Knowledge

Coordination polymer

Source 📝

20: 119: 529: 429: 136: 304: 67:. A structure can be determined to be one-, two- or three-dimensional, depending on the number of directions in space the array extends in. A one-dimensional structure extends in a straight line (along the x axis); a two-dimensional structure extends in a plane (two directions, x and y axes); and a three-dimensional structure extends in all three directions (x, y, and z axes). This is depicted in Figure 1. 53:. Coordination polymers contain the subclass coordination networks that are coordination compounds extending, through repeating coordination entities, in 1 dimension, but with cross-links between two or more individual chains, loops, or spiro-links, or a coordination compound extending through repeating coordination entities in 2 or 3 dimensions. A subclass of these are the 595:, and blue upon the addition of diethyl ether. The polymer can thus act as a solvent sensor that physically changes color in the presence of certain solvents. The color changes are attributed to the incoming solvent displacing the water ligands on the cobalt atoms, resulting in a change of their geometry from octahedral to tetrahedral. 391: 400:
bonds with the surrounding lattice, but sometimes interact via intermolecular forces, such as hydrogen bonding or pi stacking. Most often, the guest molecule will be the solvent that the coordination polymer was crystallized in, but can really be anything (other salts present, atmospheric gases such as
494:
Flexible porous coordination polymers are potentially attractive for molecular storage, since their pore sizes can be altered by physical changes. An example of this might be seen in a polymer that contains gas molecules in its normal state, but upon compression the polymer collapses and releases the
399:
The structure of coordination polymers often incorporates empty space in the form of pores or channels. This empty space is thermodynamically unfavorable. In order to stabilize the structure and prevent collapse, the pores or channels are often occupied by guest molecules. Guest molecules do not form
1022:
Carlucci, L.; Ciani, G.; Proserpio, D. M.; Rizzato, S. (2002). "New polymeric networks from the self-assembly of silver(i) salts and the flexible ligand 1,3-bis(4-pyridyl)propane (bpp). A systematic investigation of the effects of the counterions and a survey of the coordination polymers based on
126:
The structure and dimensionality of the coordination polymer are determined by the linkers and the coordination geometry of the metal center. Coordination numbers are most often between 2 and 10. Examples of various coordination numbers are shown in planar geometry in Figure 2. In Figure 1 the 1D
577:
are cooperative phenomena of the magnetic spins within a solid arising from coupling between the spins of the paramagnetic centers. In order to allow efficient magnetic, metal ions should be bridged by small ligands allowing for short metal-metal contacts (such as oxo, cyano, and azido bridges).
590:
molecules incorporated into the structure. An example of this would be the two Co coordination polymers of the cluster that contains water ligands that coordinate to the cobalt atoms. This originally orange solution turns either purple or green with the replacement of water with
394:
The addition and removal of guest molecules can have a large effect on the resulting structure of a coordination polymer. A few examples are (top) change of a linear 1D chain to a zigzag pattern, (middle) staggered 2D sheets to stacked, and (bottom) 3D cubes become more widely
511:
Luminescent coordination polymers typically feature organic chromophoric ligands, which absorb light and then pass the excitation energy to the metal ion. For ligands that fluoresce without the presence of the metal linker (not due to LMCT), the intense
259:
from the salt used in synthesis, which is difficult to avoid. The coordination polymers shown in Figure 3 are all group two metals. In this case, the dimensionality of these structures increases as the radius of the metal increases down the group (from
319:
create more variety in the structure. There are examples of coordination polymers that include two configurations of the same ligand within one structure, as well as two separate structures where the only difference between them is ligand orientation.
552:
behavior. Three-dimensional structures consisting of sheets of silver-containing polymers demonstrate semi-conductivity when the metal centers are aligned, and conduction decreases as the silver atoms go from parallel to perpendicular.
238:
are large atoms with coordination numbers varying from 7 to 14. Their coordination environment can be difficult to predict, making them challenging to use as nodes. They offer the possibility of incorporating luminescent components.
