite" for the three-dimensional material, and "graphene" only when the reactions, structural relations, or other properties of individual layers are discussed. A narrower definition, of "isolated or free-standing graphene" requires that the layer be sufficiently isolated from its environment, but would include layers suspended or transferred to 23051: 793: 24277: 14761: 24265: 3768: 858: 3617: 40: 3496:. In a new study published in Nature, the researchers have used a single layer graphene electrode and a novel surface sensitive non-linear spectroscopy technique to investigate the top-most water layer at the electrochemically charged surface. They found that the interfacial water response to applied electric field is asymmetric with respect to the nature of the applied field. 985: 3478:
whereas the interaction between the clean Si(100) surface and graphene changes the electronic states of graphene significantly. This effect results from the covalent bonding between C and surface Si atoms, modifying the π-orbital network of the graphene layer. The local density of states shows that the bonded C and Si surface states are highly disturbed near the Fermi energy.
4782:. Graphene is often produced as a powder and as a dispersion in a polymer matrix. This dispersion is supposedly suitable for advanced composites, paints and coatings, lubricants, oils and functional fluids, capacitors and batteries, thermal management applications, display materials and packaging, solar cells, inks and 3D-printers' materials, and barriers and films. 3606: 4728:
manipulate than in graphene. In those systems, electrons are not always the particles which are used. They might be optical photons, microwave photons, plasmons, microcavity polaritons, or even atoms. Also, the honeycomb structure in which those particles evolve can be of a different nature than carbon atoms in graphene. It can be, respectively, a
3700: 257:. Graphene conducts heat and electricity very efficiently along its plane. The material strongly absorbs all wavelengths of visible light, which accounts for the black color of graphite, yet a single graphene sheet is nearly transparent because of its extreme thinness. On a microscopic scale, graphene is the strongest material ever measured. 17189:
John J.; Wang, Jing Jing; Donegan, John F.; Grunlan, Jaime C.; Moriarty, Gregory; Shmeliov, Aleksey; Nicholls, Rebecca J.; Perkins, James M.; Grieveson, Eleanor M.; Theuwissen, Koenraad; McComb, David W.; Nellist, Peter D.; Nicolosi, Valeria (4 February 2011). "Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials".
3584:
uniform monolayer graphene-hBN structures have been successfully synthesized via lithography patterning coupled with chemical vapor deposition (CVD). Furthermore, superlattices of graphene-hBN are ideal model systems for the realization and understanding of coherent (wave-like) and incoherent (particle-like) phonon thermal transport.
2335:. Berry's phase arises due to chirality or dependence (locking) of the pseudospin quantum number on momentum of low-energy electrons near the Dirac points. The temperature dependence of the oscillations reveals that the carriers have a non-zero cyclotron mass, despite their zero effective mass in the Dirac-fermion formalism. 492:
impossible to distinguish between suspended monolayer and multilayer graphene by their TEM contrasts, and the only known way is to analyze the relative intensities of various diffraction spots. The first reliable TEM observations of monolayers are probably given in refs. 24 and 26 of Geim and Novoselov's 2007 review.
1264: 4405:
In 2012, microwave energy was reported to directly synthesize graphene in one step. This approach avoids use of potassium permanganate in the reaction mixture. It was also reported that by microwave radiation assistance, graphene oxide with or without holes can be synthesized by controlling microwave
4356:
Electrochemical synthesis can exfoliate graphene. Varying a pulsed voltage controls thickness, flake area, number of defects and affects its properties. The process begins by bathing the graphite in a solvent for intercalation. The process can be tracked by monitoring the solution's transparency with
4347:
Graphite particles can be corroded in molten salts to form a variety of carbon nanostructures including graphene. Hydrogen cations, dissolved in molten lithium chloride, can be discharged on cathodically polarized graphite rods, which then intercalate, peeling graphene sheets. The graphene nanosheets
4128:
Small graphene structures, such as graphene quantum dots and nanoribbons, can be produced by "bottom up" methods that assemble the lattice from organic molecule monomers (e. g. citric acid, glucose). "Top down" methods, on the other hand, cut bulk graphite and graphene materials with strong chemicals
4063:
The nano-solenoids analyzed through computer models at Rice should be capable of producing powerful magnetic fields of about 1 tesla, about the same as the coils found in typical loudspeakers, according to Yakobson and his team – and about the same field strength as some MRI machines. They found
3787:
leads to the collapse of the individual sheets into star-like clusters that exhibited poor subsequent reactivity with amines (c. 3–5% conversion of the intermediate to the final amide). It is apparent that conventional chemical treatment of carboxylic groups on SLGO generates morphological changes of
1671:
When the gate voltage in a field effect graphene device is changed from positive to negative, conduction switches from electrons to holes. The charge carrier concentration is proportional to the applied voltage. Graphene is neutral at zero gate voltage and resistivity is at its maximum because of the
631:
in 2010 "for groundbreaking experiments regarding the two-dimensional material graphene." Their publication, and the surprisingly easy preparation method that they described, sparked a "graphene gold rush". Research expanded and split off into many different subfields, exploring different exceptional
13792:
Nayak, Tapas R.; Andersen, Henrik; Makam, Venkata S.; Khaw, Clement; Bae, Sukang; Xu, Xiangfan; Ee, Pui-Lai R.; Ahn, Jong-Hyun; Hong, Byung Hee; Pastorin, Giorgia; Özyilmaz, Barbaros (28 June 2011). "Graphene for Controlled and Accelerated Osteogenic Differentiation of Human Mesenchymal Stem Cells".
4710:
provides an analytic expression for the graphene's conductivity and shows that it is a function of several physical parameters including wavelength, temperature, and chemical potential. Moreover, a surface conductivity model, which describes graphene as an infinitesimally thin (two sided) sheet with
4629:
In 2019, flash Joule heating (transient high-temperature electrothermal heating) was discovered to be a method to synthesize turbostratic graphene in bulk powder form. The method involves electrothermally converting various carbon sources, such as carbon black, coal, and food waste into micron-scale
807:
of isolated, single-layer graphene can be directly seen with transmission electron microscopy (TEM) of sheets of graphene suspended between bars of a metallic grid Some of these images showed a "rippling" of the flat sheet, with amplitude of about one nanometer. These ripples may be intrinsic to the
17188:
Coleman, Jonathan N.; Lotya, Mustafa; O’Neill, Arlene; Bergin, Shane D.; King, Paul J.; Khan, Umar; Young, Karen; Gaucher, Alexandre; De, Sukanta; Smith, Ronan J.; Shvets, Igor V.; Arora, Sunil K.; Stanton, George; Kim, Hye-Young; Lee, Kangho; Kim, Gyu Tae; Duesberg, Georg S.; Hallam, Toby; Boland,
12127:
Akinwande, Deji; Brennan, Christopher J.; Bunch, J. Scott; Egberts, Philip; Felts, Jonathan R.; Gao, Huajian; Huang, Rui; Kim, Joon-Seok; Li, Teng; Li, Yao; Liechti, Kenneth M.; Lu, Nanshu; Park, Harold S.; Reed, Evan J.; Wang, Peng; Yakobson, Boris I.; Zhang, Teng; Zhang, Yong-Wei; Zhou, Yao; Zhu,
4826:
has been shown since 2010, displaying quantum Hall resistance quantization accuracy of three parts per billion in monolayer epitaxial graphene. Over the years precisions of parts-per-trillion in the Hall resistance quantization and giant quantum Hall plateaus have been demonstrated. Developments in
4754:
Graphene is a transparent and flexible conductor that holds great promise for various material/device applications, including solar cells, light-emitting diodes (LED), integrated photonic circuit devices, touch panels, and smart windows or phones. Smartphone products with graphene touch screens are
4714:
Even though these analytical models and methods can provide results for several canonical problems for benchmarking purposes, many practical problems involving graphene, such as design of arbitrarily shaped electromagnetic devices, are analytically intractable. With the recent advances in the field
3852:
In 2015, intercalating small graphene fragments into the gaps formed by larger, coiled graphene sheets, after annealing provided pathways for conduction, while the fragments helped reinforce the fibers. The resulting fibers offered better thermal and electrical conductivity and mechanical strength.
3782:
show that only around 20–30% of the carboxylic groups are lost, leaving a significant number available for chemical attachment. Analysis of SLG(R) generated by this route reveals that the system is unstable and using a room temperature stirring with HCl (< 1.0 M) leads to around 60% loss of COOH
3450:
Despite the promising results in different cell studies and proof of concept studies, there is still incomplete understanding of the full biocompatibility of graphene based materials. Different cell lines react differently when exposed to graphene, and it has been shown that the lateral size of the
3223:
sites that are at least 5A (arbitrarily chosen) apart from other sites. Polycrystalline graphene was generated from these nucleation sites and was subsequently annealed at 3000K, then quenched. Based on this model, they found that cracks are initiated at grain-boundary junctions, but the grain size
3162:
which tend to have fracture toughness in the range of 15–50 MPa√m. Later in 2014, the Rice team announced that graphene showed a greater ability to distribute force from an impact than any known material, ten times that of steel per unit weight. The force was transmitted at 22.2 kilometres per
2489:
is an interaction between disjoint neutral bodies provoked by the fluctuations of the electromagnetic vacuum. Mathematically, it can be explained by considering the normal modes of electromagnetic fields, which explicitly depend on the boundary conditions on the interacting bodies' surfaces. Due to
2371:
The mass can be positive or negative. An arrangement that slightly raises the energy of an electron on atom A relative to atom B gives it a positive mass, while an arrangement that raises the energy of atom B produces a negative electron mass. The two versions behave alike and are indistinguishable
13716:
Fabbro, Alessandra; Scaini, Denis; León, Verónica; Vázquez, Ester; Cellot, Giada; Privitera, Giulia; Lombardi, Lucia; Torrisi, Felice; Tomarchio, Flavia; Bonaccorso, Francesco; Bosi, Susanna; Ferrari, Andrea C.; Ballerini, Laura; Prato, Maurizio (26 January 2016). "Graphene-Based Interfaces Do Not
4255:
Liquid-phase exfoliation can also be done by a less-known process of intercalation of super critical Carbon Dioxide (scCo2) into the interstitial spaces in the graphite lattice, followed by a rapid depressurization. The scCo2 intercalates easily inside the graphite lattice at a pressure of roughly
3966:
Pillared graphene is a hybrid carbon, structure consisting of an oriented array of carbon nanotubes connected at each end to a sheet of graphene. It was first described theoretically by George Froudakis and colleagues of the University of Crete in Greece in 2008. Pillared graphene has not yet been
3671:
Graphene oxide is usually produced through chemical exfoliation of graphite. A particularly popular technique is the improved Hummer's method. Using paper-making techniques on dispersed, oxidized and chemically processed graphite in water, the monolayer flakes form a single sheet and create strong
3477:
The electronics property of graphene can be significantly influenced by the supporting substrate. Studies of graphene monolayers on clean and hydrogen(H)-passivated silicon (100) (Si(100)/H) surfaces have been performed. The Si(100)/H surface does not perturb the electronic properties of graphene,
3245:
Thermal transport in graphene is a burgeoning area of research, particularly for its potential applications in thermal management. Most experimental measurements have posted large uncertainties in the results of thermal conductivity due to limitations of the instruments used. Following predictions
491:
or 3 atomic layers of amorphous carbon, which was the best possible resolution for 1960 TEMs. However, neither then nor today is it possible to argue how many layers were in those flakes. Now we know that the TEM contrast of graphene most strongly depends on focusing conditions. For example, it is
3275:
for suspended single layer graphene. The large range in the reported thermal conductivity can be caused by large measurement uncertainties as well as variations in the graphene quality and processing conditions. In addition, it is known that when single-layer graphene is supported on an amorphous
4830:
Novel uses for graphene continue to be researched and explored. One such use is in combination with water-based epoxy resins to produce anticorrosive coatings. The van der Waals nature of graphene and other two-dimensional (2D) materials also permits van der Waals heterostructures and integrated
3583:
A superlattice corresponds to a periodic or quasi-periodic arrangement of different materials, and can be described by a superlattice period which confers a new translational symmetry to the system, impacting their phonon dispersions and subsequently their thermal transport properties. Recently,
2715:
First-principle calculations incorporating quasiparticle corrections and many-body effects have been employed to study the electronic and optical properties of graphene-based materials. The approach is described as three stages. With GW calculation, the properties of graphene-based materials are
4838:
Graphene is utilized in detecting gasses and chemicals in environmental monitoring, developing highly sensitive biosensors for medical diagnostics, and creating flexible, wearable sensors for health monitoring. Graphene's transparency also enhances optical sensors, making them more effective in
4727:
Graphene analogs (also referred to as "artificial graphene") are two-dimensional systems which exhibit similar properties to graphene. Graphene analogs are studied intensively since the discovery of graphene in 2004. People try to develop systems in which the physics is easier to observe and to
3848:
In 2011, researchers reported a novel yet simple approach to fabricate graphene fibers from chemical vapor deposition grown graphene films. The method was scalable and controllable, delivering tunable morphology and pore structure by controlling the evaporation of solvents with suitable surface
3553:
Turbostratic graphene exhibits weak interlayer coupling, and the spacing is increased with respect to Bernal-stacked multilayer graphene. Rotational misalignment preserves the 2D electronic structure, as confirmed by Raman spectroscopy. The D peak is very weak, whereas the 2D and G peaks remain
18741:
Tao, Li; Lee, Jongho; Holt, Milo; Chou, Harry; McDonnell, Stephen J.; Ferrer, Domingo A.; Babenco, Matías G.; Wallace, Robert M.; Banerjee, Sanjay K. (15 November 2012). "Uniform Wafer-Scale Chemical Vapor Deposition of Graphene on Evaporated Cu (111) Film with Quality Comparable to Exfoliated
16953:
Paton, Keith R.; Varrla, Eswaraiah; Backes, Claudia; Smith, Ronan J.; Khan, Umar; O'Neill, Arlene; Boland, Conor; Lotya, Mustafa; Istrate, Oana M.; King, Paul; Higgins, Tom; Barwich, Sebastian; May, Peter; Puczkarski, Pawel; Ahmed, Iftikhar; Moebius, Matthias; Pettersson, Henrik; Long, Edmund;
4620:
was used to produce patterned porous three-dimensional laser-induced graphene (LIG) film networks from commercial polymer films. The resulting material exhibits high electrical conductivity and surface area. The laser induction process is compatible with roll-to-roll manufacturing processes. A
3905:
of hexagonally arranged carbon was termed 3D graphene, and self-supporting 3D graphene was also produced. 3D structures of graphene can be fabricated by using either CVD or solution based methods. A 2016 review by Khurram and Xu et al. provided a summary of then-state-of-the-art techniques for
3579:
Periodically stacked graphene and its insulating isomorph provide a fascinating structural element in implementing highly functional superlattices at the atomic scale, which offers possibilities in designing nanoelectronic and photonic devices. Various types of superlattices can be obtained by
3284:
at room temperature as a result of scattering of graphene lattice waves by the substrate, and can be even lower for few layer graphene encased in amorphous oxide. Likewise, polymeric residue can contribute to a similar decrease in the thermal conductivity of suspended graphene to approximately
3210:
While the presence of vacancies is not only prevalent in polycrystalline graphene, vacancies can have significant effects on the strength of graphene. The general consensus is that the strength decreases along with increasing densities of vacancies. In fact, various studies have shown that for
17091:
Backes, Claudia; Campi, Davide; Szydlowska, Beata M.; Synnatschke, Kevin; Ojala, Ezgi; Rashvand, Farnia; Harvey, Andrew; Griffin, Aideen; Sofer, Zdenek; Marzari, Nicola; Coleman, Jonathan N.; O’Regan, David D. (25 June 2019). "Equipartition of Energy Defines the Size–Thickness Relationship in
4719:, various accurate and efficient numerical methods have become available for analysis of electromagnetic field/wave interactions on graphene sheets and/or graphene-based devices. A comprehensive summary of computational tools developed for analyzing graphene-based devices/systems is proposed. 4042:
made of graphene layers separated by carbon nanotubes was measured at 0.16 milligrams per cubic centimeter. A solution of graphene and carbon nanotubes in a mold is freeze dried to dehydrate the solution, leaving the aerogel. The material has superior elasticity and absorption. It can recover
2686:
Saturable absorption in graphene could occur at the Microwave and Terahertz band, owing to its wideband optical absorption property. The microwave saturable absorption in graphene demonstrates the possibility of graphene microwave and terahertz photonics devices, such as a microwave saturable
18025:
Chiu, Pui Lam; Mastrogiovanni, Daniel D. T.; Wei, Dongguang; Louis, Cassandre; Jeong, Min; Yu, Guo; Saad, Peter; Flach, Carol R.; Mendelsohn, Richard; Garfunkel, Eric; He, Huixin (4 April 2012). "Microwave- and Nitronium Ion-Enabled Rapid and Direct Production of Highly Conductive Low-Oxygen
4338:
A dispersed reduced graphene oxide suspension was synthesized in water by a hydrothermal dehydration method without using any surfactant. The approach is facile, industrially applicable, environmentally friendly and cost effective. Viscosity measurements confirmed that the graphene colloidal
4087:
introduced a method for 'crumpling' graphene, adding wrinkles to the material on a nanoscale. This was achieved by depositing layers of graphene oxide onto a shrink film, then shrunken, with the film dissolved before being shrunken again on another sheet of film. The crumpled graphene became
3186:
Graphene grain boundaries typically contain heptagon-pentagon pairs. The arrangement of such defects depends on whether the GB is in zig-zag or armchair direction. It further depends on the tilt-angle of the GB. In 2010, researchers from Brown University computationally predicted that as the
1758:
Charge transport can be affected by the adsorption of contaminants such as water and oxygen molecules, leading to non-repetitive and large hysteresis I-V characteristics. Researchers need to conduct electrical measurements in a vacuum. Coating the graphene surface with materials such as SiN,
17037:
Lotya, Mustafa; Hernandez, Yenny; King, Paul J.; Smith, Ronan J.; Nicolosi, Valeria; Karlsson, Lisa S.; Blighe, Fiona M.; De, Sukanta; Wang, Zhiming; McGovern, I. T.; Duesberg, Georg S.; Coleman, Jonathan N. (18 March 2009). "Liquid Phase Production of Graphene by Exfoliation of Graphite in
3468:
Graphene can be used in biosensors; in 2015, researchers demonstrated that a graphene-based sensor be can used to detect a cancer risk biomarker. In particular, by using epitaxial graphene on silicon carbide, they were repeatably able to detect 8-hydroxydeoxyguanosine (8-OHdG), a DNA damage
4568:
Reported by a group led by D. H. Adamson, graphene can be produced from natural graphite while preserving the integrity of the sheets using solvent interface trapping method (SITM). SITM use a high energy interface, such as oil and water, to exfoliate graphite to graphene. Stacked graphite
3214:
Compared to the fairly well-understood nature of the effect that grain boundary and vacancies have on the mechanical properties of graphene, there is no clear consensus on the general effect that the average grain size has on the strength of polycrystalline graphene. In fact, three notable
20326:
Plotnik, Yonatan; Rechtsman, Mikael C.; Song, Daohong; Heinrich, Matthias; Zeuner, Julia M.; Nolte, Stefan; Lumer, Yaakov; Malkova, Natalia; Xu, Jingjun; Szameit, Alexander; Chen, Zhigang; Segev, Mordechai (January 2014). "Observation of unconventional edge states in 'photonic graphene'".
12650:
Xu, Xiangfan; Pereira, Luiz F. C.; Wang, Yu; Wu, Jing; Zhang, Kaiwen; Zhao, Xiangming; Bae, Sukang; Tinh Bui, Cong; Xie, Rongguo; Thong, John T. L.; Hong, Byung Hee; Loh, Kian Ping; Donadio, Davide; Li, Baowen; Özyilmaz, Barbaros (2014). "Length-dependent thermal conductivity in suspended
3008:
and magnetic properties concurrently. Low-defect graphene nanomeshes, fabricated using a non-lithographic approach, exhibit significant ferromagnetism even at room temperature. Additionally, a spin pumping effect has been observe with fields applied in parallel to the planes of few-layer
18069:
Patel, Mehulkumar; Feng, Wenchun; Savaram, Keerthi; Khoshi, M. Reza; Huang, Ruiming; Sun, Jing; Rabie, Emann; Flach, Carol; Mendelsohn, Richard; Garfunkel, Eric; He, Huixin (2015). "Microwave Enabled One-Pot, One-Step Fabrication and Nitrogen Doping of Holey Graphene Oxide for Catalytic
3917:
was reported in 2016. The discovered nanostructure is a multilayer system of parallel hollow nanochannels located along the surface and having quadrangular cross-section. The thickness of the channel walls is approximately equal to 1 nm. Potential fields of BSG application include:
3175:(CVD), as discussed in the section below - have been developed to produce large-scale graphene needed for device applications. Such methods often synthesize polycrystalline graphene. The mechanical properties of polycrystalline graphene is affected by the nature of the defects, such as 2376:. An electron traveling from a positive-mass region to a negative-mass region must cross an intermediate region where its mass once again becomes zero. This region is gapless and therefore metallic. Metallic modes bounding semiconducting regions of opposite-sign mass is a hallmark of a 4711:
a local and isotropic conductivity, has been proposed. This model permits derivation of analytical expressions for the electromagnetic field in the presence of a graphene sheet in terms of a dyadic Green function (represented using Sommerfeld integrals) and exciting electric current.
3534:
configurations where the two layers are rotated relative to each other or graphitic Bernal stacked configurations where half the atoms in one layer lie atop half the atoms in the other. Stacking order and orientation govern the optical and electronic properties of bilayer graphene.
3570:
modes are visible in the Raman spectrum. The material is formed through conversion of non-graphenic carbon into graphenic carbon without providing sufficient energy to allow for the reorganization through annealing of adjacent graphene layers into crystalline graphitic structures.
3420:. Graphene is the only form of carbon (or solid material) in which every atom is available for chemical reaction from two sides (due to the 2D structure). Atoms at the edges of a graphene sheet have special chemical reactivity. Graphene has the highest ratio of edge atoms of any 18249:
Lee, J.-H.; Lee, E. K.; Joo, W.-J.; Jang, Y.; Kim, B.-S.; Lim, J. Y.; Choi, S.-H.; Ahn, S. J.; Ahn, J. R.; Park, M.-H.; Yang, C.-W.; Choi, B. L.; Hwang, S.-W.; Whang, D. (2014). "Wafer-Scale Growth of Single-Crystal Monolayer Graphene on Reusable Hydrogen-Terminated Germanium".
499:
on top of other materials. This "epitaxial graphene" consists of a single-atom-thick hexagonal lattice of sp-bonded carbon atoms, as in free-standing graphene. However, there is significant charge transfer between the two materials, and, in some cases, hybridization between the
244:
that are best described by theories for massless relativistic particles. Charge carriers in graphene show linear, rather than quadratic, dependence of energy on momentum, and field-effect transistors with graphene can be made that show bipolar conduction. Charge transport is
988: 18780:
Rahimi, Somayyeh; Tao, Li; Chowdhury, Sk. Fahad; Park, Saungeun; Jouvray, Alex; Buttress, Simon; Rupesinghe, Nalin; Teo, Ken; Akinwande, Deji (28 October 2014). "Toward 300 mm Wafer-Scalable High-Performance Polycrystalline Chemical Vapor Deposited Graphene Transistors".
4878:
A 2020 study showed that the toxicity of graphene is dependent on several factors such as shape, size, purity, post-production processing steps, oxidative state, functional groups, dispersion state, synthesis methods, route and dose of administration, and exposure times.
987: 4634:, waste rubber tires, and pyrolysis ash as carbon feedstocks. The graphenization process is kinetically controlled, and the energy dose is chosen to preserve the carbon in its graphenic state (excessive energy input leads to subsequent graphitization through annealing). 992: 991: 986: 15566: 15304:
Elias, D. C.; Nair, R. R.; Mohiuddin, T. M. G.; Morozov, S. V.; Blake, P.; Halsall, M. P.; Ferrari, A. C.; Boukhvalov, D. W.; Katsnelson, M. I.; Geim, A. K.; Novoselov, K. S. (2009). "Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane".
3266:
at room temperature. However, later studies primarily on more scalable but more defected graphene derived by Chemical Vapor Deposition have been unable to reproduce such high thermal conductivity measurements, producing a wide range of thermal conductivities between
993: 13596:
Bonaccorso, Francesco; Colombo, Luigi; Yu, Guihua; Stoller, Meryl; Tozzini, Valentina; Ferrari, Andrea C.; Ruoff, Rodney S.; Pellegrini, Vittorio (2 January 2015). "Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage".
13111: 2114:
Graphene shows the quantum Hall effect with respect to conductivity quantization: the effect is unusual in that the sequence of steps is shifted by 1/2 with respect to the standard sequence and with an additional factor of 4. Graphene's Hall conductivity is
268:
Scientists theorized the potential existence and production of graphene for decades. It has likely been unknowingly produced in small quantities for centuries through the use of pencils and other similar applications of graphite. It was possibly observed in
15588:
Li, Xinming; Zhao, Tianshuo; Chen, Qiao; Li, Peixu; Wang, Kunlin; Zhong, Minlin; Wei, Jinquan; Wu, Dehai; Wei, Bingqing; Zhu, Hongwei (3 September 2013). "Flexible all solid-state supercapacitors based on chemical vapor deposition derived graphene fibers".
14788:
Tang, Libin; Ji, Rongbin; Cao, Xiangke; Lin, Jingyu; Jiang, Hongxing; Li, Xueming; Teng, Kar Seng; Luk, Chi Man; Zeng, Songjun; Hao, Jianhua; Lau, Shu Ping (2014). "Deep Ultraviolet Photoluminescence of Water-Soluble Self-Passivated Graphene Quantum Dots".
14036:
Montenegro, Angelo; Dutta, Chayan; Mammetkuliev, Muhammet; Shi, Haotian; Hou, Bingya; Bhattacharyya, Dhritiman; Zhao, Bofan; Cronin, Stephen B.; Benderskii, Alexander V. (3 June 2021). "Asymmetric response of interfacial water to applied electric fields".
4166:
to pull graphene sheets away from graphite. Achieving single layers typically requires multiple exfoliation steps. After exfoliation, the flakes are deposited on a silicon wafer. Crystallites larger than 1 mm and visible to the naked eye can be obtained.
2363:
Graphene's unit cell has two identical carbon atoms and two zero-energy states: one where the electron resides on atom A, and the other on atom B. However, if the unit cell's two atoms are not identical, the situation changes. Research shows that placing
1971:
Due to graphene's two dimensions, charge fractionalization (where the apparent charge of individual pseudoparticles in low-dimensional systems is less than a single quantum) is thought to occur. It may therefore be a suitable material for constructing
13023: 3013:
hysteresis loop is evident under perpendicular fields. Charge-neutral graphene has demonstrated magnetoresistance exceeding 100% in magnetic fields generated by standard permanent magnets (approximately 0.1 tesla), marking a record magnetoresistivity
9107:
Alexander-Webber, J.A.; Baker, A.M.R.; Janssen, T.J.B.M.; Tzalenchuk, A.; Lara-Avila, S.; Kubatkin, S.; Yakimova, R.; Piot, B. A.; Maude, D. K.; Nicholas, R.J. (2013). "Phase Space for the Breakdown of the Quantum Hall Effect in Epitaxial Graphene".
20449:
Scheeler, Sebastian P.; Mühlig, Stefan; Rockstuhl, Carsten; Hasan, Shakeeb Bin; Ullrich, Simon; Neubrech, Frank; Kudera, Stefan; Pacholski, Claudia (12 September 2013). "Plasmon Coupling in Self-Assembled Gold Nanoparticle-Based Honeycomb Islands".
11996:
Lee, G.-H.; Cooper, R. C.; An, S. J.; Lee, S.; van der Zande, A.; Petrone, N.; Hammerberg, A. G.; Lee, C.; Crawford, B.; Oliver, W.; Kysar, J. W.; Hone, J. (31 May 2013). "High-Strength Chemical-Vapor-Deposited Graphene and Grain Boundaries".
3759:
leads to size reduction and folding of individual sheets as well as loss of carboxylic group functionality, by up to 20%, indicating thermal instabilities of SLGO sheets dependent on their preparation methodology. When using thionyl chloride,
8845:
Kim, Kuen Soo; Zhao, Yue; Jang, Houk; Lee, Sang Yoon; Kim, Jong Min; Kim, Kwang S.; Ahn, Jong-Hyun; Kim, Philip; Choi, Jae-Young; Hong, Byung Hee (2009). "Large-scale pattern growth of graphene films for stretchable transparent electrodes".
1952:
Near zero carrier density, graphene exhibits positive photoconductivity and negative photoconductivity at high carrier density, governed by the interplay between photoinduced changes of both the Drude weight and the carrier scattering rate.
1441: 4259:
This method may have multiple advantages like being non-toxic, the graphite doesn't have to be chemically treated in any way before the process, the whole process can be undertaken in a single step as opposed to other exfoliation methods.
14477:
Liu, Zheng; Ma, Lulu; Shi, Gang; Zhou, Wu; Gong, Yongji; Lei, Sidong; Yang, Xuebei; Zhang, Jiangnan; Yu, Jingjiang; Hackenberg, Ken P.; Babakhani, Aydin; Idrobo, Juan-Carlos; Vajtai, Robert; Lou, Jun; Ajayan, Pulickel M. (February 2013).
990: 779:
Graphene sheets in solid form usually show evidence in diffraction for graphite's (002) layering. This is true of some single-walled nanostructures. However, unlayered graphene displaying only (hk0) rings has been observed in the core of
16529:
Chen, Po-Yen; Sodhi, Jaskiranjeet; Qiu, Yang; Valentin, Thomas M.; Steinberg, Ruben Spitz; Wang, Zhongying; Hurt, Robert H.; Wong, Ian Y. (6 May 2016). "Multiscale Graphene Topographies Programmed by Sequential Mechanical Deformation".
8319:
Baringhaus, J.; Ruan, M.; Edler, F.; Tejeda, A.; Sicot, M.; Taleb-Ibrahimi, A.; Li, A. P.; Jiang, Z.; Conrad, E. H.; Berger, C.; Tegenkamp, C.; De Heer, W. A. (2014). "Exceptional ballistic transport in epitaxial graphene nanoribbons".
15741:
Bai, Yunxiang; Zhang, Rufan; Ye, Xuan; Zhu, Zhenxing; Xie, Huanhuan; Shen, Boyuan; Cai, Dali; Liu, Bofei; Zhang, Chenxi; Jia, Zhao; Zhang, Shenli; Li, Xide; Wei, Fei (2018). "Carbon nanotube bundles with tensile strength over 80 GPa".
1073: 3703:
Photograph of single-layer graphene oxide undergoing high temperature chemical treatment, resulting in sheet folding and loss of carboxylic functionality, or through room temperature carbodiimide treatment, collapsing into star-like
2518:
varies with frequency. Over a range from microwave to millimeter wave frequencies, it is approximately 3.3. This permittivity, combined with its ability to function as both a conductor and as insulator, theoretically allows compact
20477:
Jacqmin, T.; Carusotto, I.; Sagnes, I.; Abbarchi, M.; Solnyshkov, D. D.; Malpuech, G.; Galopin, E.; Lemaître, A.; Bloch, J. (18 March 2014). "Direct Observation of Dirac Cones and a Flatband in a Honeycomb Lattice for Polaritons".
9070:
Lara-Avila, Samuel; Kalaboukhov, Alexei; Paolillo, Sara; Syväjärvi, Mikael; Yakimova, Rositza; Fal'ko, Vladimir; Tzalenchuk, Alexander; Kubatkin, Sergey (7 July 2009). "SiC Graphene Suitable For Quantum Hall Resistance Metrology".
2208:
is the Landau level and the double valley and double spin degeneracies give the factor of 4. These anomalies are present not only at extremely low temperatures but also at room temperature, i.e. at roughly 20 °C (293 K).
760:
of free-moving electrons, π and π∗, which are responsible for most of graphene's notable electronic properties. Recent quantitative estimates of aromatic stabilization and limiting size derived from the enthalpies of hydrogenation
20593:
Zhong, Mengyao; Xu, Dikai; Yu, Xuegong; Huang, Kun; Liu, Xuemei; Qu, Yiming; Xu, Yang; Yang, Deren (October 2016). "Interface coupling in graphene/fluorographene heterostructure for high-performance graphene/silicon solar cells".
4377:, etc.) This substrate-free "bottom-up" synthesis is safer, simpler and more environmentally friendly than exfoliation. The method can control thickness, ranging from monolayer to multilayers, which is known as "Tang-Lau Method". 4220:
LPE results in nanosheets with a broad size distribution and thicknesses roughly in the range of 1-10 monolayers. However, liquid cascade centrifugation can be used to size select the suspensions and achieve monolayer enrichment.
3491:
In 2013 a group of Polish scientists presented a production unit that allows the manufacture of continuous monolayer sheets. The process is based on graphene growth on a liquid metal matrix. The product of this process was called
17473:
Eigler, S.; Enzelberger-Heim, M.; Grimm, S.; Hofmann, P.; Kroener, W.; Geworski, A.; Dotzer, C.; Röckert, M.; Xiao, J.; Papp, C.; Lytken, O.; Steinrück, H.-P.; Müller, P.; Hirsch, A. (2013). "Wet Chemical Synthesis of Graphene".
3111:
as pressure sensors and resonators. Due to its large surface energy and out of plane ductility, flat graphene sheets are unstable with respect to scrolling, i.e. bending into a cylindrical shape, which is its lower-energy state.
4137:
The most famous, clean and rather straight-forward method of isolating graphene sheets, called micro-mechanical cleavage or more colloquially called the scotch tape method, was introduced by Novoselov et al. in 2004, which uses
526:
Efforts to make thin films of graphite by mechanical exfoliation started in 1990. Initial attempts employed exfoliation techniques similar to the drawing method. Multilayer samples down to 10 nm in thickness were obtained.
486:
published a study of extremely thin flakes of graphite, and coined the term "graphene" for the hypothetical single-layer structure. This paper reports graphitic flakes that give an additional contrast equivalent of down to ~0.4
15538: 4547:
Growing graphene in an industrial resistive-heating cold wall CVD system was claimed to produce graphene 100 times faster than conventional CVD systems, cut costs by 99% and produce material with enhanced electronic qualities.
1312:
point in the Brillouin zone), where there is a zero density of states but no band gap. Thus, graphene exhibits a semi-metallic (or zero-gap semiconductor) character, although this is not true for a graphene sheet rolled into a
15689:
Xu, Zhen; Liu, Yingjun; Zhao, Xiaoli; Li, Peng; Sun, Haiyan; Xu, Yang; Ren, Xibiao; Jin, Chuanhong; Xu, Peng; Wang, Miao; Gao, Chao (2016). "Ultrastiff and Strong Graphene Fibers via Full-Scale Synergetic Defect Engineering".
3646:(GQD) is a graphene fragment with size less than 100 nm. The properties of GQDs are different from 'bulk' graphene due to the quantum confinement effects which only becomes apparent when size is smaller than 100 nm. 3215:
theoretical/computational studies on this topic have led to three different conclusions. First, in 2012, Kotakoski and Myer studied the mechanical properties of polycrystalline graphene with "realistic atomistic model", using
3304:, significantly affects graphene's thermal conductivity. Isotopically pure C graphene exhibits higher thermal conductivity than either a 50:50 isotope ratio or the naturally occurring 99:1 ratio. It can be shown by using the 471:(TEM) images of thin graphite samples consisting of a few graphene layers were published by G. Ruess and F. Vogt in 1948. Eventually, single layers were also observed directly. Single layers of graphite were also observed by 13970:
Kula, Piotr; Pietrasik, Robert; Dybowski, Konrad; Atraszkiewicz, Radomir; Szymanski, Witold; Kolodziejczyk, Lukasz; Niedzielski, Piotr; Nowak, Dorota (2014). "Single and Multilayer Growth of Graphene from the Liquid Phase".
3363:
dispersion relation in-plane modes (LA, TA) and one quadratic dispersion relation out-of-plane mode (ZA). At low temperatures, the dominance of the T thermal conductivity contribution of the out-of-plane mode supersedes the
19485:
Kim, D. Y.; Sinha-Ray, S.; Park, J. J.; Lee, J. G.; Cha, Y. H.; Bae, S. H.; Ahn, J. H.; Jung, Y. C.; Kim, S. M.; Yarin, A. L.; Yoon, S. S. (2014). "Self-Healing Reduced Graphene Oxide Films by Supersonic Kinetic Spraying".
11625: 6944:
Following discussions with colleagues, Andre and Kostya adopted a method that researchers in surface science were using – using simple Sellotape to peel away layers of graphite to expose a clean surface for study under the
21378:
Meng, Yuan; Feng, Jiangang; Han, Sangmoon; Xu, Zhihao; Mao, Wenbo; Zhang, Tan; Kim, Justin S.; Roh, Ilpyo; Zhao, Yepin; Kim, Dong-Hwan; Yang, Yang; Lee, Jin-Wook; Yang, Lan; Qiu, Cheng-Wei; Bae, Sang-Hoon (21 April 2023).
20539:
Sengstock, K.; Lewenstein, M.; Windpassinger, P.; Becker, C.; Meineke, G.; Plenkers, W.; Bick, A.; Hauke, P.; Struck, J.; Soltan-Panahi, P. (May 2011). "Multi-component quantum gases in spin-dependent hexagonal lattices".
18540: 16917:
ROUZAFZAY, F.; SHIDPOUR, R. (2020). "Graphene@ZnO nanocompound for short-time water treatment under sun-simulated irradiation: Effect of shear exfoliation of graphene using kitchen blender on photocatalytic degradation".
4232:
and water, produced macro-scale graphene films. The graphene sheets are adsorbed to the high energy interface between the materials and are kept from restacking. The sheets are up to about 95% transparent and conductive.
2752:
have been demonstrated up to room temperature, with spin coherence length exceeding 1 micrometre observed at this temperature. Control of spin current polarity via electrical gating has been achieved at low temperatures.
18694:
Tao, Li; Lee, Jongho; Chou, Harry; Holt, Milo; Ruoff, Rodney S.; Akinwande, Deji (27 March 2012). "Synthesis of High Quality Monolayer Graphene at Reduced Temperature on Hydrogen-Enriched Evaporated Copper (111) Films".
16954:
Coelho, João; O'Brien, Sean E.; McGuire, Eva K.; Sanchez, Beatriz Mendoza; Duesberg, Georg S.; McEvoy, Niall; Pennycook, Timothy J.; Downing, Clive; Crossley, Alison; Nicolosi, Valeria; Coleman, Jonathan N. (June 2014).
13083: 3876:
In 2016, Kilometer-scale continuous graphene fibers with outstanding mechanical properties and excellent electrical conductivity are produced by high-throughput wet-spinning of graphene oxide liquid crystals followed by
9013:
Wu, Xiaosong; Hu, Yike; Ruan, Ming; Madiomanana, Nerasoa K; Hankinson, John; Sprinkle, Mike; Berger, Claire; de Heer, Walt A. (2009). "Half integer quantum Hall effect in high mobility single layer epitaxial graphene".
7141:
Cooper, Daniel R.; D'Anjou, Benjamin; Ghattamaneni, Nageswara; Harack, Benjamin; Hilke, Michael; Horth, Alexandre; Majlis, Norberto; Massicotte, Mathieu; Vandsburger, Leron; Whiteway, Eric; Yu, Victor (26 April 2012).
3788:
individual sheets that leads to a reduction in chemical reactivity, which may potentially limit their use in composite synthesis. Therefore, chemical reactions types have been explored. SLGO has also been grafted with
3211:
graphene with sufficiently low density of vacancies, the strength does not vary significantly from that of pristine graphene. On the other hand, high density of vacancies can severely reduce the strength of graphene.
13274:
Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. (2015). "Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage".
303:, electrical conductivity, transparency, and being the thinnest two-dimensional material in the world. The global market for graphene was $ 9 million in 2012, with most of the demand from research and development in 21161: 8900:
Jobst, Johannes; Waldmann, Daniel; Speck, Florian; Hirner, Roland; Maude, Duncan K.; Seyller, Thomas; Weber, Heiko B. (2009). "How Graphene-like is Epitaxial Graphene? Quantum Oscillations and Quantum Hall Effect".
17273:
Kosynkin, D. V.; Higginbotham, Amanda L.; Sinitskii, Alexander; Lomeda, Jay R.; Dimiev, Ayrat; Price, B. Katherine; Tour, James M. (2009). "Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons".
3199:. They found that the elastic stiffness is identical and strength is only slightly lower than those in pristine graphene. In the same year, researchers from UC Berkeley and UCLA probed bi-crystalline graphene with 17012: 16892: 12961:
Chen, Shanshan; Wu, Qingzhi; Mishra, Columbia; Kang, Junyong; Zhang, Hengji; Cho, Kyeongjae; Cai, Weiwei; Balandin, Alexander A.; Ruoff, Rodney S. (2012). "Thermal conductivity of isotopically modified graphene".
2217:
This behavior is a direct result of graphene's chiral, massless Dirac electrons. In a magnetic field, their spectrum has a Landau level with energy precisely at the Dirac point. This level is a consequence of the
18227: 6902: 939:
Graphene's hexagonal lattice can be viewed as two interleaving triangular lattices. This perspective has been used to calculate the band structure for a single graphite layer using a tight-binding approximation.
2202: 15027:
Nalla, Venkatram; Polavarapu, L; Manga, KK; Goh, BM; Loh, KP; Xu, QH; Ji, W (2010). "Transient photoconductivity and femtosecond nonlinear optical properties of a conjugated polymer–graphene oxide composite".
5205:
Li, Zhilin; Chen, Lianlian; Meng, Sheng; Guo, Liwei; Huang, Jiao; Liu, Yu; Wang, Wenjun; Chen, Xiaolong (2015). "Field and temperature dependence of intrinsic diamagnetism in graphene: Theory and experiment".
14310:
Luong, Duy X.; Bets, Ksenia V.; Algozeeb, Wala Ali; Stanford, Michael G.; Kittrell, Carter; Chen, Weiyin; Salvatierra, Rodrigo V.; Ren, Muqing; McHugh, Emily A.; Advincula, Paul A.; Wang, Zhe (January 2020).
4051:
In 2015, a coiled form of graphene was discovered in graphitic carbon (coal). The spiraling effect is produced by defects in the material's hexagonal grid that causes it to spiral along its edge, mimicking a
3881:
through a full-scale synergetic defect-engineering strategy. The graphene fibers with superior performances promise wide applications in functional textiles, lightweight motors, microelectronic devices, etc.
19676:
Stanford, Michael G.; Bets, Ksenia V.; Luong, Duy X.; Advincula, Paul A.; Chen, Weiyin; Li, John Tianci; Wang, Zhe; McHugh, Emily A.; Algozeeb, Wala A.; Yakobson, Boris I.; Tour, James M. (27 October 2020).
14386:
Stanford, Michael G.; Bets, Ksenia V.; Luong, Duy X.; Advincula, Paul A.; Chen, Weiyin; Li, John Tianci; Wang, Zhe; McHugh, Emily A.; Algozeeb, Wala A.; Yakobson, Boris I.; Tour, James M. (27 October 2020).
12537:
Cai, Weiwei; Moore, Arden L.; Zhu, Yanwu; Li, Xuesong; Chen, Shanshan; Shi, Li; Ruoff, Rodney S. (2010). "Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition".
10059:
Bao, Qiaoliang; Zhang, Han; Wang, Yu; Ni, Zhenhua; Yan, Yongli; Shen, Ze Xiang; Loh, Kian Ping; Tang, Ding Yuan (9 October 2009). "Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers".
672:
Graphene is a single layer (monolayer) of carbon atoms, tightly bound in a hexagonal honeycomb lattice. It is an allotrope of carbon in the form of a plane of sp-bonded atoms with a molecular bond length of
9285:
Zhang, Y.; Jiang, Z.; Small, J. P.; Purewal, M. S.; Tan, Y.-W.; Fazlollahi, M.; Chudow, J. D.; Jaszczak, J. A.; Stormer, H. L.; Kim, P. (2006). "Landau-Level Splitting in Graphene in High Magnetic Fields".
4304:
P. Boehm reported producing monolayer flakes of reduced graphene oxide in 1962. Rapid heating of graphite oxide and exfoliation yields highly dispersed carbon powder with a few percent of graphene flakes.
4174:
penetrates onto the graphite source to cleave layers. In the same year, defect-free, unoxidized graphene-containing liquids were made from graphite using mixers that produce local shear rates greater than
4761:
As of 2015, there is one product available for commercial use: a graphene-infused printer powder. Many other uses for graphene have been proposed or are under development, in areas including electronics,
15229:
Whitby, Raymond L.D.; Korobeinyk, Alina; Glevatska, Katya V. (2011). "Morphological changes and covalent reactivity assessment of single-layer graphene oxides under carboxylic group-targeted chemistry".
4512:
In 2014, a two-step roll-to-roll manufacturing process was announced. The first roll-to-roll step produces the graphene via chemical vapor deposition. The second step binds the graphene to a substrate.
16400: 13919:
Xu, Yang; He, K. T.; Schmucker, S. W.; Guo, Z.; Koepke, J. C.; Wood, J. D.; Lyding, J. W.; Aluru, N. R. (2011). "Inducing Electronic Changes in Graphene through Silicon (100) Substrate Modification".
11581:
Grima, J. N.; Winczewski, S.; Mizzi, L.; Grech, M. C.; Cauchi, R.; Gatt, R.; Attard, D.; Wojciechowski, K.W.; Rybicki, J. (2014). "Tailoring Graphene to Achieve Negative Poisson's Ratio Properties".
5256:
Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. (6 June 2008). "Fine Structure Constant Defines Visual Transparency of Graphene".
3771:
Boehm titration results for various chemical reactions of single-layer graphene oxide, which reveal reactivity of the carboxylic groups and the resultant stability of the SLGO sheets after treatment.
2292: 1637: 4217:
to a solvent prior to sonication prevents restacking by adsorbing to the graphene's surface. This produces a higher graphene concentration, but removing the surfactant requires chemical treatments.
3986:
Functionalized single- or multiwalled carbon nanotubes are spin-coated on copper foils and then heated and cooled, using the nanotubes themselves as the carbon source. Under heating, the functional
7041: 12459:
Balandin, A. A.; Ghosh, Suchismita; Bao, Wenzhong; Calizo, Irene; Teweldebrhan, Desalegne; Miao, Feng; Lau, Chun Ning (20 February 2008). "Superior Thermal Conductivity of Single-Layer Graphene".
6296:
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. (2005). "Two-dimensional gas of massless Dirac fermions in graphene".
3623:
Electronic band structure of graphene strips of various widths in the armchair orientation. Tight-binding calculations show that they are semiconducting or metallic depending on width (chirality).
3708:
Soluble fragments of graphene can be prepared in the laboratory through chemical modification of graphite. First, microcrystalline graphite is treated with an acidic mixture of sulfuric acid and
3130:
Graphene-nickel (Ni) composites, created through plating processes, exhibit enhanced mechanical properties due to strong Ni-graphene interactions inhibiting dislocation sliding in the Ni matrix.
6795:
Wang, S.; Yata, S.; Nagano, J.; Okano, Y.; Kinoshita, H.; Kikuta, H.; Yamabe, T. (2000). "A new carbonaceous material with large capacity and high efficiency for rechargeable Li-ion batteries".
4560:
wafers on an Axitron Black Magic system. Monolayer graphene coverage of >95% is achieved on 100 to 300 mm wafer substrates with negligible defects, confirmed by extensive Raman mapping.
17921:
Li, Xueming; Lau, Shu Ping; Tang, Libin; Ji, Rongbin; Yang, Peizhi (2014). "Sulphur Doping: A Facile Approach to Tune the Electronic Structure and Optical Properties of Graphene Quantum Dots".
15793:
Wang, H.; Sun, K.; Tao, F.; Stacchiola, D. J.; Hu, Y. H. (2013). "3D Honeycomb-Like Structured Graphene and Its High Efficiency as a Counter-Electrode Catalyst for Dye-Sensitized Solar Cells".
3030:, maintaining graphene's electronic properties unaffected. Previous methods involved doping graphene with other substances, The dopant's presence negatively affected its electronic properties. 14450:
Xu, Yang; Liu, Yunlong; Chen, Huabin; Lin, Xiao; Lin, Shisheng; Yu, Bin; Luo, Jikui (2012). "Ab initio study of energy-band modulation ingraphene-based two-dimensional layered superlattices".
9646:
Cismaru, Alina; Dragoman, Mircea; Dinescu, Adrian; Dragoman, Daniela; Stavrinidis, G.; Konstantinidis, G. (2013). "Microwave and Millimeterwave Electrical Permittivity of Graphene Monolayer".
3080:
Large-angle bending of graphene monolayers with minimal strain demonstrates its mechanical robustness. Even under extreme deformation, monolayer graphene maintains excellent carrier mobility.
2703:, nearly nine orders of magnitude larger than that of bulk dielectrics, suggesting its potential as a powerful nonlinear Kerr medium capable of supporting various nonlinear effects, including 16229: 3461:. Researchers at the Graphene Research Centre at the National University of Singapore (NUS) discovered in 2011 the ability of graphene to accelerate the osteogenic differentiation of human 1797:. At room temperature, resistance increases abruptly at a specific length—the ballistic mode at 16 micrometres and the thermally activated mode at 160 nanometres (1% of the former length). 989: 18570: 11697:
Zhang, Peng; Ma, Lulu; Fan, Feifei; Zeng, Zhi; Peng, Cheng; Loya, Phillip E.; Liu, Zheng; Gong, Yongji; Zhang, Jiangnan; Zhang, Xingxiang; Ajayan, Pulickel M.; Zhu, Ting; Lou, Jun (2014).
10358:
Zhang, H.; Virally, Stéphane; Bao, Qiaoliang; Kian Ping, Loh; Massar, Serge; Godbout, Nicolas; Kockaert, Pascal (2012). "Z-scan measurement of the nonlinear refractive index of graphene".
20220: 11348:
Briggs, Benjamin D.; Nagabhirava, Bhaskar; Rao, Gayathri; Deer, Robert; Gao, Haiyuan; Xu, Yang; Yu, Bin (2010). "Electromechanical robustness of monolayer graphene with extreme bending".
823:(STM) images of graphene supported on silicon dioxide substrates The rippling seen in these images is caused by conformation of graphene to the substrates' lattice, and is not intrinsic. 10973: 5489:
Boehm, H. P.; Clauss, A.; Fischer, G. O.; Hofmann, U. (July 1962). "Das Adsorptionsverhalten sehr dünner Kohlenstoff-Folien" [The adsorption behavior of very thin carbon foils].
17596:
Sadri, R. (15 February 2017). "Experimental study on thermo-physical and rheological properties of stable and green reduced graphene oxide nanofluids: Hydrothermal assisted technique".
10174:
Zhang, Han; Bao, Qiaoliang; Tang, Dingyuan; Zhao, Luming; Loh, Kianping (5 October 2009). "Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker".
3352:. In addition, the ballistic thermal conductance of graphene is shown to give the lower limit of the ballistic thermal conductances, per unit circumference, length of carbon nanotubes. 1763:
or h-BN has been proposed for protection. In January 2015, the first stable graphene device operation in air over several weeks was reported for graphene whose surface was protected by
19521:
Kim, Do-Yeon; Sinha-Ray, Suman; Park, Jung-Jae; Lee, Jong-Gun; Cha, You-Hong; Bae, Sang-Hoon; Ahn, Jong-Hyun; Jung, Yong Chae; Kim, Soo Min; Yarin, Alexander L.; Yoon, Sam S. (2014).
14919:
Marcano, Daniela C.; Kosynkin, Dmitry V.; Berlin, Jacob M.; Sinitskii, Alexander; Sun, Zhengzong; Slesarev, Alexander; Alemany, Lawrence B.; Lu, Wei; Tour, James M. (24 August 2010).
12184:
Isacsson, Andreas; Cummings, Aron W; Colombo, Luciano; Colombo, Luigi; Kinaret, Jari M; Roche, Stephan (19 December 2016). "Scaling properties of polycrystalline graphene: a review".
8238: 2986: 2822: 11755: 7112: 3885:
Tsinghua University in Beijing, led by Wei Fei of the Department of Chemical Engineering, claims to be able to create a carbon nanotube fibre which has a tensile strength of 80 
261: 21311:
Castellanos-Gomez, Andres; Duan, Xiangfeng; Fei, Zhe; Gutierrez, Humberto Rodriguez; Huang, Yuan; Huang, Xinyu; Quereda, Jorge; Qian, Qi; Sutter, Eli; Sutter, Peter (28 July 2022).
13681:
Liao, Ken-Hsuan; Lin, Yu-Shen; Macosko, Christopher W.; Haynes, Christy L. (27 July 2011). "Cytotoxicity of Graphene Oxide and Graphene in Human Erythrocytes and Skin Fibroblasts".
10227:
Zhang, Han; Tang, Dingyuan; Knize, R. J.; Zhao, Luming; Bao, Qiaoliang; Loh, Kian Ping (15 March 2010). "Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser".
7713:
Charlier, J.-C.; Eklund, P.C.; Zhu, J.; Ferrari, A.C. (2008). "Electron and Phonon Properties of Graphene: Their Relationship with Carbon Nanotubes". In Jorio, A.; Dresselhaus, G.;
2870: 16193: 11672: 10764: 8957:
Shen, T.; Gu, J.J.; Xu, M; Wu, Y.Q.; Bolen, M.L.; Capano, M.A.; Engel, L.W.; Ye, P.D. (2009). "Observation of quantum-Hall effect in gated epitaxial graphene grown on SiC (0001)".
