Knowledge

Ballistic conduction

Source đź“ť

891: 540: 247: 1634:. Therefore, even in the case of a perfect ballistic transport, there is a fundamental ballistic conductance which saturates the current of the device with a resistance of approximately 12.9 kΩ per mode (spin degeneracy included). There is, however, a generalization of the Landauer–Büttiker formalism of transport applicable to time-dependent problems in the presence of 535:{\displaystyle {\frac {1}{\lambda _{\mathrm {MFP} }}}={\frac {1}{\lambda _{\mathrm {el-el} }}}+{\frac {1}{\lambda _{\mathrm {ap} }}}+{\frac {1}{\lambda _{\mathrm {op,ems} }}}+{\frac {1}{\lambda _{\mathrm {op,abs} }}}+{\frac {1}{\lambda _{\mathrm {impurity} }}}+{\frac {1}{\lambda _{\mathrm {defect} }}}+{\frac {1}{\lambda _{\mathrm {boundary} }}}} 1685:
or ECR, arises as an electric current flowing through a rough interface is restricted to a limited number of contact spots. The size and distribution of these contact spots is governed by the topological structures of the contacting surfaces forming the electrical contact. In particular, for surfaces
1878:
Consider a coherent source of electrons connected to a conductor. Over a limited distance, the electron wave function will remain coherent. You still can deterministically predict its behavior (and use it for computation theoretically). After some greater distance, scattering causes each electron to
74:
of a particle can be described as the average length that the particle can travel freely, i.e., before a collision, which could change its momentum. The mean free path can be increased by reducing the number of impurities in a crystal or by lowering its temperature. Ballistic transport is observed
1874:
Electrons can be scattered several ways in a conductor. Electrons have several properties: wavelength (energy), direction, phase, and spin orientation. Different materials have different scattering probabilities which cause different incoherence rates (stochasticity). Some kinds of scattering can
2008:
m). So a nanotube or graphene nanoribbon could be a good ballistic conductor if the electrons in transit don't scatter with too many phonons and if the device is about 100 nm long. Such a transport regime has been found to depend on the nanoribbon edge structure and the electron energy.
1153: 1963:
The dominant scattering mechanism at room temperature is that of electrons emitting optical phonons. If electrons don't scatter with enough phonons (for example if the scattering rate is low), the mean free path tends to be very long
874:
emission normally dominates, depending on the material and transport conditions. There are also other scattering mechanisms which apply to different carriers that are not considered here (e.g. remote interface phonon scattering,
1792: 105:. It is theoretically possible for ballistic conduction to be extended to other quasi-particles, but this has not been experimentally verified. For a specific example, ballistic transport can be observed in a metal 1540:. For example, electrons in carbon nanotubes have two intervalley modes and two spin modes. Since the contacts and the GNR channel are connected by leads, the transmission probability is smaller at contacts 2266:
Koswatta, Siyuranga O.; Hasan, Sayed; Lundstrom, Mark S.; Anantram, M. P.; Nikonov, Dmitri E. (2006-07-10). "Ballisticity of nanotube field-effect transistors: Role of phonon energy and gate bias".
1609: 1394: 1005: 864: 765: 2006: 811: 713: 667: 587: 75:
when the mean free path of the particle is (much) longer than the dimension of the medium through which the particle travels. The particle alters its motion only upon collision with the
176: 1488: 621: 124:
in the material. The presence of resistance implies that the heat is dissipated in the leads outside of the "ballistic" conductor, where inelastic scattering effects can take place.
1710:, the resistance is dominated by the Sharvin mechanism, in which electrons travel ballistically through these micro-contacts with resistance that can be described by the following 1899:. From the resistance point of view, stochastic (not oriented) movement of electrons is useless even if they carry the same energy – they move thermally. If the electrons undergo 235: 1903:
interactions too, they lose energy and the result is a second mechanism of resistance. Electrons which undergo inelastic interaction are then similar to non-monochromatic light.
83:
reflecting the electrons and preventing them from exiting toward the empty space/open air. This is because there is an energy to be paid to extract the electron from the medium (
1955:
or graphene nanoribbons are often considered ballistic, but these devices only very closely resemble ballistic conduction. Their ballisticity is nearly 0.9 at room temperature.
1323: 1252: 1216: 967: 931: 1849: 1822: 1436: 1708: 1522: 196: 1952: 2173:
Pastawski, Horacio M. (1992-08-15). "Classical and quantum transport from generalized Landauer-B\"uttiker equations. II. Time-dependent resonant tunneling".
101:, because of extreme size quantization effects in these materials. Ballistic conduction is not limited to electrons (or holes) but can also apply to 1622:(which means the length of the active channel is less than the phase-breaking mean free path) and the transmission functions can be calculated from 2217: 1871:
or a high-quality optical assembly. Non-ballistic electrons behave like light diffused in milk or reflected off a white wall or a piece of paper.