139:
Figure 3. Three coordination polymers of different dimensionality. All three were made using the same ligand (4,5-dihydroxybenzene-1,3-disulfonate (L)), but different metal cations. All of the metals come from Group 2 on the
495:
stored molecules. Depending on the structure of the polymer, it is possible that the structure be flexible enough that collapsing the pores is reversible and the polymer can be reused to uptake the gas molecules again. The
314:
Ligands can be flexible or rigid. A rigid ligand is one that has no freedom to rotate around bonds or reorient within a structure. Flexible ligands can bend, rotate around bonds, and reorient themselves. These different
1107:
Tong, M. L.; Hu, S.; Wang, J.; Kitagawa, S.; Ng, S. W. (2005). "Supramolecular Isomerism in Cadmium Hydroxide Phases. Temperature-Dependent Synthesis and Structure of Photoluminescent Coordination Polymers of α- and
893:
Hung-Low, F.; Klausmeyer, K. K.; Gary, J. B. (2009). "Effect of anion and ligand ratio in self-assembled silver(I) complexes of 4-(diphenylphosphinomethyl)pyridine and their derivatives with bipyridine ligands".
254:
exist as stable cations. Alkali metals readily form cations with stable valence shells, giving them different coordination behavior than lanthanides and transition metals. They are strongly affected by the
382:, exposure to light, or changes in temperature can all change the resulting structure. Influences on the structure based on changes in crystallization environment are determined on a case by case basis. 341:
Besides metal and ligand choice, there are many other factors that affect the structure of the coordination polymer. For example, most metal centers are positively charged ions which exist as salts. The
866:
Wen, M.; Munakata, M.; Suenaga, Y.; Kuroda-Sowa, T.; Maekawa, M.; Yan, S. G. (2001). "Silver(I) coordination polymers of cyclic sulfur ligand, 2,2′,3,3′-tetrahydro-4,4′-dithia-1,1′-binaphthylidene".
79:
and his contemporaries laid the groundwork for the study of coordination polymers. Many time-honored materials are now recognized as coordination polymers. These include the cyanide complexes
544:. Some one-dimensional coordination polymers built as shown in the figure exhibit conductivities in a range of 1x10 to 2x10 S/cm. The conductivity is due to the interaction between the metal 921:
Ricci, G.; Sommazzi, A.; Masi, F.; Ricci, M.; Boglia, A.; Leone, G. (2010). "Well-defined transition metal complexes with phosphorus and nitrogen ligands for 1,3-dienes polymerization".
370:
are all crystallized with the same ligand, the structures vary in terms of the coordination environment of the metal, as well as the dimensionality of the entire coordination polymer.
446:. These materials crystallize with small aromatic guests (benzene, certain xylenes), and this selectivity has been exploited commercially for the separation of these hydrocarbons. 614:
Batten, Stuart R.; Champness, Neil R.; Chen, Xiao-Ming; Garcia-Martinez, Javier; Kitagawa, Susumu; Öhrström, Lars; O'Keeffe, Michael; Suh, Myunghyun P.; Reedijk, Jan (2013).
806:
Cote, A; Shimizu, G. (2003). "Coordination Solids via Assembly of Adaptable Components : Systematic Structural Variation in Alkaline Earth Organosulfonate Networks".
328:
A length of the ligand can be an important factor in determining possibility for formation of a polymeric structure versus non-polymeric (mono- or oligomeric) structures.
307: 532:
Structure of coordination polymers that exhibit conductivity, where M = Fe, Ru, OS; L = octaethylporphyrinato or pthalocyaninato; N belongs to pyrazine or bipyridine.