5583: 3115:
In two-dimensional structures like graphene, thermal and quantum fluctuations cause relative displacement, with fluctuations growing logarithmically with structure size as per the
20273:
Polini, Marco; Guinea, Francisco; Lewenstein, Maciej; Manoharan, Hari C.; Pellegrini, Vittorio (September 2013). "Artificial honeycomb lattices for electrons, atoms and photons".
18536: 4120:
density with increasing lateral size forces 2D crystallites to bend into the third dimension. In all cases, graphene must bond to a substrate to retain its two-dimensional shape.
5142:
Zdetsis, Aristides D.; Economou, E. N. (23 July 2015). "A Pedestrian Approach to the Aromaticity of Graphene and Nanographene: Significance of Huckel's (4 n +2)π Electron Rule".
1523: 5519:
Novoselov, K. S.; Geim, AK; Morozov, SV; Jiang, D; Zhang, Y; Dubonos, SV; Grigorieva, IV; Firsov, AA (22 October 2004). "Electric Field Effect in Atomically Thin Carbon Films".
5132:, 2019. "Carbon nanostructures include various low-dimensional allotropes of carbon including carbon black (CB), carbon fiber, carbon nanotubes (CNTs), fullerene, and graphene." 3807:, but partial hydrogenation leads to hydrogenated graphene. Similarly, both-side fluorination of graphene (or chemical and mechanical exfoliation of graphite fluoride) leads to 17870:
Li, Lingling; Wu, Gehui; Yang, Guohai; Peng, Juan; Zhao, Jianwei; Zhu, Jun-Jie (2013). "Focusing on luminescent graphene quantum dots: current status and future perspectives".
17737:
Hofmann, Mario; Chiang, Wan-Yu; Nguyễn, Tuân D; Hsieh, Ya-Ping (21 August 2015). "Controlling the properties of graphene produced by electrochemical exfoliation - IOPscience".
2988:
indicate that the four-fold degeneracy (two valley and two spin degrees of freedom) of the Landau energy levels is partially or completely lifted. One hypothesis proposes that
1581: 1020:
and proof of the Dirac fermion nature of electrons. These effects were previously observed in bulk graphite by Yakov Kopelevich, Igor A. Luk'yanchuk, and others, in 2003–2004.
925:. In contrast, for traditional semiconductors, the primary point of interest is generally Γ, where momentum is zero. Four electronic properties distinguish graphene from other 15411:
Yamada, Y.; Miyauchi, M.; Kim, J.; Hirose-Takai, K.; Sato, Y.; Suenaga, K.; Ohba, T.; Sodesawa, T.; Sato, S. (2011). "Exfoliated graphene ligands stabilizing copper cations".
14874:
Tang, Libin; Ji, Rongbin; Li, Xueming; Teng, Kar Seng; Lau, Shu Ping (2013). "Size-Dependent Structural and Optical Characteristics of Glucose-Derived Graphene Quantum Dots".
1909: 1488: 18301:
Bansal, Tanesh; Durcan, Christopher A.; Jain, Nikhil; Jacobs-Gedrim, Robin B.; Xu, Yang; Yu, Bin (2013). "Synthesis of few-to-monolayer graphene on rutile titanium dioxide".
2368:(h-BN) in contact with graphene can alter the potential felt at atoms A and B sufficiently for the electrons to develop a mass and an accompanying band gap of about 30 meV . 264:
Photograph of a suspended graphene membrane in transmitted light. This one-atom-thick material can be seen with the naked eye because it absorbed approximately 2.3% of light.
16433: 13770: 11415: 3630:("nanostripes" in the "zig-zag"/"zigzag" orientation), at low temperatures, show spin-polarized metallic edge currents, which also suggests applications in the new field of 3103:
cavities where an AFM tip was used to apply a stress to the sheet to test its mechanical properties. Its spring constant was in the range 1–5 N/m and the stiffness was
21153: 19949: 8461:
Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. (2007). "Detection of individual gas molecules adsorbed on graphene".
17398: 2070: 16955: 16837: 11324: 4186:
Shear exfoliation is another method which by using rotor-stator mixer the scalable production of the defect-free Graphene has become possible. It has been shown that, as
3348:), In graphite, the c-axis (out of plane) thermal conductivity is over a factor of ~100 smaller due to the weak binding forces between basal planes as well as the larger 23602: 23372: 23332: 22824: 18219: 15474:
Yamada, Y.; Suzuki, Y.; Yasuda, H.; Uchizawa, S.; Hirose-Takai, K.; Sato, Y.; Suenaga, K.; Sato, S. (2014). "Functionalized graphene sheets coordinating metal cations".
12712:
Lee, Jae-Ung; Yoon, Duhee; Kim, Hakseong; Lee, Sang Wook; Cheong, Hyeonsik (2011). "Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy".
6894: 1639:, and the zero of energy is set to coincide with the Dirac point. The equation uses a pseudospin matrix formula that describes two sublattices of the honeycomb lattice. 20757:(1 September 2015). "Large-Area Graphene Electrodes: Using CVD to facilitate applications in commercial touchscreens, flexible nanoelectronics, and neural interfaces". 16814: 10113:
Zhang, H.; Tang, D. Y.; Zhao, L. M.; Bao, Q. L.; Loh, K. P. (28 September 2009). "Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene".
17145:
Woltornist, S. J.; Oyer, A. J.; Carrillo, J.-M. Y.; Dobrynin, A. V; Adamson, D. H. (2013). "Conductive thin films of pristine graphene by solvent interface trapping".
16251:
Yan, Z.; Peng, Z.; Casillas, G.; Lin, J.; Xiang, C.; Zhou, H.; Yang, Y.; Ruan, G.; Raji, A. R. O.; Samuel, E. L. G.; Hauge, R. H.; Yacaman, M. J.; Tour, J. M. (2014).
14014: 12867:
Jang, Wanyoung; Chen, Zhen; Bao, Wenzhong; Lau, Chun Ning; Dames, Chris (2010). "Thickness-Dependent Thermal Conductivity of Encased Graphene and Ultrathin Graphite".
12589:
Faugeras, Clement; Faugeras, Blaise; Orlita, Milan; Potemski, M.; Nair, Rahul R.; Geim, A. K. (2010). "Thermal Conductivity of Graphene in Corbino Membrane Geometry".
7998:
Morozov, S.V.; Novoselov, K.; Katsnelson, M.; Schedin, F.; Elias, D.; Jaszczak, J.; Geim, A. (2008). "Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer".
7272:
Kasuya, D.; Yudasaka, M.; Takahashi, K.; Kokai, F.; Iijima, S. (2002). "Selective Production of Single-Wall Carbon Nanohorn Aggregates and Their Formation Mechanism".
2930: 2562:, which is qualitatively different from more common quadratic massive bands. Based on the Slonczewski–Weiss–McClure (SWMcC) band model of graphite, calculations using 1947: 1848: 1361: 612:
plate ("wafer"). The silica electrically isolated the graphene and weakly interacted with it, providing nearly charge-neutral graphene layers. The silicon beneath the
10600:
Prezzi, Deborah; Varsano, Daniele; Ruini, Alice; Marini, Andrea; Molinari, Elisa (2008). "Optical properties of graphene nanoribbons: The role of many-body effects".
9479:
Bordag, M.; Fialkovsky, I. V.; Gitman, D. M.; Vassilevich, D. V. (2009). "Casimir interaction between a perfect conductor and graphene described by the Dirac model".
7064: 890:
Electronic band structure of graphene. Valence and conduction bands meet at the six vertices of the hexagonal Brillouin zone and form linearly dispersing Dirac cones.
23533: 23508: 23498: 21075: 15193:
Niyogi, Sandip; Bekyarova, Elena; Itkis, Mikhail E.; McWilliams, Jared L.; Hamon, Mark A.; Haddon, Robert C. (2006). "Solution Properties of Graphite and Graphene".
14835:
Tang, Libin; Ji, Rongbin; Li, Xueming; Bai, Gongxun; Liu, Chao Ping; Hao, Jianhua; Lin, Jingyu; Jiang, Hongxing; Teng, Kar Seng; Yang, Zhibin; Lau, Shu Ping (2012).
8297: 6585: 5910: 4706:
In addition to experimental investigation of graphene and graphene-based devices, their numerical modeling and simulation have been an important research topic. The
2896: 1793:
Transport is dominated by two modes: one ballistic and temperature-independent, and the other thermally activated. Ballistic electrons resemble those in cylindrical
1259:{\displaystyle E(k_{x},k_{y})=\pm \,\gamma _{0}{\sqrt {1+4\cos ^{2}{{\tfrac {1}{2}}ak_{x}}+4\cos {{\tfrac {1}{2}}ak_{x}}\cdot \cos {{\tfrac {\sqrt {3}}{2}}ak_{y}}}}} 15878: 13206:
Mounet, N.; Marzari, N. (2005). "First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives".
3998:
domains add more strength. The nanotubes can overlap, making the material a better conductor than standard CVD-grown graphene. The nanotubes effectively bridge the
17570: 15079:
Nair, R. R.; Wu, H. A.; Jayaram, P. N.; Grigorieva, I. V.; Geim, A. K. (2012). "Unimpeded permeation of water through helium-leak-tight graphene-based membranes".
6668:
Forbeaux, I.; Themlin, J.-M.; Debever, J.-M. (1998). "Heteroepitaxial graphite on 6H-SiC(0001): Interface formation through conduction-band electronic structure".
2667:
Graphene exhibits unique saturable absorption, which saturates when the input optical intensity exceeds a threshold value. This nonlinear optical behavior, termed
538:
in the US on a method to produce graphene by repeatedly peeling off layers from a graphite flake adhered to a substrate, achieving a graphite thickness of 0.00001
21097:
Kang, Jiahao; Matsumoto, Yuji; Li, Xiang; Jiang, Junkai; Xie, Xuejun; Kawamoto, Keisuke; Kenmoku, Munehiro; Chu, Jae Hwan; Liu, Wei; Mao, Junfa; Ueno, Kazuyoshi;
17525:
El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. (16 March 2012). "Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors".
9354:
Du, X.; Skachko, Ivan; Duerr, Fabian; Luican, Adina; Andrei, Eva Y. (2009). "Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene".
4071:
made with such a coil behaves as a quantum conductor whose current distribution between the core and exterior varies with applied voltage, resulting in nonlinear
1747:
substrates, electron scattering by optical phonons of the substrate has a more significant effect than scattering by graphene's own phonons, limiting mobility to
20875: 2323:
Unlike normal metals, graphene's longitudinal resistance shows maxima rather than minima for integral values of the Landau filling factor in measurements of the
550:). The key to success was high-throughput visual recognition of graphene on a properly chosen substrate, which provides a small but noticeable optical contrast. 20388:
Bellec, Matthieu; Kuhl, Ulrich; Montambaux, Gilles; Mortessagne, Fabrice (14 January 2013). "Topological Transition of Dirac Points in a Microwave Experiment".
19827:
Wyss, Kevin M.; Beckham, Jacob L.; Chen, Weiyin; Luong, Duy Xuan; Hundi, Prabhas; Raghuraman, Shivaranjan; Shahsavari, Rouzbeh; Tour, James M. (15 April 2021).
13423:
Yamada, Y.; Yasuda, H.; Murota, K.; Nakamura, M.; Sodesawa, T.; Sato, S. (2013). "Analysis of heat-treated graphite oxide by X-ray photoelectron spectroscopy".
4335:
produced a conductive graphene film (1,738 siemens per meter) and specific surface area (1,520 square meters per gram) that was highly resistant and malleable.
23904: 23232: 23173: 23081: 12765:
Seol, J. H.; Jo, I.; Moore, A. L.; Lindsay, L.; Aitken, Z. H.; Pettes, M. T.; Li, X.; Yao, Z.; Huang, R.; Broido, D.; Mingo, N.; Ruoff, R. S.; Shi, L. (2010).
10539:
Yang, Li; Deslippe, Jack; Park, Cheol-Hwan; Cohen, Marvin; Louie, Steven (2009). "Excitonic Effects on the Optical Response of Graphene and Bilayer Graphene".
8760: 6877: 6857: 6728: 4855:, antimicrobial and environmental effects and highlights the various mechanisms of graphene toxicity. Another review published in 2016 by Ou et al. focused on 3454:
There are indications that graphene has promise as a useful material for interacting with neural cells; studies on cultured neural cells show limited success.
18362:
Pletikosić, I.; Kralj, M.; Pervan, P.; Brako, R.; Coraux, J.; n'Diaye, A.; Busse, C.; Michely, T. (2009). "Dirac Cones and Minigaps for Graphene on Ir(111)".
17715: 15539:"Directly Drawing Self-Assembled, Porous, and Monolithic Graphene Fiber from Chemical Vapor Deposition Grown Graphene Film and Its Electrochemical Properties" 13894: 8441: 4348:
produced displayed a single-crystalline structure with a lateral size of several hundred nanometers and a high degree of crystallinity and thermal stability.
3376:
at low temperatures. The lowest negative Grüneisen parameters correspond to the lowest transverse acoustic ZA modes, whose frequencies increase with in-plane
2383:
If the mass in graphene can be controlled, electrons can be confined to massless regions by surrounding them with massive regions, allowing the patterning of
23993: 23809: 23744: 23684: 23612: 23518: 23412: 23282: 23237: 22908: 21191: 16392: 9418:
Bolotin, K.; Ghahari, Fereshte; Shulman, Michael D.; Stormer, Horst L.; Kim, Philip (2009). "Observation of the fractional quantum Hall effect in graphene".
292:
for their "groundbreaking experiments regarding the two-dimensional material graphene". High-quality graphene had proved to be surprisingly easy to isolate.
24073: 19550: 19450:
Chakrabarti, A.; Lu, J.; Skrabutenas, J. C.; Xu, T.; Xiao, Z.; Maguire, J. A.; Hosmane, N. S. (2011). "Conversion of carbon dioxide to few-layer graphene".
12918:
Pettes, Michael Thompson; Jo, Insun; Yao, Zhen; Shi, Li (2011). "Influence of Polymeric Residue on the Thermal Conductivity of Suspended Bilayer Graphene".
8264: 6059: 5800:
Riedl, C.; Coletti, C.; Iwasaki, T.; Zakharov, A.A.; Starke, U. (2009). "Quasi-Free-Standing Epitaxial Graphene on SiC Obtained by Hydrogen Intercalation".
1790:, allowing electrons to flow smoothly along the ribbon edges. In copper, resistance increases proportionally with length as electrons encounter impurities. 553:
Another U.S. patent was filed in the same year by Bor Z. Jang and Wen C. Huang for a method to produce graphene based on exfoliation followed by attrition.
23538: 23382: 23352: 16369: 12288:
Song, Zhigong; Artyukhov, Vasilii I.; Yakobson, Boris I.; Xu, Zhiping (10 April 2013). "Pseudo Hall–Petch Strength Reduction in Polycrystalline Graphene".
7032: 2584:
has been utilized to characterize both thickness and refractive index of chemical-vapor-deposition (CVD)-grown graphene films. At a wavelength of 670 
19752:
Algozeeb, Wala A.; Savas, Paul E.; Luong, Duy Xuan; Chen, Weiyin; Kittrell, Carter; Bhat, Mahesh; Shahsavari, Rouzbeh; Tour, James M. (24 November 2020).
14205:
Min, Lola; Hovden, Robert; Huang, Pinshane; Wojcik, Michal; Muller, David A.; Park, Jiwoong (2012). "Twinning and Twisting of Tri- and Bilayer Graphene".
10514: 23468: 23448: 23121: 20998:
Rafiee, M.A.; Rafiee, J.; Wang, Z.; Song, H.; Yu, Z.Z.; Koratkar, N. (2009). "Enhanced mechanical properties of nanocomposites at low graphene content".
16041:
Lapshin, Rostislav V. (January 2016). "STM observation of a box-shaped graphene nanostructure appeared after mechanical cleavage of pyrolytic graphite".
713:
Sigma and pi bonds in graphene. Sigma bonds result from an overlap of sp hybrid orbitals, whereas pi bonds emerge from tunneling between the protruding p
13509: 11184: 4291:
at supersonic speeds onto a substrate. The balls cracked open upon impact, and the resulting unzipped cages then bond together to form a graphene film.
3796:
groups. When filtered into graphene oxide paper, these composites exhibit increased stiffness and strength relative to unmodified graphene oxide paper.
3228:. Third, in 2013, Z. D. Sha et al. studied the effect of grain size on the properties of polycrystalline graphene, by modelling the grain patches using 1672:
dearth of charge carriers. The rapid fall of resistivity when carriers are injected shows their high mobility, here of the order of 5000 cm/Vs. n-Si/SiO
23493: 19971:
Kim, Janghyuk; Lee, Geonyeop; Kim, Jihyun (20 July 2015). "Wafer-scale synthesis of multi-layer graphene by high-temperature carbon ion implantation".
8064:
Chen, J. H.; Jang, Chaun; Xiao, Shudong; Ishigami, Masa; Fuhrer, Michael S. (2008). "Intrinsic and Extrinsic Performance Limits of Graphene Devices on
7734:
Kopelevich, Y.; Torres, J.; Da Silva, R.; Mrowka, F.; Kempa, H.; Esquinazi, P. (2003). "Reentrant Metallic Behavior of Graphite in the Quantum Limit".
1308:
electron per atom in this model, the valence band is fully occupied, while the conduction band is vacant. The two bands touch at the zone corners (the
13084:"A Three-Dimensional Vertically Aligned Functionalized Multilayer Graphene Architecture: An Approach for Graphene-Based Thermal Interfacial Materials" 18478: 14688: 319: 21041: 20218:
Niu, Kaikun; Li, Ping; Huang, Zhixiang; Jiang, Li Jun; Bagci, Hakan (2020). "Numerical Methods for Electromagnetic Modeling of Graphene: A Review".
17788:
Tang, L.; Li, X.; Ji, R.; Teng, K. S.; Tai, G.; Ye, J.; Wei, C.; Lau, S. P. (2012). "Bottom-up synthesis of large-scale graphene oxide nanosheets".
14256:
Forestier, Alexis; Balima, Félix; Bousige, Colin; de Sousa Pinheiro, Gardênia; Fulcrand, Rémy; Kalbác, Martin; San-Miguel, Alfonso (28 April 2020).
5121: 3545:
It has been shown that the two graphene layers can withstand important strain or doping mismatch which ultimately should lead to their exfoliation.
1956:
Graphene doped with various gaseous species (both acceptors and donors) can be returned to an undoped state by gentle heating in a vacuum. Even for
1782:
of epitaxial graphene changes in discrete steps. The ribbons' conductance exceeds predictions by a factor of 10. The ribbons can function more like
23131: 22833: 17825:
Li, Xueming; Lau, Shu Ping; Tang, Libin; Ji, Rongbin; Yang, Peizhi (2013). "Multicolour Light emission from chlorine-doped graphene quantum dots".
14966: 9585:
Dobson, J. F.; White, A.; Rubio, A. (2006). "Asymptotics of the dispersion interaction: analytic benchmarks for van der Waals energy functionals".
2477:
indicate that the four-fold degeneracy (two valley and two spin degrees of freedom) of the Landau energy levels is partially or completely lifted.
808:
material as a result of the instability of two-dimensional crystals, or may originate from the ubiquitous dirt seen in all TEM images of graphene.
640:
Since the early 2000s, a number of companies and research laboratories have been working to develop commercial applications of graphene. In 2014 a
16225: 15267:
Park, Sungjin; Dikin, Dmitriy A.; Nguyen, SonBinh T.; Ruoff, Rodney S. (2009). "Graphene Oxide Sheets Chemically Cross-Linked by Polyallylamine".
5971: 3612:
Electronic band structure of graphene strips of varying widths in zig-zag orientation. Tight-binding calculations show that they are all metallic.
2490:
graphene's strong interaction with the electromagnetic field as a one-atom-thick material, the Casimir effect has garnered significant interest..
784:
graphite onions. TEM studies show faceting at defects in flat graphene sheets and suggest a role for two-dimensional crystallization from a melt.
504:
of the substrate atoms and π orbitals of graphene, which significantly alter the electronic structure compared to that of free-standing graphene.
23488: 22817: 22375: 18562: 17420: 2387:, wires, and other mesoscopic structures. It also produces one-dimensional conductors along the boundary. These wires would be protected against 23158: 21976: 20792:
Kong, Wei; Kum, Hyun; Bae, Sang-Hoon; Shim, Jaewoo; Kim, Hyunseok; Kong, Lingping; Meng, Yuan; Wang, Kejia; Kim, Chansoo; Kim, Jeehwan (2019).
10937: 4022: 4002:
found in conventional graphene. The technique eliminates the traces of substrate on which later-separated sheets were deposited using epitaxy.
18427: 8164:
Physicists Show Electrons Can Travel More Than 100 Times Faster in Graphene :: University Communications Newsdesk, University of Maryland
7012: 23704: 23101: 16730:
Kusmartsev, F. V.; Wu, W. M.; Pierpoint, M. P.; Yung, K. C. (2014). "Application of Graphene within Optoelectronic Devices and Transistors".
15989:
Lalwani, Gaurav; Gopalan, Anu Gopalan; D'Agati, Michael; Srinivas Sankaran, Jeyantt; Judex, Stefan; Qin, Yi-Xian; Sitharaman, Balaji (2015).
6250:
DiVincenzo, D. P.; Mele, E. J. (1984). "Self-Consistent Effective Mass Theory for Intralayer Screening in Graphite Intercalation Compounds".
4646:/Si, creates a wafer-scale (4 inches (100 mm)) wrinkle/tear/residue-free graphene layer at a relatively low temperature of 500 °C. 1004:
The cleavage technique led directly to the first observation of the anomalous quantum Hall effect in graphene in 2005 by Geim's group and by
20100: 9967:
Kurum, U.; Liu, Bo; Zhang, Kailiang; Liu, Yan; Zhang, Hao (2011). "Electrochemically tunable ultrafast optical response of graphene oxide".
6426:
Zhang, Y.; Tan, Y. W.; Stormer, H. L.; Kim, P. (2005). "Experimental observation of the quantum Hall effect and Berry's phase in graphene".
1336:
Consequently, at low energies, even neglecting the true spin, electrons can be described by an equation formally equivalent to the massless
23252: 13466:
Yamada, Y.; Kim, J.; Murota, K.; Matsuo, S.; Sato, S. (2014). "Nitrogen-containing graphene analyzed by X-ray photoelectron spectroscopy".
12232:
Kotakoski, Jani; Meyer, Jannik C. (24 May 2012). "Mechanical properties of polycrystalline graphene based on a realistic atomistic model".
11747: 11279: 9736: 7120: 4447: 3967:
synthesised in the laboratory, but it has been suggested that it may have useful electronic properties, or as a hydrogen storage material.
932:
If the in-plane direction is confined rather than infinite, its electronic structure changes. These confined structures are referred to as
18824:
Woltornist, Steven J.; Alamer, Fahad Alhashmi; McDannald, Austin; Jain, Menka; Sotzing, Gregory A.; Adamson, Douglas H. (1 January 2015).
15171: 11440:
Braga, S.; Coluci, V. R.; Legoas, S. B.; Giro, R.; Galvão, D. S.; Baughman, R. H. (2004). "Structure and Dynamics of Carbon Nanoscrolls".
6523:
Meyer, J.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. (2007). "The structure of suspended graphene sheets".
422: 23163: 17451: 16146: 10744: 8166: 4962: 4597:
was used to deposit reduced graphene-oxide on a substrate. The energy of the impact rearranges that carbon atoms into flawless graphene.
2118: 918:, divided into two non-equivalent sets of three points. These sets are labeled K and K'. These sets give graphene a valley degeneracy of 19107: 11876:
Grantab, R.; Shenoy, V. B.; Ruoff, R. S. (12 November 2010). "Anomalous Strength Characteristics of Tilt Grain Boundaries in Graphene".
5597: 1862:
substrate may lead to local puddles of carriers that allow conduction. Several theories suggest that the minimum conductivity should be
22810: 20927: 7090: 4256:
100 atm. Carbon dioxide turns gaseous as soon as the vessel is depressurized and makes the graphite explode into few-layered graphene.
2581: 20897: 16455:
Xu, Fangbo; Yu, Henry; Sadrzadeh, Arta; Yakobson, Boris I. (14 October 2015). "Riemann Surfaces of Carbon as Graphene Nanosolenoids".
14717: 10998:
Tombros, Nikolaos; et al. (2007). "Electronic spin transport and spin precession in single graphene layers at room temperature".
9854:; Crommie, Michael F.; Shen, Y. Ron; Wang, Feng (11 June 2009). "Direct observation of a widely tunable bandgap in bilayer graphene". 7632: 1968:
at low temperature can reduce mobility 20-fold. The mobility reduction is reversible on heating the graphene to remove the potassium.
417:
in 1916, however, neither of their proposed structures is correct. In 1918, V. Kohlschütter and P. Haenni described the properties of
24031: 23347: 18184: 15905:
Shehzad, Khurram; Xu, Yang; Gao, Chao; Xianfeng, Duan (2016). "Three-dimensional macro-structures of two-dimensional nanomaterials".
11786: 5623: 4827:
encapsulation and doping of epitaxial graphene have led to the commercialisation of epitaxial graphene quantum resistance standards.
2347:, show the anomalous effect directly in electrical measurements. Graphitic layers on the carbon face of silicon carbide show a clear 18601: 17982:
Choucair, M.; Thordarson, P; Stride, JA (2008). "Gram-scale production of graphene based on solvothermal synthesis and sonication".
14285: 13396:
Eftekhari, A.; Jafarkhani, P. (2013). "Curly Graphene with Specious Interlayers Displaying Superior Capacity for Hydrogen Storage".
19304: 18983: 14088:
Min, Hongki; Sahu, Bhagawan; Banerjee, Sanjay; MacDonald, A. (2007). "Ab initio theory of gate induced gaps in graphene bilayers".
13353:
Yamada, Y.; Murota, K; Fujita, R; Kim, J; et al. (2014). "Subnanometer vacancy defects introduced on graphene by oxygen gas".
4955:"graphene definition, meaning – what is graphene in the British English Dictionary & Thesaurus – Cambridge Dictionaries Online" 2647:) has been fabricated, demonstrating its capability to excite surface electromagnetic waves in periodic structure using a 633  1647:
Electron waves in graphene propagate within a single-atom layer, making them sensitive to the proximity of other materials such as
382: 13762: 11384: 6884:". US Patent 7071258. Filed on 2002-10-21, granted on 2006-07-04, assigned to Global Graphene Group Inc; to expire on 2024-01-06. 2569:
Experimental verification, though confirmed, lacks the precision required to improve upon existing techniques for determining the
16425: 16339: 8386:
Chen, J. H.; Jang, C.; Adam, S.; Fuhrer, M. S.; Williams, E. D.; Ishigami, M. (2008). "Charged Impurity Scattering in Graphene".
4801: 4691: 4667: 1850:. The origin of this minimum conductivity is still unclear. However, rippling of the graphene sheet or ionized impurities in the 21424: 21356: 19941: 14746: 8691: 4247:. A major advantage of LPE is that it can be used to exfoliate many inorganic 2D materials beyond graphene, e.g. BN, MoS2, WS2. 2675:
spectrum, due to graphene's universal optical absorption and zero band gap. This property has enabled full-band mode locking in
24326: 23563: 23322: 23242: 22640: 21720:"Green synthesis of peptide functionalized reduced graphene oxide (rGO) nano bioconjugate with enhanced antibacterial activity" 20845: 17390: 14364: 12810: 11301: 10419:
Dong, H; Conti, C; Marini, A; Biancalana, F (2013). "Terahertz relativistic spatial solitons in doped graphene metamaterials".
4663: 3823:
to coordinate metals and metal ions by introducing functional groups. Structures of graphene ligands are similar to e.g. metal-
1055:
electrons forming the π bands in graphene can be treated independently. Within this π-band approximation, using a conventional
834:
show that a graphene sheet is thermodynamically unstable if its size is less than about 20 nm and becomes the most stable
21833: 20674: 19805: 19730: 16499: 11331: 4116:
Isolated 2D crystals cannot be grown via chemical synthesis beyond small sizes even in principle, because the rapid growth of
4043:
completely after more than 90% compression, and absorb up to 900 times its weight in oil, at a rate of 68.8 grams per second.
2229: 1596: 1325:
on the wave vector, similar to a relativistic particle. Since an elementary cell of the lattice has a basis of two atoms, the
20068: 19884:
Advincula, Paul A.; Luong, Duy Xuan; Chen, Weiyin; Raghuraman, Shivaranjan; Shahsavari, Rouzbeh; Tour, James M. (June 2021).
19326:
Woltornist, Steven J.; Oyer, Andrew J.; Carrillo, Jan-Michael Y.; Dobrynin, Andrey V.; Adamson, Douglas H. (27 August 2013).
19174: 18871:
Woltornist, Steven J.; Carrillo, Jan-Michael Y.; Xu, Thomas O.; Dobrynin, Andrey V.; Adamson, Douglas H. (10 February 2015).
16810: 13144: 12521: 5713: 23944: 19572:
Lin, J.; Peng, Z.; Liu, Y.; Ruiz-Zepeda, F.; Ye, R.; Samuel, E. L. G.; Yacaman, M. J.; Yakobson, B. I.; Tour, J. M. (2014).
19054:
Woltornist, Steven J.; Varghese, Deepthi; Massucci, Daniel; Cao, Zhen; Dobrynin, Andrey V.; Adamson, Douglas H. (May 2017).
15537:
Li, Xinming; Zhao, Tianshuo; Wang, Kunlin; Yang, Ying; Wei, Jinquan; Kang, Feiyu; Wu, Dehai; Zhu, Hongwei (29 August 2011).
14992:
Eftekhari, Ali; Yazdani, Bahareh (2010). "Initiating electropolymerization on graphene sheets in graphite oxide structure".
14515: 14006: 6957: 4113:
A rapidly increasing list of production techniques have been developed to enable graphene's use in commercial applications.
2566:
in the thin-film limit account for interatomic distance, hopping values, and frequency, thus assessing optical conductance.
19198:"PolyHIPE foams from pristine graphene: Strong, porous, and electrically conductive materials templated by a 2D surfactant" 18182:
Gall, N. R.; Rut'Kov, E. V.; Tontegode, A. Ya. (1997). "Two Dimensional Graphite Films on Metals and Their Intercalation".
15640:
Xin, Guoqing; Yao, Tiankai; Sun, Hongtao; Scott, Spencer Michael; Shao, Dali; Wang, Gongkai; Lian, Jie (4 September 2015).
11974: 10883:
Bolmatov, Dima; Mou, Chung-Yu (2010). "Tunneling conductance of the graphene SNS junction with a single localized defect".
7068: 4339:
suspension (Graphene nanofluid) exhibit Newtonian behavior, with the viscosity showing close resemblance to that of water.
4213:. Restacking is an issue with this technique unless solvents with appropriate surface energy are used (e.g. NMP). Adding a 4170:
As of 2014, exfoliation produced graphene with the lowest number of defects and highest electron mobility. Alternatively a
3431:
physicists reported that single-layer graphene is a hundred times more chemically reactive than thicker multilayer sheets.
936:. If the nanoribbon has a "zig-zag" edge, the bandgap remains zero. If it has an "armchair" edge, the bandgap is non-zero. 21071: 14768: 6625:
Oshima, C.; Nagashima, A. (1997). "Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces".
6600: 22729: 22368: 19385:
Chen, Feiyang; Varghese, Deepthi; McDermott, Sean T.; George, Ian; Geng, Lijiang; Adamson, Douglas H. (22 October 2020).
18500:
Mattevi, Cecilia; Kim, Hokwon; Chhowalla, Manish (2011). "A review of chemical vapour deposition of graphene on copper".
17574: 15366:
Garcia, J. C.; de Lima, D. B.; Assali, L. V. C.; Justo, J. F. (2011). "Group IV graphene- and graphane-like nanosheets".
10646:
Yang, Li; Cohen, Marvin L.; Louie, Steven G. (2007). "Excitonic Effects in the Optical Spectra of Graphene Nanoribbons".
8289: 6734: 831: 448:, and by David P. DiVincenzo and Eugene J. Mele. Semenoff emphasized the occurrence in a magnetic field of an electronic 19363: 18916: 15940:
Lalwani, Gaurav; Trinward Kwaczala, Andrea; Kanakia, Shruti; Patel, Sunny C.; Judex, Stefan; Sitharaman, Balaji (2013).
15840: 8591:
Steinberg, Hadar; Barak, Gilad; Yacoby, Amir; et al. (2008). "Charge fractionalization in quantum wires (Letter)".
4642:
Accelerating carbon ions inside an electrical field into a semiconductor made of thin nickel films on a substrate of SiO
4284:. In 2014, carbon nanotube-reinforced graphene was made via spin coating and annealing functionalized carbon nanotubes. 3562:
ratio can exceed 10. However, most importantly, the M peak, which originates from AB stacking, is absent, whereas the TS
24196: 22488: 21969: 21130: 18340: 4789:'s new Mono model is said to be made out of graphene as a first of both a street-legal track car and a production car. 4749: 4171: 2554:. This is due to the unusual low-energy electronic structure of monolayer graphene, characterized by electron and hole 2311:
half-integer quantum Hall effect in graphene. Plateaux in transverse conductivity appear at half-integer multiples of 4
1317:
due to its curvature. Two of the six Dirac points are independent, while the rest are equivalent by symmetry. Near the
209:, reflecting the fact that the graphite allotrope of carbon contains numerous double bonds in a two dimensional sheet. 20867: 17631:
Kamali, A.R.; Fray, D.J. (2013). "Molten salt corrosion of graphite as a possible way to make carbon nanostructures".
16300: 14141:
Barlas, Yafis; Côté, R.; Lambert, J.; MacDonald, A. H. (2010). "Anomalous Exciton Condensation in Graphene Bilayers".
9667:
Kuzmenko, A. B.; Van Heumen, E.; Carbone, F.; Van Der Marel, D. (2008). "Universal infrared conductance of graphite".
3811:(graphene fluoride), while partial fluorination (generally halogenation) provides fluorinated (halogenated) graphene. 3053:) (with representative engineering tensile strength ~50-60 GPa for stretching large-area freestanding graphene) and a 24096: 15502:
Yamada, Y.; Suzuki, Y.; Yasuda, H.; et al. (2014). "Functionalized graphene sheets coordinating metal cations".
15439:
Yamada, Y.; Miyauchi, M.; Jungpil, K.; et al. (2011). "Exfoliated graphene ligands stabilizing copper cations".
10786:
Wang, Min; Li, Chang Ming (2011). "Excitonic properties of hydrogen saturation-edged armchair graphene nanoribbons".
5322:
Zhu, Shou-En; Yuan, Shengjun; Janssen, G. C. A. M. (1 October 2014). "Optical transmittance of multilayer graphene".
4694:
values when compared with high-temperature CVD synthesized graphene films of same cross-section down to widths of 20
847: 573: 241: 19056:"Controlled 3D Assembly of Graphene Sheets to Build Conductive, Chemically Selective and Shape-Responsive Materials" 10700:
Yang, Li; Cohen, Marvin L.; Louie, Steven G. (2008). "Magnetic Edge-State Excitons in Zigzag Graphene Nanoribbons".
8767: 6874: 6854: 5128:"Carbon nanostructures for electromagnetic shielding applications", Mohammed Arif Poothanari, Sabu Thomas, et al., 4556:
CVD graphene is scalable and has been grown on deposited Cu thin film catalyst on 100 to 300 mm standard Si/SiO
1063:(restricted to first-nearest-neighbor interactions only) that produces the energy of the electrons with wave vector 24351: 24341: 22600: 20175:
Hanson, George W. (March 2008). "Dyadic Green's Functions for an Anisotropic, Non-Local Model of Biased Graphene".
17707: 13855: 9942: 9532:
Fialkovsky, I. V.; Marachevsky, V.N.; Vassilevich, D. V. (2011). "Finite temperature Casimir effect for graphene".
8438: 4655: 3200: 3196: 472: 468: 21183: 10837:
Bolmatov, Dima; Mou, Chung-Yu (2010). "Josephson effect in graphene SNS junction with a single localized defect".
6987: 511:, which can be seen as crystalline salts of the intercalant and graphene. It was also used in the descriptions of 24331: 24221: 19522: 4205:(LPE) is a relatively simple method which involves dispersing graphite in a liquid medium to produce graphene by 3451:
graphene flakes, the form and surface chemistry can elicit different biological responses on the same cell line.
3143: 2219: 756:
orbital that is oriented perpendicularly to the plane. These orbitals hybridize together to form two half-filled
508: 229: 22299: 22294: 16361: 8792:
Peres, N. M. R. (15 September 2010). "Colloquium : The transport properties of graphene: An introduction".
8260: 4670:, demonstrated a novel CMOS-compatible graphene synthesis process at 300 °C suitable for back-end-of-line ( 3764:
groups result, which can then form aliphatic and aromatic amides with a reactivity conversion of around 70–80%.
1700:, showing minimal change even at room temperature (300 K), suggesting that the dominant scattering mechanism is 22361: 21857:"Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites" 20949:
Lalwani, G; Henslee, A. M.; Farshid, B; Lin, L; Kasper, F. K.; Qin, Y. X.; Mikos, A. G.; Sitharaman, B (2013).
19387:"Interface-exfoliated graphene-based conductive screen-printing inks: low-loading, low-cost, and additive-free" 18160: 10473: 6076: 4716: 4108: 2442: 16123: 8129:
Akturk, A.; Goldsman, N. (2008). "Electron transport and full-band electron–phonon interactions in graphene".
4581:
in an oxidation–reduction reaction with carbon dioxide, producing carbon nanoparticles including graphene and
2938: 2773: 2035:, which is the production of transverse (perpendicular to the main current) conductivity in the presence of a 689: 440:
in 1947 as a starting point for understanding the electronic properties of 3D graphite. The emergent massless
24146: 22790: 22756: 21962: 21667:
Ou, Lingling; Song, Bin; Liang, Huimin; Liu, Jia; Feng, Xiaoli; Deng, Bin; Sun, Ting; Shao, Longquan (2016).
20951:"Two-dimensional nanostructure-reinforced biodegradable polymeric nanocomposites for bone tissue engineering" 16393:"Graphene aerogel is seven times lighter than air, can balance on a blade of grass - Slideshow | ExtremeTech" 11169: 6864:". US Patent 6667100. Filed on 2002-05-13, granted on 2003-12-23, assigned to EGC Operating Co LLC; expired. 3511: 3373: 3108: 820: 16147:"Bilayer graphene formed by passage of current through graphite: evidence for a three dimensional structure" 13501: 13075: 11937:
Wei, Yujie; Wu, Jiangtao; Yin, Hanqing; Shi, Xinghua; Yang, Ronggui; Dresselhaus, Mildred (September 2012).
11528:
Bolmatov, Dima (2011). "Thermodynamic properties of tunneling quasiparticles in graphene-based structures".
6703:
Mouras, S.; et al. (1987). "Synthesis of first stage graphite intercalation compounds with fluorides".
3065:). The Nobel announcement illustrated this by saying that a 1 square meter graphene hammock would support a 2827: 2304: 24346: 24181: 21932: 21921: 16956:"Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids" 16838:"Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids" 8183:
Sagade, A. A.; et al. (2015). "Highly Air Stable Passivation of Graphene Based Field Effect Devices".
5378:
Lee, Changgu (2008). "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene".
3849:
tension. Flexible all-solid-state supercapacitors based on this graphene fibers were demonstrated in 2013.
3789: 2324: 21945:'Engineering Controls for Nano-scale Graphene Platelets During Manufacturing and Handling Processes' (PDF) 20696:
Meng, Yuan; Ye, Shengwei; Shen, Yijie; Xiao, Qirong; Fu, Xing; Lu, Rongguo; Liu, Yong; Gong, Mali (2018).
20122:
Gusynin, V P; Sharapov, S G; Carbotte, J P (17 January 2007). "Magneto-optical conductivity in graphene".
19259:
Liyanage, Chinthani D.; Varghese, Deepthi; Brown, Elizabeth E. B.; Adamson, Douglas H. (5 November 2019).
18450: 14652: 3107:, which differs from that of bulk graphite. These intrinsic properties could lead to applications such as 2344: 24321: 23377: 21049: 5119: 2695:
Under intense laser illumination, graphene exhibits a nonlinear phase shift due to the optical nonlinear
1497: 641: 632:
properties of the material—quantum mechanical, electrical, chemical, mechanical, optical, magnetic, etc.
14970: 12128:
Yong (May 2017). "A review on mechanics and mechanical properties of 2D materials—Graphene and beyond".
4488:
with high-dielectric-constant (high-κ). A two-step CVD process is shown to grow graphene directly on TiO
1692:. Hole and electron mobilities are nearly identical. The mobility is independent of temperature between 22761: 22697: 22342: 21949: 17250:
Brumfiel, G. (2009). "Nanotubes cut to ribbons New techniques open up carbon tubes to create ribbons".
14837:"Deep Ultraviolet to Near-Infrared Emission and Photoresponse in Layered N-Doped Graphene Quantum Dots" 13502:"Thinnest graphene sheets react strongly with hydrogen atoms; thicker sheets are relatively unaffected" 5959: 3983:") is easier to manipulate, while improving the electrical and mechanical qualities of both materials. 2737: 1960:
concentrations in excess of 10 cm, carrier mobility exhibits no observable change. Graphene doped with
1538: 624:
could be used as a "back gate" electrode to vary the charge density in the graphene over a wide range.
19630: 19629:
Duy, Luong Xuan; Peng, Zhiwei; Li, Yilun; Zhang, Jibo; Ji, Yongsung; Tour, James M. (1 January 2018).
19197: 18825: 18629:"High Quality Monolayer Graphene Synthesized by Resistive Heating Cold Wall Chemical Vapor Deposition" 17571:"Researchers develop graphene supercapacitor holding promise for portable electronics / UCLA Newsroom" 17428: 12334:
Sha, Z. D.; Quek, S. S.; Pei, Q. X.; Liu, Z. S.; Wang, T. J.; Shenoy, V. B.; Zhang, Y. W. (May 2015).
7795:
Luk'yanchuk, Igor A.; Kopelevich, Yakov (2004). "Phase Analysis of Quantum Oscillations in Graphite".
6215:
Semenoff, Gordon W. (24 December 1984). "Condensed-Matter Simulation of a Three-Dimensional Anomaly".
4092:, and, when used as a battery electrode, the material was shown to have as much as a 400% increase in 4005:
Stacks of a few layers have been proposed as a cost-effective and physically flexible replacement for
3542:, which can produce large bilayer regions that almost exclusively conform to a Bernal stack geometry. 1865: 1464: 24136: 24131: 23312: 22744: 22704: 21718:
Joshi, Shubhi; Siddiqui, Ruby; Sharma, Pratibha; Kumar, Rajesh; Verma, Gaurav; Saini, Avneet (2020).
18873:"Polymer/Pristine Graphene Based Composites: From Emulsions to Strong, Electrically Conducting Foams" 7237:
Dixit, Vaibhav A.; Singh, Yashita Y. (June 2019). "How much aromatic are naphthalene and graphene?".
6927: 6831: 4832: 4786: 4686:
of metal catalyst. The synthesized large-area graphene films were shown to exhibit high-quality (via
4459: 3539: 3172: 3154:
of about 4 MPa√m. This indicates that imperfect graphene is likely to crack in a brittle manner like
3116: 2687:
absorber, modulator, polarizer, microwave signal processing and broad-band wireless access networks.
1760: 796: 507:
The term "graphene" was used again in 1987 to describe single sheets of graphite as a constituent of
300: 104: 18451:"Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition" 15133: 11115:
Ohishi, Megumi; et al. (2007). "Spin Injection into a Graphene Thin Film at Room Temperature".
8234: 7223: 6489: 4324:
with an almost intact carbon framework that allows efficient removal of functional groups. Measured
948:
Electrons propagating through the graphene honeycomb lattice effectively lose their mass, producing
878:
of sections of text to one or more sub-topic articles which are then summarized in the main article.
495:
Starting in the 1970s, C. Oshima and others described single layers of carbon atoms that were grown
24176: 22535: 22520: 22498: 22108: 18938:
Ward, Shawn P.; Abeykoon, Prabodha G.; McDermott, Sean T.; Adamson, Douglas H. (8 September 2020).
13031: 12048:
Rasool, Haider I.; Ophus, Colin; Klug, William S.; Zettl, A.; Gimzewski, James K. (December 2013).
6006:
Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse
4202: 4064:
the magnetic field would be strongest in the hollow, nanometer-wide cavity at the spiral's center.
3934: 3434:
Graphene can self-repair holes in its sheets, when exposed to molecules containing carbon, such as
1800:
Graphene electrons can traverse micrometer distances without scattering, even at room temperature.
589: 277: 18423: 7945:
Lamas, C.A.; Cabra, D.C.; Grandi, N. (2009). "Generalized Pomeranchuk instabilities in graphene".
6360:
Gusynin, V. P.; Sharapov, S. G. (2005). "Unconventional Integer Quantum Hall Effect in Graphene".
2683:. Additionally, the optical response of graphene/graphene oxide layers can be electrically tuned. 2045: 24336: 24256: 22709: 22682: 20092: 19005:
Bento, Jennifer L.; Brown, Elizabeth; Woltornist, Steven J.; Adamson, Douglas H. (January 2017).
16640: 13045:
Saito, K.; Nakamura, J.; Natori, A. (2007). "Ballistic thermal conductance of a graphene sheet".
11475:
Bolmatov, Dima; Mou, Chung-Yu (2011). "Graphene-based modulation-doped superlattice structures".
9728: 6177:
Howe, JY; Rawn, CJ; Jones, LE; Ow, H (June 2003). "Improved crystallographic data for graphite".
3305: 3225: 3204: 3088: 2741: 2616: 2570: 2551: 1809: 1436:{\displaystyle v_{F}\,{\vec {\sigma }}\cdot \nabla \psi (\mathbf {r} )\,=\,E\psi (\mathbf {r} ).} 868: 568: 476: 21855:
Li, Y.; Yuan, H.; von Dem Bussche, A.; Creighton, M.; Hurt, R. H.; Kane, A. B.; Gao, H. (2013).
21154:"The Last Barrier to Ultra-Miniaturized Electronics is Broken, Thanks To A New Type Of Inductor" 18826:"Preparation of conductive graphene/graphite infused fabrics using an interface trapping method" 14480:"In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes" 13163:
Mingo, N.; Broido, D.A. (2005). "Carbon Nanotube Ballistic Thermal Conductance and Its Limits".
11276: 3728:
via treatment with octadecylamine. The resulting material (circular graphene layers of 5.3 
3207:. They found that the strength of grain-boundaries indeed tend to increase with the tilt angle. 3026:
In 2014 researchers magnetized graphene by placing it on an atomically smooth layer of magnetic
957: 24111: 23076: 22986: 22863: 22858: 22719: 22714: 22687: 22168: 21213:
Reiss, T.; Hjelt, K.; Ferrari, A.C. (2019). "Graphene is on track to deliver on its promises".
19007:"Thermal and Electrical Properties of Nanocomposites Based on Self-Assembled Pristine Graphene" 18220:"Samsung's graphene breakthrough could finally put the wonder material into real-world devices" 15141: 14653:"Thermal conductivity of Thue–Morse and double-period quasiperiodic graphene-hBN superlattices" 11626:"Mechanical properties of nickel-graphene composites synthesized by electrochemical deposition" 7091:"Global breakthrough: Irish scientists discover how to mass produce 'wonder material' graphene" 6150:
Trucano, Peter; Chen, Ruey (13 November 1975). "Structure of graphite by neutron diffraction".
5080: 4859:(GFNs) and revealed several typical mechanisms such as physical destruction, oxidative stress, 4763: 4504:
CVD graphene can be grown on metal substrates including ruthenium, iridium, nickel and copper.
4454:
graphene may be coupled to surfaces weakly enough (by the active valence electrons that create
4313: 4277: 3688: 2724:
in graphene SNS junctions with single localized defect and armchair ribbon scaling properties.
1005: 998: 742: 628: 445: 289: 187: 14596:"Suppression of coherent thermal transport in quasiperiodic graphene-hBN superlattice ribbons" 10309:
Zheng, Z.; Zhao, Chujun; Lu, Shunbin; Chen, Yu; Li, Ying; Zhang, Han; Wen, Shuangchun (2012).
8163: 7205:[Study of the electronic structure of graphene and hydrated graphene] (in Portuguese). 4954: 3369: 3330:
contribution at low temperatures. The ballistic thermal conductance of graphene is isotropic.
2901: 1914: 1815: 24166: 24141: 23779: 23397: 22944: 22645: 22508: 22384: 21995: 19055: 18537:"Purdue-based startup scales up graphene production, develops biosensors and supercapacitors" 17668:"Large-scale preparation of graphene by high temperature insertion of hydrogen into graphite" 17443: 14676: 13856:"Generic epitaxial graphene biosensors for ultrasensitive detection of cancer risk biomarker" 11624:
Ren, Zhaodi; Meng, Nan; Shehzad, Khurram; Xu, Yang; Qu, Shaoxing; Yu, Bin; Luo, Jack (2015).
7210: 5889: 5862: 3890: 3870: 3462: 3389: 3192: 3062: 3050: 2745: 2308: 726: 657: 394: 339: 20923: 20051:(2018). "CMOS-Compatible Doped-Multilayer-Graphene Interconnects for Next-Generation VLSI". 11062:
Cho, Sungjae; Chen, Yung-Fu; Fuhrer, Michael S. (2007). "Gate-tunable Graphene Spin Valve".
2875: 24227: 24211: 23836: 23207: 23178: 23059: 22883: 22692: 22655: 22635: 22046: 21985: 21944: 21868: 21731: 21669:"Toxicity of graphene-family nanoparticles: A general review of the origins and mechanisms" 21459: 21392: 21222: 20805: 20709: 20642: 20603: 20559: 20497: 20407: 20346: 20292: 20229: 20184: 20141: 19980: 19897: 19840: 19642: 19585: 19398: 19209: 19129:
Varghese, Deepthi; Bento, Jennifer L.; Ward, Shawn P.; Adamson, Douglas H. (16 June 2020).
19067: 18884: 18837: 18650: 18462: 18381: 18310: 18259: 18193: 18136: 17991: 17930: 17879: 17746: 17640: 17534: 17483: 17348: 17283: 17198: 16970: 16852: 16764: 16694: 16594: 16539: 16464: 16161: 16107: 16060: 15852: 15802: 15751: 15699: 15653: 15598: 15511: 15483: 15448: 15420: 15324: 15241: 15098: 15037: 15001: 14711: 14664: 14617: 14550: 14491: 14324: 14214: 14160: 14107: 14046: 13984: 13928: 13870: 13812: 13606: 13554: 13475: 13432: 13284: 13225: 13172: 13056: 12983: 12927: 12876: 12778: 12731: 12670: 12608: 12547: 12468: 12414: 12347: 12297: 12251: 12147: 12061: 12006: 11950: 11939:"The nature of strength enhancement and weakening by pentagon–heptagon defects in graphene" 11895: 11850: 11710: 11640: 11547: 11494: 11449: 11399: 11357: 11232: 11134: 11081: 11017: 10949: 10902: 10856: 10795: 10709: 10665: 10619: 10558: 10488: 10438: 10377: 10322: 10246: 10193: 10132: 10079: 10015: 9976: 9926: 9863: 9812: 9771: 9686: 9604: 9551: 9498: 9437: 9373: 9305: 9240: 9182: 9127: 9086: 9033: 8976: 8920: 8855: 8811: 8732: 8667: 8610: 8545: 8480: 8405: 8339: 8192: 8138: 8017: 7964: 7911: 7865: 7814: 7753: 7689: 7657: 7590: 7539: 7471: 7405: 7359: 7312: 7165: 6991: 6961: 6804: 6761: 6712: 6677: 6634: 6542: 6445: 6379: 6315: 6259: 6224: 6114: 5919: 5876: 5819: 5758: 5538: 5445: 5387: 5341: 5275: 5215: 5089: 5032: 4288: 3930: 3673: 3643: 3627: 3337: 3251: 2717: 2668: 2620: 2555: 2373: 2343:
Graphene samples prepared on nickel films, and on both the silicon face and carbon face of
585: 531: 418: 369: 304: 285: 250: 246: 129: 21939: 19261:"Pristine Graphene Microspheres by the Spreading and Trapping of Graphene at an Interface" 12092:
Zhang, Teng; Li, Xiaoyan; Gao, Huajian (November 2015). "Fracture of graphene: a review".
11322: 7720:
Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications
7426: 7301:"Constraints on stellar grain formation from presolar graphite in the Murchison meteorite" 5668: 5619: 3400:. This is much larger than that reported to date for carbon black (typically smaller than 2355:
experiments, and the effect is observed in cyclotron resonance and tunneling experiments.
1648: 8: 24171: 24151: 23964: 23654: 23142: 23006: 22981: 22949: 22868: 22749: 22724: 22595: 22552: 22430: 22425: 22405: 21103:"On-chip intercalated-graphene inductors for next-generation radio frequency electronics" 17758: 16173: 15049: 14745:(doctoralThesis) (in Brazilian Portuguese). Universidade Federal do Rio Grande do Norte. 14257: 13326:
Denis, P. A.; Iribarne, F. (2013). "Comparative Study of Defect Reactivity in Graphene".