1942:
electron interactions with the environment, each other, and other particles are generally stronger than interactions with and between photons.
1716: 1855:
of the two contacting surfaces, is known as Sharvin resistance. Electrical contacts resulting in ballistic electron conduction are known as
1867:
A comparison with light provides an analogy between ballistic and non-ballistic conduction. Ballistic electrons behave like light in a
1859:. When the radius of a contact spot is larger than the mean free path of electrons, the contact resistance can be treated classically. 1690:
contact spots may be very small. In such cases, when the radius of the contact spot is smaller than the mean free path of electrons
2104: 2114: 1554: 2073:
Takayanagi, Kunio; Kondo, Yukihito; Ohnishi, Hideaki (2001). "Suspended gold nanowires: ballistic transport of electrons".
59:, or, generally, by any freely-moving atom/molecule composing a gas or liquid. Without scattering, electrons simply obey 1928:
between electrons thus this analogy is good only for single-electron conduction because electron processes are strongly
1332: 1148:{\displaystyle I_{\rm {AB}}={\frac {g_{\text{s}}e}{h}}\int _{E_{\rm {F_{B}}}}^{E_{\rm {F_{A}}}}M(E)f^{\prime }(E)T(E)dE} 2130:
Pastawski, Horacio M. (1991-09-15). "Classical and quantum transport from generalized Landauer-BĂĽttiker equations".
819: 720: 1967: 1528:. The contacts have a multiplicity of modes due to their larger size in comparison to the channel. Conversely, the 1935:
it is more likely that an electron would lose more energy than a photon would, because of the electron's non-zero
772: 674: 628: 2044: 2039: 880: 551: 140: 2021: 1441: 594: 1682: 995:(GNR-FET) on the right (where the channel is assumed to be ballistic), the current from A to B, given by the 238: 996: 205: 2531: 1891:
interactions. Information about the state of the electrons at the input is then lost. Transport becomes
60: 1295: 2017: 1532:
in the 1D GNR channel constricts the number of modes to carrier degeneracy and restrictions from the
1221: 1185: 936: 900: 2109:. Haroon Ahmad, Alec Broers, Michael Pepper. New York: Cambridge University Press. pp. 57–111. 894:
A graphene nanoribbon field-effect transistor (GNR-FET). Here contacts A and B are at two different
47:
of a material exists because an electron, while moving inside a medium, is scattered by impurities,
2526: 2521: 992: 48: 1655: 1623: 1827: 1800: 1659: 1402: 1287: 884: 43:), or energy-carrying particles, over relatively long distances in a material. In general, the 1693: 988:
proposed that conduction in a 1D system could be viewed as a transmission problem. For the 1D
890: 79:. In the case of a wire suspended in air/vacuum the surface of the wire plays the role of the 1627: 64: 871: 113:-scale or 10 meters scale) and the mean free path which can be longer than that in a metal. 2476: 2409: 2340: 2285: 2232: 2182: 2139: 1500: 1670:-like effects) could be exploited in electronic systems at nanoscale in systems including 1615:
Thus the quantum conductance is approximately the same if measured at A and B or C and D.
8: 1900: 1619: 1529: 1525: 989: 32: 2480: 2413: 2344: 2289: 2236: 2186: 2143: 2500: 2466: 2441: 2399: 2309: 2275: 2082: 2053: 876: 181: 20: 2492: 2488: 2445: 2433: 2425: 2364: 2356: 2301: 2198: 2155: 2110: 2033: 1888: 1687: 1647: 1631: 117: 2504: 2327:
Koch, Matthias; Ample, Francisco; Joachim, Christian; Grill, Leonhard (2012-10-14).
2313: 2086: 2484: 2417: 2348: 2293: 2248: 2240: 2190: 2147: 2036: â€“ Low-power electronic circuits which use reversible logic to conserve energy 1925: 979: 91: 1278:) is the deviation from the equilibrium electron distribution (perturbation), and 2454: 2252: 1179: 121: 2047: â€“ transistor that uses use electromagnetic forces instead of a logic gate 1537: 1533: 71: 36: 2244: 2515: 2496: 2429: 2360: 2305: 2194: 2151: 2100: 1884: 1880: 1651: 1167: 985: 84: 1906:
For correct usage of this analogy consideration of several facts is needed:
879:). To get these characteristic scattering rates, one would need to derive a 2437: 2421: 2368: 2352: 2202: 90:
Ballistic conduction is typically observed in quasi-1D structures, such as
2159: 2471: 2280: 1892: 1875:
only cause a change in electron direction, others can cause energy loss.
1852: 1635: 1497:
is the number of modes in the transmission channel and spin is included.