284:
are known. They range from polyfunctional heterocycles, such as pyrazine, to simple halides. Almost any type of atom with a lone pair of electrons can serve as a
1052:"PH- and mol-ratio dependent formation of zinc(II) coordination polymers with iminodiacetic acid: Synthesis, spectroscopic, crystal structure and thermal studies" 516:
emission of these materials tend to be magnitudes of order higher than that of the free ligand alone. These materials are candidates for light emitting diode (
188:, use the Schrödinger equation to predict and explain coordination geometry, however this is difficult in part because of the complex effect of environment on 164:
Metal centers, often called nodes or hubs, bond to a specific number of linkers at well defined angles. The number of linkers bound to a node is known as the
1302:
Leong, Wei Lee; Vittal, Jagadese J. (2011). "One-Dimensional Coordination Polymers: Complexity and Diversity in Structures, Properties, and Applications".
420:
Coordination polymers are found in some commercialized as dyes.. Metal complex dyes using copper or chromium are commonly used for producing dull colors.
520:) devices. The dramatic increase in fluorescence is caused by the increase in rigidity and asymmetry of the ligand when coordinated to the metal center. 63:
Coordination polymers can be classified in a number of ways according to their structure and composition. One important classification is referred to as
948:
Knaust, J. M.; Keller, S. W. (2002). "A Mixed-Ligand Coordination Polymer from the in Situ, Cu(I)-Mediated Isomerization of Bis(4-pyridyl)ethylene".
412:, etc.) The presence of the guest molecule can sometimes influence the structure by supporting a pore or channel, where otherwise none would exist. 280:
Coordination polymers require ligands with the ability to form multiple coordination bonds, i.e. act as bridges between metal centers. Many
46:. More formally a coordination polymer is a coordination compound with repeating coordination entities extending in 1, 2, or 3 dimensions. 779:
Robin, A. Y.; Fromm, K. M. (2006). "Coordination polymer networks with O- and N-donors: What they are, why and how they are made".
536:
Coordination polymers can have short inorganic and conjugated organic bridges in their structures, which provide pathways for
1286: 850: 714:
Chen, X; Ye, B.; Tong, M. (2005). "Metal-organic molecular architectures with 2,2′-bipyridyl-like and carboxylate ligands".
650:
Biradha, Kumar; Ramanan, Arunachalam; Vittal, Jagadese J. (2009). "Coordination Polymers Versus Metal−Organic Frameworks".
541: 479:
in the porous coordination polymer space to decrease the pore size. Active surface guests can also be used contribute to
983:
Buvailo, Andrii I.; Gumienna-Kontecka, Elzbieta; Pavlova, Svetlana V.; Fritsky, Igor O.; Haukka, Matti (2010). "Dimeric
487:
molecules (6.83 Å in diameter) or polymers with a highly conjugated system in order to increase the surface area for H
1347: 615: 467:. The size and shapes of the pore can be controlled by the linker size and the connecting ligands' length and 180:
around it, and in general the coordination number increases with cation size. Several models, most notably
434:
Some early commercialized coordination polymers are the Hofmann compounds, which have the formula Ni(CN)
227:, particularly copper and gold ions which as neutral atoms have full d-orbitals in their outer shells. 987:
polymeric coordination in copper(ii) cationic complexes with bis(chelating) oxime and amide ligands".
378:
Additionally, variations in the crystallization environment can also change the structure. Changes in
476: 168:, which, along with the angles they are held at, determines the dimensionality of the structure. The 472: 316: 185: 36: 496: 112: 54: 616:"Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013)" 537: 251: 224: 216: 181: 173: 145: 1218: 1063: 220: 57:, or MOFs, that are coordination networks with organic ligands containing potential voids. 50: 1163:
Hunger, K.; Mischke, P.; Rieper, W.; Raue, R.; Kunde, K.; Engel, A. (2002) "Azo Dyes." In
744:
Kitagawa, S.; Kitaura, R.; Noro, S. I. (2004). "Functional Porous Coordination Polymers".
424:
dyes are useful because they are more stable than their bi- or mono-dentate counterparts.
8: 346:
in the salt can affect the overall structure. For example, when silver salts such as AgNO
169: 165: 108: 1222: 1067: 60:
Coordination polymers are relevant to many fields, having many potential applications.
1239: 1230: 1206: 1084: 1051: 566: 548:
and the pi* level of the bridging ligand. In some cases coordination polymers can have
148:) and in this case, dimensionality increases with cation size and polarizability. A. •H 84: 879: 127:
structure is 2-coordinated, the planar is 4-coordinated, and the 3D is 6-coordinated.