11778: 10474:"Electronic excitations: Density-functional versus many-body Green's-function approaches" 10450: 9825: 9800: 9760:"Surface plasmon resonance for characterization of large-area atomic-layer graphene film" 7714: 6836: 6749: 6098: 4883: 4771: 4516: 4455: 4410: 4406:
time. Microwave heating can dramatically shorten the reaction time from days to seconds.
4089: 3620: 3609: 3428: 3360: 3027: 2720:, edge and surface functionalized armchair ribbons, hydrogen saturated armchair ribbons, 2624: 2499: 2028: 1345: 1060: 933: 875: 516: 457: 386: 270: 183: 21872: 21735: 21463: 21396: 21226: 20809: 20713: 20646: 20607: 20563: 20501: 20411: 20350: 20296: 20233: 20188: 20153: 20145: 19984: 19901: 19844: 19646: 19589: 19402: 19260: 19213: 19071: 18939: 18888: 18841: 18654: 18593: 18466: 18385: 18314: 18263: 18197: 18140: 17995: 17934: 17883: 17750: 17644: 17538: 17487: 17352: 17287: 17202: 16974: 16856: 16768: 16698: 16598: 16543: 16468: 16165: 16145:
Harris PJ, Slater TJ, Haigh SJ, Hage FS, Kepaptsoglou DM, Ramasse QM, Brydson R (2014).
16111: 16064: 15942:"Fabrication and characterization of three-dimensional macroscopic all-carbon scaffolds" 15856: 15806: 15755: 15703: 15657: 15602: 15515: 15487: 15452: 15424: 15328: 15245: 15102: 15041: 15005: 14668: 14621: 14554: 14495: 14328: 14218: 14164: 14111: 14050: 13932: 13874: 13816: 13610: 13558: 13479: 13436: 13288: 13229: 13176: 13060: 12987: 12931: 12880: 12782: 12735: 12674: 12612: 12551: 12472: 12418: 12351: 12301: 12255: 12151: 12065: 12010: 11954: 11899: 11854: 11714: 11652: 11644: 11551: 11498: 11453: 11403: 11361: 11253: 11236: 11210: 11138: 11085: 11021: 10953: 10906: 10860: 10799: 10713: 10669: 10623: 10562: 10492: 10442: 10381: 10326: 10250: 10197: 10136: 10083: 10019: 9980: 9930: 9867: 9816: 9775: 9690: 9608: 9555: 9502: 9441: 9377: 9309: 9244: 9186: 9131: 9090: 9037: 8980: 8924: 8859: 8815: 8736: 8671: 8614: 8549: 8484: 8409: 8343: 8196: 8142: 8021: 7968: 7915: 7869: 7818: 7757: 7661: 7594: 7581:
Shenderova, O. A.; Zhirnov, V. V.; Brenner, D. W. (July 2002). "Carbon Nanostructures".
7543: 7475: 7409: 7363: 7316: 7169: 6808: 6765: 6716: 6681: 6638: 6546: 6449: 6383: 6319: 6263: 6228: 6118: 5923: 5880: 5823: 5762: 5542: 5449: 5391: 5345: 5279: 5219: 5102: 5093: 5075: 5036: 2222:
and is half-filled in neutral graphene, leading to the "+1/2" in the Hall conductivity.
886: 24269: 24191: 24161: 24106: 23983: 23959: 23458: 23392: 23257: 23217: 23068: 23031: 22991: 22970: 22913: 22888: 22766: 22468: 22083: 22065: 21927: 21891: 21856: 21801: 21792: 21776: 21752: 21719: 21695: 21668: 21644: 21619: 21595: 21578: 21554: 21537: 21493: 21416: 21348: 21293: 21246: 21122: 21023: 20975: 20950: 20837: 20774: 20735: 20666: 20575: 20549: 20521: 20487: 20431: 20397: 20370: 20336: 20282: 20255: 20200: 20157: 20131: 20074: 20029: 19923: 19866: 19797: 19722: 19606: 19573: 19542: 19503: 19467: 19427: 19386: 19296: 19241: 19196:
Brown, Elizabeth E. B.; Woltornist, Steven J.; Adamson, Douglas H. (15 November 2020).
19166: 19099: 19036: 18975: 18806: 18759: 18720: 18671: 18640: 18628: 18517: 18405: 18371: 18283: 18105: 18051: 17964: 17903: 17852: 17770: 17613: 17558: 17507: 17372: 17317: 17232: 17170: 17127: 17101: 17073: 17047: 17004: 16935: 16884: 16787: 16752: 16731: 16712: 16563: 16277: 16252: 16226:"Carbon nanotubes as reinforcing bars to strengthen graphene and increase conductivity" 16185: 16076: 16050: 16015: 15990: 15966: 15941: 15775: 15723: 15622: 15393: 15375: 15348: 15314: 15286: 15163: 15122: 15088: 15061: 14901: 14814: 14680: 14633: 14607: 14571: 14538: 14432: 14356: 14277: 14238: 14184: 14150: 14123: 14097: 14070: 13988: 13952: 13886: 13882: 13836: 13802: 13630: 13578: 13544: 13448: 13378: 13308: 13241: 13215: 13007: 12973: 12900: 12849: 12802: 12747: 12721: 12694: 12660: 12632: 12598: 12571: 12492: 12438: 12404: 12368: 12335: 12267: 12241: 12211: 12193: 12163: 12137: 12109: 12030: 11919: 11885: 11664: 11606: 11563: 11537: 11510: 11484: 11392:
Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures
11222: 11150: 11124: 11097: 11071: 11041: 11007: 10918: 10892: 10872: 10846: 10819: 10689: 10655: 10635: 10609: 10582: 10548: 10454: 10428: 10401: 10367: 10262: 10236: 10209: 10183: 10156: 10122: 10095: 10069: 10036: 10003: 9895: 9710: 9676: 9647: 9628: 9594: 9567: 9541: 9514: 9488: 9461: 9427: 9397: 9363: 9329: 9295: 9264: 9208: 9151: 9117: 9076: 9049: 9023: 8992: 8966: 8936: 8910: 8879: 8827: 8801: 8748: 8722: 8683: 8657: 8626: 8600: 8568: 8535: 8523: 8504: 8470: 8421: 8395: 8363: 8329: 8216: 8111: 8085: 8041: 8007: 7980: 7954: 7881: 7838: 7804: 7777: 7743: 7681: 7647: 7606: 7563: 7529: 7495: 7461: 7375: 7349: 7340:
Fraundorf, P.; Wackenhut, M. (2002). "The core structure of presolar graphite onions".
7254: 7183: 7155: 6650: 6566: 6532: 6469: 6435: 6403: 6369: 6339: 6305: 6132: 5937: 5843: 5809: 5782: 5748: 5562: 5528: 5466: 5433: 5411: 5357: 5331: 5299: 5265: 5231: 5056: 5022: 4812: 4797: 4687: 3914: 3749: 3745: 3655: 3216: 3155: 3151: 3120: 3054: 2989: 649: 557: 402: 312: 87: 16331: 3219:(MD) simulation. To emulate the growth mechanism of CVD, they first randomly selected 24316: 24216: 23799: 23699: 23669: 23587: 23327: 23212: 23168: 23116: 22923: 22918: 22850: 22567: 22463: 22445: 21896: 21806: 21757: 21700: 21649: 21600: 21559: 21497: 21485: 21477: 21420: 21408: 21380: 21352: 21340: 21332: 21312: 21297: 21285: 21250: 21238: 21126: 21015: 20980: 20841: 20829: 20821: 20727: 20670: 20658: 20579: 20513: 20423: 20362: 20308: 20259: 20161: 20064: 20033: 19927: 19915: 19870: 19858: 19801: 19789: 19781: 19773: 19726: 19714: 19706: 19698: 19658: 19611: 19432: 19414: 19355: 19347: 19300: 19288: 19280: 19245: 19233: 19225: 19170: 19158: 19150: 19103: 19091: 19083: 19040: 19028: 18979: 18967: 18959: 18908: 18900: 18853: 18798: 18712: 18676: 18397: 18287: 18275: 18152: 18097: 18043: 18007: 17956: 17907: 17895: 17856: 17774: 17762: 17689: 17550: 17499: 17376: 17364: 17309: 17224: 17162: 17131: 17119: 17065: 16996: 16939: 16876: 16792: 16716: 16660: 16555: 16480: 16282: 16177: 16080: 16020: 15971: 15922: 15828: 15767: 15715: 15671: 15614: 15558: 15340: 15211: 15195: 15167: 15114: 15053: 14948: 14940: 14856: 14806: 14740: 14684: 14637: 14576: 14507: 14436: 14424: 14416: 14408: 14360: 14348: 14340: 14281: 14230: 14176: 14127: 14074: 14062: 13956: 13944: 13828: 13744: 13698: 13622: 13570: 13370: 13300: 13245: 13188: 13140: 13103: 13047: 13011: 12999: 12943: 12892: 12853: 12794: 12751: 12686: 12636: 12624: 12575: 12563: 12517: 12484: 12430: 12373: 12313: 12271: 12215: 12113: 12022: 11966: 11911: 11862: 11728: 11656: 11598: 11567: 11514: 11258: 11154: 11101: 11033: 10965: 10922: 10876: 10811: 10725: 10681: 10574: 10458: 10405: 10393: 10340: 10266: 10213: 10160: 10148: 10041: 9899: 9887: 9879: 9702: 9620: 9571: 9518: 9453: 9389: 9321: 9256: 9212: 9200: 9155: 9143: 9053: 8940: 8871: 8831: 8573: 8496: 8355: 8208: 8103: 8033: 7984: 7927: 7830: 7769: 7610: 7555: 7487: 7452:
Fasolino, A.; Los, J. H.; Katsnelson, M. I. (2007). "Intrinsic ripples in graphene".
7431: 7258: 6777: 6724: 6654: 6558: 6461: 6395: 6331: 5835: 5786: 5774: 5709: 5554: 5471: 5415: 5403: 5291: 5048: 4474: 4194:
is shown to be effective in the production of High-Yield and water-soluble graphene.
4010: 3961: 3377: 3010: 2993: 2770:
reveals additional interesting features. Additional plateaus in Hall conductivity at
2563: 2377: 1965: 1783: 1772: 1701: 1681: 483: 225: 195: 48: 22802: 21027: 20793: 20778: 20739: 20629:
Phare, Christopher T.; Daniel Lee, Yoon-Ho; Cardenas, Jaime; Lipson, Michal (2015).
20525: 20374: 20204: 20078: 19546: 19507: 19471: 18763: 18724: 18409: 18109: 18055: 17968: 17617: 17562: 17511: 17236: 17174: 17077: 17008: 16888: 16567: 16189: 15779: 15727: 15626: 15397: 15290: 15126: 15065: 14905: 14312: 14188: 13992: 13890: 13840: 13582: 13452: 13382: 12904: 12766: 12698: 12034: 11923: 11610: 10823: 10693: 10639: 10586: 10099: 9714: 9632: 9333: 9268: 8687: 8645: 8630: 8425: 8220: 8115: 7885: 7842: 7781: 7631:
Neto, A Castro; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K.; Geim, A. K. (2009).
7567: 7499: 7379: 7187: 6646: 6407: 5847: 5646:"Global Demand for Graphene after Commercial Production to be Enormous, says Report" 5361: 5353: 5235: 5060: 2301:
is absent, indicating that bilayer graphene stays metallic at the neutrality point.
24293: 24281: 24201: 24101: 24006: 23954: 23387: 23262: 23227: 23148: 23136: 23096: 23001: 22934: 22734: 22650: 22610: 22322: 22252: 22158: 21886: 21876: 21825: 21796: 21788: 21747: 21739: 21690: 21680: 21639: 21631: 21590: 21549: 21516: 21467: 21400: 21324: 21277: 21230: 21114: 21098: 21007: 20970: 20962: 20813: 20766: 20717: 20650: 20630: 20611: 20567: 20509: 20505: 20459: 20435: 20419: 20415: 20354: 20300: 20245: 20237: 20192: 20149: 20056: 20048: 20019: 19988: 19905: 19848: 19765: 19753: 19690: 19678: 19650: 19601: 19593: 19534: 19495: 19459: 19422: 19406: 19339: 19272: 19217: 19142: 19075: 19018: 18951: 18892: 18845: 18810: 18790: 18751: 18704: 18666: 18658: 18509: 18470: 18393: 18389: 18318: 18267: 18201: 18144: 18087: 18079: 18035: 17999: 17946: 17938: 17887: 17842: 17834: 17805: 17797: 17754: 17679: 17648: 17605: 17542: 17491: 17356: 17321: 17299: 17291: 17255: 17214: 17206: 17154: 17111: 17057: 16986: 16978: 16927: 16868: 16860: 16782: 16772: 16702: 16652: 16612: 16602: 16547: 16507: 16472: 16272: 16264: 16169: 16115: 16068: 16010: 16002: 15961: 15953: 15914: 15868: 15860: 15818: 15810: 15759: 15707: 15661: 15606: 15550: 15519: 15491: 15456: 15428: 15385: 15352: 15332: 15278: 15269: 15249: 15232: 15203: 15153: 15106: 15045: 15009: 14932: 14891: 14883: 14848: 14818: 14798: 14672: 14625: 14566: 14558: 14499: 14459: 14400: 14332: 14269: 14222: 14172: 14168: 14115: 14054: 13980: 13936: 13878: 13820: 13734: 13726: 13690: 13661: 13634: 13614: 13562: 13483: 13440: 13405: 13362: 13335: 13312: 13292: 13233: 13180: 13095: 13064: 12991: 12964: 12935: 12884: 12841: 12786: 12739: 12678: 12616: 12555: 12513:
Thermophysical Properties of Matter: Thermal conductivity : nonmetallic solids
12496: 12476: 12442: 12422: 12363: 12355: 12305: 12259: 12203: 12155: 12101: 12069: 12050:"Measurement of the intrinsic strength of crystalline and polycrystalline graphene" 12014: 11958: 11903: 11858: 11821: 11718: 11668: 11648: 11590: 11555: 11502: 11457: 11407: 11365: 11248: 11240: 11168:
Hashimoto, T.; Kamikawa, S.; Yagi, Y.; Haruyama, J.; Yang, H.; Chshiev, M. (2014).
11142: 11089: 11045: 11025: 10957: 10910: 10864: 10803: 10756: 10721: 10717: 10673: 10627: 10570: 10566: 10504: 10496: 10446: 10385: 10330: 10289: 10254: 10201: 10140: 10087: 10031: 10023: 9984: 9934: 9871: 9830: 9820: 9779: 9698: 9694: 9612: 9559: 9506: 9465: 9445: 9401: 9381: 9313: 9248: 9190: 9139: 9135: 9041: 8996: 8984: 8928: 8883: 8863: 8819: 8752: 8740: 8675: 8646:"Dirac four-potential tunings-based quantum transistor utilizing the Lorentz force" 8618: 8563: 8553: 8508: 8488: 8413: 8367: 8347: 8200: 8146: 8095: 8045: 8029: 8025: 7972: 7919: 7873: 7822: 7761: 7685: 7673: 7665: 7598: 7547: 7479: 7421: 7413: 7367: 7320: 7281: 7246: 7173: 6812: 6769: 6720: 6685: 6642: 6570: 6550: 6498: 6487:
Ruess, G.; Vogt, F. (1948). "Höchstlamellarer Kohlenstoff aus Graphitoxyhydroxyd".
6473: 6453: 6387: 6343: 6323: 6267: 6232: 6186: 6159: 6122: 6068: 6035: 5927: 5884: 5831: 5827: 5766: 5701: 5566: 5546: 5498: 5461: 5453: 5395: 5349: 5303: 5283: 5223: 5185: 5151: 5097: 5040: 4847:
One review on graphene toxicity published in 2016 by Lalwani et al. summarizes the
4805: 4729: 4671: 4084: 4006: 3946: 3721: 3505: 3417: 3247: 3042: 2721: 2644: 2613: 2532: 2223: 2101: 1973: 1281: 1023:
When atoms are placed onto the graphene hexagonal lattice, the overlap between the
1013: 926: 804: 701:
form the hybrid orbital sp with three major lobes at 120°. The remaining orbital, p
520: 308: 153: 21511:
Shahdeo, Deepshikha; Roberts, Akanksha (2020). Chaudhery Mustansar Hussain (ed.).
19942:"Korean researchers grow wafer-scale graphene on a silicon substrate | KurzweilAI" 19130: 18521: 17609: 16931: 16656: 14242: 13184: 12806: 12392: 12167: 11826: 11809: 11297: 9616: 9317: 7826: 7765: 6391: 4524:/Si wafers reveals >95% monolayer continuity and an average value of ~2.62 for 2679:
using graphene-based saturable absorbers, contributing significantly to ultrafast
1988: 1667: 24356: 23889: 23864: 23402: 23342: 23126: 23026: 23011: 22996: 22903: 22893: 22585: 22530: 22473: 22458: 22207: 22163: 22129: 22071: 21618:
Lalwani, Gaurav; D'Agati, Michael; Mahmud Khan, Amit; Sitharaman, Balaji (2016).
20615: 19910: 19885: 19853: 19828: 19654: 19276: 18955: 18849: 18474: 18322: 17652: 16476: 16119: 16072: 15957: 15523: 15495: 15460: 15432: 15253: 14772: 14629: 14479: 14007:"Polish scientists find way to make super-strong graphene sheets | Graphene-Info" 13487: 13134: 12511: 11283: 9799:
Lin, Xiao; Xu, Yang; Zhang, Baile; Hao, Ran; Chen, Hongsheng; Li, Erping (2013).
8445: 8170: 7718: 7250: 6965: 6881: 6861: 5867: 5125: 4809: 4737: 4481:
groups, creating hydrogen-terminated germanium. CVD can coat that with graphene.
4478: 4422: 4269: 4096: 4093: 4053: 3976: 3938: 3741: 3712:. A series of oxidation and exfoliation steps produce small graphene plates with 3677: 3356: 3349: 3254:
of suspended graphene reported an exceptionally large thermal conductivity up to
3229: 3139: 3084: 2332: 2226:
also shows the quantum Hall effect, but with only one of the two anomalies (i.e.
2093: 1794: 1764: 1314: 1294: 899: 781: 768:
Graphene sheets stack to form graphite with an interplanar spacing of 0.335 
757: 605: 512: 327: 323: 233: 21521: 18563:"Startup scales up graphene production, develops biosensors and supercapacitors" 13650:"Biocompatibility Considerations in the Design of Graphene Biomedical Materials" 12426: 11938: 11559: 10868: 8713:
Pachos, Jiannis K. (2009). "Manifestations of topological effects in graphene".
6236: 5645: 4520:
Large-area Raman mapping of CVD graphene on deposited Cu thin film on 150 mm SiO
3312:-dominated. However, for a gated graphene strip, an applied gate bias causing a 3159: 1808:
Despite zero carrier density near the Dirac points, graphene exhibits a minimum
709: 523:
in 1992, and of polycyclic aromatic hydrocarbons in 2000 by S. Wang and others.
24126: 24091: 23874: 23764: 23729: 23714: 23649: 23644: 23543: 23443: 23362: 23337: 23302: 23247: 23222: 23091: 22939: 22739: 22605: 22547: 22525: 22304: 22113: 22077: 21743: 21635: 21404: 21328: 20770: 20722: 20697: 20241: 19410: 19221: 18624: 16607: 16582: 15839:
Wang, Hui; Sun, Kai; Tao, Franklin; Stacchiola, Dario J.; Hu, Yun Hang (2013).
15158: 14836: 14765: 14595: 14562: 14119: 14058: 13237: 13068: 12743: 12263: 12207: 11244: 10631: 10004:"Excitation of surface electromagnetic waves in a graphene-based Bragg grating" 10002:
Sreekanth, K.V.; Zeng, Shuwen; Shang, Jingzhi; Yong, Ken-Tye; Yu, Ting (2012).
9563: 9510: 8932: 8823: 8761:"Fractionalization of charge and statistics in graphene and related structures" 7976: 6596: 5457: 5227: 4910: 4779: 4617: 4325: 4210: 3999: 3990:
decompose into graphene, while the nanotubes partially split and form in-plane
3878: 3832: 3828: 3808: 3666: 3527: 3523: 3180: 3176: 2628: 2486: 2348: 2036: 1652: 1491: 1458: 1337: 953: 949: 915: 911: 812:
residue, which must be removed to obtain atomic-resolution images, may be the "
722: 645: 441: 398: 390: 357: 21685: 21472: 21447: 21281: 21234: 21118: 20817: 20060: 20024: 20007: 18205: 15763: 15140:
Strilbytska, Olha; Semaniuk, Uliana; Burdyliuk, Nadia; Lushchak, Oleh (2022).
14336: 13444: 12845: 12159: 12105: 11808:
Papageorgiou, Dimitrios G.; Kinloch, Ian A.; Young, Robert J. (October 2017).
11506: 10914: 10500: 8744: 7669: 7602: 6689: 4621:
similar material, laser-induced graphene fibers (LIGF), was reported in 2018.
4149:
into successively thinner platelets. Other methods do exist like exfoliation.
3865:(1,290 watts per metre per kelvin), while tensile strength reached 1,080  2627:
regime by an applied magnetic fields. Graphene/graphene oxide systems exhibit
463: 24310: 24156: 24011: 23894: 23869: 23850: 23794: 23674: 23632: 23627: 23367: 23357: 23317: 23192: 23086: 23041: 23016: 22898: 22878: 22771: 22540: 22493: 22415: 22337: 22191: 22090: 22056: 21481: 21412: 21336: 21289: 20825: 20731: 20698:"Waveguide Engineering of Graphene Optoelectronics—Modulators and Polarizers" 20662: 20654: 19919: 19862: 19777: 19702: 19662: 19418: 19351: 19327: 19284: 19229: 19154: 19087: 19032: 18963: 18904: 18872: 18857: 16664: 14944: 14412: 14344: 14273: 13532: 12832:
Klemens, P. G. (2001). "Theory of Thermal Conduction in Thin Ceramic Films".
11841:
Li, J.C.M. (June 1972). "Disclination model of high angle grain boundaries".
11323:
Class for Physics of the Royal Swedish Academy of Sciences (5 October 2010).
9915:"Strong terahertz conductance of graphene nanoribbons under a magnetic field" 6773: 6271: 6072: 5997: 5502: 5155: 4631: 4466: 4281: 4237: 4163: 4139: 3991: 3910: 3886: 3866: 3800: 3761: 3729: 3717: 3687:
In 2022 were performed an evaluation of biological effects of graphene oxide
3519: 3058: 3046: 3038:
The (two-dimensional) density of graphene is 0.763 mg per square meter.
2672: 2640: 2365: 1656: 1326: 1056: 1017: 1012:. This effect provided direct evidence of graphene's theoretically predicted 903: 895: 773: 678: 597: 437: 410: 212:
Each atom in a graphene sheet is connected to its three nearest neighbors by
198: 21881: 21265: 21102: 20196: 19769: 19694: 18336: 18271: 17546: 17210: 17115: 15666: 15641: 15336: 15110: 14404: 13730: 13618: 13296: 12790: 12018: 11907: 10294: 10281: 9784: 9759: 9252: 8558: 7113:"Cambridge Nanosystems opens new factory for commercial graphene production" 5770: 5705: 5550: 5399: 5287: 3368:
dependence of the linear modes. Some graphene phonon bands exhibit negative
572:
Andre Geim and Konstantin Novoselov at the Nobel Laureate press conference,
24232: 24086: 23939: 23879: 23859: 23831: 23759: 23639: 23622: 23577: 23528: 23433: 23153: 23106: 22954: 22675: 22590: 22503: 22327: 21900: 21826:"Jagged graphene edges can slice and dice cell membranes - News from Brown" 21810: 21775:
Talukdar, Y; Rashkow, J. T.; Lalwani, G; Kanakia, S; Sitharaman, B (2014).
21761: 21704: 21653: 21604: 21563: 21489: 21264:
Monetta, T.; Acquesta, A.; Carangelo, A.; Bellucci, F. (1 September 2018).
21242: 21019: 20984: 20833: 20517: 20427: 20366: 20312: 20304: 19793: 19718: 19615: 19538: 19499: 19436: 19359: 19292: 19237: 19162: 19146: 19095: 19079: 19023: 19006: 18971: 18802: 18716: 18680: 18662: 18401: 18279: 18156: 18101: 18083: 18047: 18011: 18003: 17960: 17899: 17766: 17693: 17554: 17503: 17495: 17368: 17313: 17228: 17166: 17123: 17069: 17000: 16880: 16796: 16777: 16559: 16551: 16484: 16308: 16286: 16181: 16024: 15991:"Porous three-dimensional carbon nanotube scaffolds for tissue engineering" 15975: 15926: 15864: 15832: 15814: 15771: 15719: 15711: 15675: 15618: 15562: 15344: 15215: 15118: 15057: 14952: 14887: 14860: 14810: 14580: 14511: 14503: 14428: 14352: 14234: 14180: 14066: 13948: 13832: 13748: 13702: 13666: 13649: 13626: 13574: 13374: 13304: 13192: 13107: 13003: 12947: 12896: 12798: 12690: 12628: 12567: 12488: 12434: 12377: 12317: 12026: 11970: 11915: 11732: 11660: 11602: 11594: 11383:
Frank, I. W.; Tanenbaum, D. M.; Van Der Zande, A.M.; McEuen, P. L. (2007).
11262: 11037: 10969: 10815: 10729: 10685: 10578: 10397: 10344: 10152: 10091: 10045: 9891: 9706: 9624: 9457: 9393: 9325: 9260: 9204: 9147: 8875: 8679: 8577: 8500: 8359: 8212: 8107: 8037: 7931: 7923: 7877: 7834: 7773: 7559: 7491: 7435: 6781: 6562: 6465: 6399: 6335: 6127: 6102: 6039: 5932: 5905: 5839: 5778: 5558: 5475: 5407: 5295: 5052: 4901: 4775: 4733: 4707: 4594: 4057: 3987: 3784: 3411: 3403: 3395: 3313: 2767: 2749: 2631:
behavior, enabling tuning of both linear and ultrafast optical properties.
2515: 2502:(or dispersion force) is also unusual, obeying an inverse cubic asymptotic 2405: 2073: 1708:
intrinsically limits room temperature mobility in freestanding graphene to
1298: 1009: 449: 361: 344: 296: 254: 221: 45: 21381:"Photonic van der Waals integration from 2D materials to 3D nanomembranes" 21266:"Considering the effect of graphene loading in water-based epoxy coatings" 19328:"Conductive Thin Films of Pristine Graphene by Solvent Interface Trapping" 18092: 17391:"How to Make Graphene Using Supersonic Buckyballs | MIT Technology Review" 17304: 17259: 15988: 14388: 9758:
Jussila, Henri; Yang, He; Granqvist, Niko; Sun, Zhipei (5 February 2016).
8099: 7902:
Avouris, P.; Chen, Z.; Perebeinos, V. (2007). "Carbon-based electronics".
7178: 7143: 5013:
Geim, A. K.; Novoselov, K. S. (26 February 2007). "The rise of graphene".
3835:
complex. Copper and nickel ions can be coordinated with graphene ligands.
3634:. (In the "armchair" orientation, the edges behave like semiconductors.) 2331:
quantum Hall effect. These oscillations show a phase shift of π, known as
644:
was established with that purpose at the University of Manchester, with a
429:
in 1924, although subsequent research has made small modifications to the
24206: 24116: 24081: 24048: 23974: 23949: 23789: 23694: 23664: 23548: 23463: 23453: 23183: 23111: 22670: 22665: 22557: 22435: 22420: 22410: 22289: 22268: 22011: 20754: 17336: 16753:"A novel mechanical cleavage method for synthesizing few-layer graphenes" 15873: 15823: 14102: 13739: 13220: 13082:
Liang, Qizhen; Yao, Xuxia; Wang, Wei; Liu, Yan; Wong, Ching Ping (2011).
12409: 11146: 10389: 10335: 10310: 10144: 9850:
Zhang, Y.; Tang, Tsung-Ta; Girit, Caglar; Hao, Zhao; Martin, Michael C.;
9599: 9300: 8475: 7809: 7748: 7354: 7202: 6537: 6440: 6374: 6310: 6023: 5993: 5955: 5533: 5027: 4919: 4808:. These inductors were predicted to allow significant miniaturization in 4225: 3995: 3709: 3631: 3531: 3435: 3334: 3005: 2766:
Graphene's quantum Hall effect in magnetic fields above approximately 10
2733: 2696: 2676: 2531:
Graphene's exhibits unique optical properties, showing unexpectedly high
2388: 2384: 2040: 2032: 1787: 1724: 809: 661: 653: 601: 453: 426: 414: 406: 276:
In 2004, the material was rediscovered, isolated and investigated at the
22353: 21916: 20250: 17360: 17295: 16006: 11029: 10938:"Scaling of Excitons in Graphene Nanoribbons with Armchair Shaped Edges" 9913:
Liu, Junfeng; Wright, A. R.; Zhang, Chao; Ma, Zhongshui (29 July 2008).
9875: 9449: 9385: 8867: 8351: 7516:
Ishigami, Masa; et al. (2007). "Atomic Structure of Graphene on SiO
6554: 6457: 6327: 5693: 5584:"This Month in Physics History: October 22, 2004: Discovery of Graphene" 3326:
can cause the electronic contribution to increase and dominate over the
3195:
of CVD-grown graphene by combining nano-indentation and high-resolution
376: 24121: 24063: 24026: 24001: 23899: 23709: 23572: 22630: 22515: 21954: 21617: 21448:"Van der Waals integration before and beyond two-dimensional materials" 19597: 19463: 18513: 17951: 17942: 17891: 17847: 17838: 17810: 17801: 17684: 17667: 15918: 15610: 15013: 14896: 14463: 14255: 12682: 12074: 12049: 11723: 11698: 11277:"Graphene edge spins: spintronics and magnetism in graphene nanomeshes" 11170:"Graphene edge spins: spintronics and magnetism in graphene nanomeshes" 10807: 10509: 9914: 9851: 9835: 8204: 7677: 6502: 4767: 4659: 4308:
Another method is reduction of graphite oxide monolayer films, e.g. by
4214: 4206: 4187: 4072: 3926: 3458: 3220: 1779: 1587: 1461:
in graphene, which replaces the velocity of light in the Dirac theory;
907: 581: 365: 353: 281: 21344: 21011: 20966: 20571: 20538: 20463: 19992: 19785: 19710: 19343: 18912: 18896: 18794: 18755: 18708: 18039: 17219: 17158: 17061: 16991: 16872: 16707: 16682: 16617: 16426:"Graphene nano-coils discovered to be powerful natural electromagnets" 16268: 15554: 15389: 15282: 15207: 14936: 14852: 14802: 14420: 14226: 13940: 13824: 13694: 13566: 13409: 13366: 13339: 13099: 12939: 12888: 12620: 12559: 12480: 12359: 12309: 11461: 11411: 11369: 11275:
T. Hashimoto, S. Kamikawa, Y. Yagi, J. Haruyama, H. Yang, M. Chshiev,
11093: 10961: 10760: 10677: 10258: 10205: 10027: 9988: 9938: 9666: 9106: 9069: 9045: 8988: 8150: 7551: 7285: 6816: 6190: 5941: 3597: 3146:
have indicated that despite its strength, graphene is also relatively
1532:
The equation describing the electrons' linear dispersion relation is:
475:
within bulk materials, in particular inside soot obtained by chemical
24053: 23918: 23754: 23558: 23438: 23292: 23267: 22660: 22478: 22223: 22041: 20898:"GRAPHENITE – GRAPHENE INFUSED 3D PRINTER POWDER – 30 Lbs – $ 499.95" 20358: 18148: 17708:"How to tune graphene properties by introducing defects | KurzweilAI" 16982: 16864: 15642:"Highly thermally conductive and mechanically strong graphene fibers" 15142:"Evaluation of biological effects of graphene oxide using Drosophila" 12995: 11962: 11810:"Mechanical properties of graphene and graphene-based nanocomposites" 11748:"Graphene Armor Would Be Light, Flexible and Far Stronger Than Steel" 9883: 9195: 9170: 8622: 8492: 8417: 7483: 7417: 6163: 6136: 5190: 5173: 5044: 4895: 4868: 4864: 4823: 4758:
In 2013, Head announced their new range of graphene tennis racquets.
4695: 4683: 4675: 4582: 4578: 4470: 4429:) under low pressures (c. 10 torr, or 10 Pa) reduces it to graphene. 4394: 4309: 4191: 3902: 3824: 3779: 3775: 3767: 3421: 3301: 3297: 3188: 2680: 2648: 2585: 2520: 2503: 1961: 835: 813: 769: 746: 674: 501: 488: 430: 237: 20221:
IEEE Journal on Multiscale and Multiphysics Computational Techniques
18594:"New process could usher in "graphene-driven industrial revolution"" 18124: 15939: 15139: 14920: 6054: 4630:
flakes of graphene. More recent works demonstrated the use of mixed
738: 397:
attempted to determine the structure of graphite. The lack of large
217: 213: 23933: 23734: 23597: 23582: 23553: 23422: 23197: 23021: 22965: 22959: 22928: 22873: 22841: 22577: 22562: 22332: 22173: 22030: 18645: 17272: 17106: 16095: 16055: 14612: 12395:(2000). "Unusually High Thermal Conductivity of Carbon Nanotubes". 12198: 12142: 11325:"Scientific Background on the Nobel Prize in Physics 2010 GRAPHENE" 11227: 11211:"Giant magnetoresistance of Dirac plasma in high-mobility graphene" 7371: 7325: 7300: 7140: 6057:[To the knowledge of graphitic carbon and graphitic acid]. 5588: 4934: 4928: 4872: 4848: 4793: 4674:) applications. The process involves pressure-assisted solid-state 4374: 4321: 4241: 4143: 4068: 3919: 3804: 3713: 3689:
Evaluation of biological effects of graphene oxide using Drosophila
3515: 3438:. Bombarded with pure carbon atoms, the atoms perfectly align into 3259: 3124: 2612:(about 5 micrometre wavelength) by applying voltage to a dual-gate 2605: 2197:{\displaystyle \sigma _{xy}=\pm {4\cdot \left(N+1/2\right)e^{2}}/h} 1341: 349: 260: 202: 24: 20: 21777:"The effects of graphene nanostructures on mesenchymal stem cells" 20554: 20492: 20402: 20341: 20287: 20136: 18376: 17472: 17052: 16811:"A new method of producing large volumes of high-quality graphene" 16736: 15380: 15319: 15093: 14155: 13969: 13807: 13549: 12978: 12726: 12665: 12603: 12246: 11890: 11542: 11489: 11209:
Xin, Na; Lourembam, James; Kumaravadivel, Piranavan (April 2023).
11129: 11076: 11012: 10897: 10851: 10745:"Excitons of Edge and Surface Functionalized Graphene Nanoribbons" 10660: 10614: 10553: 10433: 10372: 10241: 10188: 10127: 10074: 9681: 9652: 9546: 9493: 9432: 9368: 9122: 9081: 9028: 8971: 8915: 8806: 8727: 8662: 8605: 8540: 8400: 8334: 8090: 8012: 7959: 7652: 7534: 7466: 7160: 7013:"New £60m Engineering Innovation Centre to be based in Manchester" 6055:"Zur Kenntnis des Graphitischen Kohlenstoffs und der Graphitsäure" 5814: 5753: 5336: 5270: 3069:
cat but would weigh only as much as one of the cat's whiskers, at
3041:
Graphene is the strongest material ever tested, with an intrinsic
838:(as within graphite) only for molecules larger than 24,000 atoms. 24186: 24016: 23969: 23928: 23884: 23826: 23821: 23784: 23774: 23769: 23724: 23719: 23659: 23592: 23483: 23478: 23428: 23307: 23297: 23050: 22453: 22284: 22005: 21310: 16301:"Robust new process forms 3D shapes from flat sheets of graphene" 13535:; Novoselov, Konstantin S. (2012). "Graphene Reknits Its Holes". 11382: 9478: 7997: 6842:... bits of graphene are undoubtedly present in every pencil mark 6752:(1992). "Electronic structure of graphene tubules based on C60". 6747: 5960:"Interferenz an regellos orientierten Teilchen im Röntgenlicht I" 4852: 4451: 4386: 4366: 4244: 4236:
With definite cleavage parameters, the box-shaped graphene (BSG)
4229: 4146: 4039: 3942: 3756: 3439: 3345: 3147: 2704: 2097: 1768: 816:" observed in TEM images, and may explain the observed rippling. 609: 604:
technique. The graphene flakes were then transferred onto a thin
496: 401:
graphite specimens contributed to the independent development of
21263: 19131:"Self-Assembled Graphene Composites for Flow-Through Filtration" 17090: 12336:"Inverse Pseudo Hall-Petch Relation in Polycrystalline Graphene" 9531: 9171:"A physicist peels back the layers of excitement about graphene" 6895:"Graphene edges closer to widespread production and application" 3616: 3530:
applications. Bilayer graphene typically can be found either in
24237: 24058: 24040: 23503: 23473: 22975: 21538:"Applications of Graphene-Based Materials in Sensors: A Review" 20387: 20272: 8522:
Adam, S.; Hwang, E. H.; Galitski, V. M.; Das Sarma, S. (2007).
7203:"Estudo da estrutura eletrônica do grafeno e grafeno hidratado" 4679: 4390: 4117: 3862: 3820: 3380:, akin to a stretched string with higher frequency vibrations. 3327: 3309: 2107: 1957: 1803: 1732: 1705: 1330: 792: 560:
patented a process for producing single layer graphene sheets.
535: 52: 21854: 20476: 19574:"Laser-induced porous graphene films from commercial polymers" 19325: 17144: 16500:"Wrinkles and crumples make graphene better | News from Brown" 15192: 14918: 14742:
Condução de calor em nanofitas quase-periódicas de grafeno-hBN
14035: 12588: 12183: 9645: 8290:"New form of graphene allows electrons to behave like photons" 7733: 7298: 6001: 2699:. Graphene demonstrates a large nonlinear Kerr coefficient of 2523:
made of graphene to store large amounts of electrical energy.
1992:
Landau levels in graphene appear at energies proportional to √
171: 23272: 23202: 21774: 21042:"Applied Graphene Materials plc :: Graphene dispersions" 20628: 19053: 18823: 18300: 17339:(2009). "Narrow graphene nanoribbons from carbon nanotubes". 16583:"Production and processing of graphene and related materials" 15841:"3D graphene could replace expensive platinum in solar cells" 15410: 14764:
Text was copied from this source, which is available under a
14760: 13763:"Graphene shown to safely interact with neurons in the brain" 11779:"Graphene could find use in lightweight ballistic body armor" 11167: 7033:"Graphene maker aims to build British, billion-pound venture" 6004:[On the Structure of Graphite and Amorphous Carbon]. 5174:"Transmission Electron Microscopy of Carbon: A Brief History" 4370: 4317: 3980: 3858: 3793: 3737: 3725: 2656: 2593: 2576: 2543: 2380:
and display much the same physics as topological insulators.
2352: 1977: 1735:, which is the lowest known at room temperature. However, on 652:
two commercial manufacturers, Applied Graphene Materials and
547: 421:. The structure of graphite was successfully determined from 273:
in 1962, but studied only while supported on metal surfaces.
20794:"Path towards graphene commercialization from lab to market" 20448: 20325: 19883: 19829:"Converting plastic waste pyrolysis ash into flash graphene" 19258: 18937: 18870: 14537:
Felix, Isaac M.; Pereira, Luiz Felipe C. (9 February 2018).
12126: 9417: 8173:. Newsdesk.umd.edu (24 March 2008). Retrieved on 2014-01-12. 7271: 7065:"Consett firm Thomas Swan sees export success with grapheme" 6522: 5255: 3605: 1344:. This pseudo-relativistic description is restricted to the 580:
Graphene was properly isolated and characterized in 2004 by
19384: 19004: 18449:
Liu, W.; Li, H.; Xu, C.; Khatami, Y.; Banerjee, K. (2011).
18424:"New process could lead to more widespread use of graphene" 14539:"Thermal Conductivity of Graphene-hBN Superlattice Ribbons" 10421:
Journal of Physics B: Atomic, Molecular and Optical Physics
9801:"Unidirectional surface plasmons in nonreciprocal graphene" 6584:
Boehm, H. P.; Clauss, A.; Fischer, G.; Hofmann, U. (1962).
5799: 5700:. International Union of Pure and Applied Chemistry. 2009. 4563: 4416: 4273: 3952:
Three dimensional bilayer graphene has also been reported.
3854: 3493: 3355:
Graphene's thermal conductivity is influenced by its three
2535:
for an atomic monolayer in vacuum, absorbing approximately
725:
electrons of each atom in a graphene sheet occupy three sp
600:
in a process called either micromechanical cleavage or the
539: 464:
Observations of thin graphite layers and related structures
206: 191: 19675: 19449: 18361: 18024: 15473: 14713:
Transporte térmico em nanofitas de grafeno-nitreto de boro
14385: 14258:"Strain and Piezo-Doping Mismatch between Graphene Layers" 14140: 13595: 13530: 13422: 13273: 9729:"Graphene Gazing Gives Glimpse Of Foundations Of Universe" 8521: 4662:
substrates at temperatures below 500 °C. At the
3929:
and manipulation, high-performance heat sinking surfaces,
3481: 1983: 997:
Electronic band structure and Dirac cones, with effect of
596:. They pulled graphene layers from graphite with a common 39: 18622: 17187: 16729: 15303: 15228: 14309: 11580: 11208: 10418: 8318: 7794: 6583: 6295: 5911:
Philosophical Transactions of the Royal Society of London
5518: 5488: 4860: 4819: 4432: 4332: 3923: 3778:
reflux is commonly used for reducing SLGO to SLG(R), but
3724:; next, they are converted to the corresponding graphene 3681: 1525:
is the two-component wave function of the electrons, and
165: 159: 21717: 20948: 20631:"Graphene electro-optic modulator with 30 GHz bandwidth" 19128: 18623:
Bointon, Thomas H.; Barnes, Matthew D.; Russo, Saverio;
18181: 17981: 17736: 17335:
Liying, Jiao; Zhang, Li; Wang, Xinran; Diankov, Georgi;
15365: 14087: 13648:
Bullock, Christopher J.; Bussy, Cyrill (18 April 2019).
12767:"Two-Dimensional Phonon Transport in Supported Graphene" 11807: 11347: 10599: 10357: 10311:"Microwave and optical saturable absorption in graphene" 8899: 7712: 7580: 6586:"Surface Properties of Extremely Thin Graphite Lamellae" 4931: – Material made up of a single layer of lead atoms 4882:
In 2014, research at Stony Brook University showed that
4263: 3087:
of suspended graphene sheets has been measured using an
2599: 2287:{\displaystyle \sigma _{xy}=\pm {4\cdot N\cdot e^{2}}/h} 1662: 1632:{\displaystyle q=\left|\mathbf {k} -\mathrm {K} \right|} 737:— that are shared with the three nearest atoms, forming 660:
is a large-scale graphene powder production facility in
20121: 20053:
2018 IEEE International Electron Devices Meeting (IEDM)
17524: 17036: 16750: 15078: 15026: 14651:
Felix, Isaac M.; Pereira, Luiz Felipe C. (1 May 2022).
14594:
Felix, Isaac M.; Pereira, Luiz Felipe C. (April 2020).
13715: 12287: 11298:"Scientists give graphene one more quality – magnetism" 9757: 5434:"Elastic straining of free-standing monolayer graphene" 4906:
Pages displaying short descriptions of redirect targets
4190:
is not necessary for mechanical exfoliation, low speed
3783:
functionality. Room temperature treatment of SLGO with
3699: 3649: 3276:
material, the thermal conductivity is reduced to about
1684:
at room temperature, with values reported in excess of
593: 19751: 19523:"Supersonic spray creates high-quality graphene layer" 19195: 18779: 18068: 17334: 16952: 14766:
Creative Commons Attribution 4.0 International License
13791: 12458: 10001: 9284: 8460: 8439:
Light pulses control how graphene conducts electricity
7630: 7583:
Critical Reviews in Solid State and Materials Sciences
6667: 6002:"Über die Konstitution von Graphit und amorpher Kohle" 4028: 3258:, compared with the thermal conductivity of pyrolytic 1269:
with the nearest-neighbor (π orbitals) hopping energy
1227: 1191: 1152: 563: 456:. This level is responsible for the anomalous integer 22832: 21184:"Engineers reinvent the inductor after two centuries" 19571: 16454: 16362:"How to form 3-D shapes from flat sheets of graphene" 16144: 15438: 13465: 13352: 12582: 11439: 10538: 7901: 7856:
Wallace, P.R. (1947). "The Band Theory of Graphite".
7451: 7396:
Carlsson, J. M. (2007). "Graphene: Buckle or break".
6855:
Ultra-thin flexible expanded graphite heating element
3922:, high-performance catalytic cells, nanochannels for 2941: 2904: 2878: 2830: 2776: 2232: 2121: 2048: 1917: 1868: 1818: 1599: 1541: 1500: 1467: 1364: 1076: 377:
Structure of graphite and its intercalation compounds
174: 168: 21446:
Liu, Yuan; Huang, Yu; Duan, Xiangfeng (March 2019).
21096: 21072:"BAC Debuts First Ever Graphene Constructed Vehicle" 20997: 19826: 16639:
Whitener, Keith E.; Sheehan, Paul E. (1 June 2014).