895: 44: 2457:(1994). "Universal Quantum Signatures of Chaos in Ballistic Transport". 1787:{\displaystyle R_{\rm {S}}={\frac {\lambda (\rho _{1}+\rho _{2})}{2a}}.} 2390:(2008-07-20). "Approaching ballistic transport in suspended graphene". 2387: 1896: 2297: 1936: 1929: 1868: 1675: 1671: 1667: 1663: 1329:
and the voltage separation between the Fermi levels is approximately
198:
is the length of the active part of the device (e.g., a channel in a
110: 2328: 1918: 623:
is the acoustic phonon (emission and absorption) scattering length,
106: 98: 40: 2404: 1618:
The Landauer–Büttiker formalism holds as long as the carriers are
120:
due to 1) a finite, non-zero resistance and 2) the absence of the
1910: 1883:
and/or direction. But there is still almost no energy loss. Like
95: 56: 2329:"Voltage-dependent conductance of a single graphene nanoribbon" 1914: 199: 102: 2265: 2218:"Interfacial electro-mechanical behaviour at rough surfaces" 237:
is the mean free path for the carrier which can be given by
137:
In general, carriers will exhibit ballistic conduction when
1958: 2020:
can have a significantly higher thermal conductivity. See
52: 2452: 1604:{\displaystyle T\approx {\frac {M}{M_{\rm {contact}}}}} 2072: 16:
Movement of charge carriers with negligible scattering
2385: 2326: 1970: 1830: 1803: 1719: 1696: 1557: 1503: 1444: 1405: 1335: 1298: 1270:) is the number of propagating modes in the channel, 1224: 1188: 1008: 939: 903: 822: 775: 723: 677: 631: 597: 554: 250: 208: 184: 143: 2049:
Pages displaying wikidata descriptions as a fallback
866:
is the electron scattering length with the boundary.
715:
is the optical phonon absorption scattering length,
2000: 1843: 1816: 1786: 1702: 1603: 1516: 1482: 1430: 1389:{\displaystyle eV=E_{\rm {F_{A}}}-E_{\rm {F_{B}}}} 1388: 1317: 1246: 1210: 1147: 961: 925: 858: 805: 759: 707: 661: 615: 581: 534: 229: 190: 170: 669:is the optical phonon emission scattering length, 2513: 2012: 1286:= 1 for ballistic). Based on the definition of 1887:light passing through milk, electrons undergo 973: 859:{\displaystyle \lambda _{\mathrm {boundary} }} 760:{\displaystyle \lambda _{\mathrm {impurity} }} 2099: 2001:{\displaystyle \lambda _{MFP}\approx 1{\mu }} 806:{\displaystyle \lambda _{\mathrm {defect} }} 708:{\displaystyle \lambda _{\mathrm {op,abs} }} 662:{\displaystyle \lambda _{\mathrm {op,ems} }} 767:is the electron-impurity scattering length, 589:is the electron-electron scattering length, 582:{\displaystyle \lambda _{\mathrm {el-el} }} 2106:Electronic Transport in Mesoscopic Systems 171:{\displaystyle L\leq \lambda _{\rm {MFP}}} 2470: 2403: 2279: 2172: 2129: 1483:{\displaystyle G_{0}={\frac {2e^{2}}{h}}} 813:is the electron-defect scattering length, 2386:Du, Xu; Skachko, Ivan; Barker, Anthony; 1959:Carbon nanotubes and graphene nanoribbon 889: 616:{\displaystyle \lambda _{\mathrm {ap} }} 132: 2514: 1951:As mentioned, nanostructures such as 1681:The widely encountered phenomenon of 1654:. Ballistic transport is coherent in 109:: due to the small size of the wire ( 2215: 2093: 1862: 1646:Ballistic conduction enables use of 230:{\displaystyle \lambda _{\rm {MFP}}} 870:In terms of scattering mechanisms, 13: 2379: 1726: 1593: 1590: 1587: 1584: 1581: 