1342: 1319: 1282: 1244: 1089: 1004: 965: 846: 823: 761: 681: 513: 421: 200: 32: 1311: 1274: 1234: 1226: 1189: 1168: 1147: 1125: 1079: 1071: 1032: 996: 957: 930: 903: 875: 815: 788: 753: 723: 696: 659: 630: 468: 189: 177: 104: 592: 460: 281: 100: 471:. To modify the pore size in order to achieve effective adsorption, nonvolatile 19: 1075: 1050:
Ni, L. B.; Zhang, R. H.; Liu, Q. X.; Xia, W. S.; Wang, H.; Zhou, Z. H. (2009).
840: 574: 570: 409: 204: 141: 64: 934: 907: 792: 727: 700: 1336: 1193: 1172: 1151: 841:
Bernstein, Jeremy; Paul M. Fishbane; Stephen G. Gasiorowicz (April 3, 2000).
635: 549: 310:
is a flexible ligand, which can exist in either gauche or anti conformations.
247: 96: 80: 76: 483:. For example, the large-pore MOF-177, 11.8 Å in diameter, can be doped by C 1323: 1248: 1093: 1008: 969: 827: 819: 765: 757: 459:
Although not yet practical, porous coordination polymers have potential as
1278: 528: 118: 235: 122:
Figure 2. Shows planar geometries with 3 coordination and 6 coordination.
390: 1000: 480: 343: 292: 256: 1315: 1129: 982: 961: 663: 428: 135: 1036: 586:
Coordination polymers can also show color changes upon the change of
562: 545: 265: 1207:"Chemistry and application of flexible porous coordination polymers" 405: 613: 176:
of a metal center is determined by the nonuniform distribution of
587: 464: 261: 43: 39: 401: 285: 269: 16:
Polymer consisting of repeating units of a coordination complex
303: 1021: 865: 49:
It can also be described as a polymer whose repeat units are
1142:
Grychtol, K.; Mennicke, W. (2002) "Metal-Complex Dyes." In
208: 1204: 242: 517: 212: 778: 23:
Figure 1. An illustration of 1- 2- and 3-dimensionality.
1271:
Coordination Polymers: Design, Analysis and Application
682:"Coordination polymer networks with s-block metal ions" 379: 920: 892: 649: 42:
structure containing metal cation centers linked by
1205:Bureekaew, S.; Shimomura, S.; Kitagawa, S. (2008). 743: 291:Very elaborate ligands have been investigated. and 1106: 713: 160:O In each case, the metal is represented in green. 1268: 1334: 1184:Atwood, J. L. (2012) "Inclusion Compounds" in 805: 203:are commonly used as nodes. Partially filled d 1186:Ullmann's Encyclopedia of Industrial Chemistry 1165:Ullmann's Encyclopedia of Industrial Chemistry 1144:Ullmann's Encyclopedia of Industrial Chemistry 373: 1273:. RSC Publishing. pp. 297–307, 396–407. 1049: 799: 1211:Science and Technology of Advanced Materials 947: 561:Coordination polymers exhibit many kinds of 540:. example of such coordination polymers are 95:Coordination polymers are often prepared by 90: 1301: 1100: 219:differently depending on environment. This 914: 739: 737: 609: 607: 523: 499:page has a detailed section dealing with H 1238: 1083: 634: 298: 1264: 1262: 1260: 1258: 834: 527: 389: 302: 223:causes some of them to exhibit multiple 134: 117: 18: 1178: 886: 746:Angewandte Chemie International Edition 734: 675: 673: 604: 243:Alkali metals and alkaline earth metals 1335: 941: 1255: 859: 679: 1198: 670: 581: 454: 195: 707: 542:conductive metal organic frameworks 463:in parallel with porous carbon and 13: 449: 385: 14: 1359: 107:with a ligand. The mechanisms of 1056:Journal of Solid State Chemistry 427: 331: 323: 130: 1295: 1157: 1136: 1043: 1015: 976: 506: 415: 923:Coordination Chemistry Reviews 845:. Prentice-Hall. p. 624. 