16528: 15904: 15838: 15792: 15266: 14994:
Journal of Polymer Science Part A: Polymer Chemistry
14204: 13680: 12047: 11385:"Mechanical properties of suspended graphene sheets" 9353: 8590: 8063: 6853:
Robert B. Rutherford and Richard L. Dudman (2002): "
4924:
Pages displaying wikidata descriptions as a fallback
4915:
Pages displaying wikidata descriptions as a fallback
3183:, present in the system and the average grain-size. 1996:, in contrast to the standard sequence that goes as 635: 162: 20753:Akinwande, D.; Tao, L.; Yu, Q.; Lou, X.; Peng, P.; 19520: 19484: 18499: 13395: 13044: 9231:Fuhrer, M. S. (2013). "Critical Mass in Graphene". 9012: 6794: 5739:Geim, A. (2009). "Graphene: Status and Prospects". 4800:at room temperature were first demonstrated at the 3333:Graphite, a 3D counterpart to graphene, exhibits a 2619:(FET) at room temperature. The optical response of 156: 18940:"Effect of Aqueous Anions on Graphene Exfoliation" 18125:"Epitaxial graphene: How silicon leaves the scene" 16250: 15982: 15933: 15501: 12764: 11875: 10226: 8385: 7723:. Berlin/Heidelberg: Springer-Verlag. p. 673. 7339: 7031: 6425: 6060:Zeitschrift für anorganische und allgemeine Chemie 6052: 6026:(1917). "A New Method of X-ray Crystal Analysis". 5491:Zeitschrift für anorganische und allgemeine Chemie 4904: – Light, strong and rigid composite material 4551: 4365:Graphene has been prepared by using a sugar (e.g. 4197: 3554:prominent. A rather peculiar feature is that the I 2980: 2924: 2890: 2864: 2816: 2716:accurately investigated, including bulk graphene, 2408:, additional plateaus of the Hall conductivity at 2286: 2196: 2064: 2022: 1941: 1903: 1842: 1631: 1575: 1517: 1482: 1435: 1340:. Hence, the electrons and holes are called Dirac 1258: 21212: 20752: 16916: 14305: 14303: 12390: 9849: 8524:"A self-consistent theory for graphene transport" 6934:. The University of Manchester. 10 September 2014 4484:The direct synthesis of graphene on insulator TiO 4385:Gram-quantities were produced by the reaction of 2212: 2096:). It can usually be observed only in very clean 1949:or greater and depend on impurity concentration. 1911:; however, most measurements are of the order of 249:over long distances; the material exhibits large 24308: 20046: 14991: 14876:Particle & Particle Systems Characterization 13918: 12960: 11623: 10173: 10112: 9966: 9912: 9584: 8766:. University of British Columbia. Archived from 7944: 4250: 4157: 3755:Refluxing single-layer graphene oxide (SLGO) in 3587: 3296:Isotopic composition, specifically the ratio of 224:that extends over the whole sheet. This type of 21861:Proceedings of the National Academy of Sciences 20217: 16638: 16096:"Hollow structures with bilayer graphene walls" 15995:Journal of Biomedical Materials Research Part A 14657:International Journal of Heat and Mass Transfer 14313:"Gram-scale bottom-up flash graphene synthesis" 13267: 13261:Journal of Experimental and Theoretical Physics 13081: 12954: 12649: 12509: 12503: 11477:Journal of Experimental and Theoretical Physics 11316: 10885:Journal of Experimental and Theoretical Physics 10308: 6748:Saito, R.; Fujita, Mitsutaka; Dresselhaus, G.; 6624: 6359: 6176: 5141: 4654:Integration of graphene in the widely employed 4400: 3937:, electron multiplication channels in emission 3838: 3408:) or for carbon nanotubes (CNTs), from ≈100 to 2634: 2294:). In the second anomaly, the first plateau at 1642: 867:may benefit from being shortened by the use of 752:The remaining outer-shell electron occupies a p 288:. In 2010, Geim and Novoselov were awarded the 21666: 21510: 20791: 20695: 20592: 19628: 18740: 18693: 18448: 16538:(18). John Wiley & Sons, Inc.: 3564–3571. 15639: 15536: 14300: 14134: 12917: 12866: 12643: 12231: 11995: 11696: 10699: 10645: 10058: 8844: 8515: 8128: 7029: 6249: 5954: 5321: 4658:demands its transfer-free direct synthesis on 4593:Supersonic acceleration of droplets through a 4450:is wafer-scale technique to produce graphene. 4328:mobility exceeded 1,000 cm/Vs (10 m/Vs). 3716:groups at their edges. These are converted to 3538:One way to synthesize bilayer graphene is via 2506:in contrast to the usual inverse quartic law. 2391:and could carry currents without dissipation. 1593:is measured from the Brillouin zone vertex K, 1355:, leading to interesting additional features: 22818: 22369: 21970: 21377: 20177:IEEE Transactions on Antennas and Propagation 18248: 16744: 16680: 15740: 15072: 14200: 14198: 14081: 13325: 13205: 12911: 12860: 12711: 12536: 12530: 12333: 11061: 9962: 9960: 9798: 8456: 8454: 8261:"Researchers create superconducting graphene" 7991: 6593:Proceedings of the Fifth Conference on Carbon 5992: 5204: 5012: 4496:nanosheets without using any metal catalyst. 4360: 3803:from both sides of graphene sheet results in 2732:Graphene is considered an ideal material for 2394: 436:The theory of graphene was first explored by 21620:"Toxicology of graphene-based nanomaterials" 21445: 20868:"Racquet Review: Head Graphene XT Speed Pro" 18329: 17869: 17787: 17598:Journal of Dispersion Science and Technology 16751:Jayasena, Buddhika; Subbiah Sathyan (2011). 16220: 16218: 16216: 16214: 15587: 14873: 14830: 14828: 14787: 14783: 14781: 14650: 14593: 14536: 14476: 14449: 13647: 12825: 12705: 12454: 12452: 11690: 11433: 11177:Nanosystems: Physics, Chemistry, Mathematics 9413: 9411: 9065: 9063: 9008: 9006: 8895: 8893: 8838: 6922: 6920: 6518: 6516: 6514: 6512: 6421: 6419: 6417: 5734: 5732: 5669:"Graphene properties (A Complete Reference)" 5167: 5165: 5073: 4937: – Two-dimensional allotrope of silicon 4736:, a lattice of coupled microcavities, or an 4448:Epitaxial graphene growth on silicon carbide 4437: 4380: 4351: 4224:Sonicating graphite at the interface of two 4132: 2546:from visible to infrared wavelengths, where 2338: 1804:Electrical Conductivity and Charge Transport 1301:correspond to the different signs. With one 444:was first pointed out in 1984 separately by 21270:Journal of Coatings Technology and Research 17920: 17824: 17466: 16676: 16674: 16036: 16034: 15688: 14834: 13162: 12758: 11936: 11474: 11057: 11055: 10993: 10991: 10882: 10836: 10273: 10220: 10167: 10106: 9280: 9278: 8643: 7708: 7706: 7704: 7702: 7511: 7509: 7447: 7445: 7391: 7389: 7136: 7134: 7132: 7130: 6355: 6353: 6291: 6289: 6287: 6285: 6283: 6281: 6210: 6208: 6206: 6204: 6202: 6200: 6149: 5514: 5512: 5008: 5006: 5004: 5002: 5000: 4649: 4572: 4299: 4123: 3522: –making it a promising candidate for 3166: 3091:(AFM). Graphene sheets were suspended over 2761: 1778:Electrical resistance in 40-nanometer-wide 22825: 22811: 22785: 22376: 22362: 21977: 21963: 21940:Graphene: Patent surge reveals global race 21611: 17863: 17630: 17413: 16093: 14195: 13389: 13319: 12972:(3) (published 10 January 2012): 203–207. 12091: 11574: 11521: 11468: 10471: 10302: 9957: 9226: 9224: 9222: 8956: 8952: 8950: 8451: 8122: 7236: 7005: 6577: 5578: 5576: 5482: 5427: 5425: 5373: 5371: 5251: 5249: 5247: 5245: 4998: 4996: 4994: 4992: 4990: 4988: 4986: 4984: 4982: 4980: 4499: 4272:by cutting or etching. In one such method 4023:University of Illinois at Urbana-Champaign 3814: 2872:have been observed, along with plateau at 2582:Multi-parametric surface plasmon resonance 2577:Multi-parametric surface plasmon resonance 2559: 765:) agree well with the literature reports. 627:This work resulted in the two winning the 295:Graphene has become a valuable and useful 38: 22383: 21890: 21880: 21817: 21800: 21751: 21694: 21684: 21643: 21594: 21553: 21520: 21471: 20974: 20721: 20553: 20491: 20401: 20340: 20286: 20249: 20135: 20023: 19970: 19909: 19852: 19605: 19426: 19022: 18670: 18644: 18375: 18185:International Journal of Modern Physics B 18091: 17950: 17914: 17846: 17818: 17809: 17683: 17303: 17218: 17105: 17051: 16990: 16786: 16776: 16735: 16706: 16616: 16606: 16276: 16211: 16054: 16014: 15965: 15872: 15822: 15665: 15379: 15318: 15157: 15092: 14969:. Northwestern University. Archived from 14895: 14867: 14825: 14778: 14611: 14570: 14154: 14101: 13806: 13738: 13665: 13589: 13548: 13252: 13219: 13158: 13156: 12977: 12725: 12664: 12602: 12449: 12408: 12367: 12245: 12197: 12141: 12073: 11889: 11825: 11745: 11722: 11541: 11488: 11286:, February 2014, Volume 5, Issue 1, pp 25 11252: 11226: 11128: 11075: 11011: 10896: 10850: 10659: 10613: 10552: 10508: 10432: 10371: 10351: 10334: 10293: 10240: 10187: 10126: 10073: 10035: 9834: 9824: 9783: 9680: 9651: 9598: 9545: 9492: 9431: 9408: 9367: 9299: 9194: 9121: 9102: 9100: 9080: 9060: 9027: 9003: 8970: 8914: 8890: 8805: 8726: 8661: 8604: 8567: 8557: 8539: 8474: 8399: 8333: 8312: 8235:"Graphene Devices Stand the Test of Time" 8089: 8011: 7958: 7808: 7747: 7651: 7626: 7624: 7622: 7620: 7533: 7465: 7425: 7353: 7333: 7324: 7230: 7194: 7177: 7159: 7105: 6980: 6950: 6917: 6741: 6536: 6509: 6486: 6480: 6439: 6414: 6373: 6309: 6126: 5931: 5888: 5813: 5752: 5729: 5686: 5660: 5532: 5465: 5335: 5317: 5315: 5313: 5269: 5189: 5162: 5101: 5026: 4152: 3574: 3465:without the use of biochemical inducers. 3123:into graphene, resulting in the thinnest 2996:is responsible for this degeneracy lift. 2399: 1412: 1408: 1375: 1115: 1048:orbitals is zero by symmetry. Therefore, 21984: 19202:Journal of Colloid and Interface Science 18355: 18028:Journal of the American Chemical Society 17249: 17040:Journal of the American Chemical Society 16723: 16671: 16031: 15900: 15898: 15896: 14739:Félix, Isaac de Macêdo (4 August 2020). 14710:Félix, Isaac de Macêdo (29 March 2016). 14677:10.1016/j.ijheatmasstransfer.2021.122464 13524: 13459: 13416: 13355:Journal of the American Chemical Society 13346: 13263:(in Russian). Vol. 22. p. 475. 13258: 11776: 11527: 11295: 11052: 10988: 10052: 9639: 9275: 9162: 8284: 8282: 7788: 7727: 7699: 7574: 7515: 7506: 7442: 7395: 7386: 7299:Bernatowicz; T. J.; et al. (1996). 7292: 7265: 7127: 7083: 7056: 7023: 6867: 6847: 6823: 6788: 6696: 6661: 6618: 6350: 6278: 6243: 6214: 6197: 6170: 6091: 6046: 6016: 5897: 5854: 5793: 5698:IUPAC Compendium of Chemical Terminology 5638: 5509: 5198: 5130:Industrial Applications of Nanomaterials 5074:Peres, N. M. R.; Ribeiro, R. M. (2009). 5067: 4564:Solvent interface trapping method (SITM) 4515: 4417:Thermal decomposition of silicon carbide 3853:Thermal conductivity reached 1,290  3766: 3698: 3694: 3637: 3615: 3604: 3596: 3033: 2999: 2981:{\displaystyle \nu =0,\pm 1,\pm 3,\pm 4} 2898:and a fractional quantum Hall effect at 2817:{\displaystyle \sigma _{xy}=\nu e^{2}/h} 2748:. Electrical injection and detection of 2690: 2303: 1987: 1666: 983: 910:. The Dirac points are six locations in 885: 841: 819:The hexagonal structure is also seen in 791: 708: 688: 567: 343: 259: 21576: 16390: 16329: 16040: 13853: 13199: 13132: 13038: 12831: 12329: 12327: 12283: 12281: 11108: 10997: 9349: 9347: 9345: 9343: 9219: 8947: 8157: 8059: 8057: 8055: 7855: 7849: 7633:"The electronic properties of graphene" 7239:Computational and Theoretical Chemistry 7030:Burn-Callander, Rebecca (1 July 2014). 6829: 6143: 5986: 5948: 5573: 5422: 5368: 5242: 5135: 4977: 4818:The potential of epitaxial graphene on 4802:University of California, Santa Barbara 4792:In January 2018, graphene based spiral 4668:University of California, Santa Barbara 4102: 3913:appearing after mechanical cleavage of 3592: 3482:Graphene layers and structural variants 3240: 2710: 2662: 2031:is a quantum mechanical version of the 1984:Chiral half-integer quantum Hall effect 24309: 22641:Differential technological development 21917:Manchester's Revolutionary 2D Material 21823: 21535: 21151: 20848:from the original on 22 September 2022 20677:from the original on 24 September 2022 20174: 20005: 19135:ACS Applied Materials & Interfaces 18775: 18773: 18736: 18734: 18534: 18175: 18122: 17665: 17568: 16681:Geim, A. K.; MacDonald, A. H. (2007). 16634: 16632: 16630: 16628: 16580: 16497: 16420: 16418: 14921:"Improved Synthesis of Graphene Oxide" 13683:ACS Applied Materials & Interfaces 13512:from the original on 24 September 2018 13153: 12834:International Journal of Thermophysics 12384: 12227: 12225: 12179: 12177: 12087: 12085: 11114: 10785: 10472:Onida, Giovanni; Rubio, Angel (2002). 9230: 9168: 9097: 8712: 8182: 7938: 7897: 7895: 7617: 7062: 6905:from the original on 20 September 2020 6873:Bor Z. Jang and Wen C. Huang (2002): " 6797:Journal of the Electrochemical Society 6702: 6097: 5903: 5310: 5171: 5115: 5113: 4732:, an array of metallic rods, metallic 4624: 4577:A highly exothermic reaction combusts 4507: 4433:Vapor deposition and growth techniques 4276:are cut open in solution by action of 3970: 3021: 2865:{\displaystyle \nu =0,\pm {1},\pm {4}} 2756: 2493: 2358: 2088:is the elementary electric charge and 979: 943: 705:, extends out of the graphene's plane. 16:Hexagonal lattice made of carbon atoms 22806: 22357: 21958: 21848: 21660: 20930:from the original on 11 February 2014 18604:from the original on 6 September 2015 18591: 18430:from the original on 5 September 2015 17718:from the original on 5 September 2015 17595: 17444:"Many Pioneers in Graphene Discovery" 17401:from the original on 17 December 2015 16835: 16683:"Graphene: Exploring carbon flatland" 16581:Backes, Claudia; et al. (2020). 16342:from the original on 10 November 2019 15893: 14738: 14709: 13773:from the original on 23 February 2016 13021: 11977:from the original on 22 November 2019 10935: 10742: 10279: 9472: 8791: 8758: 8650:Quantum Information & Computation 8279: 8267:from the original on 7 September 2017 7200: 6053:Kohlschütter, V.; Haenni, P. (1919). 5666: 4947: 4294: 4264:Splitting monolayer carbon allotropes 3133: 2600:Tunable band gap and optical response 2526: 1663:Ambipolar electron and hole transport 20124:Journal of Physics: Condensed Matter 19808:from the original on 16 October 2021 18481:from the original on 4 February 2021 18343:from the original on 28 January 2012 17454:from the original on 2 November 2021 17441: 17421:"Boehm's 1961 isolation of graphene" 16436:from the original on 19 October 2015 16391:Anthony, Sebastian (10 April 2013). 16199:from the original on 3 November 2018 15174:from the original on 6 February 2023 15146:Physics and Chemistry of Solid State 14749:from the original on 2 February 2021 14367:from the original on 20 October 2021 13985:10.4028/www.scientific.net/AMM.510.8 12813:from the original on 4 February 2023 12324: 12278: 11746:Dorrieron, Jason (4 December 2014). 10520:from the original on 2 February 2021 9578: 9525: 9340: 8694:from the original on 6 November 2018 8381: 8379: 8377: 8052: 7044:from the original on 11 January 2022 6964:, UK. 5 October 2010. Archived from 6022: 5860: 5738: 4717:computational electromagnetics (CEM) 4142:to mechanically cleave high-quality 4078: 4046: 3994:with the graphene, adding strength. 3955: 3650:Modified and functionalized graphene 3494:High Strength Metallurgical Graphene 3472: 1704:. Scattering by graphene's acoustic 851: 648:60 million initial funding. In 22730:Future-oriented technology analysis 21577:Li, Zongwen; Zhang, Wenfei (2019). 20452:The Journal of Physical Chemistry C 19754:"Flash Graphene from Plastic Waste" 18770: 18744:The Journal of Physical Chemistry C 18731: 18573:from the original on 6 October 2014 18543:from the original on 3 October 2014 18535:Martin, Steve (18 September 2014). 17781: 17573:. Newsroom.ucla.edu. Archived from 16817:from the original on 10 August 2014 16625: 16415: 16403:from the original on 8 October 2015 16372:from the original on 6 October 2015 16332:"Graphene takes on a new dimension" 15881:from the original on 25 August 2013 15591:Physical Chemistry Chemical Physics 14691:from the original on 6 January 2022 12222: 12174: 12120: 12082: 11801: 11758:from the original on 30 August 2016 11190:from the original on 19 August 2019 7892: 6958:"Graphene pioneers bag Nobel prize" 6830:Geim, A. K.; Kim, P. (April 2008). 5667:Mrmak, Nebojsa (28 November 2014). 5431: 5377: 5144:The Journal of Physical Chemistry C 5110: 4922: – proposed graphene allotrope 4722: 4637: 4588: 4542: 4268:Graphene can be created by opening 4033: 4029:Specialized graphene configurations 3499: 3486: 3235: 2659:) He–Ne laser as the light source. 1518:{\displaystyle \psi (\mathbf {r} )} 564:Full isolation and characterization 232:. The valence band is touched by a 13: 24197:Nexus for Exoplanet System Science 22489:High-temperature superconductivity 21836:from the original on 25 March 2015 21793:10.1016/j.biomaterials.2014.02.054 21515:. Vol. 91. pp. 175–199. 21513:Comprehensive Analytical Chemistry 21427:from the original on 21 April 2023 21359:from the original on 21 April 2023 21164:from the original on 1 August 2020 21078:from the original on 4 August 2016 20924:"Graphene Uses & Applications" 20103:from the original on 1 August 2020 19952:from the original on 7 August 2020 19886:"Flash graphene from rubber waste" 19733:from the original on 4 August 2022 18230:from the original on 14 April 2014 18163:from the original on 1 August 2020 17569:Marcus, Jennifer (15 March 2012). 16506:. Brown University. Archived from 16232:from the original on 12 April 2014 16228:. Kurzweil Library. 9 April 2014. 16126:from the original on 1 August 2020 15569:from the original on 1 August 2020 14288:from the original on 29 April 2021 13900:from the original on 1 August 2020 13114:from the original on 1 August 2020 13022:Tracy, Suzanne (12 January 2012). 11840: 10976:from the original on 1 August 2020 10767:from the original on 1 August 2020 8241:from the original on 1 August 2020 6079:from the original on 1 August 2020 5974:from the original on 14 April 2014 5906:"On the Atomic Weight of Graphite" 5890:10.1088/0031-8949/2012/T146/014003 4750:Potential applications of graphene 4209:or high shear mixing, followed by 4172:sharp single-crystal diamond wedge 4162:Geim and Novoselov initially used 4016: 3975:Graphene reinforced with embedded 3601:Names for graphene edge topologies 3457:Graphene also has some utility in 3009:ferromagnetic nanomeshes, while a 1620: 1391: 952:described by a 2D analogue of the 534:and Richard L. Dudman filed for a 14: 24368: 24097:Atomic and molecular astrophysics 22834:Molecules detected in outer space 21950:Band structure of graphene (PDF). 21910: 21194:from the original on 8 April 2020 19366:from the original on 13 July 2022 19307:from the original on 13 July 2022 19177:from the original on 13 July 2022 19110:from the original on 13 July 2022 18986:from the original on 13 July 2022 18919:from the original on 13 July 2022 17427:. 7 December 2009. Archived from 17018:from the original on 7 March 2020 16898:from the original on 7 March 2020 14720:from the original on 5 March 2022 14518:from the original on 7 April 2023 13531:Zan, Recep; Ramasse, Quentin M.; 12391:Berber, Savas; Kwon, Young-Kyun; 12094:International Journal of Fracture 11789:from the original on 23 July 2016 11777:Coxworth, Ben (1 December 2014). 11421:from the original on 11 July 2009 11304:from the original on 14 July 2016 11296:Coxworth, Ben (27 January 2015). 9945:from the original on 12 June 2020 9739:from the original on 6 April 2008 8374: 8300:from the original on 2 March 2014 7144:"Experimental Review of Graphene" 6988:"The Nobel Prize in Physics 2010" 5620:"The Nobel Prize in Physics 2010" 5172:Harris, Peter (12 January 2018). 4965:from the original on 17 July 2015 4442: 4413:assisted hydrothermal pyrolysis. 3843: 3660: 3308:, that the thermal conduction is 2727: 2480: 1576:{\displaystyle E(q)=\hbar v_{F}q} 1557: 848:Electronic properties of graphene 636:Exploring commercial applications 574:Royal Swedish Academy of Sciences 24287: 24275: 24263: 24252: 24251: 23058: 23049: 23040: 22784: 22601:Self-reconfiguring modular robot 21768: 21711: 21570: 21529: 21504: 21439: 21371: 21313:"Van der Waals heterostructures" 21304: 21257: 21206: 21176: 21145: 21133:from the original on 8 June 2020 21090: 21064: 21034: 20991: 20942: 20916: 20890: 20860: 20785: 20746: 20689: 20622: 20586: 20532: 20470: 20442: 20381: 20319: 20266: 20211: 20168: 20115: 20085: 20040: 19999: 19964: 19934: 19877: 19820: 19745: 19669: 19622: 19565: 19553:from the original on 4 June 2014 19514: 19478: 19443: 19378: 19319: 19252: 19189: 19122: 19047: 18998: 18931: 18864: 18817: 18687: 18616: 18585: 18555: 18528: 18493: 18442: 18416: 18337:"A smarter way to grow graphene" 18294: 18242: 18212: 18116: 18062: 18018: 17975: 17730: 17700: 17659: 17624: 17589: 17518: 17435: 17383: 17328: 17266: 17243: 17181: 17138: 17084: 17030: 16946: 16910: 16829: 16803: 16574: 16522: 16491: 16448: 16384: 16354: 16323: 16293: 16244: 16138: 16087: 15786: 15734: 15682: 15633: 15581: 15530: 15467: 15404: 15359: 15297: 15260: 15222: 15186: 15020: 14985: 14959: 14912: 14759: 14732: 14703: 14644: 14587: 14530: 14470: 14443: 14379: 14249: 14029: 14017:from the original on 1 July 2015 13999: 13963: 13912: 13854:Tehrani, Z. (1 September 2014). 13847: 13785: 13755: 13709: 13674: 13641: 13494: 13126: 12041: 11989: 11930: 11869: 11834: 11770: 11739: 11699:"Fracture toughness of graphene" 11617: 11376: 11341: 11289: 11269: 11202: 11161: 10929: 10830: 10779: 10736: 10593: 10532: 10465: 10412: 9995: 9906: 9843: 9792: 9751: 9721: 9660: 5626:from the original on 22 May 2020 4458:) to retain the two dimensional 4331:Burning a graphite oxide coated 3442:, completely filling the holes. 3171:Various methods – most notably, 1904:{\displaystyle 4e^{2}/{(\pi }h)} 1731:, lower than the resistivity of 1612: 1508: 1483:{\displaystyle {\vec {\sigma }}} 1423: 1401: 856: 729:– a combination of orbitals s, p 509:graphite intercalation compounds 473:transmission electron microscopy 469:Transmission electron microscopy 423:single-crystal X-ray diffraction 230:polycyclic aromatic hydrocarbons 152: 24222:Polycyclic aromatic hydrocarbon 22012:Lonsdaleite (hexagonal diamond) 21536:Liu, Jihong; Bao, Siyu (2022). 20878:from the original on 2 May 2019 19631:"Laser-induced graphene fibers" 17092:Liquid-Exfoliated Nanosheets". 16498:Stacey, Kevin (21 March 2016). 16330:Jeffrey, Colin (28 June 2015). 13973:Applied Mechanics and Materials 13398:Journal of Physical Chemistry C 13328:Journal of Physical Chemistry C 10942:Journal of Physical Chemistry A 8785: 8706: 8637: 8584: 8448:. kurzweilai.net. 4 August 2014 8432: 8253: 8227: 8176: 7093:. The Journal.ie. 20 April 2014 7063:Gibson, Robert (10 June 2014). 6887: 5648:. AZONANO.com. 28 February 2014 5612: 4863:damage, inflammatory response, 4743: 4552:--> Wafer scale CVD graphene 4342: 4198:--> Liquid phase exfoliation 3548: 3144:Georgia Institute of Technology 3073:(about 0.001% of the weight of 2671:, occurs across the visible to 2509: 2111:and very high magnetic fields. 2023:Quantum hall effect in Graphene 1348:, i.e., to vanishing rest mass 389:structure of thermally reduced 22494:High-temperature superfluidity 21824:Stacey, Kevin (10 July 2013). 21624:Advanced Drug Delivery Reviews 21317:Nature Reviews Methods Primers 20510:10.1103/PhysRevLett.112.116402 20420:10.1103/PhysRevLett.110.033902 20047:Jiang, Junkai; Chu, Jae Hwan; 19452:Journal of Materials Chemistry 18592:Quick, Darren (26 June 2015). 18502:Journal of Materials Chemistry 18394:10.1103/PhysRevLett.102.056808 17790:Journal of Materials Chemistry 17759:10.1088/0957-4484/26/33/335607 16307:. 23 June 2015. Archived from 16174:10.1088/0957-4484/25/46/465601 15050:10.1088/0957-4484/21/41/415203 14452:Journal of Materials Chemistry 14173:10.1103/PhysRevLett.104.096802 10722:10.1103/PhysRevLett.101.186401 10571:10.1103/PhysRevLett.103.186802 10451:10.1088/0953-4075/46/15/155401 10282:"Graphene: Mode-locked lasers" 9826:10.1088/1367-2630/15/11/113003 9699:10.1103/PhysRevLett.100.117401 9140:10.1103/PhysRevLett.111.096601 8030:10.1103/PhysRevLett.100.016602 7427:11858/00-001M-0000-0010-FF61-1 5832:10.1103/PhysRevLett.103.246804 4690:characterization) and similar 4109:Graphene production techniques 4021:In 2015, researchers from the 3896: 3510:Bilayer graphene displays the 2443:fractional quantum Hall effect 2325:Shubnikov–de Haas oscillations 2213:Chiral Electrons and Anomalies 2104:solids at temperatures around 1898: 1888: 1551: 1545: 1512: 1504: 1474: 1427: 1419: 1405: 1397: 1382: 1106: 1080: 874:Summary style may involve the 299:due to its exceptionally high 1: 24327:Two-dimensional nanomaterials 24147:Extraterrestrial liquid water 22757:Technology in science fiction 21673:Particle and Fibre Toxicology 21579:"Graphene Optical Biosensors" 20154:10.1088/0953-8984/19/2/026222 20097:The Current, UC Santa Barbara 19679:"Flash Graphene Morphologies" 19533:(31). KurzweilAI: 4986–4995. 19527:Advanced Functional Materials 19488:Advanced Functional Materials 19011:Advanced Functional Materials 17610:10.1080/01932691.2016.1234387 17450:. American Physical Society. 17038:Surfactant/Water Solutions". 16932:10.1016/J.JALLCOM.2020.154614 16657:10.1016/j.diamond.2014.04.006 16645:Diamond and Related Materials 15851:(35). KurzweilAI: 9380–9384. 14389:"Flash Graphene Morphologies" 13654:Advanced Materials Interfaces 13185:10.1103/PhysRevLett.95.096105 11827:10.1016/j.pmatsci.2017.07.004 11814:Progress in Materials Science 11653:10.1088/0957-4484/26/6/065706 11330:. Nobel Prize. Archived from 10062:Advanced Functional Materials 9617:10.1103/PhysRevLett.96.073201 9318:10.1103/PhysRevLett.96.136806 7827:10.1103/PhysRevLett.93.166402 7766:10.1103/PhysRevLett.90.156402 7342:Astrophysical Journal Letters 7148:ISRN Condensed Matter Physics 7067:. The Journal. Archived from 6932:www.graphene.manchester.ac.uk 6392:10.1103/PhysRevLett.95.146801 5103:10.1088/1367-2630/11/9/095002 4941: 4857:graphene-family nanomaterials 4701: 4477:strips the naturally forming 4409:Graphene can also be made by 4274:multi-walled carbon nanotubes 4251:--> Exfoliation with scCo2 4158:--> Mechanical exfoliation 3901:In 2013, a three-dimensional 3588:Nanostructured graphene forms 3512:anomalous quantum Hall effect 3445: 3374:thermal expansion coefficient 821:scanning tunneling microscope 21933:The Periodic Table of Videos 21922:The University of Manchester 21046:appliedgraphenematerials.com 20759:IEEE Nanotechnology Magazine 20616:10.1016/j.nanoen.2016.08.031 19911:10.1016/j.carbon.2021.03.020 19854:10.1016/j.carbon.2020.12.063 19655:10.1016/j.carbon.2017.10.036 19277:10.1021/acs.langmuir.9b02650 18956:10.1021/acs.langmuir.0c01569 18850:10.1016/j.carbon.2014.09.020 18475:10.1016/j.carbon.2011.05.047 18323:10.1016/j.carbon.2012.12.023 17653:10.1016/j.carbon.2012.12.076 17442:Geim, Andre (January 2010). 16477:10.1021/acs.nanolett.5b02430 16120:10.1016/j.carbon.2011.10.050 16073:10.1016/j.apsusc.2015.09.222 15958:10.1016/j.carbon.2012.10.035 15524:10.1016/j.carbon.2014.03.036 15496:10.1016/j.carbon.2014.03.036 15461:10.1016/j.carbon.2011.03.056 15433:10.1016/j.carbon.2011.03.056 15254:10.1016/j.carbon.2010.09.049 14630:10.1016/j.carbon.2019.12.090 13883:10.1088/2053-1583/1/2/025004 13488:10.1016/j.carbon.2013.12.061 13425:Journal of Materials Science 11863:10.1016/0039-6028(72)90251-8 10936:Zhu, Xi; Su, Haibin (2011). 10743:Zhu, Xi; Su, Haibin (2010). 8759:Franz, M. (5 January 2008). 7251:10.1016/j.comptc.2019.112504 7017:The University of Manchester 6725:10.1016/0022-1139(87)95120-7 5596:(9): 2. 2009. Archived from 4425:(SiC) to high temperatures ( 4401:Microwave-assisted oxidation 3839:Advanced graphene structures 3672:bonds. These sheets, called 3250:, early measurements of the 3057:(stiffness) close to 1  2635:Graphene-based Bragg grating 2404:In magnetic fields above 10 2353:angle-resolved photoemission 2065:{\displaystyle \sigma _{xy}} 1643:Single-atom wave propagation 1321:-points, the energy depends 826: 667: 201:. The name is derived from " 7: 23378:Protonated hydrogen cyanide 21522:10.1016/bs.coac.2020.08.007 18426:. Gizmag.com. 28 May 2014. 13717:Alter Target Nerve Cells". 12427:10.1103/PhysRevLett.84.4613 11560:10.1016/j.physc.2011.07.008 10869:10.1016/j.physb.2010.04.015 9169:Fuhrer, Michael S. (2009). 8644:Trisetyarso, Agung (2012). 6875:Nano-scaled graphene plates 6237:10.1103/PhysRevLett.53.2449 6103:"The Structure of Graphite" 5354:10.1209/0295-5075/108/17007 4913: – allotrope of carbon 4889: 4842: 4009:(ITO) used in displays and 3388:Graphene has a theoretical 3383: 2434:are observed. A plateau at 2220:Atiyah–Singer index theorem 2072:at integer multiples (the " 1771:-coated graphene exhibited 787: 642:National Graphene Institute 10: 24373: 22762:Technology readiness level 22698:Technological unemployment 22343:Aggregated diamond nanorod 21936:(University of Nottingham) 21744:10.1038/s41598-020-66230-3 21636:10.1016/j.addr.2016.04.028 21405:10.1038/s41578-023-00558-w 21329:10.1038/s43586-022-00139-1 20771:10.1109/MNANO.2015.2441105 20723:10.1109/JPHOT.2018.2789894 20242:10.1109/JMMCT.2020.2983336 20093:"Graphene goes mainstream" 20055:. pp. 34.5.1–34.5.4. 20008:"CMOS-compatible graphene" 19411:10.1038/s41598-020-74821-3 19222:10.1016/j.jcis.2020.07.026 16813:. KurzweilAI. 2 May 2014. 16757:Nanoscale Research Letters 15159:10.15330/pcss.23.2.242-248 14563:10.1038/s41598-018-20997-8 14120:10.1103/PhysRevB.75.155115 14059:10.1038/s41586-021-03504-4 13238:10.1103/PhysRevB.71.205214 13069:10.1103/PhysRevB.76.115409 13034:. scientificcomputing.com. 13024:"Keeping Electronics Cool" 12744:10.1103/PhysRevB.83.081419 12264:10.1103/PhysRevB.85.195447 11245:10.1038/s41586-023-05807-0 10632:10.1103/PhysRevB.77.041404 9564:10.1103/PhysRevB.84.035446 9511:10.1103/PhysRevB.80.245406 8933:10.1103/PhysRevB.81.195434 8824:10.1103/RevModPhys.82.2673 8528:Proc. Natl. Acad. Sci. USA 8131:Journal of Applied Physics 7977:10.1103/PhysRevB.80.075108 5458:10.1038/s41467-019-14130-0 5228:10.1103/PhysRevB.91.094429 4898: – Allotrope of boron 4839:imaging and spectroscopy. 4747: 4538:. The scale bar is 200 μm. 4492:crystals or exfoliated TiO 4361:Hydrothermal self-assembly 4106: 3959: 3909:Box-shaped graphene (BSG) 3664: 3653: 3503: 3138:In 2014, researchers from 2395:Interactions and Phenomena 2039:. The quantization of the 845: 684: 656:have begun manufacturing. 337: 333: 18: 24246: 24137:Earliest known life forms 24132:Diffuse interstellar band 24072: 23992: 23917: 23808: 23743: 23683: 23611: 23603:Protonated cyanoacetylene 23517: 23411: 23373:Protonated carbon dioxide 23333:Hydromagnesium isocyanide 23281: 23067: 23038: 22849: 22840: 22780: 22745:Technological singularity 22705:Technological convergence 22623: 22576: 22521:Multi-function structures 22444: 22398: 22391: 22313: 22243: 22182: 22149: 22141:(cyclo[18]carbon) 22099: 22020: 21992: 21686:10.1186/s12989-016-0168-y 21473:10.1038/s41586-019-1013-x 21282:10.1007/s11998-018-0045-8 21235:10.1038/s41565-019-0557-0 21119:10.1038/s41928-017-0010-z 20818:10.1038/s41565-019-0555-2 20061:10.1109/IEDM.2018.8614535 20025:10.1038/s41928-018-0178-x 18339:. PhysOrg.com. May 2008. 18206:10.1142/S0217979297000976 17666:Kamali, D.J.Fray (2015). 15764:10.1038/s41565-018-0141-z 14337:10.1038/s41586-020-1938-0 13445:10.1007/s10853-013-7630-0 12160:10.1016/j.eml.2017.01.008 12130:Extreme Mechanics Letters 12106:10.1007/s10704-015-0039-9 11507:10.1134/S1063776111010043 10915:10.1134/S1063776110040084 10501:10.1103/RevModPhys.74.601 8794:Reviews of Modern Physics 8745:10.1080/00107510802650507 8169:19 September 2013 at the 7670:10.1103/RevModPhys.81.109 7603:10.1080/10408430208500497 6690:10.1103/PhysRevB.58.16396 6647:10.1088/0953-8984/9/1/004 6627:J. Phys.: Condens. Matter 5964:Physikalische Zeitschrift 4833:Van der Waals integration 4460:electronic band structure 4438:Chemical vapor deposition 4381:Sodium ethoxide pyrolysis 4352:Electrochemical synthesis 4133:Micro-mechanical cleavage 3935:nanomechanical resonators 3933:of enhanced performance, 3740:thickness) is soluble in 3720:groups by treatment with 3540:chemical vapor deposition 3246:for graphene and related 3173:chemical vapor deposition 3163:second (13.8 mi/s). 2744:in carbon, and with weak 2339:Experimental Observations 2076:") of the basic quantity 797:Scanning probe microscopy 220:, which contributes to a 128: 123: 103: 86: 81: 73: 68: 60: 37: 32: 24182:Iron–sulfur world theory 24177:Photodissociation region 23880:Methyl-cyano-diacetylene 22536:Molecular nanotechnology 22499:Linear acetylenic carbon 22125:(cyclo[6]carbon) 22109:Linear acetylenic carbon 21385:Nature Reviews Materials 20655:10.1038/nphoton.2015.122 16836:Paton, Keith R. (2014). 16608:10.1088/2053-1583/ab1e0a 15907:Chemical Society Reviews 14716:(masterThesis). Brasil. 14274:10.1021/acs.jpcc.0c01898 13032:Advantage Business Media 12651:single-layer graphene". 12510:Y S. Touloukian (1970). 12208:10.1088/2053-1583/aa5147 6774:10.1103/PhysRevB.46.1804 6705:Revue de Chimie Minérale 6272:10.1103/PhysRevB.29.1685 6073:10.1002/zaac.19191050109 5503:10.1002/zaac.19623160303 5156:10.1021/acs.jpcc.5b04311 4656:CMOS fabrication process 4650:CMOS-compatible graphene 4600: 4573:Carbon dioxide reduction 4397:and washing with water. 4300:Graphite oxide reduction 4287:Another approach sprays 4203:Liquid phase exfoliation 4124:Bottom up & Top down 3372:, resulting in negative 3167:Polycrystalline graphene 2935:These observations with 2925:{\displaystyle \nu =1/3} 2742:nuclear magnetic moments 2470:These observations with 1942:{\displaystyle 4e^{2}/h} 1843:{\displaystyle 4e^{2}/h} 1775:, a first for graphene. 1716:at a carrier density of 721:Three of the four outer- 590:University of Manchester 403:X-ray powder diffraction 278:University of Manchester 19:Not to be confused with 24352:21st-century inventions 24342:Group IV semiconductors 24257:Category:Astrochemistry 23847:, fullerene, buckyball) 23534:Cyanobutadiynyl radical 23509:Silicon-carbide cluster 23499:Protonated formaldehyde 22710:Technological evolution 22683:Exploratory engineering 21882:10.1073/pnas.1222276110 20480:Physical Review Letters 20390:Physical Review Letters 20197:10.1109/TAP.2008.917005 20006:Thomas, Stuart (2018). 19973:Applied Physics Letters 19770:10.1021/acsnano.0c06328 19695:10.1021/acsnano.0c05900 18364:Physical Review Letters 18272:10.1126/science.1252268 17547:10.1126/science.1216744 17211:10.1126/science.1194975 17116:10.1021/acsnano.9b02234 16043:Applied Surface Science 15667:10.1126/science.aaa6502 15337:10.1126/science.1167130 15111:10.1126/science.1211694 14771:16 October 2017 at the 14405:10.1021/acsnano.0c05900 14143:Physical Review Letters 13767:University of Cambridge 13731:10.1021/acsnano.5b05647 13619:10.1126/science.1246501 13297:10.1126/science.1246501 13259:Lifshitz, I.M. (1952). 13165:Physical Review Letters 13136:Graphite and Precursors 12846:10.1023/A:1006776107140 12791:10.1126/science.1184014 12019:10.1126/science.1235126 11908:10.1126/science.1196893 11350:Applied Physics Letters 11064:Applied Physics Letters 10702:Physical Review Letters 10541:Physical Review Letters 10295:10.1038/asiamat.2009.52 10229:Applied Physics Letters 10176:Applied Physics Letters 9969:Applied Physics Letters 9785:10.1364/OPTICA.3.000151 9669:Physical Review Letters 9587:Physical Review Letters 9288:Physical Review Letters 9253:10.1126/science.1240317 9110:Physical Review Letters 9016:Applied Physics Letters 8959:Applied Physics Letters 8559:10.1073/pnas.0704772104 8444:6 November 2018 at the 8000:Physical Review Letters 7797:Physical Review Letters 7736:Physical Review Letters 6928:"The Story of Graphene" 6899:www.compositesworld.com 6880:22 October 2020 at the 6860:22 October 2020 at the 6362:Physical Review Letters 6217:Physical Review Letters 5802:Physical Review Letters 5771:10.1126/science.1158877 5706:10.1351/goldbook.G02683 5551:10.1126/science.1102896 5400:10.1126/science.1157996 5288:10.1126/science.1156965 4755:already on the market. 4666:2018, researchers from 4500:--> Metal substrates 4469:coated with a layer of 4357:an LED and photodiode. 3941:devices, high-capacity 3815:Graphene ligand/complex 3792:, cross-linked through 3316:shift much larger than 3293:for bilayer graphene. 3226:Hall-Petch relationship 3127:material known so far. 3089:atomic force microscope 3018:among known materials. 2617:field-effect transistor 2608:can be tuned from 0 to 2571:fine-structure constant 2552:fine-structure constant 2366:hexagonal boron nitride 1680:Graphene exhibits high 894:Graphene is a zero-gap 24332:Quantum lattice models 24270:Outer space portal 24112:Circumstellar envelope 23077:Aluminium(I) hydroxide 22987:Phosphorus mononitride 22864:Aluminium monofluoride 22859:Aluminium monochloride 22720:Technology forecasting 22715:Technological paradigm 22688:Proactionary principle 22169:Carbide-derived carbon 22051:(buckminsterfullerene) 20702:IEEE Photonics Journal 20305:10.1038/nnano.2013.161 19539:10.1002/adfm.201400732 19500:10.1002/adfm.201400732 19147:10.1021/acsami.0c05831 19080:10.1002/adma.201604947 19024:10.1002/adfm.201604277 18663:10.1002/adma.201501600 18084:10.1002/smll.201403402 18004:10.1038/nnano.2008.365 17496:10.1002/adma.201300155 16778:10.1186/1556-276X-6-95 16552:10.1002/adma.201506194 15865:10.1002/ange.201303497 15815:10.1002/ange.201303497 15712:10.1002/adma.201506426 14967:"Graphene Oxide Paper" 14888:10.1002/ppsc.201200131 14504:10.1038/nnano.2012.256 13667:10.1002/admi.201900229 11595:10.1002/adma.201404106 10092:10.1002/adfm.200901007 9805:New Journal of Physics 8680:10.26421/QIC12.11-12-7 8137:(5): 053702–053702–8. 7924:10.1038/nnano.2007.300 7878:10.1103/PhysRev.71.622 7218:Cite journal requires 6490:Monatshefte für Chemie 6128:10.1098/rspa.1924.0101 6040:10.1103/PhysRev.10.661 5958:; Scherrer, P (1916). 5933:10.1098/rstl.1859.0013 5904:Brodie, B. C. (1859). 5081:New Journal of Physics 4764:biological engineering 4539: 4473:(Ge) dipped in dilute 4462:of isolated graphene. 4278:potassium permanganate 4228:liquids, most notably 4153:Exfoliation techniques 3931:rechargeable batteries 3772: 3705: 3624: 3613: 3602: 3575:Graphene superlattices 3520:excitonic condensation 3463:Mesenchymal Stem Cells 2982: 2926: 2892: 2891:{\displaystyle \nu =3} 2866: 2818: 2762:Strong magnetic fields 2740:, the near absence of 2738:spin–orbit interaction 2400:Strong magnetic fields 2320: 2288: 2198: 2066: 2019: 1943: 1905: 1844: 1727:of graphene sheets is 1677: 1633: 1577: 1519: 1484: 1437: 1260: 1001: 891: 832:Ab initio calculations 803:The hexagonal lattice 800: 741:. The length of these 718: 706: 693:Carbon orbitals 2s, 2p 629:Nobel Prize in Physics 577: 446:Gordon Walter Semenoff 373: 290:Nobel Prize in Physics 265: 24167:Interplanetary medium 24142:Extraterrestrial life 23780:Octatetraynyl radical 23398:Tricarbon monosulfide 22945:Magnesium monohydride 22646:Disruptive innovation 22509:Metamaterial cloaking 22385:Emerging technologies 21215:Nature Nanotechnology 20798:Nature Nanotechnology 20275:Nature Nanotechnology 19578:Nature Communications 18569:. 19 September 2014. 18539:. Purdue University. 17984:Nature Nanotechnology 17448:Letters to the Editor 17395:MIT Technology Review 17260:10.1038/news.2009.367 16305:grainger.illinois.edu 15744:Nature Nanotechnology 14484:Nature Nanotechnology 14011:www.graphene-info.com 12653:Nature Communications 12054:Nature Communications 11703:Nature Communications 8100:10.1038/nnano.2008.58 8078:Nature Nanotechnology 7904:Nature Nanotechnology 7305:Astrophysical Journal 7201:Felix, I. M. (2013). 7123:on 23 September 2015. 5863:"Graphene Prehistory" 5438:Nature Communications 5124:10 April 2023 at the 4770:, lightweight/strong 4519: 4129:(e. g. mixed acids). 3770: 3702: 3695:Chemical modification 3665:Further information: 3638:Graphene quantum dots 3619: 3608: 3600: 3390:specific surface area 3177:grain-boundaries (GB) 3158:, as opposed to many 3117:Mermin–Wagner theorem 3034:Mechanical properties 3000:Spintronic properties 2983: 2927: 2893: 2867: 2819: 2746:hyperfine interaction 2691:Nonlinear Kerr effect 2467:were also reported. 