1578: 1575: 1378: 1374: 1356: 1352: 1236: 1232: 1200: 1196: 1113: 1086: 1082: 1065: 1061: 1018: 1015: 951: 947: 915: 911: 850: 847: 844: 841: 838: 835: 832: 829: 797: 794: 791: 788: 785: 782: 751: 748: 745: 742: 739: 736: 733: 730: 699: 696: 693: 687: 684: 653: 650: 647: 641: 638: 607: 604: 573: 570: 564: 561: 524: 521: 518: 515: 512: 509: 506: 503: 481: 478: 475: 472: 469: 466: 444: 441: 438: 435: 432: 429: 426: 423: 401: 398: 395: 389: 386: 364: 361: 358: 352: 349: 327: 324: 302: 299: 293: 290: 268: 265: 262: 221: 218: 215: 162: 159: 156: 116:Ballistic conduction differs from 14: 2543: 2453:Jalabert, R. A.; Pichard, J.-L.; 1932:and dependent on other electrons; 1282:is the transmission probability ( 1318:{\displaystyle G={\frac {I}{V}}} 2045:Ballistic deflection transistor 2040:Ballistic collection transistor 1247:{\displaystyle E_{\rm {F_{B}}}} 1211:{\displaystyle E_{\rm {F_{A}}}} 962:{\displaystyle E_{\rm {F_{B}}}} 926:{\displaystyle E_{\rm {F_{A}}}} 2320: 2259: 2209: 2166: 2123: 2066: 2022:List of thermal conductivities 1767: 1741: 1534:energy dispersion relationship 1136: 1130: 1124: 1118: 1105: 1099: 241:, written here for electrons: 1: 2216:Zhai, C; et al. (2016). 2059: 2013:Isotopically enriched diamond 1683:electrical contact resistance 1641: 61:Newton's second law of motion 1628:semiclassical approximations 997:Boltzmann transport equation 887:for the system in question. 31:) is the unimpeded flow (or 7: 2027: 1946: 1851:correspond to the specific 974:Landauer–BĂĽttiker formalism 10: 2548: 2489:10.1209/0295-5075/27/4/001 1879:have a slightly different 977: 51:, thermal fluctuations of 2459:EPL (Europhysics Letters) 2245:10.1016/j.eml.2016.03.021 2225:Extreme Mechanics Letters 2018:Isotopically pure diamond 1844:{\displaystyle \rho _{2}} 1817:{\displaystyle \rho _{1}} 1431:{\displaystyle G=G_{0}MT} 127: 2195:10.1103/PhysRevB.46.4053 2152:10.1103/PhysRevB.44.6329 1703:{\displaystyle \lambda } 1660:double-slit interference 1254:are the Fermi levels of 1174:is the electron charge, 2268:Applied Physics Letters 1650:properties of electron 993:field effect transistor 65:non-relativistic speeds 2422:10.1038/nnano.2008.199 2353:10.1038/nnano.2012.169 2002: 1845: 1818: 1788: 1704: 1666:(and other optical or 1658:terms. Phenomena like 1624:Schrödinger's equation 1605: 1518: 1484: 1432: 1390: 1319: 1248: 1212: 1149: 970: 963: 927: 860: 807: 761: 709: 663: 617: 583: 536: 231: 192: 172: 2392:Nature Nanotechnology 2333:Nature Nanotechnology 2253:1959.4/unsworks_60452 2003: 1846: 1819: 1789: 1705: 1606: 1519: 1517:{\displaystyle G_{0}} 1485: 1433: 1391: 1320: 1249: 1213: 1150: 964: 928: 893: 861: 808: 762: 710: 664: 618: 584: 537: 232: 193: 173: 133:Scattering mechanisms 1968: 1828: 1801: 1717: 1694: 1555: 1501: 1442: 1403: 1333: 1296: 1222: 1186: 1006: 937: 901: 820: 773: 721: 675: 629: 595: 552: 248: 206: 182: 141: 25:ballistic conduction 2481:1994EL.....27..255J 2455:Beenakker, C. W. J. 2414:2008NatNa...3..491D 2345:2012NatNa...7..713K 2290:2006ApPhL..89b3125K 2237:2016ExML....9..422Z 2187:1992PhRvB..46.4053P 2144:1991PhRvB..44.6329P 1926:coulombic repulsion 1626:or approximated by 1530:quantum confinement 1526:conductance quantum 1095: 990:graphene nanoribbon 885:Fermi's golden rule 29:ballistic transport 2532:Mesoscopic physics 2075:JSAP International 2054:Velocity overshoot 1998: 1917:and electrons are 1841: 1814: 1784: 1700: 1648:quantum mechanical 1601: 1514: 1480: 1428: 1396:, it follows that 1386: 1315: 1244: 1208: 1145: 1049: 971: 959: 923: 877:Umklapp scattering 856: 803: 757: 705: 659: 613: 579: 532: 239:Matthiessen's rule 227: 188: 168: 21:mesoscopic physics 2298:10.1063/1.2218322 2175:Physical Review B 2138:(12): 6329–6339. 