2307: 2289: 2199: 2067: 1991: 1944: 1906: 1845: 1670: 1634: 1578: 1520: 1490:is the vector of the 1485: 1438: 1261: 1030:(π) orbitals and the 996: 889: 842:Electronic properties 795: 712: 692: 658:Cambridge Nanosystems 571: 395:X-ray crystallography 347: 340:Discovery of graphene 263: 242:electronic properties 82:Mechanical properties 24294:Chemistry portal 24282:Astronomy portal 24228:RNA world hypothesis 24212:PAH world hypothesis 23905:Heptatrienyl radical 23837:Buckminsterfullerene 23725:Methylcyanoacetylene 23233:Silicon carbonitride 23208:Methylidynephosphane 23174:Magnesium isocyanide 23082:Aluminium isocyanide 22884:Carbon monophosphide 22693:Technological change 22636:Collingridge dilemma 21986:Allotropes of carbon 16920:Alloys and Compounds 16641:"Graphene synthesis" 13133:Delhaes, P. (2001). 13028:Scientific Computing 11536:(23–24): 1651–1654. 11147:10.1143/JJAP.46.L605 10390:10.1364/OL.37.001856 10336:10.1364/OE.20.023201 10145:10.1364/OE.17.017630 9925:(4): 041106–041110. 8715:Contemporary Physics 8263:. 9 September 2015. 7695:on 15 November 2010. 7019:. 10 September 2014. 6992:The Nobel Foundation 6962:Institute of Physics 5861:Geim, A. K. (2012). 5673:Graphene-Battery.net 5622:. Nobel Foundation. 4884:graphene nanoribbons 4456:Van der Waals forces 4103:Mechanical synthesis 3674:graphene oxide paper 3644:graphene quantum dot 3628:Graphene nanoribbons 3593:Graphene nanoribbons 3370:Grüneisen parameters 3338:thermal conductivity 3252:thermal conductivity 3241:Thermal conductivity 3230:Voronoi construction 2939: 2902: 2876: 2828: 2774: 2711:Excitonic properties 2669:saturable absorption 2663:Saturable absorption 2623:is tunable into the 2621:graphene nanoribbons 2374:optical spectroscopy 2230: 2119: 2046: 1915: 1866: 1816: 1597: 1539: 1498: 1465: 1362: 1074: 958:Schrödinger equation 934:graphene nanoribbons 608:(silica) layer on a 586:Konstantin Novoselov 532:Robert B. Rutherford 419:graphite oxide paper 370:Konstantin Novoselov 286:Konstantin Novoselov 271:electron microscopes 253:and large nonlinear 251:quantum oscillations 236:, making graphene a 216:, and a delocalized 130:Thermal conductivity 24347:Superhard materials 24172:Interstellar medium 24152:Forbidden mechanism 23965:Hydrogen isocyanide 23655:Hexatriynyl radical 23238:c-Silicon dicarbide 23143:Hydrogen isocyanide 23007:Silicon monosulfide 22982:Phosphorus monoxide 22950:Methylidyne radical 22909:Fluoromethylidynium 22869:Aluminium(II) oxide 22750:Technology scouting 22725:Accelerating change 22596:Powered exoskeleton 22553:Programmable matter 22431:Smart manufacturing 22426:Molecular assembler 22406:3D microfabrication 21873:2013PNAS..11012295L 21867:(30): 12295–12300. 21736:2020NatSR..10.9441J 21464:2019Natur.567..323L 21397:2023NatRM...8..498M 21227:2019NatNa..14..907R 21152:Siegel, E. (2018). 20902:noble3dprinters.com 20810:2019NatNa..14..927K 20714:2018IPhoJ..1089894M 20647:2015NaPho...9..511P 20608:2016NEne...28...12Z 20564:2011NatPh...7..434S 20502:2014PhRvL.112k6402J 20458:(36): 18634–18641. 20412:2013PhRvL.110c3902B 20351:2014NatMa..13...57P 20297:2013NatNa...8..625P 20234:2020IJMMC...5...44N 20189:2008ITAP...56..747H 20146:2007JPCM...19b6222G 19985:2015ApPhL.107c3104K 19902:2021Carbo.178..649A 19845:2021Carbo.174..430W 19764:(11): 15595–15604. 19689:(10): 13691–13699. 19647:2018Carbo.126..472D 19590:2014NatCo...5.5714L 19403:2020NatSR..1018047C 19271:(44): 14310–14315. 19214:2020JCIS..580..700B 19141:(26): 29692–29699. 19072:2017AdM....2904947W 18950:(35): 10421–10428. 18889:2015MaMol..48..687W 18842:2015Carbo..81...38W 18789:(10): 10471–10479. 18750:(45): 24068–24074. 18655:2015AdM....27.4200B 18467:2011Carbo..49.4122L 18386:2009PhRvL.102e6808P 18315:2013Carbo..55..168B 18264:2014Sci...344..286L 18198:1997IJMPB..11.1865G 18141:2009NatMa...8..171S 18123:Sutter, P. (2009). 17996:2009NatNa...4...30C 17935:2014Nanos...6.5323L 17884:2013Nanos...5.4015L 17751:2015Nanot..26G5607H 17678:(26): 11310–11320. 17645:2013Carbo..56..121K 17539:2012Sci...335.1326E 17533:(6074): 1326–1330. 17488:2013AdM....25.3583E 17361:10.1038/nature07919 17353:2009Natur.458..877J 17296:10.1038/nature07872 17288:2009Natur.458..872K 17203:2011Sci...331..568C 16975:2014NatMa..13..624P 16857:2014NatMa..13..624P 16769:2011NRL.....6...95J 16699:2007PhT....60h..35G 16599:2020TDM.....7b2001B 16544:2016AdM....28.3564C 16469:2016NanoL..16...34X 16432:. 16 October 2015. 16166:2014Nanot..25.5601H 16112:2012Carbo..50.3195H 16094:Harris PJF (2012). 16065:2016ApSS..360..451L 16007:10.1002/jbm.a.35449 15857:2013AngCh.125.9380W 15807:2013AngCh.125.9380W 15756:2018NatNa..13..589B 15704:2016AdM....28.6449X 15658:2015Sci...349.1083X 15652:(6252): 1083–1087. 15603:2013PCCP...1517752L 15516:2014Carbo..75...81Y 15488:2014Carbo..75...81Y 15453:2011Carbo..49.3375Y 15425:2011Carbo..49.3375Y 15374:(27): 13242–13246. 15329:2009Sci...323..610E 15277:(36): 15801–15804. 15246:2011Carbo..49..722W 15103:2012Sci...335..442N 15042:2010Nanot..21O5203N 15006:2010JPoSA..48.2204E 14669:2022IJHMT.18622464F 14622:2020Carbo.160..335F 14555:2018NatSR...8.2737F 14496:2013NatNa...8..119L 14399:(10): 13691–13699. 14329:2020Natur.577..647L 14219:2012NanoL..12.1609B 14165:2010PhRvL.104i6802B 14112:2007PhRvB..75o5115M 14051:2021Natur.594...62M 13933:2011NanoL..11.2735X 13875:2014TDM.....1b5004T 13817:2011arXiv1104.5120N 13769:. 29 January 2016. 13611:2015Sci...347...41B 13559:2012NanoL..12.3936Z 13508:. 1 February 2013. 13480:2014Carbo..70...59Y 13437:2013JMatS..48.8171Y 13404:(48): 25845–25851. 13334:(37): 19048–19055. 13289:2015Sci...347...41B 13230:2005PhRvB..71t5214M 13177:2005PhRvL..95i6105M 13061:2007PhRvB..76k5409S 12988:2012NatMa..11..203C 12932:2011NanoL..11.1195P 12881:2010NanoL..10.3909J 12783:2010Sci...328..213S 12736:2011PhRvB..83h1419L 12675:2014NatCo...5.3689X 12613:2010arXiv1003.3579F 12552:2010NanoL..10.1645C 12473:2008NanoL...8..902B 12419:2000PhRvL..84.4613B 12352:2014NatSR...4E5991S 12302:2013NanoL..13.1829S 12256:2012PhRvB..85s5447K 12152:2017ExML...13...42A 12066:2013NatCo...4.2811R 12011:2013Sci...340.1073L 12005:(6136): 1073–1076. 11955:2012NatMa..11..759W 11900:2010Sci...330..946G 11855:1972SurSc..31...12L 11715:2014NatCo...5.3782Z 11645:2015Nanot..26f5706R 11552:2011PhyC..471.1651B 11499:2011JETP..112..102B 11454:2004NanoL...4..881B 11404:2007JVSTB..25.2558F 11362:2010ApPhL..97v3102B 11237:2023Natur.616..270X 11139:2007JaJAP..46L.605O 11086:2007ApPhL..91l3105C 11030:10.1038/nature06037 11022:2007Natur.448..571T 10954:2011JPCA..11511998Z 10948:(43): 11998–12003. 10907:2010JETP..110..613B 10861:2010PhyB..405.2896B 10800:2011Nanos...3.2324W 10755:(41): 17257–17262. 10714:2008PhRvL.101r6401Y 10670:2007NanoL...7.3112Y 10624:2008PhRvB..77d1404P 10563:2009PhRvL.103r6802Y 10493:2002RvMP...74..601O 10443:2013JPhB...46o5401D 10382:2012OptL...37.1856Z 10327:2012OExpr..2023201Z 10321:(21): 23201–23214. 10251:2010ApPhL..96k1112Z 10198:2009ApPhL..95n1103Z 10137:2009OExpr..1717630Z 10121:(20): 17630–17635. 10084:2009arXiv0910.5820B 10020:2012NatSR...2E.737S 9981:2011ApPhL..98b1103M 9931:2008ApPhL..93d1106L 9876:10.1038/nature08105 9868:2009Natur.459..820Z 9817:2013NJPh...15k3003L 9776:2016Optic...3..151J 9691:2008PhRvL.100k7401K 9609:2006PhRvL..96g3201D 9556:2011PhRvB..84c5446F 9503:2009PhRvB..80x5406B 9450:10.1038/nature08582 9442:2009Natur.462..196B 9386:10.1038/nature08522 9378:2009Natur.462..192D 9310:2006PhRvL..96m6806Z 9245:2013Sci...340.1413F 9239:(6139): 1413–1414. 9187:2009Natur.459.1037F 9132:2013PhRvL.111i6601A 9091:2009arXiv0909.1193L 9038:2009ApPhL..95v3108W 8981:2009ApPhL..95q2105S 8925:2010PhRvB..81s5434J 8868:10.1038/nature07719 8860:2009Natur.457..706K 8816:2010RvMP...82.2673P 8773:on 15 November 2010 8737:2009ConPh..50..375P 8672:2010arXiv1003.4590T 8615:2008NatPh...4..116S 8550:2007PNAS..10418392A 8485:2007NatMa...6..652S 8410:2008NatPh...4..377C 8352:10.1038/nature12952 8344:2014Natur.506..349B 8237:. 22 January 2015. 8197:2015Nanos...7.3558S 8143:2008JAP...103e3702A 8022:2008PhRvL.100a6602M 7969:2009PhRvB..80g5108L 7916:2007NatNa...2..605A 7870:1947PhRv...71..622W 7819:2004PhRvL..93p6402L 7758:2003PhRvL..90o6402K 7662:2009RvMP...81..109C 7595:2002CRSSM..27..227S 7544:2007NanoL...7.1643I 7476:2007NatMa...6..858F 7410:2007NatMa...6..801C 7364:2002ApJ...578L.153F 7317:1996ApJ...472..760B 7179:10.5402/2012/501686 7170:2011arXiv1110.6557C 6837:Scientific American 6832:"Carbon Wonderland" 6809:2000JElS..147.2498W 6766:1992PhRvB..46.1804S 6717:1987JFluC..35..151H 6682:1998PhRvB..5816396F 6676:(24): 16396–16406. 6639:1997JPCM....9....1O 6555:10.1038/nature05545 6547:2007Natur.446...60M 6458:10.1038/nature04235 6450:2005Natur.438..201Z 6384:2005PhRvL..95n6801G 6328:10.1038/nature04233 6320:2005Natur.438..197N 6264:1984PhRvB..29.1685D 6229:1984PhRvL..53.2449S 6119:1924RSPSA.106..749B 5924:1859RSPT..149..249B 5881:2012PhST..146a4003G 5824:2009PhRvL.103x6804R 5763:2009Sci...324.1530G 5543:2004Sci...306..666N 5450:2020NatCo..11..284C 5392:2008Sci...321..385L 5346:2014EL....10817007Z 5280:2008Sci...320.1308N 5220:2015PhRvB..91i4429L 5150:(29): 16991–17003. 5094:2009NJPh...11i5002P 5076:"Focus on Graphene" 5037:2007NatMa...6..183G 4785:On August 2, 2016, 4772:composite materials 4625:Flash Joule heating 4508:--> Roll-to-roll 4393:metal, followed by 4240:can be prepared on 3979:reinforcing bars (" 3971:Reinforced graphene 3831:complex, and metal- 3429:Stanford University 3361:dispersion relation 3306:Wiedemann–Franz law 3028:yttrium iron garnet 3022:Magnetic substrates 3016:at room temperature 2757:Magnetic properties 2736:due to its minimal 2500:Van der Waals force 2494:Van der Waals force 2359:'Massive' electrons 2029:quantum Hall effect 1061:dispersion relation 980:Dispersion relation 944:Electronic spectrum 914:on the edge of the 654:Thomas Swan Limited 458:quantum Hall effect 184:allotrope of carbon 69:Chemical properties 64:Allotrope of carbon 49:honeycomb structure 24322:Aromatic compounds 24192:Molecules in stars 24162:Intergalactic dust 24107:Circumstellar dust 24049:Naphthalene cation 23984:Trihydrogen cation 23960:Hydrogen deuteride 23885:Methyltriacetylene 23720:Hexapentaenylidene 23539:E-Cyanomethanimine 23459:Cyclopropenylidene 23393:Tricarbon monoxide 23383:Silicon tricarbide 23353:Methylene amidogen 23343:Isothiocyanic acid 23258:Thioxoethenylidene 23218:Trihydrogen cation 23032:Titanium(II) oxide 22992:Potassium chloride 22971:Sulfur mononitride 22914:Helium hydride ion 22889:Carbon monosulfide 22767:Technology roadmap 22469:Conductive polymer 22264:(cyclopropatriene) 22245:hypothetical forms 22066:Fullerene whiskers 21724:Scientific Reports 21107:Nature Electronics 20012:Nature Electronics 19946:www.kurzweilai.net 19598:10.1038/ncomms6714 19464:10.1039/C1JM11227A 19391:Scientific Reports 19060:Advanced Materials 18633:Advanced Materials 18625:Craciun, Monica F. 18514:10.1039/C0JM02126A 17943:10.1039/C4NR00693C 17892:10.1039/C3NR33849E 17839:10.1039/C3TC31473A 17802:10.1039/C2JM15944A 17712:www.kurzweilai.net 17685:10.1039/C5NR01132A 17476:Advanced Materials 17431:on 8 October 2010. 17397:. 13 August 2015. 16532:Advanced Materials 15919:10.1039/C6CS00218H 15692:Advanced Materials 15611:10.1039/C3CP52908H 15014:10.1002/pola.23990 14543:Scientific Reports 14464:10.1039/C2JM35652J 12683:10.1038/ncomms4689 12340:Scientific Reports 12075:10.1038/ncomms3811 11724:10.1038/ncomms4782 11678:on 27 October 2020 11583:Advanced Materials 11282:5 May 2019 at the 10808:10.1039/c1nr10095e 10286:NPG Asia Materials 10008:Scientific Reports 8205:10.1039/c4nr07457b 6901:. 10 August 2016. 6503:10.1007/BF01141527 6179:Powder Diffraction 6107:Proc. R. Soc. Lond 4831:circuits based on 4813:integrated circuit 4798:kinetic inductance 4540: 4295:Chemical synthesis 4011:photovoltaic cells 3915:pyrolytic graphite 3819:Graphene can be a 3773: 3746:tetrachloromethane 3706: 3676:, have a measured 3656:Graphene chemistry 3625: 3614: 3603: 3518:and potential for 3416:and is similar to 3359:modes: two linear 3217:molecular-dynamics 3160:metallic materials 3152:fracture toughness 3134:Fracture toughness 3061:(150,000,000  3004:Graphene exhibits 2990:magnetic catalysis 2978: 2922: 2888: 2862: 2814: 2527:Optical properties 2321: 2284: 2194: 2062: 2020: 1939: 1901: 1840: 1784:optical waveguides 1723:The corresponding 1678: 1649:high-κ dielectrics 1629: 1573: 1515: 1480: 1433: 1331:2-spinor structure 1256: 1238: 1200: 1161: 1002: 892: 801: 719: 707: 650:North East England 578: 556:In 2014, inventor 374: 309:electric batteries 266: 124:Thermal properties 24302: 24301: 24217:Pseudo-panspermia 23913: 23912: 23860:Cyanodecapentayne 23800:N-Methylformamide 23775:Methyldiacetylene 23700:Aminoacetonitrile 23670:Methyl isocyanate 23588:Methyl isocyanide 23469:Isocyanoacetylene 23449:Cyanoformaldehyde 23328:Hydrogen peroxide 23213:Potassium cyanide 23169:Magnesium cyanide 23122:Disilicon carbide 23117:Dicarbon monoxide 22924:Hydrogen fluoride 22919:Hydrogen chloride 22800: 22799: 22619: 22618: 22568:Synthetic diamond 22464:Artificial muscle 22446:Materials science 22351: 22350: 22219:(diatomic carbon) 22151:mixed sp/sp forms 21630:(Pt B): 109–144. 21458:(7748): 323–333. 21099:Banerjee, Kaustav 21074:. 2 August 2016. 21012:10.1021/nn9010472 21006:(12): 3884–3890. 20967:10.1021/bm301995s 20955:Biomacromolecules 20904:. Noble3DPrinters 20572:10.1038/nphys1916 20464:10.1021/jp405560t 20070:978-1-7281-1987-8 20049:Banerjee, Kaustav 19993:10.1063/1.4926605 19494:(31): 4986–4995. 19344:10.1021/nn402371c 18897:10.1021/ma5024236 18795:10.1021/nn5038493 18756:10.1021/jp3068848 18709:10.1021/nn205068n 18639:(28): 4200–4206. 18508:(10): 3324–3334. 18461:(13): 4122–4130. 18192:(16): 1865–1911. 18040:10.1021/ja210725p 18034:(13): 5850–5856. 17929:(10): 5323–5328. 17833:(44): 7308–7313. 17827:J. Mater. Chem. C 17482:(26): 3583–3587. 17197:(6017): 568–571. 17159:10.1021/nn402371c 17062:10.1021/ja807449u 17046:(10): 3611–3620. 16708:10.1063/1.2774096 16269:10.1021/nn501132n 16001:(10): 3212–3225. 15913:(20): 5541–5588. 15845:Angewandte Chemie 15801:(35): 9380–9384. 15795:Angewandte Chemie 15698:(30): 6449–6456. 15555:10.1021/la202380g 15447:(10): 3375–3378. 15419:(10): 3375–3378. 15390:10.1021/jp203657w 15283:10.1021/jp907613s 15208:10.1021/ja060680r 15202:(24): 7720–7721. 15196:J. Am. Chem. Soc. 15000:(10): 2204–2213. 14937:10.1021/nn1006368 14853:10.1021/nn501796r 14803:10.1021/nn300760g 14323:(7792): 647–651. 14227:10.1021/nl204547v 14090:Physical Review B 13941:10.1021/nl201022t 13825:10.1021/nn200500h 13695:10.1021/am200428v 13605:(6217): 1246501. 13567:10.1021/nl300985q 13431:(23): 8171–8198. 13410:10.1021/jp410044v 13367:10.1021/ja4117268 13340:10.1021/jp4061945 13283:(6217): 1246501. 13208:Physical Review B 13146:978-90-5699-228-6 13100:10.1021/nn200181e 13048:Physical Review B 12940:10.1021/nl104156y 12889:10.1021/nl101613u 12875:(10): 3909–3913. 12777:(5975): 213–216. 12714:Physical Review B 12621:10.1021/nn9016229 12560:10.1021/nl9041966 12523:978-0-306-67020-6 12481:10.1021/nl0731872 12360:10.1038/srep05991 12310:10.1021/nl400542n 12234:Physical Review B 11884:(6006): 946–948. 11462:10.1021/nl0497272 11412:10.1116/1.2789446 11370:10.1063/1.3519982 11221:(7956): 270–274. 11123:(25): L605–L607. 11094:10.1063/1.2784934 11006:(7153): 571–575. 10962:10.1021/jp202787h 10845:(13): 2896–2899. 10761:10.1021/jp102341b 10678:10.1021/nl0716404 10602:Physical Review B 10366:(11): 1856–1858. 10259:10.1063/1.3367743 10206:10.1063/1.3244206 10068:(19): 3077–3083. 10028:10.1038/srep00737 9989:10.1063/1.3540647 9939:10.1063/1.2964093 9862:(7248): 820–823. 9534:Physical Review B 9481:Physical Review B 9426:(7270): 196–199. 9362:(7270): 192–195. 9046:10.1063/1.3266524 8989:10.1063/1.3254329 8903:Physical Review B 8328:(7488): 349–354. 8151:10.1063/1.2890147 7947:Physical Review B 7715:Dresselhaus, M.S. 7552:10.1021/nl070613a 7286:10.1021/jp020387n 7280:(19): 4947–4951. 6968:on 8 October 2010 6817:10.1149/1.1393559 6754:Physical Review B 6670:Physical Review B 6434:(7065): 201–204. 6304:(7065): 197–200. 6252:Physical Review B 6223:(26): 2449–2452. 6191:10.1154/1.1536926 6158:(5531): 136–137. 5715:978-0-9678550-9-7 5527:(5696): 666–669. 4835:of 2D materials. 4475:hydrofluoric acid 4079:Crumpled graphene 4047:Graphene nanocoil 3962:Pillared graphene 3956:Pillared graphene 3889:(12,000,000  3473:Support substrate 3378:lattice parameter 3262:of approximately 3156:ceramic materials 3049:(19,000,000  3011:magnetoresistance 2994:symmetry breaking 2643:(one-dimensional 2639:A graphene-based 2564:Fresnel equations 2378:topological phase 1974:quantum computers 1966:ultra-high vacuum 1773:superconductivity 1702:defect scattering 1682:electron mobility 1529:is their energy. 1477: 1385: 1329:has an effective 1254: 1237: 1233: 1199: 1160: 994: 884: 883: 799:image of graphene 484:Hanns-Peter Boehm 452:precisely at the 385:noted the highly 360:. Donated to the 205:" and the suffix 145: 144: 24364: 24292: 24291: 24290: 24280: 24279: 24278: 24268: 24267: 24266: 24255: 24254: 24202:Organic compound 24102:Chemical formula 24007:Dihydroxyacetone 23955:Hydrogen cyanide 23640:Cyanodiacetylene 23494:Propadienylidene 23388:Thioformaldehyde 23263:Titanium dioxide 23228:Sodium hydroxide 23149:Hydrogen sulfide 23137:Hydrogen cyanide 23097:Carbonyl sulfide 23062: 23053: 23044: 23002:Silicon monoxide 22935:Hydroxyl radical 22847: 22846: 22827: 22820: 22813: 22804: 22803: 22788: 22787: 22735:Horizon scanning 22651:Ephemeralization 22611:Uncrewed vehicle 22531:Carbon nanotubes 22396: 22395: 22378: 22371: 22364: 22355: 22354: 22323:Activated carbon 22279: 22278: 22277: 22263: 22262: 22261: 22234: 22233: 22232: 22218: 22217: 22216: 22202: 22201: 22200: 22159:Amorphous carbon 22140: 22139: 22138: 22124: 22123: 22122: 21979: 21972: 21965: 21956: 21955: 21905: 21904: 21894: 21884: 21852: 21846: 21845: 21843: 21841: 21821: 21815: 21814: 21804: 21772: 21766: 21765: 21755: 21715: 21709: 21708: 21698: 21688: 21664: 21658: 21657: 21647: 21615: 21609: 21608: 21598: 21574: 21568: 21567: 21557: 21533: 21527: 21526: 21524: 21508: 21502: 21501: 21475: 21443: 21437: 21436: 21434: 21432: 21375: 21369: 21368: 21366: 21364: 21308: 21302: 21301: 21261: 21255: 21254: 21221:(907): 907–910. 21210: 21204: 21203: 21201: 21199: 21180: 21174: 21173: 21171: 21169: 21149: 21143: 21142: 21140: 21138: 21094: 21088: 21087: 21085: 21083: 21068: 21062: 21061: 21059: 21057: 21048:. Archived from 21038: 21032: 21031: 20995: 20989: 20988: 20978: 20946: 20940: 20939: 20937: 20935: 20920: 20914: 20913: 20911: 20909: 20894: 20888: 20887: 20885: 20883: 20864: 20858: 20857: 20855: 20853: 20789: 20783: 20782: 20750: 20744: 20743: 20725: 20693: 20687: 20686: 20684: 20682: 20635:Nature Photonics 20626: 20620: 20619: 20590: 20584: 20583: 20557: 20536: 20530: 20529: 20495: 20474: 20468: 20467: 20446: 20440: 20439: 20405: 20385: 20379: 20378: 20359:10.1038/nmat3783 20344: 20329:Nature Materials 20323: 20317: 20316: 20290: 20270: 20264: 20263: 20253: 20215: 20209: 20208: 20172: 20166: 20165: 20139: 20119: 20113: 20112: 20110: 20108: 20099:. 23 July 2019. 20089: 20083: 20082: 20044: 20038: 20037: 20027: 20003: 19997: 19996: 19968: 19962: 19961: 19959: 19957: 19948:. 21 July 2015. 19938: 19932: 19931: 19913: 19881: 19875: 19874: 19856: 19824: 19818: 19817: 19815: 19813: 19749: 19743: 19742: 19740: 19738: 19673: 19667: 19666: 19626: 19620: 19619: 19609: 19569: 19563: 19562: 19560: 19558: 19518: 19512: 19511: 19482: 19476: 19475: 19447: 19441: 19440: 19430: 19382: 19376: 19375: 19373: 19371: 19338:(8): 7062–7066. 19323: 19317: 19316: 19314: 19312: 19256: 19250: 19249: 19193: 19187: 19186: 19184: 19182: 19126: 19120: 19119: 19117: 19115: 19051: 19045: 19044: 19026: 19002: 18996: 18995: 18993: 18991: 18935: 18929: 18928: 18926: 18924: 18868: 18862: 18861: 18821: 18815: 18814: 18777: 18768: 18767: 18738: 18729: 18728: 18703:(3): 2319–2325. 18691: 18685: 18684: 18674: 18648: 18620: 18614: 18613: 18611: 18609: 18589: 18583: 18582: 18580: 18578: 18567:R&D Magazine 18559: 18553: 18552: 18550: 18548: 18532: 18526: 18525: 18497: 18491: 18490: 18488: 18486: 18446: 18440: 18439: 18437: 18435: 18420: 18414: 18413: 18379: 18359: 18353: 18352: 18350: 18348: 18333: 18327: 18326: 18298: 18292: 18291: 18246: 18240: 18239: 18237: 18235: 18226:. 7 April 2014. 18216: 18210: 18209: 18179: 18173: 18172: 18170: 18168: 18149:10.1038/nmat2392 18129:Nature Materials 18120: 18114: 18113: 18095: 18066: 18060: 18059: 18022: 18016: 18015: 17979: 17973: 17972: 17954: 17918: 17912: 17911: 17867: 17861: 17860: 17850: 17822: 17816: 17815: 17813: 17785: 17779: 17778: 17734: 17728: 17727: 17725: 17723: 17714:. 30 July 2015. 17704: 17698: 17697: 17687: 17663: 17657: 17656: 17628: 17622: 17621: 17604:(9): 1302–1310. 17593: 17587: 17586: 17584: 17582: 17566: 17522: 17516: 17515: 17470: 17464: 17463: 17461: 17459: 17439: 17433: 17432: 17417: 17411: 17410: 17408: 17406: 17387: 17381: 17380: 17347:(7240): 877–80. 17332: 17326: 17325: 17307: 17270: 17264: 17263: 17247: 17241: 17240: 17222: 17185: 17179: 17178: 17142: 17136: 17135: 17109: 17100:(6): 7050–7061. 17088: 17082: 17081: 17055: 17034: 17028: 17027: 17025: 17023: 17017: 16994: 16983:10.1038/nmat3944 16963:Nature Materials 16960: 16950: 16944: 16943: 16914: 16908: 16907: 16905: 16903: 16897: 16865:10.1038/nmat3944 16845:Nature Materials 16842: 16833: 16827: 16826: 16824: 16822: 16807: 16801: 16800: 16790: 16780: 16748: 16742: 16741: 16739: 16727: 16721: 16720: 16710: 16678: 16669: 16668: 16636: 16623: 16622: 16620: 16610: 16578: 16572: 16571: 16526: 16520: 16519: 16517: 16515: 16495: 16489: 16488: 16452: 16446: 16445: 16443: 16441: 16430:Kurzweil Library 16422: 16413: 16412: 16410: 16408: 16388: 16382: 16381: 16379: 16377: 16368:. 30 June 2015. 16366:Kurzweil Library 16358: 16352: 16351: 16349: 16347: 16327: 16321: 16320: 16318: 16316: 16297: 16291: 16290: 16280: 16253:"Rebar Graphene" 16248: 16242: 16241: 16239: 16237: 16222: 16209: 16208: 16206: 16204: 16198: 16151: 16142: 16136: 16135: 16133: 16131: 16106:(9): 3195–3199. 16091: 16085: 16084: 16058: 16038: 16029: 16028: 16018: 15986: 15980: 15979: 15969: 15937: 15931: 15930: 15902: 15891: 15890: 15888: 15886: 15876: 15836: 15826: 15790: 15784: 15783: 15738: 15732: 15731: 15686: 15680: 15679: 15669: 15637: 15631: 15630: 15585: 15579: 15578: 15576: 15574: 15549:(19): 12164–71. 15534: 15528: 15527: 15499: 15471: 15465: 15464: 15436: 15408: 15402: 15401: 15383: 15368:J. Phys. Chem. C 15363: 15357: 15356: 15322: 15301: 15295: 15294: 15270:J. Phys. Chem. C 15264: 15258: 15257: 15226: 15220: 15219: 15190: 15184: 15183: 15181: 15179: 15161: 15137: 15131: 15130: 15096: 15076: 15070: 15069: 15024: 15018: 15017: 14989: 14983: 14982: 14980: 14978: 14963: 14957: 14956: 14931:(8): 4806–4814. 14916: 14910: 14909: 14899: 14871: 14865: 14864: 14847:(6): 5102–5110. 14832: 14823: 14822: 14797:(6): 6312–6320. 14785: 14776: 14763: 14758: 14756: 14754: 14736: 14730: 14729: 14727: 14725: 14707: 14701: 14700: 14698: 14696: 14648: 14642: 14641: 14615: 14591: 14585: 14584: 14574: 14534: 14528: 14527: 14525: 14523: 14474: 14468: 14467: 14447: 14441: 14440: 14383: 14377: 14376: 14374: 14372: 14307: 14298: 14297: 14295: 14293: 14262:J. Phys. Chem. C 14253: 14247: 14246: 14213:(3): 1609–1615. 14202: 14193: 14192: 14158: 14138: 14132: 14131: 14105: 14103:cond-mat/0612236 14085: 14079: 14078: 14033: 14027: 14026: 14024: 14022: 14003: 13997: 13996: 13967: 13961: 13960: 13927:(7): 2735–2742. 13916: 13910: 13909: 13907: 13905: 13899: 13860: 13851: 13845: 13844: 13810: 13801:(6): 4670–4678. 13789: 13783: 13782: 13780: 13778: 13759: 13753: 13752: 13742: 13713: 13707: 13706: 13689:(7): 2607–2615. 13678: 13672: 13671: 13669: 13645: 13639: 13638: 13593: 13587: 13586: 13552: 13543:(8): 3936–3940. 13528: 13522: 13521: 13519: 13517: 13498: 13492: 13491: 13463: 13457: 13456: 13420: 13414: 13413: 13393: 13387: 13386: 13361:(6): 2232–2235. 13350: 13344: 13343: 13323: 13317: 13316: 13271: 13265: 13264: 13256: 13250: 13249: 13223: 13221:cond-mat/0412643 13203: 13197: 13196: 13160: 13151: 13150: 13130: 13124: 13123: 13121: 13119: 13094:(3): 2392–2401. 13079: 13073: 13072: 13042: 13036: 13035: 13015: 12996:10.1038/nmat3207 12981: 12965:Nature Materials 12958: 12952: 12951: 12926:(3): 1195–1200. 12915: 12909: 12908: 12864: 12858: 12857: 12829: 12823: 12822: 12820: 12818: 12762: 12756: 12755: 12729: 12709: 12703: 12702: 12668: 12647: 12641: 12640: 12606: 12597:(4): 1889–1892. 12586: 12580: 12579: 12546:(5): 1645–1651. 12534: 12528: 12527: 12507: 12501: 12500: 12456: 12447: 12446: 12412: 12410:cond-mat/0002414 12388: 12382: 12381: 12371: 12331: 12322: 12321: 12296:(4): 1829–1833. 12285: 12276: 12275: 12249: 12229: 12220: 12219: 12201: 12181: 12172: 12171: 12145: 12124: 12118: 12117: 12089: 12080: 12079: 12077: 12045: 12039: 12038: 11993: 11987: 11986: 11984: 11982: 11963:10.1038/nmat3370 11943:Nature Materials 11934: 11928: 11927: 11893: 11873: 11867: 11866: 11838: 11832: 11831: 11829: 11805: 11799: 11798: 11796: 11794: 11774: 11768: 11767: 11765: 11763: 11743: 11737: 11736: 11726: 11694: 11688: 11687: 11685: 11683: 11677: 11671:. Archived from 11630: 11621: 11615: 11614: 11589:(8): 1455–1459. 11578: 11572: 11571: 11545: 11525: 11519: 11518: 11492: 11472: 11466: 11465: 11437: 11431: 11430: 11428: 11426: 11420: 11398:(6): 2558–2561. 11389: 11380: 11374: 11373: 11345: 11339: 11338: 11336: 11329: 11320: 11314: 11313: 11311: 11309: 11293: 11287: 11273: 11267: 11266: 11256: 11230: 11206: 11200: 11199: 11197: 11195: 11189: 11174: 11165: 11159: 11158: 11132: 11112: 11106: 11105: 11079: 11059: 11050: 11049: 11015: 10995: 10986: 10985: 10983: 10981: 10933: 10927: 10926: 10900: 10880: 10854: 10834: 10828: 10827: 10783: 10777: 10776: 10774: 10772: 10749:J. Phys. Chem. C 10740: 10734: 10733: 10697: 10663: 10643: 10617: 10597: 10591: 10590: 10556: 10536: 10530: 10529: 10527: 10525: 10519: 10512: 10478: 10469: 10463: 10462: 10436: 10416: 10410: 10409: 10375: 10355: 10349: 10348: 10338: 10306: 10300: 10299: 10297: 10277: 10271: 10270: 10244: 10224: 10218: 10217: 10191: 10171: 10165: 10164: 10130: 10110: 10104: 10103: 10077: 10056: 10050: 10049: 10039: 9999: 9993: 9992: 9964: 9955: 9954: 9952: 9950: 9910: 9904: 9903: 9847: 9841: 9840: 9838: 9828: 9796: 9790: 9789: 9787: 9755: 9749: 9748: 9746: 9744: 9735:. 4 April 2008. 9725: 9719: 9718: 9684: 9664: 9658: 9657: 9655: 9643: 9637: 9636: 9602: 9600:cond-mat/0502422 9582: 9576: 9575: 9549: 9540:(35446): 35446. 9529: 9523: 9522: 9496: 9476: 9470: 9469: 9435: 9415: 9406: 9405: 9371: 9351: 9338: 9337: 9303: 9301:cond-mat/0602649 9282: 9273: 9272: 9228: 9217: 9216: 9198: 9196:10.1038/4591037e 9166: 9160: 9159: 9125: 9104: 9095: 9094: 9084: 9067: 9058: 9057: 9031: 9010: 9001: 9000: 8974: 8954: 8945: 8944: 8918: 8897: 8888: 8887: 8854:(7230): 706–10. 8842: 8836: 8835: 8809: 8800:(3): 2673–2700. 8789: 8783: 8782: 8780: 8778: 8772: 8765: 8756: 8730: 8710: 8704: 8703: 8701: 8699: 8665: 8641: 8635: 8634: 8623:10.1038/nphys810 8608: 8588: 8582: 8581: 8571: 8561: 8543: 8519: 8513: 8512: 8493:10.1038/nmat1967 8478: 8476:cond-mat/0610809 8463:Nature Materials 8458: 8449: 8436: 8430: 8429: 8418:10.1038/nphys935 8403: 8383: 8372: 8371: 8337: 8316: 8310: 8309: 8307: 8305: 8286: 8277: 8276: 8274: 8272: 8257: 8251: 8250: 8248: 8246: 8231: 8225: 8224: 8191:(8): 3558–3564. 8180: 8174: 8161: 8155: 8154: 8126: 8120: 8119: 8093: 8075: 8074: 8073: 8061: 8050: 8049: 8015: 7995: 7989: 7988: 7962: 7942: 7936: 7935: 7899: 7890: 7889: 7853: 7847: 7846: 7812: 7810:cond-mat/0402058 7792: 7786: 7785: 7751: 7749:cond-mat/0209406 7731: 7725: 7724: 7710: 7697: 7696: 7694: 7688:. Archived from 7655: 7637: 7628: 7615: 7614: 7589:(3–4): 227–356. 7578: 7572: 7571: 7537: 7528:(6): 1643–1648. 7513: 7504: 7503: 7484:10.1038/nmat2011 7469: 7454:Nature Materials 7449: 7440: 7439: 7429: 7418:10.1038/nmat2051 7398:Nature Materials 7393: 7384: 7383: 7357: 7355:astro-ph/0110585 7337: 7331: 7330: 7328: 7296: 7290: 7289: 7274:J. Phys. Chem. B 7269: 7263: 7262: 7234: 7228: 7227: 7221: 7216: 7214: 7206: 7198: 7192: 7191: 7181: 7163: 7138: 7125: 7124: 7119:. Archived from 7109: 7103: 7102: 7100: 7098: 7087: 7081: 7080: 7078: 7076: 7060: 7054: 7053: 7051: 7049: 7035: 7027: 7021: 7020: 7009: 7003: 7002: 7000: 6998: 6984: 6978: 6977: 6975: 6973: 6954: 6948: 6947: 6941: 6939: 6924: 6915: 6914: 6912: 6910: 6891: 6885: 6871: 6865: 6851: 6845: 6844: 6827: 6821: 6820: 6792: 6786: 6785: 6760:(3): 1804–1811. 6745: 6739: 6738: 6733: 6700: 6694: 6693: 6665: 6659: 6658: 6622: 6616: 6615: 6613: 6611: 6606:on 13 April 2016 6605: 6599:. Archived from 6590: 6581: 6575: 6574: 6540: 6538:cond-mat/0701379 6520: 6507: 6506: 6497:(3–4): 222–242. 6484: 6478: 6477: 6443: 6441:cond-mat/0509355 6423: 6412: 6411: 6377: 6375:cond-mat/0506575 6357: 6348: 6347: 6313: 6311:cond-mat/0509330 6293: 6276: 6275: 6258:(4): 1685–1694. 6247: 6241: 6240: 6212: 6195: 6194: 6174: 6168: 6167: 6164:10.1038/258136a0 6147: 6141: 6140: 6130: 6113:(740): 749–773. 6095: 6089: 6088: 6086: 6084: 6050: 6044: 6043: 6020: 6014: 6013: 5990: 5984: 5983: 5981: 5979: 5952: 5946: 5945: 5935: 5901: 5895: 5894: 5892: 5858: 5852: 5851: 5817: 5797: 5791: 5790: 5756: 5747:(5934): 1530–4. 5736: 5727: 5726: 5724: 5722: 5694:"graphene layer" 5690: 5684: 5683: 5681: 5679: 5664: 5658: 5657: 5655: 5653: 5642: 5636: 5635: 5633: 5631: 5616: 5610: 5609: 5607: 5605: 5580: 5571: 5570: 5536: 5534:cond-mat/0410550 5516: 5507: 5506: 5497:(3–4): 119–127. 5486: 5480: 5479: 5469: 5432:Cao, K. (2020). 5429: 5420: 5419: 5386:(385): 385–388. 5375: 5366: 5365: 5339: 5319: 5308: 5307: 5273: 5253: 5240: 5239: 5202: 5196: 5195: 5193: 5191:10.3390/c4010004 5169: 5160: 5159: 5139: 5133: 5117: 5108: 5107: 5105: 5071: 5065: 5064: 5045:10.1038/nmat1849 5030: 5028:cond-mat/0702595 5015:Nature Materials 5010: 4975: 4974: 4972: 4970: 4951: 4925: 4916: 4907: 4806:Kaustav Banerjee 4730:photonic crystal 4723:Graphene analogs 4638:Ion implantation 4616: 4615: 4614: 4589:Supersonic spray 4543:--> Cold wall 4428: 4270:carbon nanotubes 4182: 4180: 4090:superhydrophobic 4085:Brown University 4034:Graphene aerogel 4007:indium tin oxide 4000:grain boundaries 3947:hydrogen storage 3918:ultra-sensitive 3735: 3722:thionyl chloride 3506:Bilayer graphene 3500:Bilayer graphene 3487:Monolayer sheets 3418:activated carbon 3415: 3407: 3399: 3343: 3292: 3288: 3283: 3279: 3274: 3270: 3265: 3257: 3248:carbon nanotubes 3236:Other properties 3106: 3102: 3101: 3100: 3076: 3072: 3068: 3043:tensile strength 2987: 2985: 2984: 2979: 2931: 2929: 2928: 2923: 2918: 2897: 2895: 2894: 2889: 2871: 2869: 2868: 2863: 2861: 2850: 2823: 2821: 2820: 2815: 2810: 2805: 2804: 2789: 2788: 2722:Josephson effect 2702: 2654: 2645:photonic crystal 2614:bilayer graphene 2611: 2591: 2541: 2476: 2466: 2465: 2463: 2462: 2459: 2456: 2440: 2433: 2426: 2327:, thus the term 2300: 2293: 2291: 2290: 2285: 2280: 2275: 2274: 2273: 2245: 2244: 2224:Bilayer graphene 2203: 2201: 2200: 2195: 2190: 2185: 2184: 2183: 2174: 2170: 2166: 2134: 2133: 2110: 2102:gallium arsenide 2071: 2069: 2068: 2063: 2061: 2060: 2017: 2016: 2014: 2013: 2010: 2007: 1948: 1946: 1945: 1940: 1935: 1930: 1929: 1910: 1908: 1907: 1902: 1894: 1886: 1881: 1880: 1861: 1860: 1859: 1849: 1847: 1846: 1841: 1836: 1831: 1830: 1812:on the order of 1795:carbon nanotubes 1754: 1752: 1746: 1745: 1744: 1730: 1719: 1715: 1713: 1699: 1695: 1691: 1689: 1676:substrate, T=1K. 1638: 1636: 1635: 1630: 1628: 1624: 1623: 1615: 1582: 1580: 1579: 1574: 1569: 1568: 1524: 1522: 1521: 1516: 1511: 1489: 1487: 1486: 1481: 1479: 1478: 1470: 1457:(.003 c) is the 1456: 1442: 1440: 1439: 1434: 1426: 1404: 1387: 1386: 1378: 1374: 1373: 1292: 1291: 1282:lattice constant 1279: 1265: 1263: 1262: 1257: 1255: 1253: 1252: 1251: 1239: 1229: 1228: 1215: 1214: 1213: 1201: 1192: 1176: 1175: 1174: 1162: 1153: 1146: 1145: 1127: 1125: 1124: 1105: 1104: 1092: 1091: 995: 975: 973: 972: 969: 966: 956:rather than the 927:condensed matter 924: 879: 860: 859: 852: 623: 622: 621: 545: 521:Gene Dresselhaus 515:by R. Saito and 513:carbon nanotubes 364:in Stockholm by 301:tensile strength 228:is also seen in 186:consisting of a 181: 180: 177: 176: 173: 170: 167: 164: 161: 158: 138: 116: 105:Tensile strength 96: 74:Chemical formula 42: 30: 29: 24372: 24371: 24367: 24366: 24365: 24363: 24362: 24361: 24307: 24306: 24303: 24298: 24288: 24286: 24276: 24274: 24264: 24262: 24242: 24068: 24044: 24035: 23988: 23978: 23921: 23909: 23890:Propionaldehyde 23865:Ethylene glycol 23854: 23846: 23842: 23813: 23811: 23804: 23760:Cyanohexatriyne 23746: 23739: 23686: 23679: 23614: 23607: 23567: 23520: 23513: 23484:Methoxy radical 23414: 23407: 23403:Thiocyanic acid 23284: 23277: 23187: 23127:Ethynyl radical 23063: 23057: 23056: 23055: 23054: 23048: 23047: 23046: 23045: 23036: 23027:Sulfur monoxide 23012:Sodium chloride 22997:Silicon carbide 22904:Diatomic carbon 22894:Carbon monoxide 22836: 22831: 22801: 22796: 22776: 22615: 22572: 22474:Femtotechnology 22459:Amorphous metal 22440: 22387: 22382: 22352: 22347: 22309: 22300:Metallic carbon 22276: 22273: 22272: 22271: 22269: 22260: 22257: 22256: 22255: 22253: 22239: 22231: 22228: 22227: 22226: 22224: 22215: 22212: 22211: 22210: 22208: 22203:(atomic carbon) 22199: 22196: 22195: 22194: 22192: 22178: 22164:Carbon nanofoam 22145: 22137: 22134: 22133: 22132: 22130: 22121: 22118: 22117: 22116: 22114: 22095: 22060: 22050: 22016: 22006:Diamond (cubic) 21988: 21983: 21913: 21908: 21853: 21849: 21839: 21837: 21822: 21818: 21787:(18): 4863–77. 21773: 21769: 21716: 21712: 21665: 21661: 21616: 21612: 21575: 21571: 21534: 21530: 21509: 21505: 21444: 21440: 21430: 21428: 21376: 21372: 21362: 21360: 21309: 21305: 21262: 21258: 21211: 21207: 21197: 21195: 21182: 21181: 21177: 21167: 21165: 21150: 21146: 21136: 21134: 21095: 21091: 21081: 21079: 21070: 21069: 21065: 21055: 21053: 21040: 21039: 21035: 20996: 20992: 20947: 20943: 20933: 20931: 20922: 20921: 20917: 20907: 20905: 20896: 20895: 20891: 20881: 20879: 20866: 20865: 20861: 20851: 20849: 20804:(10): 927–938. 20790: 20786: 20751: 20747: 20694: 20690: 20680: 20678: 20627: 20623: 20591: 20587: 20537: 20533: 20475: 20471: 20447: 20443: 20386: 20382: 20324: 20320: 20271: 20267: 20216: 20212: 20173: 20169: 20120: 20116: 20106: 20104: 20091: 20090: 20086: 20071: 20045: 20041: 20004: 20000: 19969: 19965: 19955: 19953: 19940: 19939: 19935: 19882: 19878: 19825: 19821: 19811: 19809: 19750: 19746: 19736: 19734: 19674: 19670: 19627: 19623: 19570: 19566: 19556: 19554: 19519: 19515: 19483: 19479: 19448: 19444: 19383: 19379: 19369: 19367: 19324: 19320: 19310: 19308: 19257: 19253: 19194: 19190: 19180: 19178: 19127: 19123: 19113: 19111: 19066:(18): 1604947. 19052: 19048: 19003: 18999: 18989: 18987: 18936: 18932: 18922: 18920: 18869: 18865: 18822: 18818: 18778: 18771: 18739: 18732: 18692: 18688: 18621: 18617: 18607: 18605: 18590: 18586: 18576: 18574: 18561: 18560: 18556: 18546: 18544: 18533: 18529: 18498: 18494: 18484: 18482: 18447: 18443: 18433: 18431: 18422: 18421: 18417: 18360: 18356: 18346: 18344: 18335: 18334: 18330: 18299: 18295: 18258:(6181): 286–9. 18247: 18243: 18233: 18231: 18218: 18217: 18213: 18180: 18176: 18166: 18164: 18121: 18117: 18078:(27): 3358–68. 18070:Applications". 18067: 18063: 18023: 18019: 17980: 17976: 17919: 17915: 17878:(10): 4015–39. 17868: 17864: 17823: 17819: 17786: 17782: 17735: 17731: 17721: 17719: 17706: 17705: 17701: 17664: 17660: 17629: 17625: 17594: 17590: 17580: 17578: 17577:on 16 June 2013 17567: 17523: 17519: 17471: 17467: 17457: 17455: 17440: 17436: 17419: 17418: 17414: 17404: 17402: 17389: 17388: 17384: 17333: 17329: 17282:(7240): 872–6. 17271: 17267: 17248: 17244: 17186: 17182: 17143: 17139: 17089: 17085: 17035: 17031: 17021: 17019: 17015: 16958: 16951: 16947: 16915: 16911: 16901: 16899: 16895: 16840: 16834: 16830: 16820: 16818: 16809: 16808: 16804: 16749: 16745: 16728: 16724: 16679: 16672: 16637: 16626: 16579: 16575: 16527: 16523: 16513: 16511: 16510:on 8 April 2016 16496: 16492: 16453: 16449: 16439: 16437: 16424: 16423: 16416: 16406: 16404: 16389: 16385: 16375: 16373: 16360: 16359: 16355: 16345: 16343: 16328: 16324: 16314: 16312: 16299: 16298: 16294: 16249: 16245: 16235: 16233: 16224: 16223: 16212: 16202: 16200: 16196: 16149: 16143: 16139: 16129: 16127: 16092: 16088: 16039: 16032: 15987: 15983: 15938: 15934: 15903: 15894: 15884: 15882: 15837: 15791: 15787: 15739: 15735: 15687: 15683: 15638: 15634: 15597:(41): 17752–7. 15586: 15582: 15572: 15570: 15535: 15531: 15500: 15472: 15468: 15437: 15409: 15405: 15364: 15360: 15313:(5914): 610–3. 15302: 15298: 15265: 15261: 15227: 15223: 15191: 15187: 15177: 15175: 15152:(23): 242–248. 15138: 15134: 15087:(6067): 442–4. 15077: 15073: 15025: 15021: 14990: 14986: 14976: 14974: 14965: 14964: 14960: 14917: 14913: 14872: 14868: 14833: 14826: 14786: 14779: 14773:Wayback Machine 14752: 14750: 14737: 14733: 14723: 14721: 14708: 14704: 14694: 14692: 14649: 14645: 14592: 14588: 14535: 14531: 14521: 14519: 14475: 14471: 14448: 14444: 14384: 14380: 14370: 14368: 14308: 14301: 14291: 14289: 14254: 14250: 14203: 14196: 14139: 14135: 14086: 14082: 14045:(7861): 62–65. 14034: 14030: 14020: 14018: 14005: 14004: 14000: 13968: 13964: 13917: 13913: 13903: 13901: 13897: 13858: 13852: 13848: 13790: 13786: 13776: 13774: 13761: 13760: 13756: 13714: 13710: 13679: 13675: 13660:(11): 1900229. 13646: 13642: 13594: 13590: 13529: 13525: 13515: 13513: 13500: 13499: 13495: 13464: 13460: 13421: 13417: 13394: 13390: 13351: 13347: 13324: 13320: 13272: 13268: 13257: 13253: 13204: 13200: 13161: 13154: 13147: 13131: 13127: 13117: 13115: 13080: 13076: 13043: 13039: 13016: 12959: 12955: 12916: 12912: 12865: 12861: 12830: 12826: 12816: 12814: 12763: 12759: 12710: 12706: 12648: 12644: 12587: 12583: 12535: 12531: 12524: 12508: 12504: 12457: 12450: 12397:Phys. Rev. Lett 12389: 12385: 12332: 12325: 12286: 12279: 12230: 12223: 12182: 12175: 12125: 12121: 12090: 12083: 12046: 12042: 11994: 11990: 11980: 11978: 11935: 11931: 11874: 11870: 11843:Surface Science 11839: 11835: 11806: 11802: 11792: 11790: 11775: 11771: 11761: 11759: 11752:Singularity Hub 11744: 11740: 11695: 11691: 11681: 11679: 11675: 11628: 11622: 11618: 11579: 11575: 11526: 11522: 11473: 11469: 11438: 11434: 11424: 11422: 11418: 11387: 11381: 11377: 11346: 11342: 11337:on 1 July 2018. 11334: 11327: 11321: 11317: 11307: 11305: 11294: 11290: 11284:Wayback Machine 11274: 11270: 11207: 11203: 11193: 11191: 11187: 11172: 11166: 11162: 11117:Jpn J Appl Phys 11113: 11109: 11060: 11053: 10996: 10989: 10979: 10977: 10934: 10930: 10881: 10835: 10831: 10784: 10780: 10770: 10768: 10741: 10737: 10698: 10644: 10598: 10594: 10537: 10533: 10523: 10521: 10517: 10476: 10470: 10466: 10417: 10413: 10356: 10352: 10307: 10303: 10278: 10274: 10225: 10221: 10172: 10168: 10111: 10107: 10057: 10053: 10000: 9996: 9965: 9958: 9948: 9946: 9911: 9907: 9848: 9844: 9797: 9793: 9756: 9752: 9742: 9740: 9727: 9726: 9722: 9665: 9661: 9644: 9640: 9583: 9579: 9530: 9526: 9477: 9473: 9416: 9409: 9352: 9341: 9283: 9276: 9229: 9220: 9167: 9163: 9105: 9098: 9068: 9061: 9011: 9004: 8955: 8948: 8898: 8891: 8843: 8839: 8790: 8786: 8776: 8774: 8770: 8763: 8757: 8711: 8707: 8697: 8695: 8642: 8638: 8589: 8585: 8534:(47): 18392–7. 8520: 8516: 8459: 8452: 8446:Wayback Machine 8437: 8433: 8384: 8375: 8317: 8313: 8303: 8301: 8288: 8287: 8280: 8270: 8268: 8259: 8258: 8254: 8244: 8242: 8233: 8232: 8228: 8181: 8177: 8171:Wayback Machine 8162: 8158: 8127: 8123: 8072: 8069: 8068: 8067: 8065: 8062: 8053: 7996: 7992: 7943: 7939: 7900: 7893: 7858:Physical Review 7854: 7850: 7793: 7789: 7732: 7728: 7711: 7700: 7692: 7635: 7629: 7618: 7579: 7575: 7519: 7514: 7507: 7450: 7443: 7394: 7387: 7348:(2): L153–156. 7338: 7334: 7297: 7293: 7270: 7266: 7235: 7231: 7219: 7217: 7208: 7207: 7199: 7195: 7139: 7128: 7111: 7110: 7106: 7096: 7094: 7089: 7088: 7084: 7074: 7072: 7071:on 12 July 2014 7061: 7057: 7047: 7045: 7038:Daily Telegraph 7028: 7024: 7011: 7010: 7006: 6996: 6994: 6986: 6985: 6981: 6971: 6969: 6956: 6955: 6951: 6937: 6935: 6926: 6925: 6918: 6908: 6906: 6893: 6892: 6888: 6882:Wayback Machine 6872: 6868: 6862:Wayback Machine 6852: 6848: 6828: 6824: 6793: 6789: 6750:Dresselhaus, M. 6746: 6742: 6731: 6701: 6697: 6666: 6662: 6623: 6619: 6609: 6607: 6603: 6588: 6582: 6578: 6531:(7131): 60–63. 6521: 6510: 6485: 6481: 6424: 6415: 6358: 6351: 6294: 6279: 6248: 6244: 6213: 6198: 6175: 6171: 6148: 6144: 6096: 6092: 6082: 6080: 6051: 6047: 6021: 6017: 5991: 5987: 5977: 5975: 5953: 5949: 5902: 5898: 5868:Physica Scripta 5859: 5855: 5798: 5794: 5737: 5730: 5720: 5718: 5716: 5692: 5691: 5687: 5677: 5675: 5665: 5661: 5651: 5649: 5644: 5643: 5639: 5629: 5627: 5618: 5617: 5613: 5603: 5601: 5582: 5581: 5574: 5517: 5510: 5487: 5483: 5430: 5423: 5376: 5369: 5320: 5311: 5254: 5243: 5203: 5199: 5170: 5163: 5140: 5136: 5126:Wayback Machine 5118: 5111: 5072: 5068: 5011: 4978: 4968: 4966: 4953: 4952: 4948: 4944: 4923: 4914: 4905: 4892: 4845: 4810:radio-frequency 4752: 4746: 4738:optical lattice 4725: 4704: 4652: 4645: 4640: 4627: 4613: 4610: 4609: 4608: 4606: 4603: 4591: 4575: 4566: 4559: 4554: 4545: 4537: 4530: 4523: 4510: 4502: 4495: 4491: 4487: 4479:germanium oxide 4445: 4440: 4435: 4426: 4423:silicon carbide 4419: 4403: 4383: 4363: 4354: 4345: 4302: 4297: 4266: 4253: 4200: 4178: 4176: 4160: 4155: 4135: 4126: 4111: 4105: 4097:current density 4094:electrochemical 4081: 4054:Riemann surface 4049: 4036: 4031: 4019: 4017:Molded graphene 3977:carbon nanotube 3973: 3964: 3958: 3899: 3846: 3841: 3827:complex, metal- 3817: 3742:tetrahydrofuran 3733: 3697: 3678:tensile modulus 3669: 3663: 3658: 3652: 3640: 3595: 3590: 3577: 3569: 3565: 3561: 3557: 3551: 3508: 3502: 3489: 3484: 3475: 3448: 3409: 3401: 3393: 3386: 3357:acoustic phonon 3350:lattice spacing 3342:1000 W⋅m⋅K 3341: 3322: 3290: 3286: 3281: 3277: 3273:2500 W⋅m⋅K 3272: 3268: 3264:2000 W⋅m⋅K 3263: 3256:5300 W⋅m⋅K 3255: 3243: 3238: 3169: 3140:Rice University 3136: 3121:Poisson's ratio 3104: 3099: 3096: 3095: 3094: 3092: 3085:spring constant 3074: 3070: 3066: 3055:Young's modulus 3036: 3024: 3002: 2940: 2937: 2936: 2914: 2903: 2900: 2899: 2877: 2874: 2873: 2857: 2846: 2829: 2826: 2825: 2806: 2800: 2796: 2781: 2777: 2775: 2772: 2771: 2764: 2759: 2730: 2713: 2700: 2693: 2665: 2652: 2637: 2609: 2602: 2589: 2579: 2558:meeting at the 2536: 2529: 2512: 2496: 2483: 2475:= 0, ±1, ±3, ±4 2471: 2460: 2457: 2454: 2453: 2451: 2446: 2435: 2428: 2417: 2409: 2402: 2397: 2361: 2345:silicon carbide 2341: 2295: 2276: 2269: 2265: 2252: 2237: 2233: 2231: 2228: 2227: 2215: 2186: 2179: 2175: 2162: 2152: 2148: 2141: 2126: 2122: 2120: 2117: 2116: 2105: 2094:Planck constant 2053: 2049: 2047: 2044: 2043: 2025: 2011: 2008: 2005: 2004: 2002: 1997: 1986: 1931: 1925: 1921: 1916: 1913: 1912: 1887: 1882: 1876: 1872: 1867: 1864: 1863: 1858: 1855: 1854: 1853: 1851: 1832: 1826: 1822: 1817: 1814: 1813: 1806: 1750: 1748: 1743: 1740: 1739: 1738: 1736: 1728: 1717: 1711: 1709: 1697: 1693: 1687: 1685: 1675: 1665: 1653:superconductors 1645: 1619: 1611: 1610: 1606: 1598: 1595: 1594: 1564: 1560: 1540: 1537: 1536: 1507: 1499: 1496: 1495: 1469: 1468: 1466: 1463: 1462: 1454: 1451: 1422: 1400: 1377: 1376: 1369: 1365: 1363: 1360: 1359: 1354: 1315:carbon nanotube 1307: 1289: 1284: 1277: 1275: 1247: 1243: 1226: 1225: 1209: 1205: 1190: 1189: 1170: 1166: 1151: 1150: 1141: 1137: 1126: 1120: 1116: 1100: 1096: 1087: 1083: 1075: 1072: 1071: 1054: 1047: 1040: 1029: 984: 982: 970: 967: 964: 963: 961: 950:quasi-particles 946: 919: 880: 873: 861: 857: 850: 844: 829: 790: 764: 755: 745:is about 0.142 736: 732: 727:hybrid orbitals 716: 704: 700: 696: 687: 670: 638: 620: 617: 616: 615: 613: 606:silicon dioxide 566: 558:Larry Fullerton 543: 466: 383:Benjamin Brodie 379: 342: 336: 328:silicon carbide 324:silicon dioxide 307:, electronics, 234:conduction band 155: 151: 132: 114: 107: 90: 88:Young's modulus 56: 44:Graphene is an 28: 17: 12: 11: 5: 24370: 24360: 24359: 24354: 24349: 24344: 24339: 24337:Quantum phases 24334: 24329: 24324: 24319: 24300: 24299: 24297: 24296: 24284: 24272: 24260: 24247: 24244: 24243: 24241: 24240: 24235: 24230: 24225: 24219: 24214: 24209: 24204: 24199: 24194: 24189: 24184: 24179: 24174: 24169: 24164: 24159: 24154: 24149: 24144: 24139: 24134: 24129: 24127:Cosmochemistry 24124: 24119: 24114: 24109: 24104: 24099: 24094: 24092:Astrochemistry 24089: 24084: 24078: 24076: 24070: 24069: 24067: 24066: 24061: 24056: 24051: 24046: 24042: 24038: 24033: 24029: 24024: 24019: 24014: 24009: 24004: 23998: 23996: 23990: 23989: 23987: 23986: 23981: 23976: 23972: 23967: 23962: 23957: 23952: 23947: 23945:Formyl radical 23942: 23937: 23931: 23925: 23923: 23915: 23914: 23911: 23910: 23908: 23907: 23902: 23897: 23892: 23887: 23882: 23877: 23875:Methyl acetate 23872: 23867: 23862: 23857: 23852: 23848: 23844: 23840: 23834: 23829: 23824: 23818: 23816: 23806: 23805: 23803: 23802: 23797: 23792: 23787: 23782: 23777: 23772: 23767: 23765:Dimethyl ether 23762: 23757: 23751: 23749: 23741: 23740: 23738: 23737: 23732: 23730:Methyl formate 23727: 23722: 23717: 23715:Glycolaldehyde 23712: 23707: 23702: 23697: 23691: 23689: 23681: 23680: 23678: 23677: 23672: 23667: 23662: 23657: 23652: 23650:Glycolonitrile 23647: 23645:Ethylene oxide 23642: 23637: 23636: 23635: 23625: 23619: 23617: 23609: 23608: 23606: 23605: 23600: 23595: 23590: 23585: 23580: 23575: 23570: 23565: 23561: 23556: 23551: 23546: 23544:Cyclopropenone 23541: 23536: 23531: 23525: 23523: 23515: 23514: 23512: 23511: 23506: 23501: 23496: 23491: 23486: 23481: 23476: 23471: 23466: 23461: 23456: 23451: 23446: 23444:Cyanoacetylene 23441: 23436: 23431: 23426: 23419: 23417: 23409: 23408: 23406: 23405: 23400: 23395: 23390: 23385: 23380: 23375: 23370: 23365: 23363:Methyl radical 23360: 23355: 23350: 23345: 23340: 23338:Isocyanic acid 23335: 23330: 23325: 23320: 23315: 23310: 23305: 23303:Isocyanic acid 23300: 23295: 23289: 23287: 23279: 23278: 23276: 23275: 23270: 23265: 23260: 23255: 23250: 23248:Sulfur dioxide 23245: 23240: 23235: 23230: 23225: 23223:Sodium cyanide 23220: 23215: 23210: 23205: 23200: 23195: 23190: 23185: 23181: 23176: 23171: 23166: 23161: 23156: 23151: 23146: 23140: 23134: 23132:Formyl radical 23129: 23124: 23119: 23114: 23109: 23104: 23099: 23094: 23092:Carbon dioxide 23089: 23084: 23079: 23073: 23071: 23065: 23064: 23039: 23037: 23035: 23034: 23029: 23024: 23019: 23014: 23009: 23004: 22999: 22994: 22989: 22984: 22979: 22973: 22968: 22963: 22957: 22952: 22947: 22942: 22940:Iron(II) oxide 22937: 22932: 22926: 22921: 22916: 22911: 22906: 22901: 22896: 22891: 22886: 22881: 22876: 22871: 22866: 22861: 22855: 22853: 22844: 22838: 22837: 22830: 22829: 22822: 22815: 22807: 22798: 22797: 22795: 22794: 22781: 22778: 22777: 22775: 22774: 22769: 22764: 22759: 22754: 22753: 22752: 22747: 22742: 22737: 22732: 22727: 22717: 22712: 22707: 22702: 22701: 22700: 22690: 22685: 22680: 22679: 22678: 22673: 22668: 22663: 22653: 22648: 22643: 22638: 22633: 22627: 22625: 22621: 22620: 22617: 22616: 22614: 22613: 22608: 22606:Swarm robotics 22603: 22598: 22593: 22588: 22582: 22580: 22574: 22573: 22571: 22570: 22565: 22560: 22555: 22550: 22548:Picotechnology 22545: 22544: 22543: 22538: 22533: 22526:Nanotechnology 22523: 22518: 22513: 22512: 22511: 22501: 22496: 22491: 22486: 22481: 22476: 22471: 22466: 22461: 22456: 22450: 22448: 22442: 22441: 22439: 22438: 22433: 22428: 22423: 22418: 22413: 22408: 22402: 22400: 22393: 22389: 22388: 22381: 22380: 22373: 22366: 22358: 22349: 22348: 22346: 22345: 22340: 22335: 22330: 22325: 22319: 22317: 22311: 22310: 22308: 22307: 22305:Penta-graphene 22302: 22297: 22292: 22287: 22282: 22274: 22266: 22258: 22249: 22247: 22241: 22240: 22238: 22237: 22229: 22221: 22213: 22205: 22197: 22188: 22186: 22180: 22179: 22177: 22176: 22171: 22166: 22161: 22155: 22153: 22147: 22146: 22144: 22143: 22135: 22127: 22119: 22111: 22105: 22103: 22097: 22096: 22094: 22093: 22088: 22058: 22048: 22039: 22034: 22026: 22024: 22018: 22017: 22015: 22014: 22009: 22001: 21999: 21990: 21989: 21982: 21981: 21974: 21967: 21959: 21953: 21952: 21947: 21942: 21937: 21925: 21912: 21911:External links 21909: 21907: 21906: 21847: 21816: 21767: 21730:(9441): 9441. 21710: 21659: 21610: 21569: 21528: 21503: 21438: 21391:(8): 498–517. 21370: 21303: 21276:(5): 923–931. 21256: 21205: 21175: 21144: 21089: 21063: 21052:on 27 May 2014 21033: 20990: 20941: 20915: 20889: 20859: 20784: 20745: 20688: 20641:(8): 511–514. 20621: 20585: 20548:(5): 434–440. 20542:Nature Physics 20531: 20486:(11): 116402. 20469: 20441: 20380: 20318: 20281:(9): 625–633. 20265: 20210: 20183:(3): 747–757. 20167: 20114: 20084: 20069: 20039: 19998: 19963: 19933: 19876: 19819: 19744: 19668: 19621: 19564: 19513: 19477: 19442: 19377: 19318: 19251: 19188: 19121: 19046: 19017:(1): 1604277. 18997: 18930: 18883:(3): 687–693. 18877:Macromolecules 18863: 18816: 18769: 18730: 18686: 18615: 18598:www.gizmag.com 18584: 18554: 18527: 18492: 18441: 18415: 18354: 18328: 18293: 18241: 18211: 18174: 18115: 18093:2027.42/112245 18061: 18017: 17974: 17913: 17862: 17817: 17780: 17745:(33): 335607. 17739:Nanotechnology 17729: 17699: 17658: 17623: 17588: 17517: 17465: 17434: 17425:Graphene Times 17412: 17382: 17327: 17265: 17242: 17180: 17137: 17083: 17029: 16969:(6): 624–630. 16945: 16909: 16851:(6): 624–630. 16828: 16802: 16743: 16722: 16670: 16624: 16573: 16521: 16504:news.brown.edu 16490: 16447: 16414: 16383: 16353: 16322: 16311:on 12 May 2020 16292: 16243: 16210: 16160:(46): 465601. 16154:Nanotechnology 16137: 16086: 16030: 15981: 15932: 15892: 15785: 15750:(7): 589–595. 15733: 15681: 15632: 15580: 15529: 15466: 15403: 15358: 15296: 15259: 15240:(2): 722–725. 15221: 15185: 15132: 15071: 15036:(41): 415203. 15030:Nanotechnology 15019: 14984: 14973:on 2 June 2016 14958: 14911: 14882:(6): 523–531. 14866: 14824: 14777: 14731: 14702: 14643: 14586: 14529: 14490:(2): 119–124. 14469: 14442: 14378: 14299: 14248: 14194: 14133: 14096:(15): 155115. 14080: 14028: 13998: 13962: 13911: 13846: 13784: 13754: 13725:(1): 615–623. 13708: 13673: 13640: 13588: 13533:Bangert, Ursel 13523: 13493: 13458: 13415: 13388: 13345: 13318: 13266: 13251: 13214:(20): 205214. 13198: 13152: 13145: 13125: 13074: 13055:(11): 115409. 13037: 12953: 12910: 12859: 12840:(1): 265–275. 12824: 12757: 12704: 12642: 12581: 12529: 12522: 12516:. IFI/Plenum. 12502: 12467:(3): 902–907. 12448: 12403:(20): 4613–6. 12393:Tománek, David 12383: 12323: 12277: 12240:(19): 195447. 12221: 12173: 12119: 12081: 12040: 11988: 11949:(9): 759–763. 11929: 11868: 11833: 11800: 11769: 11738: 11689: 11633:Nanotechnology 11616: 11573: 11520: 11483:(1): 102–107. 11467: 11448:(5): 881–884. 11432: 11375: 11356:(22): 223102. 11340: 11315: 11288: 11268: 11201: 11160: 11107: 11070:(12): 123105. 11051: 10987: 10928: 10891:(4): 613–617. 10829: 10778: 10735: 10708:(18): 186401. 10654:(10): 3112–5. 10592: 10547:(18): 186802. 10531: 10487:(2): 601–659. 10481:Rev. Mod. Phys 10464: 10411: 10360:Optics Letters 10350: 10315:Optics Express 10301: 10280:Zhang (2009). 10272: 10235:(11): 111112. 10219: 10182:(14): 141103. 10166: 10115:Optics Express 10105: 10051: 9994: 9956: 9919:Appl Phys Lett 9905: 9842: 9811:(11): 113003. 9791: 9770:(2): 151–158. 9750: 9720: 9675:(11): 117401. 9659: 9638: 9577: 9524: 9487:(24): 245406. 9471: 9407: 9339: 9294:(13): 136806. 9274: 9218: 9181:(7250): 1037. 9161: 9096: 9073:Science Brevia 9059: 9022:(22): 223108. 9002: 8965:(17): 172105. 8946: 8909:(19): 195434. 8889: 8837: 8784: 8721:(2): 375–389. 8705: 8656:(11–12): 989. 8636: 8599:(2): 116–119. 8593:Nature Physics 8583: 8514: 8469:(9): 652–655. 8450: 8431: 8394:(5): 377–381. 8388:Nature Physics 8373: 8311: 8294:kurzweilai.net 8278: 8252: 8226: 8175: 8156: 8121: 8070: 8051: 7990: 7937: 7910:(10): 605–15. 7891: 7864:(9): 622–634. 7848: 7803:(16): 166402. 7787: 7742:(15): 156402. 7726: 7698: 7646:(1): 109–162. 7616: 7573: 7517: 7505: 7460:(11): 858–61. 7441: 7385: 7372:10.1086/344633 7332: 7326:10.1086/178105 7311:(2): 760–782. 7291: 7264: 7229: 7220:|journal= 7193: 7126: 7117:Cambridge News 7104: 7082: 7055: 7022: 7004: 6979: 6949: 6916: 6886: 6866: 6846: 6822: 6787: 6740: 6695: 6660: 6617: 6597:Pergamon Press 6576: 6508: 6479: 6413: 6368:(14): 146801. 6349: 6277: 6242: 6196: 6185:(2): 150–154. 6169: 6142: 6090: 6067:(1): 121–144. 6045: 6034:(6): 661-696. 6015: 5998:Scherrer, Paul 5985: 5947: 5896: 5853: 5808:(24): 246804. 5792: 5728: 5714: 5685: 5659: 5637: 5611: 5600:on 3 July 2020 5572: 5508: 5481: 5421: 5367: 5309: 5264:(5881): 1308. 5241: 5197: 5161: 5134: 5109: 5066: 5021:(3): 183–191. 4976: 4945: 4943: 4940: 4939: 4938: 4932: 4926: 4917: 4911:Penta-graphene 4908: 4899: 4891: 4888: 4844: 4841: 4815:applications. 4780:energy storage 4748:Main article: 4745: 4742: 4724: 4721: 4703: 4700: 4651: 4648: 4643: 4639: 4636: 4626: 4623: 4618:infrared laser 4611: 4602: 4599: 4590: 4587: 4574: 4571: 4565: 4562: 4557: 4553: 4550: 4544: 4541: 4535: 4528: 4521: 4509: 4506: 4501: 4498: 4493: 4489: 4485: 4444: 4443:--> Epitaxy 4441: 4439: 4436: 4434: 4431: 4418: 4415: 4402: 4399: 4382: 4379: 4362: 4359: 4353: 4350: 4344: 4341: 4326:charge carrier 4301: 4298: 4296: 4293: 4265: 4262: 4252: 4249: 4211:centrifugation 4199: 4196: 4159: 4156: 4154: 4151: 4134: 4131: 4125: 4122: 4107:Main article: 4104: 4101: 4080: 4077: 4048: 4045: 4035: 4032: 4030: 4027: 4018: 4015: 3992:covalent bonds 3972: 3969: 3960:Main article: 3957: 3954: 3939:nanoelectronic 3898: 3895: 3879:graphitization 3869:(157,000  3845: 3844:Graphene fiber 3842: 3840: 3837: 3833:phenanthroline 3829:phthalocyanine 3816: 3813: 3809:fluorographene 3790:polyallylamine 3750:dichloroethane 3696: 3693: 3667:Graphite oxide 3662: 3661:Graphene oxide 3659: 3654:Main article: 3651: 3648: 3639: 3636: 3594: 3591: 3589: 3586: 3576: 3573: 3567: 3563: 3559: 3555: 3550: 3547: 3528:nanoelectronic 3524:optoelectronic 3504:Main article: 3501: 3498: 3488: 3485: 3483: 3480: 3474: 3471: 3447: 3444: 3385: 3382: 3320: 3291:600 W⋅m⋅K 3282:600 W⋅m⋅K 3242: 3239: 3237: 3234: 3168: 3165: 3135: 3132: 3097: 3035: 3032: 3023: 3020: 3001: 2998: 2977: 2974: 2971: 2968: 2965: 2962: 2959: 2956: 2953: 2950: 2947: 2944: 2921: 2917: 2913: 2910: 2907: 2887: 2884: 2881: 2860: 2856: 2853: 2849: 2845: 2842: 2839: 2836: 2833: 2813: 2809: 2803: 2799: 2795: 2792: 2787: 2784: 2780: 2763: 2760: 2758: 2755: 2729: 2728:Spin transport 2726: 2712: 2709: 2692: 2689: 2664: 2661: 2636: 2633: 2629:electrochromic 2601: 2598: 2578: 2575: 2528: 2525: 2511: 2508: 2495: 2492: 2487:Casimir effect 2482: 2481:Casimir effect 2479: 2413: 2401: 2398: 2396: 2393: 2389:backscattering 2360: 2357: 2349:Dirac spectrum 2340: 2337: 2283: 2279: 2272: 2268: 2264: 2261: 2258: 2255: 2251: 2248: 2243: 2240: 2236: 2214: 2211: 2193: 2189: 2182: 2178: 2173: 2169: 2165: 2161: 2158: 2155: 2151: 2147: 2144: 2140: 2137: 2132: 2129: 2125: 2059: 2056: 2052: 2037:magnetic field 2024: 2021: 1985: 1982: 1938: 1934: 1928: 1924: 1920: 1900: 1897: 1893: 1890: 1885: 1879: 1875: 1871: 1856: 1839: 1835: 1829: 1825: 1821: 1805: 1802: 1765:aluminum oxide 1741: 1673: 1664: 1661: 1644: 1641: 1627: 1622: 1618: 1614: 1609: 1605: 1602: 1584: 1583: 1572: 1567: 1563: 1559: 1556: 1553: 1550: 1547: 1544: 1514: 1510: 1506: 1503: 1492:Pauli matrices 1476: 1473: 1459:Fermi velocity 1449: 1444: 1443: 1432: 1429: 1425: 1421: 1418: 1415: 1411: 1407: 1403: 1399: 1396: 1393: 1390: 1384: 1381: 1372: 1368: 1352: 1338:Dirac equation 1305: 1273: 1267: 1266: 1250: 1246: 1242: 1236: 1232: 1224: 1221: 1218: 1212: 1208: 1204: 1198: 1195: 1188: 1185: 1182: 1179: 1173: 1169: 1165: 1159: 1156: 1149: 1144: 1140: 1136: 1133: 1130: 1123: 1119: 1114: 1111: 1108: 1103: 1099: 1095: 1090: 1086: 1082: 1079: 1052: 1045: 1038: 1027: 1018:Dirac fermions 981: 978: 954:Dirac equation 945: 942: 916:Brillouin zone 912:momentum space 882: 881: 864: 862: 855: 846:Main article: 843: 840: 828: 825: 789: 786: 762: 753: 734: 730: 714: 702: 698: 694: 686: 683: 669: 666: 637: 634: 618: 565: 562: 482:In 1961–1962, 465: 462: 442:Dirac equation 399:single-crystal 393:. Pioneers in 391:graphite oxide 378: 375: 358:tape dispenser 338:Main article: 335: 332: 194:arranged in a 143: 142: 139: 126: 125: 121: 120: 117: 112: 101: 100: 97: 84: 83: 79: 78: 75: 71: 70: 66: 65: 62: 58: 57: 43: 35: 34: 15: 9: 6: 4: 3: 2: 24369: 24358: 24355: 24353: 24350: 24348: 24345: 24343: 24340: 24338: 24335: 24333: 24330: 24328: 24325: 24323: 24320: 24318: 24315: 24314: 24312: 24305: 24295: 24285: 24283: 24273: 24271: 24261: 24259: 24258: 24249: 24248: 24245: 24239: 24236: 24234: 24231: 24229: 24226: 24223: 24220: 24218: 24215: 24213: 24210: 24208: 24205: 24203: 24200: 24198: 24195: 24193: 24190: 24188: 24185: 24183: 24180: 24178: 24175: 24173: 24170: 24168: 24165: 24163: 24160: 24158: 24157:Homochirality 24155: 24153: 24150: 24148: 24145: 24143: 24140: 24138: 24135: 24133: 24130: 24128: 24125: 24123: 24120: 24118: 24115: 24113: 24110: 24108: 24105: 24103: 24100: 24098: 24095: 24093: 24090: 24088: 24085: 24083: 24080: 24079: 24077: 24075: 24071: 24065: 24062: 24060: 24057: 24055: 24052: 24050: 24047: 24045: 24039: 24037: 24030: 24028: 24025: 24023: 24020: 24018: 24015: 24013: 24012:Methoxyethane 24010: 24008: 24005: 24003: 24000: 23999: 23997: 23995: 23991: 23985: 23982: 23980: 23973: 23971: 23968: 23966: 23963: 23961: 23958: 23956: 23953: 23951: 23948: 23946: 23943: 23941: 23938: 23935: 23932: 23930: 23927: 23926: 23924: 23920: 23916: 23906: 23903: 23901: 23898: 23896: 23895:Butyronitrile 23893: 23891: 23888: 23886: 23883: 23881: 23878: 23876: 23873: 23871: 23870:Ethyl formate 23868: 23866: 23863: 23861: 23858: 23856: 23849: 23838: 23835: 23833: 23830: 23828: 23825: 23823: 23820: 23819: 23817: 23815: 23807: 23801: 23798: 23796: 23795:Propionitrile 23793: 23791: 23788: 23786: 23783: 23781: 23778: 23776: 23773: 23771: 23768: 23766: 23763: 23761: 23758: 23756: 23753: 23752: 23750: 23748: 23742: 23736: 23733: 23731: 23728: 23726: 23723: 23721: 23718: 23716: 23713: 23711: 23708: 23706: 23703: 23701: 23698: 23696: 23693: 23692: 23690: 23688: 23682: 23676: 23675:Vinyl alcohol 23673: 23671: 23668: 23666: 23663: 23661: 23658: 23656: 23653: 23651: 23648: 23646: 23643: 23641: 23638: 23634: 23633:Vinyl cyanide 23631: 23630: 23629: 23628:Acrylonitrile 23626: 23624: 23621: 23620: 23618: 23616: 23610: 23604: 23601: 23599: 23596: 23594: 23593:Pentynylidyne 23591: 23589: 23586: 23584: 23581: 23579: 23576: 23574: 23571: 23569: 23562: 23560: 23557: 23555: 23552: 23550: 23547: 23545: 23542: 23540: 23537: 23535: 23532: 23530: 23527: 23526: 23524: 23522: 23516: 23510: 23507: 23505: 23502: 23500: 23497: 23495: 23492: 23490: 23489:Methylenimine 23487: 23485: 23482: 23480: 23477: 23475: 23472: 23470: 23467: 23465: 23462: 23460: 23457: 23455: 23452: 23450: 23447: 23445: 23442: 23440: 23437: 23435: 23432: 23430: 23427: 23424: 23421: 23420: 23418: 23416: 23410: 23404: 23401: 23399: 23396: 23394: 23391: 23389: 23386: 23384: 23381: 23379: 23376: 23374: 23371: 23369: 23368:Propynylidyne 23366: 23364: 23361: 23359: 23358:Methyl cation 23356: 23354: 23351: 23349: 23346: 23344: 23341: 23339: 23336: 23334: 23331: 23329: 23326: 23324: 23321: 23319: 23318:Fulminic acid 23316: 23314: 23311: 23309: 23306: 23304: 23301: 23299: 23296: 23294: 23291: 23290: 23288: 23286: 23280: 23274: 23271: 23269: 23266: 23264: 23261: 23259: 23256: 23254: 23251: 23249: 23246: 23244: 23241: 23239: 23236: 23234: 23231: 23229: 23226: 23224: 23221: 23219: 23216: 23214: 23211: 23209: 23206: 23204: 23201: 23199: 23196: 23194: 23193:Nitrous oxide 23191: 23189: 23182: 23180: 23177: 23175: 23172: 23170: 23167: 23165: 23162: 23160: 23157: 23155: 23152: 23150: 23147: 23144: 23141: 23138: 23135: 23133: 23130: 23128: 23125: 23123: 23120: 23118: 23115: 23113: 23110: 23108: 23105: 23103: 23100: 23098: 23095: 23093: 23090: 23088: 23087:Amino radical 23085: 23083: 23080: 23078: 23075: 23074: 23072: 23070: 23066: 23061: 23052: 23043: 23033: 23030: 23028: 23025: 23023: 23020: 23018: 23017:Sodium iodide 23015: 23013: 23010: 23008: 23005: 23003: 23000: 22998: 22995: 22993: 22990: 22988: 22985: 22983: 22980: 22977: 22974: 22972: 22969: 22967: 22964: 22961: 22958: 22956: 22953: 22951: 22948: 22946: 22943: 22941: 22938: 22936: 22933: 22930: 22927: 22925: 22922: 22920: 22917: 22915: 22912: 22910: 22907: 22905: 22902: 22900: 22899:Cyano radical 22897: 22895: 22892: 22890: 22887: 22885: 22882: 22880: 22879:Carbon cation 22877: 22875: 22872: 22870: 22867: 22865: 22862: 22860: 22857: 22856: 22854: 22852: 22848: 22845: 22843: 22839: 22835: 22828: 22823: 22821: 22816: 22814: 22809: 22808: 22805: 22793: 22792: 22783: 22782: 22779: 22773: 22772:Transhumanism 22770: 22768: 22765: 22763: 22760: 22758: 22755: 22751: 22748: 22746: 22743: 22741: 22738: 22736: 22733: 22731: 22728: 22726: 22723: 22722: 22721: 22718: 22716: 22713: 22711: 22708: 22706: 22703: 22699: 22696: 22695: 22694: 22691: 22689: 22686: 22684: 22681: 22677: 22674: 22672: 22669: 22667: 22664: 22662: 22659: 22658: 22657: 22654: 22652: 22649: 22647: 22644: 22642: 22639: 22637: 22634: 22632: 22629: 22628: 22626: 22622: 22612: 22609: 22607: 22604: 22602: 22599: 22597: 22594: 22592: 22589: 22587: 22584: 22583: 22581: 22579: 22575: 22569: 22566: 22564: 22561: 22559: 22556: 22554: 22551: 22549: 22546: 22542: 22541:Nanomaterials 22539: 22537: 22534: 22532: 22529: 22528: 22527: 22524: 22522: 22519: 22517: 22514: 22510: 22507: 22506: 22505: 22504:Metamaterials 22502: 22500: 22497: 22495: 22492: 22490: 22487: 22485: 22482: 22480: 22477: 22475: 22472: 22470: 22467: 22465: 22462: 22460: 22457: 22455: 22452: 22451: 22449: 22447: 22443: 22437: 22434: 22432: 22429: 22427: 22424: 22422: 22419: 22417: 22416:3D publishing 22414: 22412: 22409: 22407: 22404: 22403: 22401: 22399:Manufacturing 22397: 22394: 22390: 22386: 22379: 22374: 22372: 22367: 22365: 22360: 22359: 22356: 22344: 22341: 22339: 22336: 22334: 22331: 22329: 22326: 22324: 22321: 22320: 22318: 22316: 22312: 22306: 22303: 22301: 22298: 22296: 22293: 22291: 22288: 22286: 22283: 22281: 22280:(prismane C8) 22267: 22265: 22251: 22250: 22248: 22246: 22242: 22236: 22222: 22220: 22206: 22204: 22190: 22189: 22187: 22185: 22181: 22175: 22172: 22170: 22167: 22165: 22162: 22160: 22157: 22156: 22154: 22152: 22148: 22142: 22128: 22126: 22112: 22110: 22107: 22106: 22104: 22102: 22098: 22092: 22091:Glassy carbon 22089: 22086: 22085: 22080: 22079: 22074: 22073: 22068: 22067: 22062: 22061: 22053: 22052: 22043: 22040: 22038: 22035: 22033: 22032: 22028: 22027: 22025: 22023: 22019: 22013: 22010: 22008: 22007: 22003: 22002: 22000: 21998: 21997: 21991: 21987: 21980: 21975: 21973: 21968: 21966: 21961: 21960: 21957: 21951: 21948: 21946: 21943: 21941: 21938: 21935: 21934: 21929: 21926: 21924: 21923: 21918: 21915: 21914: 21902: 21898: 21893: 21888: 21883: 21878: 21874: 21870: 21866: 21862: 21858: 21851: 21835: 21831: 21827: 21820: 21812: 21808: 21803: 21798: 21794: 21790: 21786: 21782: 21778: 21771: 21763: 21759: 21754: 21749: 21745: 21741: 21737: 21733: 21729: 21725: 21721: 21714: 21706: 21702: 21697: 21692: 21687: 21682: 21678: 21674: 21670: 21663: 21655: 21651: 21646: 21641: 21637: 21633: 21629: 21625: 21621: 21614: 21606: 21602: 21597: 21592: 21588: 21584: 21583:Int J Mol Sci 21580: 21573: 21565: 21561: 21556: 21551: 21547: 21543: 21542:Micromachines 21539: 21532: 21523: 21518: 21514: 21507: 21499: 21495: 21491: 21487: 21483: 21479: 21474: 21469: 21465: 21461: 21457: 21453: 21449: 21442: 21426: 21422: 21418: 21414: 21410: 21406: 21402: 21398: 21394: 21390: 21386: 21382: 21374: 21358: 21354: 21350: 21346: 21342: 21338: 21334: 21330: 21326: 21322: 21318: 21314: 21307: 21299: 21295: 21291: 21287: 21283: 21279: 21275: 21271: 21267: 21260: 21252: 21248: 21244: 21240: 21236: 21232: 21228: 21224: 21220: 21216: 21209: 21193: 21189: 21185: 21179: 21163: 21159: 21155: 21148: 21132: 21128: 21124: 21120: 21116: 21112: 21108: 21104: 21100: 21093: 21077: 21073: 21067: 21051: 21047: 21043: 21037: 21029: 21025: 21021: 21017: 21013: 21009: 21005: 21001: 20994: 20986: 20982: 20977: 20972: 20968: 20964: 20960: 20956: 20952: 20945: 20929: 20926:. Graphenea. 20925: 20919: 20903: 20899: 20893: 20877: 20873: 20869: 20863: 20847: 20843: 20839: 20835: 20831: 20827: 20823: 20819: 20815: 20811: 20807: 20803: 20799: 20795: 20788: 20780: 20776: 20772: 20768: 20764: 20760: 20756: 20749: 20741: 20737: 20733: 20729: 20724: 20719: 20715: 20711: 20707: 20703: 20699: 20692: 20676: 20672: 20668: 20664: 20660: 20656: 20652: 20648: 20644: 20640: 20636: 20632: 20625: 20617: 20613: 20609: 20605: 20601: 20597: 20589: 20581: 20577: 20573: 20569: 20565: 20561: 20556: 20551: 20547: 20543: 20535: 20527: 20523: 20519: 20515: 20511: 20507: 20503: 20499: 20494: 20489: 20485: 20481: 20473: 20465: 20461: 20457: 20453: 20445: 20437: 20433: 20429: 20425: 20421: 20417: 20413: 20409: 20404: 20399: 20396:(3): 033902. 20395: 20391: 20384: 20376: 20372: 20368: 20364: 20360: 20356: 20352: 20348: 20343: 20338: 20334: 20330: 20322: 20314: 20310: 20306: 20302: 20298: 20294: 20289: 20284: 20280: 20276: 20269: 20261: 20257: 20252: 20247: 20243: 20239: 20235: 20231: 20227: 20223: 20222: 20214: 20206: 20202: 20198: 20194: 20190: 20186: 20182: 20178: 20171: 20163: 20159: 20155: 20151: 20147: 20143: 20138: 20133: 20130:(2): 026222. 20129: 20125: 20118: 20102: 20098: 20094: 20088: 20080: 20076: 20072: 20066: 20062: 20058: 20054: 20050: 20043: 20035: 20031: 20026: 20021: 20017: 20013: 20009: 20002: 19994: 19990: 19986: 19982: 19979:(3): 033104. 19978: 19974: 19967: 19951: 19947: 19943: 19937: 19929: 19925: 19921: 19917: 19912: 19907: 19903: 19899: 19895: 19891: 19887: 19880: 19872: 19868: 19864: 19860: 19855: 19850: 19846: 19842: 19838: 19834: 19830: 19823: 19807: 19803: 19799: 19795: 19791: 19787: 19783: 19779: 19775: 19771: 19767: 19763: 19759: 19755: 19748: 19732: 19728: 19724: 19720: 19716: 19712: 19708: 19704: 19700: 19696: 19692: 19688: 19684: 19680: 19672: 19664: 19660: 19656: 19652: 19648: 19644: 19640: 19636: 19632: 19625: 19617: 19613: 19608: 19603: 19599: 19595: 19591: 19587: 19583: 19579: 19575: 19568: 19552: 19548: 19544: 19540: 19536: 19532: 19528: 19524: 19517: 19509: 19505: 19501: 19497: 19493: 19489: 19481: 19473: 19469: 19465: 19461: 19457: 19453: 19446: 19438: 19434: 19429: 19424: 19420: 19416: 19412: 19408: 19404: 19400: 19396: 19392: 19388: 19381: 19365: 19361: 19357: 19353: 19349: 19345: 19341: 19337: 19333: 19329: 19322: 19306: 19302: 19298: 19294: 19290: 19286: 19282: 19278: 19274: 19270: 19266: 19262: 19255: 19247: 19243: 19239: 19235: 19231: 19227: 19223: 19219: 19215: 19211: 19207: 19203: 19199: 19192: 19176: 19172: 19168: 19164: 19160: 19156: 19152: 19148: 19144: 19140: 19136: 19132: 19125: 19109: 19105: 19101: 19097: 19093: 19089: 19085: 19081: 19077: 19073: 19069: 19065: 19061: 19057: 19050: 19042: 19038: 19034: 19030: 19025: 19020: 19016: 19012: 19008: 19001: 18985: 18981: 18977: 18973: 18969: 18965: 18961: 18957: 18953: 18949: 18945: 18941: 18934: 18918: 18914: 18910: 18906: 18902: 18898: 18894: 18890: 18886: 18882: 18878: 18874: 18867: 18859: 18855: 18851: 18847: 18843: 18839: 18835: 18831: 18827: 18820: 18812: 18808: 18804: 18800: 18796: 18792: 18788: 18784: 18776: 18774: 18765: 18761: 18757: 18753: 18749: 18745: 18737: 18735: 18726: 18722: 18718: 18714: 18710: 18706: 18702: 18698: 18690: 18682: 18678: 18673: 18668: 18664: 18660: 18656: 18652: 18647: 18642: 18638: 18634: 18630: 18627:(July 2015). 18626: 18619: 18603: 18599: 18595: 18588: 18572: 18568: 18564: 18558: 18542: 18538: 18531: 18523: 18519: 18515: 18511: 18507: 18503: 18496: 18480: 18476: 18472: 18468: 18464: 18460: 18456: 18452: 18445: 18429: 18425: 18419: 18411: 18407: 18403: 18399: 18395: 18391: 18387: 18383: 18378: 18373: 18370:(5): 056808. 18369: 18365: 18358: 18342: 18338: 18332: 18324: 18320: 18316: 18312: 18308: 18304: 18297: 18289: 18285: 18281: 18277: 18273: 18269: 18265: 18261: 18257: 18253: 18245: 18229: 18225: 18221: 18215: 18207: 18203: 18199: 18195: 18191: 18187: 18186: 18178: 18162: 18158: 18154: 18150: 18146: 18142: 18138: 18134: 18130: 18126: 18119: 18111: 18107: 18103: 18099: 18094: 18089: 18085: 18081: 18077: 18073: 18065: 18057: 18053: 18049: 18045: 18041: 18037: 18033: 18029: 18021: 18013: 18009: 18005: 18001: 17997: 17993: 17989: 17985: 17978: 17970: 17966: 17962: 17958: 17953: 17948: 17944: 17940: 17936: 17932: 17928: 17924: 17917: 17909: 17905: 17901: 17897: 17893: 17889: 17885: 17881: 17877: 17873: 17866: 17858: 17854: 17849: 17844: 17840: 17836: 17832: 17828: 17821: 17812: 17807: 17803: 17799: 17795: 17791: 17784: 17776: 17772: 17768: 17764: 17760: 17756: 17752: 17748: 17744: 17740: 17733: 17717: 17713: 17709: 17703: 17695: 17691: 17686: 17681: 17677: 17673: 17669: 17662: 17654: 17650: 17646: 17642: 17638: 17634: 17627: 17619: 17615: 17611: 17607: 17603: 17599: 17592: 17576: 17572: 17564: 17560: 17556: 17552: 17548: 17544: 17540: 17536: 17532: 17528: 17521: 17513: 17509: 17505: 17501: 17497: 17493: 17489: 17485: 17481: 17477: 17469: 17453: 17449: 17445: 17438: 17430: 17426: 17422: 17416: 17400: 17396: 17392: 17386: 17378: 17374: 17370: 17366: 17362: 17358: 17354: 17350: 17346: 17342: 17338: 17331: 17323: 17319: 17315: 17311: 17306: 17301: 17297: 17293: 17289: 17285: 17281: 17277: 17269: 17261: 17257: 17253: 17246: 17238: 17234: 17230: 17226: 17221: 17216: 17212: 17208: 17204: 17200: 17196: 17192: 17184: 17176: 17172: 17168: 17164: 17160: 17156: 17153:(8): 7062–6. 17152: 17148: 17141: 17133: 17129: 17125: 17121: 17117: 17113: 17108: 17103: 17099: 17095: 17087: 17079: 17075: 17071: 17067: 17063: 17059: 17054: 17049: 17045: 17041: 17033: 17014: 17010: 17006: 17002: 16998: 16993: 16988: 16984: 16980: 16976: 16972: 16968: 16964: 16957: 16949: 16941: 16937: 16933: 16929: 16925: 16921: 16913: 16894: 16890: 16886: 16882: 16878: 16874: 16870: 16866: 16862: 16858: 16854: 16850: 16846: 16839: 16832: 16816: 16812: 16806: 16798: 16794: 16789: 16784: 16779: 16774: 16770: 16766: 16762: 16758: 16754: 16747: 16738: 16733: 16726: 16718: 16714: 16709: 16704: 16700: 16696: 16692: 16688: 16687:Physics Today 16684: 16677: 16675: 16666: 16662: 16658: 16654: 16650: 16646: 16642: 16635: 16633: 16631: 16629: 16619: 16614: 16609: 16604: 16600: 16596: 16593:(2): 022001. 16592: 16588: 16584: 16577: 16569: 16565: 16561: 16557: 16553: 16549: 16545: 16541: 16537: 16533: 16525: 16509: 16505: 16501: 16494: 16486: 16482: 16478: 16474: 16470: 16466: 16462: 16458: 16451: 16435: 16431: 16427: 16421: 16419: 16402: 16398: 16394: 16387: 16371: 16367: 16363: 16357: 16341: 16337: 16333: 16326: 16310: 16306: 16302: 16296: 16288: 16284: 16279: 16274: 16270: 16266: 16263:(5): 5061–8. 16262: 16258: 16254: 16247: 16231: 16227: 16221: 16219: 16217: 16215: 16195: 16191: 16187: 16183: 16179: 16175: 16171: 16167: 16163: 16159: 16155: 16148: 16141: 16125: 16121: 16117: 16113: 16109: 16105: 16101: 16097: 16090: 16082: 16078: 16074: 16070: 16066: 16062: 16057: 16052: 16048: 16044: 16037: 16035: 16026: 16022: 16017: 16012: 16008: 16004: 16000: 15996: 15992: 15985: 15977: 15973: 15968: 15963: 15959: 15955: 15951: 15947: 15943: 15936: 15928: 15924: 15920: 15916: 15912: 15908: 15901: 15899: 15897: 15880: 15875: 15874:2027.42/99684 15870: 15866: 15862: 15858: 15854: 15850: 15846: 15842: 15834: 15830: 15825: 15824:2027.42/99684 15820: 15816: 15812: 15808: 15804: 15800: 15796: 15789: 15781: 15777: 15773: 15769: 15765: 15761: 15757: 15753: 15749: 15745: 15737: 15729: 15725: 15721: 15717: 15713: 15709: 15705: 15701: 15697: 15693: 15685: 15677: 15673: 15668: 15663: 15659: 15655: 15651: 15647: 15643: 15636: 15628: 15624: 15620: 15616: 15612: 15608: 15604: 15600: 15596: 15592: 15584: 15568: 15564: 15560: 15556: 15552: 15548: 15544: 15540: 15533: 15525: 15521: 15517: 15513: 15509: 15505: 15497: 15493: 15489: 15485: 15481: 15477: 15470: 15462: 15458: 15454: 15450: 15446: 15442: 15434: 15430: 15426: 15422: 15418: 15414: 15407: 15399: 15395: 15391: 15387: 15382: 15377: 15373: 15369: 15362: 15354: 15350: 15346: 15342: 15338: 15334: 15330: 15326: 15321: 15316: 15312: 15308: 15300: 15292: 15288: 15284: 15280: 15276: 15272: 15271: 15263: 15255: 15251: 15247: 15243: 15239: 15235: 15234: 15225: 15217: 15213: 15209: 15205: 15201: 15198: 15197: 15189: 15173: 15169: 15165: 15160: 15155: 15151: 15147: 15143: 15136: 15128: 15124: 15120: 15116: 15112: 15108: 15104: 15100: 15095: 15090: 15086: 15082: 15075: 15067: 15063: 15059: 15055: 15051: 15047: 15043: 15039: 15035: 15031: 15023: 15015: 15011: 15007: 15003: 14999: 14995: 14988: 14972: 14968: 14962: 14954: 14950: 14946: 14942: 14938: 14934: 14930: 14926: 14922: 14915: 14907: 14903: 14898: 14893: 14889: 14885: 14881: 14877: 14870: 14862: 14858: 14854: 14850: 14846: 14842: 14838: 14831: 14829: 14820: 14816: 14812: 14808: 14804: 14800: 14796: 14792: 14784: 14782: 14774: 14770: 14767: 14762: 14748: 14744: 14743: 14735: 14719: 14715: 14714: 14706: 14690: 14686: 14682: 14678: 14674: 14670: 14666: 14662: 14658: 14654: 14647: 14639: 14635: 14631: 14627: 14623: 14619: 14614: 14609: 14605: 14601: 14597: 14590: 14582: 14578: 14573: 14568: 14564: 14560: 14556: 14552: 14548: 14544: 14540: 14533: 14517: 14513: 14509: 14505: 14501: 14497: 14493: 14489: 14485: 14481: 14473: 14465: 14461: 14458:(45): 23821. 14457: 14453: 14446: 14438: 14434: 14430: 14426: 14422: 14418: 14414: 14410: 14406: 14402: 14398: 14394: 14390: 14382: 14366: 14362: 14358: 14354: 14350: 14346: 14342: 14338: 14334: 14330: 14326: 14322: 14318: 14314: 14306: 14304: 14287: 14283: 14279: 14275: 14271: 14268:(20): 11193. 14267: 14263: 14259: 14252: 14244: 14240: 14236: 14232: 14228: 14224: 14220: 14216: 14212: 14208: 14201: 14199: 14190: 14186: 14182: 14178: 14174: 14170: 14166: 14162: 14157: 14152: 14148: 14144: 14137: 14129: 14125: 14121: 14117: 14113: 14109: 14104: 14099: 14095: 14091: 14084: 14076: 14072: 14068: 14064: 14060: 14056: 14052: 14048: 14044: 14040: 14032: 14016: 14012: 14008: 14002: 13994: 13990: 13986: 13982: 13978: 13974: 13966: 13958: 13954: 13950: 13946: 13942: 13938: 13934: 13930: 13926: 13922: 13915: 13896: 13892: 13888: 13884: 13880: 13876: 13872: 13869:(2): 025004. 13868: 13864: 13857: 13850: 13842: 13838: 13834: 13830: 13826: 13822: 13818: 13814: 13809: 13804: 13800: 13796: 13788: 13772: 13768: 13764: 13758: 13750: 13746: 13741: 13740:11368/2860012 13736: 13732: 13728: 13724: 13720: 13712: 13704: 13700: 13696: 13692: 13688: 13684: 13677: 13668: 13663: 13659: 13655: 13651: 13644: 13636: 13632: 13628: 13624: 13620: 13616: 13612: 13608: 13604: 13600: 13592: 13584: 13580: 13576: 13572: 13568: 13564: 13560: 13556: 13551: 13546: 13542: 13538: 13534: 13527: 13511: 13507: 13503: 13497: 13489: 13485: 13481: 13477: 13473: 13469: 13462: 13454: 13450: 13446: 13442: 13438: 13434: 13430: 13426: 13419: 13411: 13407: 13403: 13399: 13392: 13384: 13380: 13376: 13372: 13368: 13364: 13360: 13356: 13349: 13341: 13337: 13333: 13329: 13322: 13314: 13310: 13306: 13302: 13298: 13294: 13290: 13286: 13282: 13278: 13270: 13262: 13255: 13247: 13243: 13239: 13235: 13231: 13227: 13222: 13217: 13213: 13209: 13202: 13194: 13190: 13186: 13182: 13178: 13174: 13171:(9): 096105. 13170: 13166: 13159: 13157: 13148: 13142: 13139:. CRC Press. 13138: 13137: 13129: 13113: 13109: 13105: 13101: 13097: 13093: 13089: 13085: 13078: 13070: 13066: 13062: 13058: 13054: 13050: 13049: 13041: 13033: 13029: 13025: 13019: 13013: 13009: 13005: 13001: 12997: 12993: 12989: 12985: 12980: 12975: 12971: 12967: 12966: 12957: 12949: 12945: 12941: 12937: 12933: 12929: 12925: 12921: 12914: 12906: 12902: 12898: 12894: 12890: 12886: 12882: 12878: 12874: 12870: 12863: 12855: 12851: 12847: 12843: 12839: 12835: 12828: 12812: 12808: 12804: 12800: 12796: 12792: 12788: 12784: 12780: 12776: 12772: 12768: 12761: 12753: 12749: 12745: 12741: 12737: 12733: 12728: 12723: 12720:(8): 081419. 12719: 12715: 12708: 12700: 12696: 12692: 12688: 12684: 12680: 12676: 12672: 12667: 12662: 12658: 12654: 12646: 12638: 12634: 12630: 12626: 12622: 12618: 12614: 12610: 12605: 12600: 12596: 12592: 12585: 12577: 12573: 12569: 12565: 12561: 12557: 12553: 12549: 12545: 12541: 12533: 12525: 12519: 12515: 12514: 12506: 12498: 12494: 12490: 12486: 12482: 12478: 12474: 12470: 12466: 12462: 12455: 12453: 12444: 12440: 12436: 12432: 12428: 12424: 12420: 12416: 12411: 12406: 12402: 12398: 12394: 12387: 12379: 12375: 12370: 12365: 12361: 12357: 12353: 12349: 12345: 12341: 12337: 12330: 12328: 12319: 12315: 12311: 12307: 12303: 12299: 12295: 12291: 12284: 12282: 12273: 12269: 12265: 12261: 12257: 12253: 12248: 12243: 12239: 12235: 12228: 12226: 12217: 12213: 12209: 12205: 12200: 12195: 12192:(1): 012002. 12191: 12187: 12180: 12178: 12169: 12165: 12161: 12157: 12153: 12149: 12144: 12139: 12135: 12131: 12123: 12115: 12111: 12107: 12103: 12100:(1–2): 1–31. 12099: 12095: 12088: 12086: 12076: 12071: 12067: 12063: 12059: 12055: 12051: 12044: 12036: 12032: 12028: 12024: 12020: 12016: 12012: 12008: 12004: 12000: 11992: 11976: 11972: 11968: 11964: 11960: 11956: 11952: 11948: 11944: 11940: 11933: 11925: 11921: 11917: 11913: 11909: 11905: 11901: 11897: 11892: 11887: 11883: 11879: 11872: 11864: 11860: 11856: 11852: 11848: 11844: 11837: 11828: 11823: 11819: 11815: 11811: 11804: 11788: 11784: 11780: 11773: 11757: 11753: 11749: 11742: 11734: 11730: 11725: 11720: 11716: 11712: 11708: 11704: 11700: 11693: 11674: 11670: 11666: 11662: 11658: 11654: 11650: 11646: 11642: 11639:(6): 065706. 11638: 11634: 11627: 11620: 11612: 11608: 11604: 11600: 11596: 11592: 11588: 11584: 11577: 11569: 11565: 11561: 11557: 11553: 11549: 11544: 11539: 11535: 11531: 11524: 11516: 11512: 11508: 11504: 11500: 11496: 11491: 11486: 11482: 11478: 11471: 11463: 11459: 11455: 11451: 11447: 11443: 11436: 11417: 11413: 11409: 11405: 11401: 11397: 11393: 11386: 11379: 11371: 11367: 11363: 11359: 11355: 11351: 11344: 11333: 11326: 11319: 11303: 11299: 11292: 11285: 11281: 11278: 11272: 11264: 11260: 11255: 11250: 11246: 11242: 11238: 11234: 11229: 11224: 11220: 11216: 11212: 11205: 11186: 11182: 11178: 11171: 11164: 11156: 11152: 11148: 11144: 11140: 11136: 11131: 11126: 11122: 11118: 11111: 11103: 11099: 11095: 11091: 11087: 11083: 11078: 11073: 11069: 11065: 11058: 11056: 11047: 11043: 11039: 11035: 11031: 11027: 11023: 11019: 11014: 11009: 11005: 11001: 10994: 10992: 10975: 10971: 10967: 10963: 10959: 10955: 10951: 10947: 10943: 10939: 10932: 10924: 10920: 10916: 10912: 10908: 10904: 10899: 10894: 10890: 10886: 10878: 10874: 10870: 10866: 10862: 10858: 10853: 10848: 10844: 10840: 10833: 10825: 10821: 10817: 10813: 10809: 10805: 10801: 10797: 10794:(5): 2324–8. 10793: 10789: 10782: 10766: 10762: 10758: 10754: 10750: 10746: 10739: 10731: 10727: 10723: 10719: 10715: 10711: 10707: 10703: 10695: 10691: 10687: 10683: 10679: 10675: 10671: 10667: 10662: 10657: 10653: 10649: 10641: 10637: 10633: 10629: 10625: 10621: 10616: 10611: 10608:(4): 041404. 10607: 10603: 10596: 10588: 10584: 10580: 10576: 10572: 10568: 10564: 10560: 10555: 10550: 10546: 10542: 10535: 10516: 10511: 10506: 10502: 10498: 10494: 10490: 10486: 10482: 10475: 10468: 10460: 10456: 10452: 10448: 10444: 10440: 10435: 10430: 10427:(15): 15540. 10426: 10422: 10415: 10407: 10403: 10399: 10395: 10391: 10387: 10383: 10379: 10374: 10369: 10365: 10361: 10354: 10346: 10342: 10337: 10332: 10328: 10324: 10320: 10316: 10312: 10305: 10296: 10291: 10287: 10283: 10276: 10268: 10264: 10260: 10256: 10252: 10248: 10243: 10238: 10234: 10230: 10223: 10215: 10211: 10207: 10203: 10199: 10195: 10190: 10185: 10181: 10177: 10170: 10162: 10158: 10154: 10150: 10146: 10142: 10138: 10134: 10129: 10124: 10120: 10116: 10109: 10101: 10097: 10093: 10089: 10085: 10081: 10076: 10071: 10067: 10063: 10055: 10047: 10043: 10038: 10033: 10029: 10025: 10021: 10017: 10013: 10009: 10005: 9998: 9990: 9986: 9982: 9978: 9975:(2): 141103. 9974: 9970: 9963: 9961: 9944: 9940: 9936: 9932: 9928: 9924: 9920: 9916: 9909: 9901: 9897: 9893: 9889: 9885: 9881: 9877: 9873: 9869: 9865: 9861: 9857: 9853: 9846: 9837: 9832: 9827: 9822: 9818: 9814: 9810: 9806: 9802: 9795: 9786: 9781: 9777: 9773: 9769: 9765: 9761: 9754: 9738: 9734: 9730: 9724: 9716: 9712: 9708: 9704: 9700: 9696: 9692: 9688: 9683: 9678: 9674: 9670: 9663: 9654: 9649: 9642: 9634: 9630: 9626: 9622: 9618: 9614: 9610: 9606: 9601: 9596: 9593:(7): 073201. 