2132:Physical Review B 2116:978-0-521-59943-6 2034:Adiabatic circuit 1863:Optical analogies 1797:This term, where 1779: 1688:fractal dimension 1632:WKB approximation 1599: 1478: 1313: 1047: 1037: 530: 487: 450: 407: 370: 333: 308: 274: 191:{\displaystyle L} 118:superconductivity 57:crystalline solid 2539: 2508: 2474: 2472:cond-mat/9403073 2449: 2407: 2373: 2372: 2324: 2318: 2317: 2283: 2281:cond-mat/0511723 2263: 2257: 2256: 2222: 2213: 2207: 2206: 2181:(7): 4053–4070. 2170: 2164: 2163: 2127: 2121: 2120: 2097: 2091: 2090: 2070: 2050: 2007: 2005: 2004: 1999: 1997: 1986: 1985: 1953:carbon nanotubes 1857:Sharvin Contacts 1850: 1848: 1847: 1842: 1840: 1839: 1823: 1821: 1820: 1815: 1813: 1812: 1793: 1791: 1790: 1785: 1780: 1778: 1770: 1766: 1765: 1753: 1752: 1736: 1731: 1730: 1729: 1709: 1707: 1706: 1701: 1610: 1608: 1607: 1602: 1600: 1598: 1597: 1596: 1565: 1524:is known as the 1523: 1521: 1520: 1515: 1513: 1512: 1489: 1487: 1486: 1481: 1479: 1474: 1473: 1472: 1459: 1454: 1453: 1437: 1435: 1434: 1429: 1421: 1420: 1395: 1393: 1392: 1387: 1385: 1384: 1383: 1382: 1381: 1363: 1362: 1361: 1360: 1359: 1324: 1322: 1321: 1316: 1314: 1306: 1253: 1251: 1250: 1245: 1243: 1242: 1241: 1240: 1239: 1217: 1215: 1214: 1209: 1207: 1206: 1205: 1204: 1203: 1154: 1152: 1151: 1146: 1117: 1116: 1094: 1093: 1092: 1091: 1090: 1089: 1073: 1072: 1071: 1070: 1069: 1068: 1048: 1043: 1039: 1038: 1035: 1028: 1023: 1022: 1021: 980:Landauer formula 968: 966: 965: 960: 958: 957: 956: 955: 954: 932: 930: 929: 924: 922: 921: 920: 919: 918: 865: 863: 862: 857: 855: 854: 853: 812: 810: 809: 804: 802: 801: 800: 766: 764: 763: 758: 756: 755: 754: 714: 712: 711: 706: 704: 703: 702: 668: 666: 665: 660: 658: 657: 656: 622: 620: 619: 614: 612: 611: 610: 588: 586: 585: 580: 578: 577: 576: 541: 539: 538: 533: 531: 529: 528: 527: 493: 488: 486: 485: 484: 456: 451: 449: 448: 447: 413: 408: 406: 405: 404: 376: 371: 369: 368: 367: 339: 334: 332: 331: 330: 314: 309: 307: 306: 305: 280: 275: 273: 272: 271: 252: 236: 234: 233: 228: 226: 225: 224: 197: 195: 194: 189: 177: 175: 174: 169: 167: 166: 165: 92:carbon nanotubes 2547: 2546: 2542: 2541: 2540: 2538: 2537: 2536: 2527:Charge carriers 2522:Nanoelectronics 2512: 2511: 2382: 2380:Further reading 2377: 2376: 2339:(11): 713–717. 2325: 2321: 2264: 2260: 2220: 2214: 2210: 2171: 2167: 2128: 2124: 2117: 2098: 2094: 2071: 2067: 2062: 2048: 2030: 2015: 1993: 1975: 1971: 1969: 1966: 1965: 1961: 1949: 1865: 1835: 1831: 1829: 1826: 1825: 1808: 1804: 1802: 1799: 1798: 1771: 1761: 1757: 1748: 1744: 1737: 1735: 1725: 1724: 1720: 1718: 1715: 1714: 1695: 1692: 1691: 1644: 1574: 1573: 1569: 1564: 1556: 1553: 1552: 1508: 1504: 1502: 1499: 1498: 1468: 1464: 1460: 1458: 1449: 1445: 1443: 1440: 1439: 1416: 1412: 1404: 1401: 1400: 1377: 1373: 1372: 1371: 1367: 1355: 1351: 1350: 1349: 1345: 1334: 1331: 1330: 1305: 1297: 1294: 1293: 1235: 1231: 1230: 1229: 1225: 1223: 1220: 1219: 1199: 1195: 1194: 1193: 1189: 1187: 1184: 1183: 1180:Planck constant 1168:spin degeneracy 1165: 1112: 1108: 1085: 1081: 1080: 1079: 1075: 1074: 1064: 1060: 1059: 1058: 1054: 1053: 1034: 1030: 1029: 1027: 1014: 1013: 1009: 1007: 1004: 1003: 982: 976: 950: 946: 945: 944: 940: 938: 935: 934: 914: 910: 909: 908: 904: 902: 899: 898: 828: 827: 823: 821: 818: 817: 781: 780: 776: 774: 771: 770: 729: 728: 724: 722: 719: 718: 683: 682: 678: 676: 673: 672: 637: 636: 632: 630: 627: 626: 603: 602: 598: 596: 593: 592: 560: 559: 555: 553: 550: 549: 502: 501: 497: 492: 465: 464: 460: 455: 422: 421: 417: 412: 385: 384: 380: 375: 348: 347: 343: 338: 323: 322: 318: 313: 289: 288: 284: 279: 261: 260: 256: 251: 249: 246: 245: 214: 213: 209: 207: 204: 203: 183: 180: 179: 155: 154: 150: 142: 139: 138: 135: 130: 122:Meissner effect 37:charge carriers 17: 12: 11: 5: 2545: 2535: 2534: 2529: 2524: 2510: 2509: 2450: 2398:(8): 491–495. 2388:Andrei, Eva Y. 2381: 2378: 2375: 2374: 2319: 2258: 2208: 2165: 2122: 2115: 2092: 2064: 2063: 2061: 2058: 2057: 2056: 2051: 2042: 2037: 2029: 2026: 2014: 2011: 1996: 1992: 1989: 1984: 1981: 1978: 1974: 1960: 1957: 1948: 1945: 1944: 1943: 1940: 1933: 1922: 1864: 1861: 1838: 1834: 1811: 1807: 1795: 1794: 1783: 1777: 1774: 1769: 1764: 1760: 1756: 1751: 1747: 1743: 1740: 1734: 1728: 1723: 1699: 1656:wave mechanics 1652:wave functions 1643: 1640: 1613: 1612: 1595: 1592: 1589: 1586: 1583: 1580: 1577: 1572: 1568: 1563: 1560: 1538:Brillouin zone 1511: 1507: 1491: 1490: 1477: 1471: 1467: 1463: 1457: 1452: 1448: 1427: 1424: 1419: 1415: 1411: 1408: 1380: 1376: 1370: 1366: 1358: 1354: 1348: 1344: 1341: 1338: 1327: 1326: 1312: 1309: 1304: 1301: 1238: 1234: 1228: 1202: 1198: 1192: 1163: 1157: 1156: 1144: 1141: 1138: 1135: 1132: 1129: 1126: 1123: 1120: 1115: 1111: 1107: 1104: 1101: 1098: 1088: 1084: 1078: 1067: 1063: 1057: 1052: 1046: 1042: 1033: 1026: 1020: 1017: 1012: 978:Main article: 975: 972: 953: 949: 943: 917: 913: 907: 872:optical phonon 868: 867: 852: 849: 846: 843: 840: 837: 834: 831: 826: 814: 799: 796: 793: 790: 787: 784: 779: 768: 753: 750: 747: 744: 741: 738: 735: 732: 727: 716: 701: 698: 695: 692: 689: 686: 681: 670: 655: 652: 649: 646: 643: 640: 635: 624: 609: 606: 601: 590: 575: 572: 569: 566: 563: 558: 543: 542: 526: 523: 520: 517: 514: 511: 508: 505: 500: 496: 491: 483: 480: 477: 474: 471: 468: 463: 459: 454: 446: 443: 440: 437: 434: 431: 428: 425: 420: 416: 411: 403: 400: 397: 394: 391: 388: 383: 379: 374: 366: 363: 360: 357: 354: 351: 346: 342: 337: 329: 326: 321: 317: 312: 304: 301: 298: 295: 292: 287: 283: 278: 270: 267: 264: 259: 255: 223: 220: 217: 212: 187: 164: 161: 158: 153: 149: 146: 134: 131: 129: 126: 72:mean free path 15: 9: 6: 4: 3: 2: 2544: 2533: 2530: 2528: 2525: 2523: 2520: 2519: 2517: 2506: 2502: 2498: 2494: 2490: 2486: 2482: 2478: 2473: 2468: 2464: 2460: 2456: 2451: 2447: 2443: 2439: 2435: 2431: 2427: 2423: 2419: 2415: 2411: 2406: 2401: 2397: 2393: 2389: 2384: 2383: 2370: 2366: 2362: 2358: 2354: 2350: 2346: 2342: 2338: 2334: 2330: 2323: 2315: 2311: 2307: 2303: 2299: 2295: 2291: 2287: 2282: 2277: 2274:(2): 023125. 