9592: 9588: 9581: 9573: 9569: 9565: 9561: 9557: 9553: 9548: 9543: 9539: 9535: 9528: 9520: 9516: 9512: 9508: 9504: 9500: 9495: 9490: 9486: 9482: 9475: 9467: 9463: 9459: 9455: 9451: 9447: 9443: 9439: 9434: 9429: 9425: 9421: 9414: 9412: 9403: 9399: 9395: 9391: 9387: 9383: 9379: 9375: 9370: 9365: 9361: 9357: 9350: 9348: 9346: 9344: 9335: 9331: 9327: 9323: 9319: 9315: 9311: 9307: 9302: 9297: 9293: 9289: 9281: 9279: 9270: 9266: 9262: 9258: 9254: 9250: 9246: 9242: 9238: 9234: 9227: 9225: 9223: 9214: 9210: 9206: 9202: 9197: 9192: 9188: 9184: 9180: 9176: 9172: 9165: 9157: 9153: 9149: 9145: 9141: 9137: 9133: 9129: 9124: 9119: 9116:(9): 096601. 9115: 9111: 9103: 9101: 9092: 9088: 9083: 9078: 9074: 9066: 9064: 9055: 9051: 9047: 9043: 9039: 9035: 9030: 9025: 9021: 9017: 9009: 9007: 8998: 8994: 8990: 8986: 8982: 8978: 8973: 8968: 8964: 8960: 8953: 8951: 8942: 8938: 8934: 8930: 8926: 8922: 8917: 8912: 8908: 8904: 8896: 8894: 8885: 8881: 8877: 8873: 8869: 8865: 8861: 8857: 8853: 8849: 8841: 8833: 8829: 8825: 8821: 8817: 8813: 8808: 8803: 8799: 8795: 8788: 8769: 8762: 8754: 8750: 8746: 8742: 8738: 8734: 8729: 8724: 8720: 8716: 8709: 8693: 8689: 8685: 8681: 8677: 8673: 8669: 8664: 8659: 8655: 8651: 8647: 8640: 8632: 8628: 8624: 8620: 8616: 8612: 8607: 8602: 8598: 8594: 8587: 8579: 8575: 8570: 8565: 8560: 8555: 8551: 8547: 8542: 8537: 8533: 8529: 8525: 8518: 8510: 8506: 8502: 8498: 8494: 8490: 8486: 8482: 8477: 8472: 8468: 8464: 8457: 8455: 8447: 8443: 8440: 8435: 8427: 8423: 8419: 8415: 8411: 8407: 8402: 8397: 8393: 8389: 8382: 8380: 8378: 8369: 8365: 8361: 8357: 8353: 8349: 8345: 8341: 8336: 8331: 8327: 8323: 8315: 8299: 8295: 8291: 8285: 8283: 8266: 8262: 8256: 8240: 8236: 8230: 8222: 8218: 8214: 8210: 8206: 8202: 8198: 8194: 8190: 8186: 8179: 8172: 8168: 8165: 8160: 8152: 8148: 8144: 8140: 8136: 8132: 8125: 8117: 8113: 8109: 8105: 8101: 8097: 8092: 8087: 8083: 8079: 8060: 8058: 8056: 8047: 8043: 8039: 8035: 8031: 8027: 8023: 8019: 8014: 8009: 8006:(1): 016602. 8005: 8001: 7994: 7986: 7982: 7978: 7974: 7970: 7966: 7961: 7956: 7952: 7948: 7941: 7933: 7929: 7925: 7921: 7917: 7913: 7909: 7905: 7898: 7896: 7887: 7883: 7879: 7875: 7871: 7867: 7863: 7859: 7852: 7844: 7840: 7836: 7832: 7828: 7824: 7820: 7816: 7811: 7806: 7802: 7798: 7791: 7783: 7779: 7775: 7771: 7767: 7763: 7759: 7755: 7750: 7745: 7741: 7737: 7730: 7722: 7721: 7716: 7709: 7707: 7705: 7703: 7691: 7687: 7683: 7679: 7675: 7671: 7667: 7663: 7659: 7654: 7649: 7645: 7641: 7634: 7627: 7625: 7623: 7621: 7612: 7608: 7604: 7600: 7596: 7592: 7588: 7584: 7577: 7569: 7565: 7561: 7557: 7553: 7549: 7545: 7541: 7536: 7531: 7527: 7523: 7512: 7510: 7501: 7497: 7493: 7489: 7485: 7481: 7477: 7473: 7468: 7463: 7459: 7455: 7448: 7446: 7437: 7433: 7428: 7423: 7419: 7415: 7411: 7407: 7404:(11): 801–2. 7403: 7399: 7392: 7390: 7381: 7377: 7373: 7369: 7365: 7361: 7356: 7351: 7347: 7343: 7336: 7327: 7322: 7318: 7314: 7310: 7306: 7302: 7295: 7287: 7283: 7279: 7275: 7268: 7260: 7256: 7252: 7248: 7244: 7240: 7233: 7225: 7212: 7204: 7197: 7189: 7185: 7180: 7175: 7171: 7167: 7162: 7157: 7153: 7149: 7145: 7137: 7135: 7133: 7131: 7122: 7118: 7114: 7108: 7092: 7086: 7070: 7066: 7059: 7043: 7039: 7034: 7026: 7018: 7014: 7008: 6993: 6989: 6983: 6967: 6963: 6959: 6953: 6946: 6933: 6929: 6923: 6921: 6904: 6900: 6896: 6890: 6883: 6879: 6876: 6870: 6863: 6859: 6856: 6850: 6843: 6839: 6838: 6833: 6826: 6818: 6814: 6810: 6806: 6802: 6798: 6791: 6783: 6779: 6775: 6771: 6767: 6763: 6759: 6755: 6751: 6744: 6736: 6730: 6726: 6722: 6718: 6714: 6710: 6706: 6699: 6691: 6687: 6683: 6679: 6675: 6671: 6664: 6656: 6652: 6648: 6644: 6640: 6636: 6632: 6628: 6621: 6602: 6598: 6594: 6587: 6580: 6572: 6568: 6564: 6560: 6556: 6552: 6548: 6544: 6539: 6534: 6530: 6526: 6519: 6517: 6515: 6513: 6504: 6500: 6496: 6493:(in German). 6492: 6491: 6483: 6475: 6471: 6467: 6463: 6459: 6455: 6451: 6447: 6442: 6437: 6433: 6429: 6422: 6420: 6418: 6409: 6405: 6401: 6397: 6393: 6389: 6385: 6381: 6376: 6371: 6367: 6363: 6356: 6354: 6345: 6341: 6337: 6333: 6329: 6325: 6321: 6317: 6312: 6307: 6303: 6299: 6292: 6290: 6288: 6286: 6284: 6282: 6273: 6269: 6265: 6261: 6257: 6253: 6246: 6238: 6234: 6230: 6226: 6222: 6218: 6211: 6209: 6207: 6205: 6203: 6201: 6192: 6188: 6184: 6180: 6173: 6165: 6161: 6157: 6153: 6146: 6138: 6134: 6129: 6124: 6120: 6116: 6112: 6108: 6104: 6100: 6094: 6078: 6074: 6070: 6066: 6063:(in German). 6062: 6061: 6056: 6049: 6041: 6037: 6033: 6029: 6025: 6019: 6011: 6008:(in German). 6007: 6003: 5999: 5995: 5989: 5973: 5969: 5966:(in German). 5965: 5961: 5957: 5951: 5943: 5939: 5934: 5929: 5925: 5921: 5917: 5913: 5912: 5907: 5900: 5891: 5886: 5882: 5878: 5874: 5870: 5869: 5864: 5857: 5849: 5845: 5841: 5837: 5833: 5829: 5825: 5821: 5816: 5811: 5807: 5803: 5796: 5788: 5784: 5780: 5776: 5772: 5768: 5764: 5760: 5755: 5750: 5746: 5742: 5735: 5733: 5717: 5711: 5707: 5703: 5699: 5695: 5689: 5674: 5670: 5663: 5647: 5641: 5625: 5621: 5615: 5599: 5595: 5592:. Series II. 5591: 5590: 5585: 5579: 5577: 5568: 5564: 5560: 5556: 5552: 5548: 5544: 5540: 5535: 5530: 5526: 5522: 5515: 5513: 5504: 5500: 5496: 5493:(in German). 5492: 5485: 5477: 5473: 5468: 5463: 5459: 5455: 5451: 5447: 5443: 5439: 5435: 5428: 5426: 5417: 5413: 5409: 5405: 5401: 5397: 5393: 5389: 5385: 5381: 5374: 5372: 5363: 5359: 5355: 5351: 5347: 5343: 5338: 5333: 5329: 5325: 5318: 5316: 5314: 5305: 5301: 5297: 5293: 5289: 5285: 5281: 5277: 5272: 5267: 5263: 5259: 5252: 5250: 5248: 5246: 5237: 5233: 5229: 5225: 5221: 5217: 5214:(9): 094429. 5213: 5209: 5201: 5192: 5187: 5183: 5179: 5175: 5168: 5166: 5157: 5153: 5149: 5145: 5138: 5131: 5127: 5123: 5120: 5116: 5114: 5104: 5099: 5095: 5091: 5088:(9): 095002. 5087: 5083: 5082: 5077: 5070: 5062: 5058: 5054: 5050: 5046: 5042: 5038: 5034: 5029: 5024: 5020: 5016: 5009: 5007: 5005: 5003: 5001: 4999: 4997: 4995: 4993: 4991: 4989: 4987: 4985: 4983: 4981: 4964: 4960: 4959:cambridge.org 4956: 4950: 4946: 4936: 4933: 4930: 4927: 4921: 4918: 4912: 4909: 4903: 4900: 4897: 4894: 4893: 4887: 4885: 4880: 4876: 4874: 4870: 4866: 4862: 4858: 4854: 4850: 4840: 4836: 4834: 4828: 4825: 4821: 4816: 4814: 4811: 4807: 4803: 4799: 4795: 4790: 4788: 4783: 4781: 4777: 4776:photovoltaics 4773: 4769: 4765: 4759: 4756: 4751: 4741: 4739: 4735: 4734:nanoparticles 4731: 4720: 4718: 4712: 4709: 4699: 4697: 4693: 4689: 4685: 4681: 4677: 4673: 4669: 4665: 4661: 4657: 4647: 4635: 4633: 4632:plastic waste 4622: 4619: 4598: 4596: 4586: 4584: 4580: 4570: 4561: 4549: 4534: 4527: 4518: 4514: 4505: 4497: 4482: 4480: 4476: 4472: 4468: 4467:silicon wafer 4463: 4461: 4457: 4453: 4449: 4430: 4424: 4414: 4412: 4407: 4398: 4396: 4392: 4388: 4378: 4376: 4372: 4368: 4358: 4349: 4340: 4336: 4334: 4329: 4327: 4323: 4319: 4315: 4311: 4306: 4292: 4290: 4285: 4283: 4282:sulfuric acid 4279: 4275: 4271: 4261: 4257: 4248: 4246: 4243: 4239: 4238:nanostructure 4234: 4231: 4227: 4222: 4218: 4216: 4212: 4208: 4204: 4195: 4193: 4189: 4184: 4173: 4168: 4165: 4164:adhesive tape 4150: 4148: 4145: 4141: 4140:adhesive tape 4130: 4121: 4119: 4114: 4110: 4100: 4098: 4095: 4091: 4086: 4076: 4074: 4070: 4065: 4061: 4059: 4055: 4044: 4041: 4026: 4024: 4014: 4012: 4008: 4003: 4001: 3997: 3993: 3989: 3988:carbon groups 3984: 3982: 3978: 3968: 3963: 3953: 3950: 3948: 3944: 3940: 3936: 3932: 3928: 3925: 3921: 3916: 3912: 3911:nanostructure 3907: 3904: 3894: 3892: 3888: 3883: 3880: 3874: 3872: 3868: 3864: 3860: 3856: 3850: 3836: 3834: 3830: 3826: 3822: 3812: 3810: 3806: 3802: 3801:hydrogenation 3797: 3795: 3791: 3786: 3785:carbodiimides 3781: 3777: 3769: 3765: 3763: 3762:acyl chloride 3758: 3753: 3751: 3747: 3743: 3739: 3731: 3727: 3723: 3719: 3718:acid chloride 3715: 3711: 3701: 3692: 3690: 3685: 3683: 3679: 3675: 3668: 3657: 3647: 3645: 3635: 3633: 3629: 3622: 3618: 3611: 3607: 3599: 3585: 3581: 3572: 3546: 3543: 3541: 3536: 3533: 3529: 3525: 3521: 3517: 3513: 3507: 3497: 3495: 3479: 3470: 3466: 3464: 3460: 3455: 3452: 3443: 3441: 3437: 3432: 3430: 3425: 3423: 3419: 3413: 3405: 3397: 3391: 3381: 3379: 3375: 3371: 3367: 3362: 3358: 3353: 3351: 3347: 3339: 3336: 3331: 3329: 3325: 3319: 3315: 3311: 3307: 3303: 3299: 3294: 3261: 3253: 3249: 3233: 3231: 3227: 3222: 3218: 3212: 3208: 3206: 3202: 3198: 3194: 3190: 3184: 3182: 3178: 3174: 3164: 3161: 3157: 3153: 3149: 3145: 3141: 3131: 3128: 3126: 3122: 3118: 3113: 3110: 3090: 3086: 3081: 3078: 3064: 3060: 3056: 3052: 3048: 3044: 3039: 3031: 3029: 3019: 3017: 3012: 3007: 2997: 2995: 2991: 2975: 2972: 2969: 2966: 2963: 2960: 2957: 2954: 2951: 2948: 2945: 2942: 2933: 2919: 2915: 2911: 2908: 2905: 2885: 2882: 2879: 2858: 2854: 2851: 2847: 2843: 2840: 2837: 2834: 2831: 2811: 2807: 2801: 2797: 2793: 2790: 2785: 2782: 2778: 2769: 2754: 2751: 2747: 2743: 2739: 2735: 2725: 2723: 2719: 2708: 2706: 2698: 2688: 2684: 2682: 2678: 2674: 2673:near-infrared 2670: 2660: 2658: 2650: 2646: 2642: 2641:Bragg grating 2632: 2630: 2626: 2622: 2618: 2615: 2607: 2597: 2595: 2587: 2583: 2574: 2572: 2567: 2565: 2561: 2557: 2556:conical bands 2553: 2549: 2545: 2539: 2534: 2524: 2522: 2517: 2507: 2505: 2501: 2491: 2488: 2478: 2474: 2468: 2449: 2444: 2438: 2431: 2425: 2421: 2416: 2412: 2407: 2392: 2390: 2386: 2381: 2379: 2375: 2369: 2367: 2356: 2354: 2350: 2346: 2336: 2334: 2333:Berry's phase 2330: 2326: 2318: 2314: 2310: 2306: 2302: 2298: 2281: 2277: 2270: 2266: 2262: 2259: 2256: 2253: 2249: 2246: 2241: 2238: 2234: 2225: 2221: 2210: 2207: 2191: 2187: 2180: 2176: 2171: 2167: 2163: 2159: 2156: 2153: 2149: 2145: 2142: 2138: 2135: 2130: 2127: 2123: 2112: 2109: 2103: 2099: 2095: 2091: 2087: 2083: 2079: 2075: 2057: 2054: 2050: 2042: 2038: 2034: 2030: 2000: 1995: 1990: 1981: 1979: 1975: 1969: 1967: 1963: 1959: 1954: 1950: 1936: 1932: 1926: 1922: 1918: 1895: 1891: 1883: 1877: 1873: 1869: 1837: 1833: 1827: 1823: 1819: 1811: 1801: 1798: 1796: 1791: 1789: 1785: 1781: 1776: 1774: 1770: 1766: 1762: 1756: 1734: 1726: 1721: 1707: 1703: 1683: 1669: 1660: 1658: 1657:ferromagnetic 1654: 1650: 1640: 1625: 1616: 1607: 1603: 1600: 1592: 1589: 1570: 1565: 1561: 1554: 1548: 1542: 1535: 1534: 1533: 1530: 1528: 1501: 1493: 1471: 1460: 1452: 1430: 1416: 1413: 1409: 1394: 1388: 1379: 1370: 1366: 1358: 1357: 1356: 1351: 1347: 1343: 1339: 1334: 1332: 1328: 1327:wave function 1324: 1320: 1316: 1311: 1304: 1300: 1299:valence bands 1296: 1287: 1283: 1272: 1248: 1244: 1240: 1234: 1230: 1222: 1219: 1216: 1210: 1206: 1202: 1196: 1193: 1186: 1183: 1180: 1177: 1171: 1167: 1163: 1157: 1154: 1147: 1142: 1138: 1134: 1131: 1128: 1121: 1117: 1112: 1109: 1101: 1097: 1093: 1088: 1084: 1077: 1070: 1069: 1068: 1066: 1062: 1058: 1057:tight-binding 1051: 1044: 1037: 1033: 1026: 1021: 1019: 1015: 1014:Berry's phase 1011: 1007: 1000: 977: 959: 955: 951: 941: 937: 935: 930: 928: 922: 917: 913: 909: 905: 904:valence bands 901: 897: 896:semiconductor 888: 877: 872: 870: 869:summary style 865:This section 863: 854: 853: 849: 839: 837: 833: 824: 822: 817: 815: 811: 806: 798: 794: 785: 783: 777: 775: 771: 766: 759: 750: 748: 744: 740: 728: 724: 711: 691: 682: 680: 676: 665: 663: 659: 655: 651: 647: 643: 633: 630: 625: 611: 607: 603: 599: 598:adhesive tape 595: 591: 587: 583: 575: 570: 561: 559: 554: 551: 549: 541: 537: 533: 528: 524: 522: 518: 514: 510: 505: 503: 498: 493: 490: 485: 480: 478: 474: 470: 461: 459: 455: 451: 447: 443: 439: 438:P. R. Wallace 434: 432: 428: 424: 420: 416: 412: 408: 404: 400: 396: 392: 388: 384: 371: 367: 363: 359: 355: 352:, a graphene 351: 346: 341: 331: 329: 325: 321: 316: 314: 310: 306: 305:semiconductor 302: 298: 293: 291: 287: 283: 279: 274: 272: 262: 258: 256: 252: 248: 243: 240:with unusual 239: 235: 231: 227: 223: 219: 215: 210: 208: 204: 200: 199:nanostructure 197: 193: 189: 185: 179: 149: 140: 136: 131: 127: 122: 118: 111: 106: 102: 98: 94: 89: 85: 80: 76: 72: 67: 63: 61:Material type 59: 54: 50: 47: 41: 36: 31: 26: 22: 24304: 24250: 24233:Spectroscopy 24087:Astrobiology 24021: 23940:Formaldehyde 23832:Benzonitrile 23623:Acetaldehyde 23578:Methanethiol 23529:Acetonitrile 23434:Carbodiimide 23313:Formaldehyde 23308:Cyanoethynyl 23159:Iron cyanide 23154:Hydroperoxyl 22955:Nitric oxide 22789: 22676:Robot ethics 22591:Nanorobotics 22558:Quantum dots 22483: 22338:Carbon fiber 22328:Carbon black 22314: 22295:Cubic carbon 22244: 22183: 22150: 22100: 22082: 22076: 22070: 22064: 22055: 22045: 22044:, including 22036: 22029: 22021: 22004: 21993: 21931: 21920: 21864: 21860: 21850: 21838:. Retrieved 21829: 21819: 21784: 21781:Biomaterials 21780: 21770: 21727: 21723: 21713: 21676: 21672: 21662: 21627: 21623: 21613: 21589:(10): 2461. 21586: 21582: 21572: 21545: 21541: 21531: 21512: 21506: 21455: 21451: 21441: 21429:. Retrieved 21388: 21384: 21373: 21361:. Retrieved 21320: 21316: 21306: 21273: 21269: 21259: 21218: 21214: 21208: 21196:. Retrieved 21188:physicsworld 21187: 21178: 21166:. Retrieved 21157: 21147: 21135:. Retrieved 21110: 21106: 21092: 21080:. Retrieved 21066: 21054:. Retrieved 21050:the original 21045: 21036: 21003: 20999: 20993: 20961:(3): 900–9. 20958: 20954: 20944: 20932:. Retrieved 20918: 20906:. Retrieved 20901: 20892: 20880:. Retrieved 20871: 20862: 20852:17 September 20850:. Retrieved 20801: 20797: 20787: 20762: 20758: 20748: 20705: 20701: 20691: 20681:19 September 20679:. Retrieved 20638: 20634: 20624: 20599: 20595: 20588: 20545: 20541: 20534: 20483: 20479: 20472: 20455: 20451: 20444: 20393: 20389: 20383: 20335:(1): 57–62. 20332: 20328: 20321: 20278: 20274: 20268: 20251:10754/662399 20225: 20219: 20213: 20180: 20176: 20170: 20127: 20123: 20117: 20105:. Retrieved 20096: 20087: 20052: 20042: 20015: 20011: 20001: 19976: 19972: 19966: 19954:. Retrieved 19945: 19936: 19893: 19889: 19879: 19836: 19832: 19822: 19810:. Retrieved 19761: 19757: 19747: 19735:. Retrieved 19686: 19682: 19671: 19638: 19634: 19624: 19581: 19577: 19567: 19555:. Retrieved 19530: 19526: 19516: 19491: 19487: 19480: 19458:(26): 9491. 19455: 19451: 19445: 19397:(1): 18047. 19394: 19390: 19380: 19368:. Retrieved 19335: 19331: 19321: 19309:. Retrieved 19268: 19264: 19254: 19205: 19201: 19191: 19179:. Retrieved 19138: 19134: 19124: 19112:. Retrieved 19063: 19059: 19049: 19014: 19010: 19000: 18988:. Retrieved 18947: 18943: 18933: 18921:. Retrieved 18880: 18876: 18866: 18833: 18829: 18819: 18786: 18782: 18747: 18743: 18742:Monolayer". 18700: 18696: 18689: 18636: 18632: 18618: 18606:. Retrieved 18597: 18587: 18575:. Retrieved 18566: 18557: 18545:. Retrieved 18530: 18505: 18501: 18495: 18483:. Retrieved 18458: 18454: 18444: 18432:. Retrieved 18418: 18367: 18363: 18357: 18345:. Retrieved 18331: 18306: 18302: 18296: 18255: 18251: 18244: 18232:. Retrieved 18223: 18214: 18189: 18183: 18177: 18165:. Retrieved 18135:(3): 171–2. 18132: 18128: 18118: 18075: 18071: 18064: 18031: 18027: 18020: 17987: 17983: 17977: 17926: 17922: 17916: 17875: 17871: 17865: 17830: 17826: 17820: 17796:(12): 5676. 17793: 17789: 17783: 17742: 17738: 17732: 17720:. Retrieved 17711: 17702: 17675: 17671: 17661: 17636: 17632: 17626: 17601: 17597: 17591: 17579:. Retrieved 17575:the original 17530: 17526: 17520: 17479: 17475: 17468: 17456:. Retrieved 17447: 17437: 17429:the original 17424: 17415: 17403:. Retrieved 17394: 17385: 17344: 17340: 17337:Dai, Hongjie 17330: 17305:10044/1/4321 17279: 17275: 17268: 17251: 17245: 17194: 17190: 17183: 17150: 17146: 17140: 17097: 17093: 17086: 17043: 17039: 17032: 17020:. Retrieved 16966: 16962: 16948: 16923: 16919: 16912: 16900:. Retrieved 16848: 16844: 16831: 16819:. Retrieved 16805: 16760: 16756: 16746: 16725: 16693:(8): 35–41. 16690: 16686: 16648: 16644: 16590: 16587:2D Materials 16586: 16576: 16535: 16531: 16524: 16512:. Retrieved 16508:the original 16503: 16493: 16460: 16457:Nano Letters 16456: 16450: 16438:. Retrieved 16429: 16405:. Retrieved 16396: 16386: 16374:. Retrieved 16365: 16356: 16344:. Retrieved 16335: 16325: 16313:. Retrieved 16309:the original 16304: 16295: 16260: 16256: 16246: 16234:. Retrieved 16201:. Retrieved 16157: 16153: 16140: 16128:. Retrieved 16103: 16099: 16089: 16046: 16042: 15998: 15994: 15984: 15949: 15945: 15935: 15910: 15906: 15883:. Retrieved 15848: 15844: 15798: 15794: 15788: 15747: 15743: 15736: 15695: 15691: 15684: 15649: 15645: 15635: 15594: 15590: 15583: 15571:. Retrieved 15546: 15542: 15532: 15507: 15503: 15479: 15475: 15469: 15444: 15440: 15416: 15412: 15406: 15371: 15367: 15361: 15310: 15306: 15299: 15274: 15268: 15262: 15237: 15231: 15224: 15199: 15194: 15188: 15176:. Retrieved 15149: 15145: 15135: 15084: 15080: 15074: 15033: 15029: 15022: 14997: 14993: 14987: 14975:. Retrieved 14971:the original 14961: 14928: 14924: 14914: 14879: 14875: 14869: 14844: 14840: 14794: 14790: 14751:. Retrieved 14741: 14734: 14722:. Retrieved 14712: 14705: 14693:. Retrieved 14660: 14656: 14646: 14603: 14599: 14589: 14546: 14542: 14532: 14520:. Retrieved 14487: 14483: 14472: 14455: 14451: 14445: 14396: 14392: 14381: 14369:. Retrieved 14320: 14316: 14290:. Retrieved 14265: 14261: 14251: 14210: 14207:Nano Letters 14206: 14149:(9): 96802. 14146: 14142: 14136: 14093: 14089: 14083: 14042: 14038: 14031: 14019:. Retrieved 14010: 14001: 13976: 13972: 13965: 13924: 13921:Nano Letters 13920: 13914: 13902:. Retrieved 13866: 13863:2D Materials 13862: 13849: 13798: 13794: 13787: 13775:. Retrieved 13766: 13757: 13722: 13718: 13711: 13686: 13682: 13676: 13657: 13653: 13643: 13602: 13598: 13591: 13540: 13537:Nano Letters 13536: 13526: 13514:. Retrieved 13505: 13496: 13471: 13467: 13461: 13428: 13424: 13418: 13401: 13397: 13391: 13358: 13354: 13348: 13331: 13327: 13321: 13280: 13276: 13269: 13260: 13254: 13211: 13207: 13201: 13168: 13164: 13135: 13128: 13116:. Retrieved 13091: 13087: 13077: 13052: 13046: 13040: 13027: 13017: 12969: 12963: 12956: 12923: 12920:Nano Letters 12919: 12913: 12872: 12869:Nano Letters 12868: 12862: 12837: 12833: 12827: 12815:. Retrieved 12774: 12770: 12760: 12717: 12713: 12707: 12656: 12652: 12645: 12594: 12590: 12584: 12543: 12540:Nano Letters 12539: 12532: 12512: 12505: 12464: 12461:Nano Letters 12460: 12400: 12396: 12386: 12343: 12339: 12293: 12290:Nano Letters 12289: 12237: 12233: 12189: 12186:2D Materials 12185: 12133: 12129: 12122: 12097: 12093: 12057: 12053: 12043: 12002: 11998: 11991: 11979:. Retrieved 11946: 11942: 11932: 11881: 11877: 11871: 11846: 11842: 11836: 11817: 11813: 11803: 11791:. Retrieved 11782: 11772: 11760:. Retrieved 11751: 11741: 11706: 11702: 11692: 11680:. Retrieved 11673:the original 11636: 11632: 11619: 11586: 11582: 11576: 11533: 11529: 11523: 11480: 11476: 11470: 11445: 11442:Nano Letters 11441: 11435: 11423:. Retrieved 11395: 11391: 11378: 11353: 11349: 11343: 11332:the original 11318: 11306:. Retrieved 11291: 11271: 11218: 11214: 11204: 11192:. Retrieved 11183:(1): 25–38. 11180: 11176: 11163: 11120: 11116: 11110: 11067: 11063: 11003: 10999: 10978:. Retrieved 10945: 10941: 10931: 10888: 10884: 10842: 10838: 10832: 10791: 10787: 10781: 10769:. Retrieved 10752: 10748: 10738: 10705: 10701: 10651: 10648:Nano Letters 10647: 10605: 10601: 10595: 10544: 10540: 10534: 10524:23 September 10522:. Retrieved 10484: 10480: 10467: 10424: 10420: 10414: 10363: 10359: 10353: 10318: 10314: 10304: 10285: 10275: 10232: 10228: 10222: 10179: 10175: 10169: 10118: 10114: 10108: 10065: 10061: 10054: 10011: 10007: 9997: 9972: 9968: 9947:. Retrieved 9922: 9918: 9908: 9859: 9855: 9845: 9808: 9804: 9794: 9767: 9763: 9753: 9741:. Retrieved 9733:ScienceDaily 9732: 9723: 9672: 9668: 9662: 9641: 9590: 9586: 9580: 9537: 9533: 9527: 9484: 9480: 9474: 9423: 9419: 9359: 9355: 9291: 9287: 9236: 9232: 9178: 9174: 9164: 9113: 9109: 9072: 9019: 9015: 8962: 8958: 8906: 8902: 8851: 8847: 8840: 8797: 8793: 8787: 8775:. Retrieved 8768:the original 8718: 8714: 8708: 8696:. Retrieved 8653: 8649: 8639: 8596: 8592: 8586: 8531: 8527: 8517: 8466: 8462: 8434: 8391: 8387: 8325: 8321: 8314: 8302:. Retrieved 8293: 8271:22 September 8269:. Retrieved 8255: 8243:. Retrieved 8229: 8188: 8184: 8178: 8159: 8134: 8130: 8124: 8084:(4): 206–9. 8081: 8077: 8003: 7999: 7993: 7953:(7): 75108. 7950: 7946: 7940: 7907: 7903: 7861: 7857: 7851: 7800: 7796: 7790: 7739: 7735: 7729: 7719: 7690:the original 7643: 7640:Rev Mod Phys 7639: 7586: 7582: 7576: 7525: 7522:Nano Letters 7521: 7457: 7453: 7401: 7397: 7345: 7341: 7335: 7308: 7304: 7294: 7277: 7273: 7267: 7242: 7238: 7232: 7211:cite journal 7196: 7151: 7147: 7121:the original 7116: 7107: 7095:. Retrieved 7085: 7073:. Retrieved 7069:the original 7058: 7046:. Retrieved 7037: 7025: 7016: 7007: 6995:. Retrieved 6982: 6970:. Retrieved 6966:the original 6952: 6943: 6936:. Retrieved 6931: 6907:. Retrieved 6898: 6889: 6869: 6849: 6841: 6835: 6825: 6800: 6796: 6790: 6757: 6753: 6743: 6708: 6704: 6698: 6673: 6669: 6663: 6630: 6626: 6620: 6608:. Retrieved 6601:the original 6592: 6579: 6528: 6524: 6494: 6488: 6482: 6431: 6427: 6365: 6361: 6301: 6297: 6255: 6251: 6245: 6220: 6216: 6182: 6178: 6172: 6155: 6151: 6145: 6110: 6106: 6093: 6081:. Retrieved 6064: 6058: 6048: 6031: 6027: 6018: 6009: 6005: 5994:Debye, Peter 5988: 5976:. Retrieved 5967: 5963: 5950: 5915: 5909: 5899: 5872: 5866: 5856: 5805: 5801: 5795: 5744: 5740: 5719:. Retrieved 5697: 5688: 5676:. Retrieved 5672: 5662: 5650:. Retrieved 5640: 5628:. Retrieved 5614: 5602:. Retrieved 5598:the original 5593: 5587: 5524: 5520: 5494: 5490: 5484: 5444:(284): 284. 5441: 5437: 5383: 5379: 5330:(1): 17007. 5327: 5323: 5261: 5257: 5211: 5208:Phys. Rev. B 5207: 5200: 5181: 5177: 5147: 5143: 5137: 5129: 5085: 5079: 5069: 5018: 5014: 4967:. Retrieved 4958: 4949: 4902:Carbon fiber 4881: 4877: 4856: 4846: 4837: 4829: 4817: 4791: 4784: 4760: 4757: 4753: 4744:Applications 4726: 4713: 4708:Kubo formula 4705: 4653: 4641: 4628: 4604: 4595:Laval nozzle 4592: 4576: 4567: 4555: 4546: 4532: 4525: 4511: 4503: 4483: 4464: 4446: 4427:1100 °C 4420: 4408: 4404: 4384: 4364: 4355: 4346: 4343:Molten salts 4337: 4330: 4307: 4303: 4286: 4267: 4258: 4254: 4235: 4223: 4219: 4201: 4192:ball milling 4185: 4169: 4161: 4136: 4127: 4115: 4112: 4082: 4066: 4062: 4050: 4037: 4020: 4004: 3996:π–π stacking 3985: 3974: 3965: 3951: 3908: 3900: 3884: 3875: 3851: 3847: 3818: 3798: 3774: 3754: 3707: 3686: 3670: 3641: 3626: 3582: 3578: 3552: 3549:Turbostratic 3544: 3537: 3514:, a tunable 3509: 3490: 3476: 3467: 3456: 3453: 3449: 3436:hydrocarbons 3433: 3426: 3387: 3365: 3354: 3344:(similar to 3332: 3323: 3317: 3314:Fermi energy 3295: 3244: 3213: 3209: 3185: 3170: 3137: 3129: 3114: 3105:0.5 TPa 3082: 3079: 3071:0.77 mg 3045:of 130  3040: 3037: 3025: 3015: 3003: 2934: 2765: 2750:spin current 2731: 2714: 2701:10 cm⋅W 2694: 2685: 2677:fiber lasers 2666: 2638: 2610:0.25 eV 2603: 2580: 2568: 2547: 2537: 2530: 2516:permittivity 2513: 2510:Permittivity 2497: 2484: 2472: 2469: 2447: 2436: 2429: 2423: 2419: 2414: 2410: 2403: 2385:quantum dots 2382: 2370: 2362: 2342: 2328: 2322: 2316: 2312: 2296: 2216: 2205: 2113: 2089: 2085: 2081: 2077: 2074:Landau level 2026: 1998: 1993: 1970: 1955: 1951: 1810:conductivity 1807: 1799: 1792: 1788:quantum dots 1777: 1757: 1753: cm⋅V⋅s 1722: 1714: cm⋅V⋅s 1690: cm⋅V⋅s 1679: 1646: 1590: 1585: 1531: 1526: 1447: 1445: 1349: 1346:chiral limit 1335: 1322: 1318: 1309: 1302: 1285: 1270: 1268: 1064: 1049: 1042: 1035: 1031: 1024: 1022: 1016:of massless 1010:Yuanbo Zhang 1003: 947: 938: 931: 920: 908:Dirac points 906:meet at the 898:because its 893: 866: 830: 818: 802: 778: 767: 751: 720: 671: 639: 626: 579: 555: 552: 529: 525: 506: 494: 481: 467: 450:Landau level 435: 433:parameters. 413:in 1915 and 380: 362:Nobel Museum 317: 297:nanomaterial 294: 275: 267: 255:diamagnetism 222:valence band 211: 188:single layer 147: 146: 134: 109: 92: 46:atomic-scale 24207:Outer space 24117:Cosmic dust 24082:Abiogenesis 23994:Unconfirmed 23950:Heavy water 23790:Ethanethiol 23705:Cyanoallene 23695:Acetic acid 23665:Methylamine 23549:Diacetylene 23464:Formic acid 23454:Cyanomethyl 23112:Diazenylium 23102:CCP radical 22978:(molecular) 22962:(molecular) 22931:(molecular) 22740:Moore's law 22671:Neuroethics 22666:Cyberethics 22436:Utility fog 22421:Claytronics 22411:3D printing 22290:Haeckelites 22235:(tricarbon) 22184:other forms 22084:Nanoscrolls 21323:(1): 1–19. 20765:(3): 6–14. 20708:(1): 1–17. 20596:Nano Energy 20018:(12): 612. 19896:: 649–656. 19839:: 430–438. 19641:: 472–479. 19208:: 700–708. 18347:11 November 18309:: 168–175. 18224:ExtremeTech 18026:Graphene". 17990:(1): 30–3. 17952:10397/34914 17848:10397/34810 17811:10397/15682 17639:: 121–131. 17458:10 November 16463:(1): 34–9. 16440:10 November 16397:ExtremeTech 16376:10 November 16346:10 November 16049:: 451–460. 14977:28 February 14897:10397/32222 14606:: 335–341. 14549:(1): 2737. 14292:21 December 13777:16 February 13516:14 December 13018:Lay summary 12346:(1): 5991. 12060:(1): 2811. 10510:10261/98472 9852:Zettl, Alex 9836:10220/17639 8777:2 September 8304:27 February 7678:10261/18097 7097:20 December 6945:microscope. 6803:(7): 2498. 6633:(1): 1–20. 5918:: 249–259. 5678:10 November 5630:1 September 4969:30 November 4920:Phagraphene 4796:exploiting 4692:resistivity 4605:In 2014, a 3897:3D graphene 3710:nitric acid 3632:spintronics 3469:biomarker. 3459:osteogenics 3335:basal plane 3077:of paper). 2734:spintronics 2718:nanoribbons 2697:Kerr effect 2604:Graphene's 2560:Dirac point 2514:Graphene's 2432:= 0, ±1, ±4 2041:Hall effect 2033:Hall effect 1780:nanoribbons 1767:. In 2015, 1729:10 Ω⋅m 1725:resistivity 1455:10 m/s 1290:2.46 Å 1278:2.8 eV 1059:model, the 976:particles. 810:Photoresist 772:(3.35  677:(1.42  673:0.142  662:East Anglia 602:Scotch tape 497:epitaxially 477:exfoliation 454:Dirac point 24311:Categories 24122:Cosmic ray 24064:Silylidyne 24027:Hemolithin 24002:Anthracene 23919:Deuterated 23900:Pyrimidine 23710:Ethanimine 23573:Ketenimine 23429:Butadiynyl 23253:Thioformyl 23107:Chloronium 22631:Automation 22516:Metal foam 22042:Fullerenes 21548:(2): 184. 21158:Forbes.com 20882:15 October 20872:Tennis.com 19956:11 October 19812:16 October 19737:16 October 18646:1506.08569 17722:11 October 17405:11 October 17220:2262/66458 17107:2006.14909 16992:2262/73941 16926:: 154614. 16873:2262/73941 16763:(95): 95. 16618:2262/91730 16407:11 October 16056:1611.04379 15952:: 90–100. 15573:1 December 15178:6 February 14753:1 December 14663:: 122464. 14613:2001.03072 14522:1 December 14371:16 October 13118:1 December 12817:28 January 12199:1612.01727 12143:1611.01555 11820:: 75–127. 11300:. Gizmag. 11228:2302.06863 10980:1 December 10771:1 December 8245:2 February 7245:: 112504. 6997:3 December 6711:(1): 572. 6099:Bernal, JD 6012:: 180-188. 5875:: 014003. 4942:References 4768:filtration 4702:Simulation 4682:through a 4660:dielectric 4583:fullerenes 4289:buckyballs 4226:immiscible 4215:surfactant 4207:sonication 4188:turbulence 4073:inductance 3927:sequencing 3780:titrations 3446:Biological 3410:1000  3394:2630  3340:exceeding 3221:nucleation 3006:spintronic 2521:capacitors 1980:circuits. 1718:10 cm 1698:100 K 1588:wavevector 1586:where the 1295:conduction 1006:Philip Kim 900:conduction 814:adsorbates 747:nanometers 582:Andre Geim 502:d-orbitals 366:Andre Geim 354:transistor 348:A lump of 313:composites 282:Andre Geim 141:5300 W⋅m⋅K 24054:Phosphine 23922:molecules 23855:fullerene 23755:Acetamide 23559:Formamide 23439:Cyanamide 23293:Acetylene 23268:Tricarbon 23179:Methylene 23164:Isoformyl 23069:Triatomic 22842:Molecules 22661:Bioethics 22479:Fullerene 22072:Nanotubes 21830:brown.edu 21679:(1): 57. 21498:256768556 21482:1476-4687 21421:258279195 21413:2058-8437 21353:251175507 21337:2662-8449 21298:139956928 21290:1935-3804 21251:203653976 21137:25 August 21127:139420526 21113:: 46–51. 20842:203653990 20826:1748-3395 20755:Kuzum, D. 20732:1943-0655 20671:117786282 20663:1749-4893 20602:: 12–18. 20580:118519844 20555:1005.1276 20493:1310.8105 20403:1210.4642 20342:1210.5361 20288:1304.0750 20260:216262889 20228:: 44–58. 20162:119638159 20137:0705.3783 20034:116643404 19928:233573678 19920:0008-6223 19871:232864412 19863:0008-6223 19802:226203667 19778:1936-0851 19727:221623214 19703:1936-0851 19663:0008-6223 19419:2045-2322 19352:1936-0851 19301:204883163 19285:0743-7463 19246:220798190 19230:0021-9797 19171:219316507 19155:1944-8244 19104:205274548 19088:0935-9648 19041:102395615 19033:1616-301X 18980:225385130 18964:0743-7463 18905:0024-9297 18858:0008-6223 18836:: 38–42. 18608:5 October 18577:4 October 18547:4 October 18377:0807.2770 18288:206556123 17923:Nanoscale 17908:205874900 17872:Nanoscale 17857:137213724 17775:206072084 17672:Nanoscale 17377:205216466 17132:189813507 17053:0809.2690 17022:30 August 16940:216233251 16902:30 August 16737:1406.0809 16717:123480416 16665:0925-9635 16651:: 25–34. 16336:New Atlas 16203:30 August 16130:30 August 16081:119369379 15885:24 August 15510:: 81–94. 15482:: 81–94. 15381:1204.2875 15320:0810.4706 15168:248823106 15094:1112.3488 14945:1936-0851 14724:6 January 14695:6 January 14685:245712349 14638:210116531 14437:221623214 14413:1936-0851 14361:210926149 14345:1476-4687 14282:219011027 14156:0909.1502 14128:119443126 14075:235321882 13957:207573621 13904:7 January 13808:1104.5120 13550:1207.1487 13474:: 59–74. 13246:119461729 13012:119228971 12979:1112.5752 12854:115849714 12752:118664500 12727:1103.3337 12666:1404.5379 12637:207558462 12604:1003.3579 12576:207664146 12272:118835225 12247:1203.4196 12216:118840850 12136:: 42–77. 12114:135899138 11981:30 August 11891:1007.4985 11849:: 12–26. 11793:6 October 11762:6 October 11682:7 January 11568:118596336 11543:1106.6331 11530:Physica C 11515:119223424 11490:1011.2850 11308:6 October 11155:119608880 11130:0706.1451 11102:119145153 11077:0706.1597 11013:0706.1948 10923:119254414 10898:1006.1386 10877:119226501 10852:1006.1391 10839:Physica B 10788:Nanoscale 10661:0707.2983 10615:0706.0916 10554:0906.0969 10459:118338133 10434:1107.5803 10406:119237334 10373:1203.5527 10267:119233725 10242:1003.0154 10214:119284608 10189:0909.5540 10161:207313024 10128:0909.5536 10075:0910.5820 9949:30 August 9900:205217165 9682:0712.0835 9653:1309.0990 9572:118473227 9547:1102.1757 9519:118398377 9494:0907.3242 9433:0910.2763 9369:0910.2532 9213:203913300 9156:118388086 9123:1304.4897 9082:0909.1193 9054:118422866 9029:0909.2903 8972:0908.3822 8941:118710923 8916:0908.1900 8832:118585778 8807:1007.2849 8728:0812.1116 8663:1003.4590 8606:0803.0744 8541:0705.1540 8401:0708.2408 8335:1301.5354 8185:Nanoscale 8091:0711.3646 8013:0710.5304 7985:119213419 7960:0812.4406 7653:0709.1163 7611:214615777 7535:0811.0587 7467:0704.1793 7259:196975315 7161:1110.6557 6972:5 October 6938:9 October 6655:250758301 6028:Phys. Rev 5956:Debije, P 5815:0911.1953 5787:206513254 5754:0906.3799 5604:6 October 5416:206512830 5337:1409.4664 5271:0803.3718 4896:Borophene 4869:autophagy 4865:apoptosis 4824:metrology 4804:, led by 4794:inductors 4684:thin-film 4676:diffusion 4579:magnesium 4471:germanium 4465:A normal 4452:Epitaxial 4411:microwave 4395:pyrolysis 4314:annealing 4310:hydrazine 4083:In 2016, 3945:for safe 3920:detectors 3903:honeycomb 3825:porphyrin 3776:Hydrazine 3704:clusters. 3427:In 2013, 3422:allotrope 3402:900  3392:(SSA) of 3189:stiffness 3181:vacancies 3150:, with a 3067:4 kg 2973:± 2964:± 2955:± 2943:ν 2906:ν 2880:ν 2855:± 2844:± 2832:ν 2794:ν 2779:σ 2681:photonics 2625:terahertz 2504:power law 2263:⋅ 2257:⋅ 2250:± 2235:σ 2146:⋅ 2139:± 2124:σ 2051:σ 1962:potassium 1892:π 1694:10 K 1617:− 1558:ℏ 1502:ψ 1475:→ 1472:σ 1417:ψ 1395:ψ 1392:∇ 1389:⋅ 1383:→ 1380:σ 1223:⁡ 1217:⋅ 1187:⁡ 1148:⁡ 1118:γ 1113:± 960:for spin- 929:systems. 876:splitting 836:fullerene 827:Stability 805:structure 717:orbitals. 668:Structure 530:In 2002, 431:unit cell 381:In 1859, 247:ballistic 238:semimetal 196:honeycomb 24317:Graphene 24041:Linear C 24022:Graphene 23934:Ammonium 23735:Acrolein 23598:Propynal 23583:Methanol 23554:Ethylene 23423:Ammonium 23198:Nitroxyl 23022:Sulfanyl 22966:Imidogen 22960:Nitrogen 22929:Hydrogen 22874:Argonium 22851:Diatomic 22586:Domotics 22578:Robotics 22563:Silicene 22484:Graphene 22333:Charcoal 22174:Q-carbon 22101:sp forms 22078:Nanobuds 22037:Graphene 22031:Graphite 22022:sp forms 21928:Graphene 21901:23840061 21834:Archived 21811:24674462 21762:32523022 21705:27799056 21654:27154267 21605:31109057 21564:35208308 21490:30894723 21431:21 April 21425:Archived 21363:21 April 21357:Archived 21243:31582830 21192:Archived 21190:. 2018. 21162:Archived 21131:Archived 21101:(2018). 21082:4 August 21076:Archived 21028:18266151 21020:19957928 21000:ACS Nano 20985:23405887 20934:13 April 20928:Archived 20876:Archived 20846:Archived 20834:31582831 20779:26541191 20740:25707442 20675:Archived 20526:31526933 20518:24702392 20428:23373925 20375:26962706 20367:24193661 20313:24002076 20205:32535262 20101:Archived 20079:58675631 19950:Archived 19806:Archived 19794:33119255 19758:ACS Nano 19731:Archived 19719:32909736 19683:ACS Nano 19616:25493446 19584:: 5714. 19551:Archived 19547:96283118 19508:96283118 19472:96850993 19437:33093555 19364:Archived 19360:23879536 19332:ACS Nano 19305:Archived 19293:31647673 19265:Langmuir 19238:32712476 19175:Archived 19163:32492330 19108:Archived 19096:28262992 18984:Archived 18972:32794716 18944:Langmuir 18917:Archived 18803:25198884 18783:ACS Nano 18764:55726071 18725:30130350 18717:22314052 18697:ACS Nano 18681:26053564 18602:Archived 18571:Archived 18541:Archived 18479:Archived 18428:Archived 18410:43507175 18402:19257540 18341:Archived 18280:24700471 18234:13 April 18228:Archived 18167:12 April 18161:Archived 18157:19229263 18110:14567874 18102:25683019 18056:11991071 18048:22385480 18012:19119279 17969:23688312 17961:24699893 17900:23579482 17767:26221914 17716:Archived 17694:26053881 17618:53349683 17581:20 March 17563:18958488 17555:22422977 17512:26172029 17504:23703794 17452:Archived 17399:Archived 17369:19370031 17314:19370030 17237:23576676 17229:21292974 17175:27816586 17167:23879536 17147:ACS Nano 17124:31199123 17094:ACS Nano 17078:16624132 17070:19227978 17013:Archived 17009:43256835 17001:24747780 16893:Archived 16889:43256835 16881:24747780 16821:3 August 16815:Archived 16797:21711598 16568:19544549 16560:26996525 16485:26452145 16434:Archived 16401:Archived 16370:Archived 16340:Archived 16287:24694285 16257:ACS Nano 16236:23 April 16230:Archived 16194:Archived 16190:12995375 16182:25354780 16124:Archived 16025:25788440 15976:23436939 15927:27459895 15879:Archived 15833:23897636 15780:46890587 15772:29760522 15728:31988847 15720:27184960 15676:26339027 15627:22426420 15619:24045695 15567:Archived 15563:21875131 15543:Langmuir 15398:98682200 15345:19179524 15291:55033112 15216:16771469 15172:Archived 15127:15204080 15119:22282806 15066:24385952 15058:20852355 14953:20731455 14925:ACS Nano 14906:96410135 14861:24848545 14841:ACS Nano 14811:22559247 14791:ACS Nano 14769:Archived 14747:Archived 14718:Archived 14689:Archived 14581:29426893 14516:Archived 14512:23353677 14429:32909736 14393:ACS Nano 14365:Archived 14353:31988511 14286:Archived 14235:22329410 14189:33249360 14181:20367001 14067:34079138 14015:Archived 13993:93345920 13979:: 8–12. 13949:21661740 13895:Archived 13891:55035225 13841:20794090 13833:21528849 13795:ACS Nano 13771:Archived 13749:26700626 13719:ACS Nano 13703:21650218 13627:25554791 13583:11008306 13575:22765872 13510:Archived 13506:Phys.org 13453:96586004 13383:12628957 13375:24460150 13305:25554791 13193:16197233 13112:Archived 13108:21384860 13088:ACS Nano 13004:22231598 12948:21314164 12905:45253497 12897:20836537 12811:Archived 12799:20378814 12699:10617464 12691:24736666 12659:: 3689. 12629:20218666 12591:ACS Nano 12568:20405895 12489:18284217 12435:10990753 12378:25103818 12318:23528068 12035:35277622 12027:23723231 11975:Archived 11971:22751178 11924:12301209 11916:21071664 11787:Archived 11756:Archived 11733:24777167 11709:: 3782. 11661:25605375 11611:19738771 11603:25504060 11425:21 April 11416:Archived 11302:Archived 11280:Archived 11263:37045919 11254:10097601 11185:Archived 11038:17632544 10974:Archived 10970:21939213 10824:31835103 10816:21503364 10765:Archived 10730:18999843 10694:16943236 10686:17824720 10640:73518107 10587:36067301 10579:19905823 10515:Archived 10398:22660052 10345:23188285 10153:19907547 10100:59070301 10046:23071901 9943:Archived 9892:19516337 9737:Archived 9715:17595181 9707:18517825 9633:31092090 9625:16606085 9458:19881489 9394:19829294 9334:16445720 9326:16712020 9269:26403885 9261:23788788 9205:19553953 9148:24033057 8876:19145232 8698:6 August 8692:Archived 8688:28441144 8631:14581125 8578:18003926 8501:17660825 8442:Archived 8426:53419753 8360:24499819 8298:Archived 8265:Archived 8239:Archived 8221:24846431 8213:25631337 8167:Archived 8116:12221376 8108:18654504 8038:18232798 7932:18654384 7886:53633968 7843:17130602 7835:15525015 7782:26968734 7774:12732058 7717:(eds.). 7568:13087073 7560:17497819 7500:38264967 7492:17891144 7436:17972931 7380:15066112 7188:78304205 7154:: 1–56. 7042:Archived 6909:25 March 6903:Archived 6878:Archived 6858:Archived 6782:10003828 6563:17330039 6466:16281031 6408:37267733 6400:16241680 6336:16281030 6101:(1924). 6083:12 April 6077:Archived 6024:Hull, AW 6000:(1917). 5978:13 April 5972:Archived 5848:33832203 5840:20366220 5779:19541989 5721:31 March 5624:Archived 5589:APS News 5559:15499015 5476:31941941 5408:18635798 5362:73626659 5296:18388259 5236:55246344 5184:(1): 4. 5122:Archived 5061:14647602 5053:17330084 4963:Archived 4935:Silicene 4929:Plumbene 4890:See also 4873:necrosis 4849:in vitro 4843:Toxicity 4421:Heating 4375:fructose 4322:hydrogen 4242:graphite 4147:crystals 4144:graphite 4069:solenoid 3943:sorbents 3805:graphane 3757:solvents 3736:10  3714:carboxyl 3516:band gap 3440:hexagons 3384:Chemical 3260:graphite 3193:strength 3142:and the 3075:1 m 2705:solitons 2655:10  2606:band gap 2592:10  2441:and the 2329:integral 2204:, where 1342:fermions 1323:linearly 1280:and the 788:Geometry 782:presolar 411:Scherrer 387:lamellar 372:in 2010. 356:, and a 350:graphite 203:graphite 182:) is an 148:Graphene 51:made of 33:Graphene 25:Grapheme 21:Graphite 24187:Kerogen 24074:Related 24017:Glycine 23970:Propyne 23929:Ammonia 23827:Benzene 23822:Acetone 23814:or more 23785:Propene 23770:Ethanol 23660:Propyne 23479:Methane 23348:Ketenyl 23298:Ammonia 22454:Aerogel 22315:related 22285:Chaoite 21892:3725082 21869:Bibcode 21840:9 March 21802:3995421 21753:7287048 21732:Bibcode 21696:5088662 21645:5039077 21596:6567174 21555:8880160 21460:Bibcode 21393:Bibcode 21345:1891442 21223:Bibcode 21198:8 April 21168:8 April 20976:3601907 20908:16 July 20806:Bibcode 20710:Bibcode 20643:Bibcode 20604:Bibcode 20560:Bibcode 20498:Bibcode 20436:8335461 20408:Bibcode 20347:Bibcode 20293:Bibcode 20230:Bibcode 20185:Bibcode 20142:Bibcode 20107:9 April 19981:Bibcode 19898:Bibcode 19841:Bibcode 19786:1798504 19711:1798502 19643:Bibcode 19607:4264682 19586:Bibcode 19557:14 June 19428:7583245 19399:Bibcode 19370:13 July 19311:13 July 19210:Bibcode 19181:13 July 19114:13 July 19068:Bibcode 18990:13 July 18923:13 July 18913:1265313 18885:Bibcode 18838:Bibcode 18811:5077855 18672:4744682 18651:Bibcode 18485:8 April 18463:Bibcode 18434:14 June 18382:Bibcode 18311:Bibcode 18260:Bibcode 18252:Science 18194:Bibcode 18137:Bibcode 17992:Bibcode 17931:Bibcode 17880:Bibcode 17747:Bibcode 17641:Bibcode 17535:Bibcode 17527:Science 17484:Bibcode 17349:Bibcode 17322:2920478 17284:Bibcode 17199:Bibcode 17191:Science 16971:Bibcode 16853:Bibcode 16788:3212245 16765:Bibcode 16695:Bibcode 16595:Bibcode 16540:Bibcode 16514:23 June 16465:Bibcode 16278:4046778 16162:Bibcode 16108:Bibcode 16061:Bibcode 16016:4552611 15967:3578711 15853:Bibcode 15803:Bibcode 15752:Bibcode 15700:Bibcode 15654:Bibcode 15646:Science 15599:Bibcode 15512:Bibcode 15484:Bibcode 15449:Bibcode 15421:Bibcode 15353:3536592 15325:Bibcode 15307:Science 15242:Bibcode 15099:Bibcode 15081:Science 15038:Bibcode 15002:Bibcode 14819:9055313 14665:Bibcode 14618:Bibcode 14572:5807325 14551:Bibcode 14492:Bibcode 14421:1798502 14325:Bibcode 14215:Bibcode 14161:Bibcode 14108:Bibcode 14047:Bibcode 13929:Bibcode 13871:Bibcode 13813:Bibcode 13635:6655234 13607:Bibcode 13599:Science 13555:Bibcode 13476:Bibcode 13433:Bibcode 13313:6655234 13285:Bibcode 13277:Science 13226:Bibcode 13173:Bibcode 13057:Bibcode 12984:Bibcode 12928:Bibcode 12877:Bibcode 12779:Bibcode 12771:Science 12732:Bibcode 12671:Bibcode 12609:Bibcode 12548:Bibcode 12497:9310741 12469:Bibcode 12443:9006722 12415:Bibcode 12369:4125985 12348:Bibcode 12298:Bibcode 12252:Bibcode 12148:Bibcode 12062:Bibcode 12007:Bibcode 11999:Science 11951:Bibcode 11896:Bibcode 11878:Science 11851:Bibcode 11711:Bibcode 11669:9501340 11641:Bibcode 11548:Bibcode 11495:Bibcode 11450:Bibcode 11400:Bibcode 11358:Bibcode 11233:Bibcode 11135:Bibcode 11082:Bibcode 11046:4411466 11018:Bibcode 10950:Bibcode 10903:Bibcode 10857:Bibcode 10796:Bibcode 10710:Bibcode 10666:Bibcode 10620:Bibcode 10559:Bibcode 10489:Bibcode 10439:Bibcode 10378:Bibcode 10323:Bibcode 10247:Bibcode 10194:Bibcode 10133:Bibcode 10080:Bibcode 10037:3471096 10016:Bibcode 10014:: 737. 