2273: 2269: 2262: 2254: 2250: 2246: 2242: 2238: 2234: 2230: 2226: 2219: 2212: 2204: 2200: 2196: 2192: 2188: 2184: 2180: 2176: 2169: 2161: 2157: 2153: 2149: 2145: 2141: 2137: 2133: 2126: 2118: 2112: 2108: 2107: 2102: 2101:Supriyo Datta 2096: 2088: 2084: 2080: 2076: 2069: 2065: 2055: 2052: 2046: 2043: 2041: 2038: 2035: 2032: 2031: 2025: 2023: 2019: 2010: 1994: 1990: 1987: 1982: 1979: 1976: 1972: 1956: 1954: 1941: 1938: 1934: 1931: 1927: 1923: 1920: 1916: 1912: 1909: 1908: 1907: 1904: 1902: 1898: 1894: 1890: 1886: 1885:monochromatic 1882: 1876: 1872: 1870: 1860: 1858: 1854: 1836: 1832: 1809: 1805: 1781: 1775: 1772: 1762: 1758: 1754: 1749: 1745: 1738: 1732: 1721: 1713: 1712: 1711: 1697: 1689: 1684: 1679: 1677: 1673: 1669: 1665: 1661: 1657: 1653: 1649: 1639: 1637: 1633: 1629: 1625: 1621: 1616: 1570: 1566: 1561: 1558: 1551: 1550: 1549: 1547: 1543: 1539: 1535: 1531: 1527: 1509: 1505: 1496: 1475: 1469: 1465: 1461: 1455: 1450: 1446: 1425: 1422: 1417: 1413: 1409: 1406: 1399: 1398: 1397: 1368: 1364: 1346: 1342: 1339: 1336: 1310: 1307: 1302: 1299: 1292: 1291: 1290: 1289: 1285: 1281: 1277: 1273: 1269: 1265: 1261: 1257: 1226: 1190: 1181: 1177: 1173: 1169: 1162: 1142: 1139: 1133: 1127: 1121: 1109: 1102: 1096: 1076: 1055: 1050: 1044: 1040: 1031: 1024: 1010: 1002: 1001: 1000: 998: 994: 991: 987: 986:Rolf Landauer 981: 941: 905: 897: 892: 888: 886: 882: 878: 873: 824: 815: 777: 769: 725: 717: 690: 679: 671: 644: 633: 625: 599: 591: 567: 556: 548: 547: 546: 498: 494: 489: 461: 457: 452: 418: 414: 409: 392: 381: 377: 372: 355: 344: 340: 335: 319: 315: 310: 296: 285: 281: 276: 257: 253: 244: 243: 242: 240: 210: 201: 185: 151: 147: 144: 125: 123: 119: 114: 112: 108: 104: 100: 97: 93: 88: 86: 85:work function 82: 78: 73: 68: 66: 62: 58: 54: 50: 46: 42: 38: 34: 30: 26: 22: 2462: 2458: 2395: 2391: 2336: 2332: 2322: 2271: 2267: 2261: 2228: 2224: 2211: 2178: 2174: 2168: 2135: 2131: 2125: 2105: 2095: 2078: 2074: 2068: 2016: 1962: 1950: 1905: 1877: 1873: 1866: 1856: 1796: 1680: 1645: 1617: 1614: 1545: 1541: 1494: 1492: 1328: 1283: 1279: 1275: 1271: 1267: 1263: 1259: 1255: 1175: 1171: 1166:= 2, due to 1160: 1158: 983: 896:Fermi levels 869: 544: 136: 115: 89: 80: 76: 69: 28: 24: 18: 2231:: 422–429. 1893:statistical 1853:resistivity 1636:dissipation 1630:, like the 1288:conductance 881:Hamiltonian 45:resistivity 2516:Categories 2465:(4): 255. 2060:References 1897:stochastic 1686:with high 1662:, spatial 1642:Importance 883:and solve 2497:0295-5075 2446:118441080 2430:1748-3387 2405:0802.2933 2361:1748-3387 2306:0003-6951 1995:μ 1988:≈ 1973:λ 1937:rest mass 1930:nonlinear 1924:there is 1901:inelastic 1869:waveguide 1833:ρ 1806:ρ 1759:ρ 1746:ρ 1739:λ 1698:λ 1676:nanotubes 1672:nanowires 1668:microwave 1664:resonance 1562:≈ 1365:− 1114:′ 1051:∫ 984:In 1957, 825:λ 778:λ 726:λ 680:λ 634:λ 600:λ 568:− 557:λ 499:λ 462:λ 419:λ 382:λ 345:λ 320:λ 297:− 286:λ 258:λ 211:λ 152:λ 148:≤ 111:nanometer 99:nanowires 41:electrons 39:(usually 33:transport 2505:55864480 2438:18685637 2369:23064554 2314:44232115 2203:10004135 2103:(1997). 2087:28636503 2028:See also 1947:Examples 1919:fermions 1620:coherent 1536:and the 107:nanowire 2477:Bibcode 2410:Bibcode 2341:Bibcode 2286:Bibcode 2233:Bibcode 2183:Bibcode 2160:9998497 2140:Bibcode 1911:photons 1889:elastic 1438:, with 1178:is the 103:phonons 96:silicon 49:defects 2503:  2495:  2444:  2436:  2428:  2367:  2359:  2312:  2304:  2201:  2158:  2113:  2085:  1915:bosons 1493:where 1159:where 545:where 200:MOSFET 178:where 128:Theory 2501:S2CID 2467:arXiv 2442:S2CID 2400:arXiv 2310:S2CID 2276:arXiv 2221:(PDF) 2083:S2CID 2081:(9). 1881:phase 999:, is 77:walls 55:in a 35:) of 2493:ISSN 2434:PMID 2426:ISSN 2365:PMID 2357:ISSN 2302:ISSN 2199:PMID 2156:PMID 2111:ISBN 1913:are 1895:and 1824:and 1674:and 1544:and 1280:T(E) 1258:and 1218:and 933:and 816:and 70:The 53:ions 2485:doi 2418:doi 2349:doi 2294:doi 2249:hdl 2241:doi 2191:doi 2148:doi 202:). 94:or 87:). 81:box 63:at 19:In 2518:: 2499:. 2491:. 2483:. 2475:. 2463:27 2461:. 2440:. 2432:. 2424:. 2416:. 2408:. 2394:. 2363:. 2355:. 2347:. 2335:. 2331:. 2308:. 2300:. 2292:. 2284:. 2272:89 2270:. 2247:. 2239:. 2227:. 2223:. 2197:. 2189:. 2179:46 2177:. 2154:. 2146:. 2136:44 2134:. 2077:. 2024:. 1678:. 1638:. 1548:, 1274:′( 1262:, 1182:, 1170:, 67:. 23:, 2507:. 2487:: 2479:: 2469:: 2448:. 2420:: 2412:: 2402:: 2396:3 2371:. 2351:: 2343:: 2337:7 2316:. 2296:: 2288:: 2278:: 2255:. 2251:: 2243:: 2235:: 2229:9 2205:. 2193:: 2185:: 2162:. 2150:: 2142:: 2119:. 2089:. 2079:3 1991:1 1983:P 1980:F 1977:M 1964:( 1939:; 1921:; 1837:2 1810:1 1782:. 1776:a 1773:2 1768:) 1763:2 1755:+ 1750:1 1742:( 1733:= 1727:S 1722:R 1611:. 1594:t 1591:c 1588:a 1585:t 1582:n 1579:o 1576:c 1571:M 1567:M 1559:T 1546:B 1542:A 1510:0 1506:G 1495:M 1476:h 1470:2 1466:e 1462:2 1456:= 1451:0 1447:G 1426:T 1423:M 1418:0 1414:G 1410:= 1407:G 1379:B 1375:F 1369:E 1357:A 1353:F 1347:E 1343:= 1340:V 1337:e 1325:, 1311:V 1308:I 1303:= 1300:G 1284:T 1276:E 1272:f 1268:E 1266:( 1264:M 1260:B 1256:A 1237:B 1233:F 1227:E 1201:A 1197:F 1191:E 1176:h 1172:e 1164:s 1161:g 1155:, 1143:E 1140:d 1137:) 1134:E 1131:( 1128:T 1125:) 1122:E 1119:( 1110:f 1106:) 1103:E 1100:( 1097:M 1087:A 1083:F 1077:E 1066:B 1062:F 1056:E 1045:h 1041:e 1036:s 1032:g 1025:= 1019:B 1016:A 1011:I 969:. 952:B 948:F 942:E 916:A 912:F 906:E 851:y 848:r 845:a 842:d 839:n 836:u 833:o 830:b 798:t 795:c 792:e 789:f 786:e 783:d 752:y 749:t 746:i 743:r 740:u 737:p 734:m 731:i 700:s 697:b 694:a 691:, 688:p 685:o 654:s 651:m 648:e 645:, 642:p 639:o 608:p 605:a 574:l 571:e 565:l 562:e 525:y 522:r 519:a 516:d 513:n 510:u 507:o 504:b 495:1 490:+ 482:t 479:c 476:e 473:f 470:e 467:d 458:1 453:+ 445:y 442:t 439:i 436:r 433:u 430:p 427:m 424:i 415:1 410:+ 402:s 399:b 396:a 393:, 390:p 387:o 378:1 373:+ 365:s 362:m 359:e 356:, 353:p 350:o 341:1 336:+ 328:p 325:a 316:1 311:+ 303:l 300:e 294:l 291:e 282:1 277:= 269:P 266:F 263:M 254:1 222:P 219:F 216:M 186:L 163:P 160:F 157:M 145:L 27:(

Index

mesoscopic physics
transport
charge carriers
electrons
resistivity
defects
ions
crystalline solid
Newton's second law of motion
non-relativistic speeds
mean free path
work function
carbon nanotubes
silicon
nanowires
phonons
nanowire
nanometer
superconductivity
Meissner effect
MOSFET
Matthiessen's rule
optical phonon
Umklapp scattering
Hamiltonian
Fermi's golden rule

Fermi levels
Landauer formula
Rolf Landauer

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