9977:Bibcode 9927:Bibcode 9864:Bibcode 9813:Bibcode 9772:Bibcode 9743:6 April 9687:Bibcode 9605:Bibcode 9552:Bibcode 9499:Bibcode 9466:4392125 9438:Bibcode 9402:2927627 9374:Bibcode 9306:Bibcode 9241:Bibcode 9233:Science 9183:Bibcode 9128:Bibcode 9087:Bibcode 9034:Bibcode 8997:9546283 8977:Bibcode 8921:Bibcode 8884:4349731 8856:Bibcode 8812:Bibcode 8753:8825103 8733:Bibcode 8668:Bibcode 8611:Bibcode 8569:2141788 8546:Bibcode 8509:3518448 8481:Bibcode 8406:Bibcode 8368:4445858 8340:Bibcode 8193:Bibcode 8139:Bibcode 8046:3543049 8018:Bibcode 7965:Bibcode 7912:Bibcode 7866:Bibcode 7815:Bibcode 7754:Bibcode 7686:5650871 7658:Bibcode 7591:Bibcode 7540:Bibcode 7472:Bibcode 7406:Bibcode 7360:Bibcode 7313:Bibcode 7166:Bibcode 7075:23 July 7048:24 July 6805:Bibcode 6762:Bibcode 6735:7578318 6713:Bibcode 6678:Bibcode 6635:Bibcode 6610:1 April 6571:3507167 6543:Bibcode 6474:4424714 6446:Bibcode 6380:Bibcode 6344:3470761 6316:Bibcode 6260:Bibcode 6225:Bibcode 6115:Bibcode 5970:: 277. 5920:Bibcode 5877:Bibcode 5820:Bibcode 5759:Bibcode 5741:Science 5652:24 July 5567:5729649 5539:Bibcode 5521:Science 5467:6962388 5446:Bibcode 5388:Bibcode 5380:Science 5342:Bibcode 5304:3024573 5276:Bibcode 5258:Science 5216:Bibcode 5090:Bibcode 5033:Bibcode 4853:in vivo 4387:ethanol 4367:glucose 4245:crystal 4230:heptane 4040:aerogel 3532:twisted 3346:diamond 3148:brittle 3125:auxetic 2550:is the 2533:opacity 2464:⁠ 2452:⁠ 2106:3  2098:silicon 2092:is the 2084:(where 2015:⁠ 2003:⁠ 1978:anyonic 1769:lithium 1706:phonons 1034:or the 974:⁠ 962:⁠ 739:σ-bonds 685:Bonding 610:silicon 588:at the 576:, 2010. 517:Mildred 334:History 226:bonding 214:σ-bonds 119:130 GPa 24357:Toxins 24238:Tholin 24059:Pyrene 23504:Silane 23474:Ketene 22976:Oxygen 22656:Ethics 22624:Topics 22392:Fields 21899:  21889:  21809:  21799:  21760:  21750:  21703:  21693:  21652:  21642:  21603:  21593:  21562:  21552:  21496:  21488:  21480:  21452:Nature 21419:  21411:  21351:  21343:  21335:  21296:  21288:  21249:  21241:  21125:  21056:26 May 21026:  21018:  20983:  20973:  20840:  20832:  20824:  20777:  20738:  20730:  20669:  20661:  20578:  20524:  20516:  20434:  20426:  20373:  20365:  20311:  20258:  20203:  20160:  20077:  20067:  20032:  19926:  19918:  19890:Carbon 19869:  19861:  19833:Carbon 19800:  19792:  19784:  19776:  19725:  19717:  19709:  19701:  19661:  19635:Carbon 19614:  19604:  19545:  19506:  19470:  19435:  19425:  19417:  19358:  19350:  19299:  19291:  19283:  19244:  19236:  19228:  19169:  19161:  19153:  19102:  19094:  19086:  19039:  19031:  18978:  18970:  18962:  18911:  18903:  18856:  18830:Carbon 18809:  18801:  18762:  18723:  18715:  18679:  18669:  18522:213144 18520:  18455:Carbon 18408:  18400:  18303:Carbon 18286:  18278:  18155:  18108:  18100:  18054:  18046:  18010:  17967:  17959:  17906:  17898:  17855:  17773:  17765:  17692:  17633:Carbon 17616:  17561:  17553:  17510:  17502:  17375:  17367:  17341:Nature 17320:  17312:  17276:Nature 17252:Nature 17235:  17227:  17173:  17165:  17130:  17122:  17076:  17068:  17007:  16999:  16938:  16887:  16879:  16795:  16785:  16715:  16663:  16566:  16558:  16483:  16315:31 May 16285:  16275:  16188:  16180:  16100:Carbon 16079:  16023:  16013:  15974:  15964:  15946:Carbon 15925:  15831:  15778:  15770:  15726:  15718:  15674:  15625:  15617:  15561:  15504:Carbon 15476:Carbon 15441:Carbon 15413:Carbon 15396:  15351:  15343:  15289:  15233:Carbon 15214:  15166:  15125:  15117:  15064:  15056:  14951:  14943:  14904:  14859:  14817:  14809:  14683:  14636:  14600:Carbon 14579:  14569:  14510:  14435:  14427:  14419:  14411:  14359:  14351:  14343:  14317:Nature 14280:  14243:896422 14241:  14233:  14187:  14179:  14126:  14073:  14065:  14039:Nature 14021:1 July 13991:  13955:  13947:  13889:  13839:  13831:  13747:  13701:  13633:  13625:  13581:  13573:  13468:Carbon 13451:  13381:  13373:  13311:  13303:  13244:  13191:  13143:  13106:  13010:  13002:  12946:  12903:  12895:  12852:  12807:213783 12805:  12797:  12750:  12697:  12689:  12635:  12627:  12574:  12566:  12520:  12495:  12487:  12441:  12433:  12376:  12366:  12316:  12270:  12214:  12168:286118 12166:  12112:  12033:  12025:  11969:  11922:  11914:  11783:Gizmag 11731:  11667:  11659:  11609:  11601:  11566:  11513:  11261:  11251:  11215:Nature 11153:  11100:  11044:  11036:  11000:Nature 10968:  10921:  10875:  10822:  10814:  10728:  10692:  10684:  10638:  10585:  10577:  10457:  10404:  10396:  10343:  10265:  10212:  10159:  10151:  10098:  10044:  10034:  9898:  9890:  9884:974550 9882:  9856:Nature 9764:Optica 9713:  9705:  9631:  9623:  9570:  9517:  9464:  9456:  9420:Nature 9400:  9392:  9356:Nature 9332:  9324:  9267:  9259:  9211:  9203:  9175:Nature 9154:  9146:  9052:  8995:  8939:  8882:  8874:  8848:Nature 8830:  8751:  8686:  8629:  8576:  8566:  8507:  8499:  8424:  8366:  8358:  8322:Nature 8219:  8211:  8114:  8106:  8044:  8036:  7983:  7930:  7884:  7841:  7833:  7780:  7772:  7684:  7609:  7566:  7558:  7498:  7490:  7434:  7378:  7257:  7186:  6780:  6732:  6653:  6569:  6561:  6525:Nature 6472:  6464:  6428:Nature 6406:  6398:  6342:  6334:  6298:Nature 6152:Nature 6135:  5942:108699 5940:  5846:  5838:  5785:  5777:  5712:  5565:  5557:  5474:  5464:  5414:  5406:  5360:  5302:  5294:  5234:  5059:  5051:  4871:, and 4680:carbon 4391:sodium 4118:phonon 3821:ligand 3732:or 5.3 3680:of 32 3566:and TS 3328:phonon 3310:phonon 2540:≈ 2.3% 2309:Chiral 1976:using 1958:dopant 1733:silver 1293:. The 999:doping 548:metres 540:inches 536:patent 427:Bernal 311:, and 218:π-bond 99:≈1 TPa 53:carbon 24224:(PAH) 23812:atoms 23747:atoms 23687:atoms 23685:Eight 23615:atoms 23613:Seven 23521:atoms 23415:atoms 23285:atoms 23273:Water 23203:Ozone 23145:(HNC) 23139:(HCN) 21996:forms 21494:S2CID 21417:S2CID 21349:S2CID 21294:S2CID 21247:S2CID 21123:S2CID 21024:S2CID 20838:S2CID 20775:S2CID 20736:S2CID 20667:S2CID 20576:S2CID 20550:arXiv 20522:S2CID 20488:arXiv 20432:S2CID 20398:arXiv 20371:S2CID 20337:arXiv 20283:arXiv 20256:S2CID 20201:S2CID 20158:S2CID 20132:arXiv 20075:S2CID 20030:S2CID 19924:S2CID 19867:S2CID 19798:S2CID 19723:S2CID 19543:S2CID 19504:S2CID 19468:S2CID 19297:S2CID 19242:S2CID 19167:S2CID 19100:S2CID 19037:S2CID 18976:S2CID 18807:S2CID 18760:S2CID 18721:S2CID 18641:arXiv 18518:S2CID 18406:S2CID 18372:arXiv 18284:S2CID 18106:S2CID 18072:Small 18052:S2CID 17965:S2CID 17904:S2CID 17853:S2CID 17771:S2CID 17614:S2CID 17559:S2CID 17508:S2CID 17373:S2CID 17318:S2CID 17233:S2CID 17171:S2CID 17128:S2CID 17102:arXiv 17074:S2CID 17048:arXiv 17016:(PDF) 17005:S2CID 16959:(PDF) 16936:S2CID 16896:(PDF) 16885:S2CID 16841:(PDF) 16732:arXiv 16713:S2CID 16564:S2CID 16197:(PDF) 16186:S2CID 16150:(PDF) 16077:S2CID 16051:arXiv 15776:S2CID 15724:S2CID 15623:S2CID 15394:S2CID 15376:arXiv 15349:S2CID 15315:arXiv 15287:S2CID 15164:S2CID 15123:S2CID 15089:arXiv 15062:S2CID 14902:S2CID 14815:S2CID 14681:S2CID 14634:S2CID 14608:arXiv 14433:S2CID 14357:S2CID 14278:S2CID 14239:S2CID 14185:S2CID 14151:arXiv 14124:S2CID 14098:arXiv 14071:S2CID 13989:S2CID 13953:S2CID 13898:(PDF) 13887:S2CID 13859:(PDF) 13837:S2CID 13803:arXiv 13631:S2CID 13579:S2CID 13545:arXiv 13449:S2CID 13379:S2CID 13309:S2CID 13242:S2CID 13216:arXiv 13008:S2CID 12974:arXiv 12901:S2CID 12850:S2CID 12803:S2CID 12748:S2CID 12722:arXiv 12695:S2CID 12661:arXiv 12633:S2CID 12599:arXiv 12572:S2CID 12493:S2CID 12439:S2CID 12405:arXiv 12268:S2CID 12242:arXiv 12212:S2CID 12194:arXiv 12164:S2CID 12138:arXiv 12110:S2CID 12031:S2CID 11920:S2CID 11886:arXiv 11676:(PDF) 11665:S2CID 11629:(PDF) 11607:S2CID 11564:S2CID 11538:arXiv 11511:S2CID 11485:arXiv 11419:(PDF) 11388:(PDF) 11335:(PDF) 11328:(PDF) 11223:arXiv 11194:2 May 11188:(PDF) 11173:(PDF) 11151:S2CID 11125:arXiv 11098:S2CID 11072:arXiv 11042:S2CID 11008:arXiv 10919:S2CID 10893:arXiv 10873:S2CID 10847:arXiv 10820:S2CID 10690:S2CID 10656:arXiv 10636:S2CID 10610:arXiv 10583:S2CID 10549:arXiv 10518:(PDF) 10477:(PDF) 10455:S2CID 10429:arXiv 10402:S2CID 10368:arXiv 10263:S2CID 10237:arXiv 10210:S2CID 10184:arXiv 10157:S2CID 10123:arXiv 10096:S2CID 10070:arXiv 9896:S2CID 9711:S2CID 9677:arXiv 9648:arXiv 9629:S2CID 9595:arXiv 9568:S2CID 9542:arXiv 9515:S2CID 9489:arXiv 9462:S2CID 9428:arXiv 9398:S2CID 9364:arXiv 9330:S2CID 9296:arXiv 9265:S2CID 9209:S2CID 9152:S2CID 9118:arXiv 9077:arXiv 9050:S2CID 9024:arXiv 8993:S2CID 8967:arXiv 8937:S2CID 8911:arXiv 8880:S2CID 8828:S2CID 8802:arXiv 8771:(PDF) 8764:(PDF) 8749:S2CID 8723:arXiv 8684:S2CID 8658:arXiv 8627:S2CID 8601:arXiv 8536:arXiv 8505:S2CID 8471:arXiv 8422:S2CID 8396:arXiv 8364:S2CID 8330:arXiv 8217:S2CID 8112:S2CID 8086:arXiv 8042:S2CID 8008:arXiv 7981:S2CID 7955:arXiv 7882:S2CID 7839:S2CID 7805:arXiv 7778:S2CID 7744:arXiv 7693:(PDF) 7682:S2CID 7648:arXiv 7636:(PDF) 7607:S2CID 7564:S2CID 7530:arXiv 7496:S2CID 7462:arXiv 7376:S2CID 7350:arXiv 7255:S2CID 7184:S2CID 7156:arXiv 6729:INIST 6651:S2CID 6604:(PDF) 6589:(PDF) 6567:S2CID 6533:arXiv 6470:S2CID 6436:arXiv 6404:S2CID 6370:arXiv 6340:S2CID 6306:arXiv 6137:94336 6133:JSTOR 5938:JSTOR 5844:S2CID 5810:arXiv 5783:S2CID 5749:arXiv 5563:S2CID 5529:arXiv 5412:S2CID 5358:S2CID 5332:arXiv 5300:S2CID 5266:arXiv 5232:S2CID 5057:S2CID 5023:arXiv 4688:Raman 4601:Laser 4389:with 4371:sugar 4318:argon 4312:with 4058:tesla 3981:rebar 3799:Full 3794:epoxy 3726:amide 2824:with 2768:tesla 2651:(6.33 2544:light 2427:with 2406:tesla 1446:Here 763:hydro 758:bands 743:bonds 733:and p 723:shell 407:Debye 320:IUPAC 280:, by 192:atoms 55:atoms 23745:Nine 23413:Five 23323:HCCN 23283:Four 23243:SiNC 22791:List 21897:PMID 21842:2015 21807:PMID 21758:PMID 21701:PMID 21650:PMID 21601:PMID 21560:PMID 21486:PMID 21478:ISSN 21433:2023 21409:ISSN 21365:2023 21341:OSTI 21333:ISSN 21286:ISSN 21239:PMID 21200:2020 21170:2020 21139:2020 21084:2016 21058:2014 21016:PMID 20981:PMID 20936:2014 20910:2015 20884:2016 20854:2022 20830:PMID 20822:ISSN 20728:ISSN 20683:2022 20659:ISSN 20514:PMID 20424:PMID 20363:PMID 20309:PMID 20109:2020 20065:ISBN 19958:2015 19916:ISSN 19859:ISSN 19814:2021 19790:PMID 19782:OSTI 19774:ISSN 19739:2021 19715:PMID 19707:OSTI 19699:ISSN 19659:ISSN 19612:PMID 19559:2014 19433:PMID 19415:ISSN 19372:2022 19356:PMID 19348:ISSN 19313:2022 19289:PMID 19281:ISSN 19234:PMID 19226:ISSN 19183:2022 19159:PMID 19151:ISSN 19116:2022 19092:PMID 19084:ISSN 19029:ISSN 18992:2022 18968:PMID 18960:ISSN 18925:2022 18909:OSTI 18901:ISSN 18854:ISSN 18799:PMID 18713:PMID 18677:PMID 18610:2015 18579:2014 18549:2014 18487:2020 18436:2014 18398:PMID 18349:2008 18276:PMID 18236:2014 18169:2020 18153:PMID 18098:PMID 18044:PMID 18008:PMID 17957:PMID 17896:PMID 17763:PMID 17724:2015 17690:PMID 17583:2012 17551:PMID 17500:PMID 17460:2019 17407:2015 17365:PMID 17310:PMID 17225:PMID 17163:PMID 17120:PMID 17066:PMID 17024:2019 16997:PMID 16904:2019 16877:PMID 16823:2014 16793:PMID 16661:ISSN 16556:PMID 16516:2016 16481:PMID 16442:2019 16409:2015 16378:2019 16348:2019 16317:2020 16283:PMID 16238:2014 16205:2019 16178:PMID 16132:2019 16021:PMID 15972:PMID 15923:PMID 15887:2013 15829:PMID 15768:PMID 15716:PMID 15672:PMID 15615:PMID 15575:2019 15559:PMID 15341:PMID 15212:PMID 15180:2023 15115:PMID 15054:PMID 14979:2011 14949:PMID 14941:ISSN 14857:PMID 14807:PMID 14755:2020 14726:2022 14697:2022 14577:PMID 14524:2020 14508:PMID 14425:PMID 14417:OSTI 14409:ISSN 14373:2021 14349:PMID 14341:ISSN 14294:2020 14231:PMID 14177:PMID 14063:PMID 14023:2015 13945:PMID 13906:2020 13829:PMID 13779:2016 13745:PMID 13699:PMID 13623:PMID 13571:PMID 13518:2013 13371:PMID 13301:PMID 13189:PMID 13141:ISBN 13120:2019 13104:PMID 13000:PMID 12944:PMID 12893:PMID 12819:2023 12795:PMID 12687:PMID 12625:PMID 12564:PMID 12518:ISBN 12485:PMID 12431:PMID 12374:PMID 12314:PMID 12023:PMID 11983:2019 11967:PMID 11912:PMID 11795:2016 11764:2016 11729:PMID 11684:2020 11657:PMID 11599:PMID 11427:2009 11310:2016 11259:PMID 11196:2019 11034:PMID 10982:2019 10966:PMID 10812:PMID 10773:2019 10726:PMID 10682:PMID 10575:PMID 10526:2019 10394:PMID 10341:PMID 10149:PMID 10042:PMID 9951:2019 9888:PMID 9880:OSTI 9745:2008 9703:PMID 9621:PMID 9454:PMID 9390:PMID 9322:PMID 9257:PMID 9201:PMID 9144:PMID 8872:PMID 8779:2009 8700:2013 8574:PMID 8497:PMID 8356:PMID 8306:2014 8273:2015 8247:2020 8209:PMID 8104:PMID 8034:PMID 7928:PMID 7831:PMID 7770:PMID 7556:PMID 7488:PMID 7432:PMID 7243:1162 7224:help 7152:2012 7099:2014 7077:2014 7050:2014 6999:2013 6974:2010 6940:2014 6911:2022 6778:PMID 6612:2016 6559:PMID 6462:PMID 6396:PMID 6332:PMID 6111:A106 6085:2020 6010:1917 5980:2014 5873:T146 5836:PMID 5775:PMID 5723:2012 5710:ISBN 5680:2019 5654:2014 5632:2021 5606:2013 5555:PMID 5472:PMID 5404:PMID 5292:PMID 5049:PMID 4971:2014 4822:for 4778:and 4672:BEOL 4664:IEDM 4280:and 3748:and 3526:and 3269:1500 3203:and 3191:and 3179:and 3109:NEMS 3083:The 2588:(6.7 2498:The 2485:The 2372:via 2027:The 1761:PMMA 1696:and 1655:and 1297:and 1067:is: 1041:and 1008:and 902:and 697:, 2p 584:and 542:(2.5 519:and 415:Hull 409:and 368:and 318:The 284:and 207:-ene 24036:NCO 23936:ion 23843:, C 23810:Ten 23519:Six 23425:ion 21994:sp 21930:at 21919:at 21887:PMC 21877:doi 21865:110 21797:PMC 21789:doi 21748:PMC 21740:doi 21691:PMC 21681:doi 21640:PMC 21632:doi 21628:105 21591:PMC 21550:PMC 21517:doi 21468:doi 21456:567 21401:doi 21325:doi 21278:doi 21231:doi 21115:doi 21008:doi 20971:PMC 20963:doi 20814:doi 20767:doi 20718:doi 20651:doi 20612:doi 20568:doi 20506:doi 20484:112 20460:doi 20456:117 20416:doi 20394:110 20355:doi 20301:doi 20246:hdl 20238:doi 20193:doi 20150:doi 20057:doi 20020:doi 19989:doi 19977:107 19906:doi 19894:178 19849:doi 19837:174 19766:doi 19691:doi 19651:doi 19639:126 19602:PMC 19594:doi 19535:doi 19496:doi 19460:doi 19423:PMC 19407:doi 19340:doi 19273:doi 19218:doi 19206:580 19143:doi 19076:doi 19019:doi 18952:doi 18893:doi 18846:doi 18791:doi 18752:doi 18748:116 18705:doi 18667:PMC 18659:doi 18510:doi 18471:doi 18390:doi 18368:102 18319:doi 18268:doi 18256:344 18202:doi 18145:doi 18088:hdl 18080:doi 18036:doi 18032:134 18000:doi 17947:hdl 17939:doi 17888:doi 17843:hdl 17835:doi 17806:hdl 17798:doi 17755:doi 17680:doi 17649:doi 17606:doi 17543:doi 17531:335 17492:doi 17357:doi 17345:458 17300:hdl 17292:doi 17280:458 17256:doi 17215:hdl 17207:doi 17195:331 17155:doi 17112:doi 17058:doi 17044:131 16987:hdl 16979:doi 16928:doi 16924:829 16869:hdl 16861:doi 16783:PMC 16773:doi 16703:doi 16653:doi 16613:hdl 16603:doi 16548:doi 16473:doi 16273:PMC 16265:doi 16170:doi 16116:doi 16069:doi 16047:360 16011:PMC 16003:doi 15999:103 15962:PMC 15954:doi 15915:doi 15869:hdl 15861:doi 15849:125 15819:hdl 15811:doi 15799:125 15760:doi 15708:doi 15662:doi 15650:349 15607:doi 15551:doi 15520:doi 15492:doi 15457:doi 15429:doi 15386:doi 15372:115 15333:doi 15311:323 15279:doi 15275:113 15250:doi 15204:doi 15200:128 15154:doi 15107:doi 15085:335 15046:doi 15010:doi 14933:doi 14892:hdl 14884:doi 14849:doi 14799:doi 14673:doi 14661:186 14626:doi 14604:160 14567:PMC 14559:doi 14500:doi 14460:doi 14401:doi 14333:doi 14321:577 14270:doi 14266:124 14223:doi 14169:doi 14147:104 14116:doi 14055:doi 14043:594 13981:doi 13977:510 13937:doi 13879:doi 13821:doi 13735:hdl 13727:doi 13691:doi 13662:doi 13615:doi 13603:347 13563:doi 13484:doi 13441:doi 13406:doi 13402:117 13363:doi 13359:136 13336:doi 13332:117 13293:doi 13281:347 13234:doi 13181:doi 13096:doi 13065:doi 12992:doi 12936:doi 12885:doi 12842:doi 12787:doi 12775:328 12740:doi 12679:doi 12617:doi 12556:doi 12477:doi 12423:doi 12364:PMC 12356:doi 12306:doi 12260:doi 12204:doi 12156:doi 12102:doi 12098:196 12070:doi 12015:doi 12003:340 11959:doi 11904:doi 11882:330 11859:doi 11822:doi 11719:doi 11649:doi 11591:doi 11556:doi 11534:471 11503:doi 11481:112 11458:doi 11408:doi 11366:doi 11249:PMC 11241:doi 11219:616 11143:doi 11090:doi 11026:doi 11004:448 10958:doi 10946:115 10911:doi 10889:110 10865:doi 10843:405 10804:doi 10757:doi 10753:114 10718:doi 10706:101 10674:doi 10628:doi 10567:doi 10545:103 10505:hdl 10497:doi 10447:doi 10386:doi 10331:doi 10290:doi 10255:doi 10202:doi 10141:doi 10088:doi 10032:PMC 10024:doi 9985:doi 9935:doi 9872:doi 9860:459 9831:hdl 9821:doi 9780:doi 9695:doi 9673:100 9613:doi 9560:doi 9507:doi 9446:doi 9424:462 9382:doi 9360:462 9314:doi 9249:doi 9237:340 9191:doi 9179:459 9136:doi 9114:111 9042:doi 8985:doi 8929:doi 8864:doi 8852:457 8820:doi 8741:doi 8676:doi 8619:doi 8564:PMC 8554:doi 8532:104 8489:doi 8414:doi 8348:doi 8326:506 8201:doi 8147:doi 8135:103 8096:doi 8076:". 8066:SiO 8026:doi 8004:100 7973:doi 7920:doi 7874:doi 7823:doi 7762:doi 7674:hdl 7666:doi 7599:doi 7548:doi 7520:". 7480:doi 7422:hdl 7414:doi 7368:doi 7346:578 7321:doi 7309:472 7282:doi 7278:106 7247:doi 7174:doi 6813:doi 6801:147 6770:doi 6721:doi 6686:doi 6643:doi 6551:doi 6529:446 6499:doi 6454:doi 6432:438 6388:doi 6324:doi 6302:438 6268:doi 6256:295 6233:doi 6187:doi 6160:doi 6156:258 6123:doi 6069:doi 6065:105 6036:doi 5928:doi 5916:149 5885:doi 5828:doi 5806:103 5767:doi 5745:324 5702:doi 5547:doi 5525:306 5499:doi 5495:316 5462:PMC 5454:doi 5396:doi 5384:321 5350:doi 5328:108 5324:EPL 5284:doi 5262:320 5224:doi 5186:doi 5152:doi 5148:119 5098:doi 5041:doi 4861:DNA 4820:SiC 4787:BAC 4715:of 4678:of 4333:DVD 4316:in 4038:An 3924:DNA 3893:). 3891:psi 3887:GPa 3873:). 3871:psi 3867:MPa 3682:GPa 3621:GNR 3610:GNR 3300:to 3287:500 3278:500 3205:AFM 3201:TEM 3197:TEM 3093:SiO 3063:psi 3059:TPa 3051:psi 3047:GPa 2992:of 2542:of 2445:at 2439:= 3 2351:in 2299:= 0 2100:or 1964:in 1852:SiO 1786:or 1751:000 1737:SiO 1712:000 1710:200 1688:000 1220:cos 1184:cos 1139:cos 923:= 2 776:). 761:(ΔH 681:). 614:SiO 546:10 425:by 405:by 326:or 190:of 23:or 24313:: 23853:70 23845:60 23841:60 23839:(C 23564:HC 22136:18 22081:, 22075:, 22069:, 22063:, 22059:70 22054:, 22049:60 21895:. 21885:. 21875:. 21863:. 21859:. 21832:. 21828:. 21805:. 21795:. 21785:35 21783:. 21779:. 21756:. 21746:. 21738:. 21728:10 21726:. 21722:. 21699:. 21689:. 21677:13 21675:. 21671:. 21648:. 21638:. 21626:. 21622:. 21599:. 21587:20 21585:. 21581:. 21558:. 21546:13 21544:. 21540:. 21492:. 21484:. 21476:. 21466:. 21454:. 21450:. 21423:. 21415:. 21407:. 21399:. 21387:. 21383:. 21355:. 21347:. 21339:. 21331:. 21319:. 21315:. 21292:. 21284:. 21274:15 21272:. 21268:. 21245:. 21237:. 21229:. 21219:14 21217:. 21186:. 21160:. 21156:. 21129:. 21121:. 21109:. 21105:. 21044:. 21022:. 21014:. 21002:. 20979:. 20969:. 20959:14 20957:. 20953:. 20900:. 20874:. 20870:. 20844:. 20836:. 20828:. 20820:. 20812:. 20802:14 20800:. 20796:. 20773:. 20761:. 20734:. 20726:. 20716:. 20706:10 20704:. 20700:. 20673:. 20665:. 20657:. 20649:. 20637:. 20633:. 20610:. 20600:28 20598:. 20574:. 20566:. 20558:. 20544:. 20520:. 20512:. 20504:. 20496:. 20482:. 20454:. 20430:. 20422:. 20414:. 20406:. 20392:. 20369:. 20361:. 20353:. 20345:. 20333:13 20331:. 20307:. 20299:. 20291:. 20277:. 20254:. 20244:. 20236:. 20224:. 20199:. 20191:. 20181:56 20179:. 20156:. 20148:. 20140:. 20128:19 20126:. 20095:. 20073:. 20063:. 20028:. 20014:. 20010:. 19987:. 19975:. 19944:. 19922:. 19914:. 19904:. 19892:. 19888:. 19865:. 19857:. 19847:. 19835:. 19831:. 19804:. 19796:. 19788:. 19780:. 19772:. 19762:14 19760:. 19756:. 19729:. 19721:. 19713:. 19705:. 19697:. 19687:14 19685:. 19681:. 19657:. 19649:. 19637:. 19633:. 19610:. 19600:. 19592:. 19580:. 19576:. 19549:. 19541:. 19531:24 19529:. 19525:. 19502:. 19492:24 19490:. 19466:. 19456:21 19454:. 19431:. 19421:. 19413:. 19405:. 19395:10 19393:. 19389:. 19362:. 19354:. 19346:. 19334:. 19330:. 19303:. 19295:. 19287:. 19279:. 19269:35 19267:. 19263:. 19240:. 19232:. 19224:. 19216:. 19204:. 19200:. 19173:. 19165:. 19157:. 19149:. 19139:12 19137:. 19133:. 19106:. 19098:. 19090:. 19082:. 19074:. 19064:29 19062:. 19058:. 19035:. 19027:. 19015:27 19013:. 19009:. 18982:. 18974:. 18966:. 18958:. 18948:36 18946:. 18942:. 18915:. 18907:. 18899:. 18891:. 18881:48 18879:. 18875:. 18852:. 18844:. 18834:81 18832:. 18828:. 18805:. 18797:. 18785:. 18772:^ 18758:. 18746:. 18733:^ 18719:. 18711:. 18699:. 18675:. 18665:. 18657:. 18649:. 18637:27 18635:. 18631:. 18600:. 18596:. 18565:. 18516:. 18506:21 18504:. 18477:. 18469:. 18459:49 18457:. 18453:. 18404:. 18396:. 18388:. 18380:. 18366:. 18317:. 18307:55 18305:. 18282:. 18274:. 18266:. 18254:. 18222:. 18200:. 18190:11 18188:. 18159:. 18151:. 18143:. 18131:. 18127:. 18104:. 18096:. 18086:. 18076:11 18074:. 18050:. 18042:. 18030:. 18006:. 17998:. 17986:. 17963:. 17955:. 17945:. 17937:. 17925:. 17902:. 17894:. 17886:. 17874:. 17851:. 17841:. 17829:. 17804:. 17794:22 17792:. 17769:. 17761:. 17753:. 17743:26 17741:. 17710:. 17688:. 17674:. 17670:. 17647:. 17637:56 17635:. 17612:. 17602:38 17600:. 17557:. 17549:. 17541:. 17529:. 17506:. 17498:. 17490:. 17480:25 17478:. 17446:. 17423:. 17393:. 17371:. 17363:. 17355:. 17343:. 17316:. 17308:. 17298:. 17290:. 17278:. 17254:. 17231:. 17223:. 17213:. 17205:. 17193:. 17169:. 17161:. 17149:. 17126:. 17118:. 17110:. 17098:13 17096:. 17072:. 17064:. 17056:. 17042:. 17011:. 17003:. 16995:. 16985:. 16977:. 16967:13 16965:. 16961:. 16934:. 16922:. 16891:. 16883:. 16875:. 16867:. 16859:. 16849:13 16847:. 16843:. 16791:. 16781:. 16771:. 16759:. 16755:. 16711:. 16701:. 16691:60 16689:. 16685:. 16673:^ 16659:. 16649:46 16647:. 16643:. 16627:^ 16611:. 16601:. 16589:. 16585:. 16562:. 16554:. 16546:. 16536:28 16534:. 16502:. 16479:. 16471:. 16461:16 16459:. 16428:. 16417:^ 16399:. 16395:. 16364:. 16338:. 16334:. 16303:. 16281:. 16271:. 16259:. 16255:. 16213:^ 16192:. 16184:. 16176:. 16168:. 16158:25 16156:. 16152:. 16122:. 16114:. 16104:50 16102:. 16098:. 16075:. 16067:. 16059:. 16045:. 16033:^ 16019:. 16009:. 15997:. 15993:. 15970:. 15960:. 15950:53 15948:. 15944:. 15921:. 15911:45 15909:. 15895:^ 15877:. 15867:. 15859:. 15847:. 15843:. 15827:. 15817:. 15809:. 15797:. 15774:. 15766:. 15758:. 15748:13 15746:. 15722:. 15714:. 15706:. 15696:28 15694:. 15670:. 15660:. 15648:. 15644:. 15621:. 15613:. 15605:. 15595:15 15593:. 15565:. 15557:. 15547:27 15545:. 15541:. 15518:. 15508:75 15506:. 15490:. 15480:75 15478:. 15455:. 15445:49 15443:. 15427:. 15417:49 15415:. 15392:. 15384:. 15370:. 15347:. 15339:. 15331:. 15323:. 15309:. 15285:. 15273:. 15248:. 15238:49 15236:. 15210:. 15170:. 15162:. 15148:. 15144:. 15121:. 15113:. 15105:. 15097:. 15083:. 15060:. 15052:. 15044:. 15034:21 15032:. 15008:. 14998:48 14996:. 14947:. 14939:. 14927:. 14923:. 14900:. 14890:. 14880:30 14878:. 14855:. 14843:. 14839:. 14827:^ 14813:. 14805:. 14793:. 14780:^ 14687:. 14679:. 14671:. 14659:. 14655:. 14632:. 14624:. 14616:. 14602:. 14598:. 14575:. 14565:. 14557:. 14545:. 14541:. 14514:. 14506:. 14498:. 14486:. 14482:. 14456:22 14454:. 14431:. 14423:. 14415:. 14407:. 14397:14 14395:. 14391:. 14363:. 14355:. 14347:. 14339:. 14331:. 14319:. 14315:. 14302:^ 14284:. 14276:. 14264:. 14260:. 14237:. 14229:. 14221:. 14211:12 14209:. 14197:^ 14183:. 14175:. 14167:. 14159:. 14145:. 14122:. 14114:. 14106:. 14094:75 14092:. 14069:. 14061:. 14053:. 14041:. 14013:. 14009:. 13987:. 13975:. 13951:. 13943:. 13935:. 13925:11 13923:. 13893:. 13885:. 13877:. 13865:. 13861:. 13835:. 13827:. 13819:. 13811:. 13797:. 13765:. 13743:. 13733:. 13723:10 13721:. 13697:. 13685:. 13656:. 13652:. 13629:. 13621:. 13613:. 13601:. 13577:. 13569:. 13561:. 13553:. 13541:12 13539:. 13504:. 13482:. 13472:70 13470:. 13447:. 13439:. 13429:48 13427:. 13400:. 13377:. 13369:. 13357:. 13330:. 13307:. 13299:. 13291:. 13279:. 13240:. 13232:. 13224:. 13212:71 13210:. 13187:. 13179:. 13169:95 13167:. 13155:^ 13110:. 13102:. 13090:. 13086:. 13063:. 13053:76 13051:. 13030:. 13026:. 13020:: 13006:. 12998:. 12990:. 12982:. 12970:11 12968:. 12942:. 12934:. 12924:11 12922:. 12899:. 12891:. 12883:. 12873:10 12871:. 12848:. 12838:22 12836:. 12809:. 12801:. 12793:. 12785:. 12773:. 12769:. 12746:. 12738:. 12730:. 12718:83 12716:. 12693:. 12685:. 12677:. 12669:. 12655:. 12631:. 12623:. 12615:. 12607:. 12593:. 12570:. 12562:. 12554:. 12544:10 12542:. 12491:. 12483:. 12475:. 12463:. 12451:^ 12437:. 12429:. 12421:. 12413:. 12401:84 12399:. 12372:. 12362:. 12354:. 12342:. 12338:. 12326:^ 12312:. 12304:. 12294:13 12292:. 12280:^ 12266:. 12258:. 12250:. 12238:85 12236:. 12224:^ 12210:. 12202:. 12188:. 12176:^ 12162:. 12154:. 12146:. 12134:13 12132:. 12108:. 12096:. 12084:^ 12068:. 12056:. 12052:. 12029:. 12021:. 12013:. 12001:. 11973:. 11965:. 11957:. 11947:11 11945:. 11941:. 11918:. 11910:. 11902:. 11894:. 11880:. 11857:. 11847:31 11845:. 11818:90 11816:. 11812:. 11785:. 11781:. 11754:. 11750:. 11727:. 11717:. 11705:. 11701:. 11663:. 11655:. 11647:. 11637:26 11635:. 11631:. 11605:. 11597:. 11587:27 11585:. 11562:. 11554:. 11546:. 11532:. 11509:. 11501:. 11493:. 11479:. 11456:. 11444:. 11414:. 11406:. 11396:25 11394:. 11390:. 11364:. 11354:97 11352:. 11257:. 11247:. 11239:. 11231:. 11217:. 11213:. 11179:. 11175:. 11149:. 11141:. 11133:. 11121:46 11119:. 11096:. 11088:. 11080:. 11068:91 11066:. 11054:^ 11040:. 11032:. 11024:. 11016:. 11002:. 10990:^ 10972:. 10964:. 10956:. 10944:. 10940:. 10917:. 10909:. 10901:. 10887:. 10871:. 10863:. 10855:. 10841:. 10818:. 10810:. 10802:. 10790:. 10763:. 10751:. 10747:. 10724:. 10716:. 10704:. 10688:. 10680:. 10672:. 10664:. 10650:. 10634:. 10626:. 10618:. 10606:77 10604:. 10581:. 10573:. 10565:. 10557:. 10543:. 10513:. 10503:. 10495:. 10485:74 10483:. 10479:. 10453:. 10445:. 10437:. 10425:46 10423:. 10400:. 10392:. 10384:. 10376:. 10364:37 10362:. 10339:. 10329:. 10319:20 10317:. 10313:. 10288:. 10284:. 10261:. 10253:. 10245:. 10233:96 10231:. 10208:. 10200:. 10192:. 10180:95 10178:. 10155:. 10147:. 10139:. 10131:. 10119:17 10117:. 10094:. 10086:. 10078:. 10066:19 10064:. 10040:. 10030:. 10022:. 10010:. 10006:. 9983:. 9973:98 9971:. 9959:^ 9941:. 9933:. 9923:93 9921:. 9917:. 9894:. 9886:. 9878:. 9870:. 9858:. 9829:. 9819:. 9809:15 9807:. 9803:. 9778:. 9766:. 9762:. 9731:. 9709:. 9701:. 9693:. 9685:. 9671:. 9627:. 9619:. 9611:. 9603:. 9591:96 9589:. 9566:. 9558:. 9550:. 9538:84 9536:. 9513:. 9505:. 9497:. 9485:80 9483:. 9460:. 9452:. 9444:. 9436:. 9422:. 9410:^ 9396:. 9388:. 9380:. 9372:. 9358:. 9342:^ 9328:. 9320:. 9312:. 9304:. 9292:96 9290:. 9277:^ 9263:. 9255:. 9247:. 9235:. 9221:^ 9207:. 9199:. 9189:. 9177:. 9173:. 9150:. 9142:. 9134:. 9126:. 9112:. 9099:^ 9085:. 9075:. 9062:^ 9048:. 9040:. 9032:. 9020:95 9018:. 9005:^ 8991:. 8983:. 8975:. 8963:95 8961:. 8949:^ 8935:. 8927:. 8919:. 8907:81 8905:. 8892:^ 8878:. 8870:. 8862:. 8850:. 8826:. 8818:. 8810:. 8798:82 8796:. 8747:. 8739:. 8731:. 8719:50 8717:. 8690:. 8682:. 8674:. 8666:. 8654:12 8652:. 8648:. 8625:. 8617:. 8609:. 8595:. 8572:. 8562:. 8552:. 8544:. 8530:. 8526:. 8503:. 8495:. 8487:. 8479:. 8465:. 8453:^ 8420:. 8412:. 8404:. 8390:. 8376:^ 8362:. 8354:. 8346:. 8338:. 8324:. 8296:. 8292:. 8281:^ 8215:. 8207:. 8199:. 8187:. 8145:. 8133:. 8110:. 8102:. 8094:. 8080:. 8054:^ 8040:. 8032:. 8024:. 8016:. 8002:. 7979:. 7971:. 7963:. 7951:80 7949:. 7926:. 7918:. 7906:. 7894:^ 7880:. 7872:. 7862:71 7860:. 7837:. 7829:. 7821:. 7813:. 7801:93 7799:. 7776:. 7768:. 7760:. 7752:. 7740:90 7738:. 7701:^ 7680:. 7672:. 7664:. 7656:. 7644:81 7642:. 7638:. 7619:^ 7605:. 7597:. 7587:27 7585:. 7562:. 7554:. 7546:. 7538:. 7524:. 7508:^ 7494:. 7486:. 7478:. 7470:. 7456:. 7444:^ 7430:. 7420:. 7412:. 7400:. 7388:^ 7374:. 7366:. 7358:. 7344:. 7319:. 7307:. 7303:. 7276:. 7253:. 7241:. 7215:: 7213:}} 7209:{{ 7182:. 7172:. 7164:. 7150:. 7146:. 7129:^ 7115:. 7040:. 7036:. 7015:. 6990:. 6960:. 6942:. 6930:. 6919:^ 6897:. 6840:. 6834:. 6811:. 6799:. 6776:. 6768:. 6758:46 6756:. 6727:. 6719:. 6709:24 6707:. 6684:. 6674:58 6672:. 6649:. 6641:. 6629:. 6595:. 6591:. 6565:. 6557:. 6549:. 6541:. 6527:. 6511:^ 6495:78 6468:. 6460:. 6452:. 6444:. 6430:. 6416:^ 6402:. 6394:. 6386:. 6378:. 6366:95 6364:. 6352:^ 6338:. 6330:. 6322:. 6314:. 6300:. 6280:^ 6266:. 6254:. 6231:. 6221:53 6219:. 6199:^ 6183:18 6181:. 6154:. 6131:. 6121:. 6109:. 6105:. 6075:. 6032:10 6030:. 5996:; 5968:17 5962:. 5936:. 5926:. 5914:. 5908:. 5883:. 5871:. 5865:. 5842:. 5834:. 5826:. 5818:. 5804:. 5781:. 5773:. 5765:. 5757:. 5743:. 5731:^ 5708:. 5696:. 5671:. 5594:18 5586:. 5575:^ 5561:. 5553:. 5545:. 5537:. 5523:. 5511:^ 5470:. 5460:. 5452:. 5442:11 5440:. 5436:. 5424:^ 5410:. 5402:. 5394:. 5382:. 5370:^ 5356:. 5348:. 5340:. 5326:. 5312:^ 5298:. 5290:. 5282:. 5274:. 5260:. 5244:^ 5230:. 5222:. 5212:91 5210:. 5180:. 5176:. 5164:^ 5146:. 5112:^ 5096:. 5086:11 5084:. 5078:. 5055:. 5047:. 5039:. 5031:. 5017:. 4979:^ 4961:. 4957:. 4875:. 4867:, 4851:, 4774:, 4766:, 4740:. 4698:. 4696:nm 4607:CO 4585:. 4529:2D 4373:, 4369:, 4183:. 4181:10 4177:10 4099:. 4075:. 4067:A 4060:. 4013:. 3949:. 3752:. 3744:, 3642:A 3558:/I 3556:2D 3414:/g 3406:/g 3398:/g 3289:– 3280:– 3271:– 2932:. 2707:. 2649:nm 2586:nm 2573:. 2538:πα 2450:= 2420:νe 2418:= 2415:xy 2001:+ 1755:. 1749:40 1720:. 1686:15 1659:. 1651:, 1494:, 1453:~ 1333:. 1288:≈ 1276:≈ 921:gv 770:nm 749:. 675:nm 664:. 594:UK 592:, 489:nm 479:. 460:. 330:. 315:. 172:iː 24043:5 24034:2 24032:H 23979:D 23977:2 23975:N 23851:C 23568:N 23566:4 23188:H 23186:2 23184:N 22826:e 22819:t 22812:v 22377:e 22370:t 22363:v 22275:6 22270:C 22259:3 22254:C 22230:3 22225:C 22214:2 22209:C 22198:1 22193:C 22131:C 22120:6 22115:C 22087:) 22057:C 22047:C 21978:e 21971:t 21964:v 21903:. 21879:: 21871:: 21844:. 21813:. 21791:: 21764:. 21742:: 21734:: 21707:. 21683:: 21656:. 21634:: 21607:. 21566:. 21525:. 21519:: 21500:. 21470:: 21462:: 21435:. 21403:: 21395:: 21389:8 21367:. 21327:: 21321:2 21300:. 21280:: 21253:. 21233:: 21225:: 21202:. 21172:. 21141:. 21117:: 21111:1 21086:. 21060:. 21030:. 21010:: 21004:3 20987:. 20965:: 20938:. 20912:. 20886:. 20856:. 20816:: 20808:: 20781:. 20769:: 20763:9 20742:. 20720:: 20712:: 20685:. 20653:: 20645:: 20639:9 20618:. 20614:: 20606:: 20582:. 20570:: 20562:: 20552:: 20546:7 20528:. 20508:: 20500:: 20490:: 20466:. 20462:: 20438:. 20418:: 20410:: 20400:: 20377:. 20357:: 20349:: 20339:: 20315:. 20303:: 20295:: 20285:: 20279:8 20262:. 20248:: 20240:: 20232:: 20226:5 20207:. 20195:: 20187:: 20164:. 20152:: 20144:: 20134:: 20111:. 20081:. 20059:: 20036:. 20022:: 20016:1 19995:. 19991:: 19983:: 19960:. 19930:. 19908:: 19900:: 19873:. 19851:: 19843:: 19816:. 19768:: 19741:. 19693:: 19665:. 19653:: 19645:: 19618:. 19596:: 19588:: 19582:5 19561:. 19537:: 19510:. 19498:: 19474:. 19462:: 19439:. 19409:: 19401:: 19374:. 19342:: 19336:7 19315:. 19275:: 19248:. 19220:: 19212:: 19185:. 19145:: 19118:. 19078:: 19070:: 19043:. 19021:: 18994:. 18954:: 18927:. 18895:: 18887:: 18860:. 18848:: 18840:: 18813:. 18793:: 18787:8 18766:. 18754:: 18727:. 18707:: 18701:6 18683:. 18661:: 18653:: 18643:: 18612:. 18581:. 18551:. 18524:. 18512:: 18489:. 18473:: 18465:: 18438:. 18412:. 18392:: 18384:: 18374:: 18351:. 18325:. 18321:: 18313:: 18290:. 18270:: 18262:: 18238:. 18208:. 18204:: 18196:: 18171:. 18147:: 18139:: 18133:8 18112:. 18090:: 18082:: 18058:. 18038:: 18014:. 18002:: 17994:: 17988:4 17971:. 17949:: 17941:: 17933:: 17927:6 17910:. 17890:: 17882:: 17876:5 17859:. 17845:: 17837:: 17831:1 17814:. 17808:: 17800:: 17777:. 17757:: 17749:: 17726:. 17696:. 17682:: 17676:7 17655:. 17651:: 17643:: 17620:. 17608:: 17585:. 17565:. 17545:: 17537:: 17514:. 17494:: 17486:: 17462:. 17409:. 17379:. 17359:: 17351:: 17324:. 17302:: 17294:: 17286:: 17262:. 17258:: 17239:. 17217:: 17209:: 17201:: 17177:. 17157:: 17151:7 17134:. 17114:: 17104:: 17080:. 17060:: 17050:: 17026:. 16989:: 16981:: 16973:: 16942:. 16930:: 16906:. 16871:: 16863:: 16855:: 16825:. 16799:. 16775:: 16767:: 16761:6 16740:. 16734:: 16719:. 16705:: 16697:: 16667:. 16655:: 16621:. 16615:: 16605:: 16597:: 16591:7 16570:. 16550:: 16542:: 16518:. 16487:. 16475:: 16467:: 16444:. 16411:. 16380:. 16350:. 16319:. 16289:. 16267:: 16261:8 16240:. 16207:. 16172:: 16164:: 16134:. 16118:: 16110:: 16083:. 16071:: 16063:: 16053:: 16027:. 16005:: 15978:. 15956:: 15929:. 15917:: 15889:. 15871:: 15863:: 15855:: 15835:. 15821:: 15813:: 15805:: 15782:. 15762:: 15754:: 15730:. 15710:: 15702:: 15678:. 15664:: 15656:: 15629:. 15609:: 15601:: 15577:. 15553:: 15526:. 15522:: 15514:: 15498:. 15494:: 15486:: 15463:. 15459:: 15451:: 15435:. 15431:: 15423:: 15400:. 15388:: 15378:: 15355:. 15335:: 15327:: 15317:: 15293:. 15281:: 15256:. 15252:: 15244:: 15218:. 15206:: 15182:. 15156:: 15150:2 15129:. 15109:: 15101:: 15091:: 15068:. 15048:: 15040:: 15016:. 15012:: 15004:: 14981:. 14955:. 14935:: 14929:4 14908:. 14894:: 14886:: 14863:. 14851:: 14845:8 14821:. 14801:: 14795:8 14775:. 14757:. 14728:. 14699:. 14675:: 14667:: 14640:. 14628:: 14620:: 14610:: 14583:. 14561:: 14553:: 14547:8 14526:. 14502:: 14494:: 14488:8 14466:. 14462:: 14439:. 14403:: 14375:. 14335:: 14327:: 14296:. 14272:: 14245:. 14225:: 14217:: 14191:. 14171:: 14163:: 14153:: 14130:. 14118:: 14110:: 14100:: 14077:. 14057:: 14049:: 14025:. 13995:. 13983:: 13959:. 13939:: 13931:: 13908:. 13881:: 13873:: 13867:1 13843:. 13823:: 13815:: 13805:: 13799:5 13781:. 13751:. 13737:: 13729:: 13705:. 13693:: 13687:3 13670:. 13664:: 13658:6 13637:. 13617:: 13609:: 13585:. 13565:: 13557:: 13547:: 13520:. 13490:. 13486:: 13478:: 13455:. 13443:: 13435:: 13412:. 13408:: 13385:. 13365:: 13342:. 13338:: 13315:. 13295:: 13287:: 13248:. 13236:: 13228:: 13218:: 13195:. 13183:: 13175:: 13149:. 13122:. 13098:: 13092:5 13071:. 13067:: 13059:: 13014:. 12994:: 12986:: 12976:: 12950:. 12938:: 12930:: 12907:. 12887:: 12879:: 12856:. 12844:: 12821:. 12789:: 12781:: 12754:. 12742:: 12734:: 12724:: 12701:. 12681:: 12673:: 12663:: 12657:5 12639:. 12619:: 12611:: 12601:: 12595:4 12578:. 12558:: 12550:: 12526:. 12499:. 12479:: 12471:: 12465:8 12445:. 12425:: 12417:: 12407:: 12380:. 12358:: 12350:: 12344:4 12320:. 12308:: 12300:: 12274:. 12262:: 12254:: 12244:: 12218:. 12206:: 12196:: 12190:4 12170:. 12158:: 12150:: 12140:: 12116:. 12104:: 12078:. 12072:: 12064:: 12058:4 12037:. 12017:: 12009:: 11985:. 11961:: 11953:: 11926:. 11906:: 11898:: 11888:: 11865:. 11861:: 11853:: 11830:. 11824:: 11797:. 11766:. 11735:. 11721:: 11713:: 11707:5 11686:. 11651:: 11643:: 11613:. 11593:: 11570:. 11558:: 11550:: 11540:: 11517:. 11505:: 11497:: 11487:: 11464:. 11460:: 11452:: 11446:4 11429:. 11410:: 11402:: 11372:. 11368:: 11360:: 11312:. 11265:. 11243:: 11235:: 11225:: 11198:. 11181:5 11157:. 11145:: 11137:: 11127:: 11104:. 11092:: 11084:: 11074:: 11048:. 11028:: 11020:: 11010:: 10984:. 10960:: 10952:: 10925:. 10913:: 10905:: 10895:: 10879:. 10867:: 10859:: 10849:: 10826:. 10806:: 10798:: 10792:3 10775:. 10759:: 10732:. 10720:: 10712:: 10696:. 10676:: 10668:: 10658:: 10652:7 10642:. 10630:: 10622:: 10612:: 10589:. 10569:: 10561:: 10551:: 10528:. 10507:: 10499:: 10491:: 10461:. 10449:: 10441:: 10431:: 10408:. 10388:: 10380:: 10370:: 10347:. 10333:: 10325:: 10298:. 10292:: 10269:. 10257:: 10249:: 10239:: 10216:. 10204:: 10196:: 10186:: 10163:. 10143:: 10135:: 10125:: 10102:. 10090:: 10082:: 10072:: 10048:. 10026:: 10018:: 10012:2 9991:. 9987:: 9979:: 9953:. 9937:: 9929:: 9902:. 9874:: 9866:: 9839:. 9833:: 9823:: 9815:: 9788:. 9782:: 9774:: 9768:3 9747:. 9717:. 9697:: 9689:: 9679:: 9656:. 9650:: 9635:. 9615:: 9607:: 9597:: 9574:. 9562:: 9554:: 9544:: 9521:. 9509:: 9501:: 9491:: 9468:. 9448:: 9440:: 9430:: 9404:. 9384:: 9376:: 9366:: 9336:. 9316:: 9308:: 9298:: 9271:. 9251:: 9243:: 9215:. 9193:: 9185:: 9158:. 9138:: 9130:: 9120:: 9093:. 9089:: 9079:: 9056:. 9044:: 9036:: 9026:: 8999:. 8987:: 8979:: 8969:: 8943:. 8931:: 8923:: 8913:: 8886:. 8866:: 8858:: 8834:. 8822:: 8814:: 8804:: 8781:. 8755:. 8743:: 8735:: 8725:: 8702:. 8678:: 8670:: 8660:: 8633:. 8621:: 8613:: 8603:: 8597:4 8580:. 8556:: 8548:: 8538:: 8511:. 8491:: 8483:: 8473:: 8467:6 8428:. 8416:: 8408:: 8398:: 8392:4 8370:. 8350:: 8342:: 8332:: 8308:. 8275:. 8249:. 8223:. 8203:: 8195:: 8189:7 8153:. 8149:: 8141:: 8118:. 8098:: 8088:: 8082:3 8071:2 8048:. 8028:: 8020:: 8010:: 7987:. 7975:: 7967:: 7957:: 7934:. 7922:: 7914:: 7908:2 7888:. 7876:: 7868:: 7845:. 7825:: 7817:: 7807:: 7784:. 7764:: 7756:: 7746:: 7676:: 7668:: 7660:: 7650:: 7613:. 7601:: 7593:: 7570:. 7550:: 7542:: 7532:: 7526:7 7518:2 7502:. 7482:: 7474:: 7464:: 7458:6 7438:. 7424:: 7416:: 7408:: 7402:6 7382:. 7370:: 7362:: 7352:: 7329:. 7323:: 7315:: 7288:. 7284:: 7261:. 7249:: 7226:) 7222:( 7190:. 7176:: 7168:: 7158:: 7101:. 7079:. 7052:. 7001:. 6976:. 6913:. 6819:. 6815:: 6807:: 6784:. 6772:: 6764:: 6737:. 6723:: 6715:: 6692:. 6688:: 6680:: 6657:. 6645:: 6637:: 6631:9 6614:. 6573:. 6553:: 6545:: 6535:: 6505:. 6501:: 6476:. 6456:: 6448:: 6438:: 6410:. 6390:: 6382:: 6372:: 6346:. 6326:: 6318:: 6308:: 6274:. 6270:: 6262:: 6239:. 6235:: 6227:: 6193:. 6189:: 6166:. 6162:: 6139:. 6125:: 6117:: 6087:. 6071:: 6042:. 6038:: 5982:. 5944:. 5930:: 5922:: 5893:. 5887:: 5879:: 5850:. 5830:: 5822:: 5812:: 5789:. 5769:: 5761:: 5751:: 5725:. 5704:: 5682:. 5656:. 5634:. 5608:. 5569:. 5549:: 5541:: 5531:: 5505:. 5501:: 5478:. 5456:: 5448:: 5418:. 5398:: 5390:: 5364:. 5352:: 5344:: 5334:: 5306:. 5286:: 5278:: 5268:: 5238:. 5226:: 5218:: 5194:. 5188:: 5182:4 5178:C 5158:. 5154:: 5106:. 5100:: 5092:: 5063:. 5043:: 5035:: 5025:: 5019:6 4973:. 4644:2 4612:2 4558:2 4536:G 4533:I 4531:/ 4526:I 4522:2 4494:2 4490:2 4486:2 4320:/ 4179:× 3863:K 3861:/ 3859:m 3857:/ 3855:W 3738:m 3734:× 3730:Å 3568:2 3564:1 3560:G 3412:m 3404:m 3396:m 3366:T 3324:T 3321:B 3318:k 3302:C 3298:C 3098:2 2976:4 2970:, 2967:3 2961:, 2958:1 2952:, 2949:0 2946:= 2920:3 2916:/ 2912:1 2909:= 2886:3 2883:= 2859:4 2852:, 2848:1 2841:, 2838:0 2835:= 2812:h 2808:/ 2802:2 2798:e 2791:= 2786:y 2783:x 2657:m 2653:× 2594:m 2590:× 2548:α 2473:ν 2461:3 2458:/ 2455:1 2448:ν 2437:ν 2430:ν 2424:h 2422:/ 2411:σ 2319:. 2317:h 2315:/ 2313:e 2297:N 2282:h 2278:/ 2271:2 2267:e 2260:N 2254:4 2247:= 2242:y 2239:x 2206:N 2192:h 2188:/ 2181:2 2177:e 2172:) 2168:2 2164:/ 2160:1 2157:+ 2154:N 2150:( 2143:4 2136:= 2131:y 2128:x 2108:K 2090:h 2086:e 2082:h 2080:/ 2078:e 2058:y 2055:x 2018:. 2012:2 2009:/ 2006:1 1999:N 1994:N 1937:h 1933:/ 1927:2 1923:e 1919:4 1899:) 1896:h 1889:( 1884:/ 1878:2 1874:e 1870:4 1857:2 1838:h 1834:/ 1828:2 1824:e 1820:4 1742:2 1674:2 1626:| 1621:K 1613:k 1608:| 1604:= 1601:q 1591:q 1571:q 1566:F 1562:v 1555:= 1552:) 1549:q 1546:( 1543:E 1527:E 1513:) 1509:r 1505:( 1450:F 1448:v 1431:. 1428:) 1424:r 1420:( 1414:E 1410:= 1406:) 1402:r 1398:( 1371:F 1367:v 1353:0 1350:M 1319:K 1310:K 1306:z 1303:p 1286:a 1274:0 1271:γ 1249:y 1245:k 1241:a 1235:2 1231:3 1211:x 1207:k 1203:a 1197:2 1194:1 1181:4 1178:+ 1172:x 1168:k 1164:a 1158:2 1155:1 1143:2 1135:4 1132:+ 1129:1 1122:0 1110:= 1107:) 1102:y 1098:k 1094:, 1089:x 1085:k 1081:( 1078:E 1065:k 1053:z 1050:p 1046:y 1043:p 1039:x 1036:p 1032:s 1028:z 1025:p 971:2 968:/ 965:1 871:. 774:Å 754:z 735:y 731:x 715:z 703:z 699:y 695:x 679:Å 646:£ 619:2 544:× 178:/ 175:n 169:f 166:æ 163:r 160:ɡ 157:ˈ 154:/ 150:( 137:) 135:k 133:( 115:) 113:t 110:σ 108:( 95:) 93:E 91:( 77:C 27:.

Index

Graphite
Grapheme

atomic-scale
honeycomb structure
carbon
Young's modulus
Tensile strength
Thermal conductivity
/ˈɡræfn/
allotrope of carbon
single layer
atoms
honeycomb
nanostructure
graphite
-ene
σ-bonds
π-bond
valence band
bonding
polycyclic aromatic hydrocarbons
conduction band
semimetal
electronic properties
ballistic
quantum oscillations
diamagnetism

electron microscopes

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.