772: 643: 230: 1: 880:10.1016/S0020-1693(01)00556-4 598: 336: 1231:10.1088/1468-6996/9/1/014108 556: 7: 1118:Crystal Growth & Design 652:Crystal Growth & Design 374:Crystallization environment 10: 1364: 1269:Batten, Stuart R. (2008). 1076:10.1016/j.jssc.2009.06.042 623:Pure and Applied Chemistry 275: 70: 935:10.1016/j.ccr.2009.09.023 908:10.1016/j.ica.2008.04.032 793:10.1016/j.ccr.2006.02.013 728:10.1016/j.ccr.2004.07.006 701:10.1016/j.ccr.2007.10.032 91:Synthesis and propagation 1194:10.1002/14356007.a14_119 1173:10.1002/14356007.a03_245 1152:10.1002/14356007.a16_299 636:10.1351/PAC-REC-12-11-20 308:1,2-Bis(4-pyridyl)ethane 186:molecular orbital theory 55:metal-organic frameworks 1188:. Wiley-VCH, Weinheim. 896:Inorganica Chimica Acta 868:Inorganica Chimica Acta 524:Electrical conductivity 497:Metal-organic framework 225:coordination geometries 113:molecular self-assembly 820:10.1002/chem.200305102 758:10.1002/anie.200300610 533: 396: 311: 299:Structural orientation 295:, have been observed. 161: 123: 51:coordination complexes 24: 1348:Coordination polymers 1279:10.1039/9781847558862 538:electrical conduction 531: 393: 306: 252:alkaline earth metals 174:coordination geometry 146:alkaline earth metals 138: 121: 22: 787:(15–16): 2127–2157. 221:electronic structure 29:coordination polymer 1223:2008STAdM...9a4108B 1068:2009JSSCh.182.2698N 989:Dalton Transactions 950:Inorganic Chemistry 170:coordination number 166:coordination number 109:crystal engineering 1001:10.1039/C0DT00008F 680:Fromm, K. (2008). 567:Antiferromagnetism 534: 397: 312: 162: 124: 85:Hofmann clathrates 25: 1316:10.1021/cr100160e 1288:978-0-85404-837-3 1130:10.1021/cg049610r 1062:(10): 2698–2706. 962:10.1021/ic025836c 852:978-0-13-955311-0 814:(21): 5361–5370. 752:(18): 2334–2375. 664:10.1021/cg801381p 582:Sensor capability 514:photoluminescence 469:functional groups 455:Molecular storage 422:Tridentate ligand 201:Transition metals 196:Transition metals 1355: 1328: 1327: 1304:Chemical Reviews 1299: 1293: 1292: 1266: 1253: 1252: 1242: 1202: 1196: 1182: 1176: 1161: 1155: 1140: 1134: 1133: 1104: 1098: 1097: 1087: 1047: 1041: 1040: 1037:10.1039/b201288j 1019: 1013: 1012: 980: 974: 973: 945: 939: 938: 918: 912: 911: 890: 884: 883: 874:(1–2): 133–137. 863: 857: 856: 838: 832: 831: 803: 797: 796: 781:Coord. Chem. Rev 776: 770: 769: 741: 732: 731: 722:(5–6): 545–565. 716:Coord. Chem. Rev 711: 705: 704: 695:(8–9): 856–885. 689:Coord. Chem. Rev 686: 677: 668: 667: 658:(7): 2969–2970. 647: 641: 640: 638: 620: 611: 461:molecular sieves 431: 282:bridging ligands 207:, either in the 190:electron density 178:electron density 1363: 1362: 1358: 1357: 1356: 1354: 1353: 1352: 1333: 1332: 1331: 1300: 1296: 1289: 1267: 1256: 1203: 1199: 1183: 1179: 1162: 1158: 1141: 1137: 1115: 1111: 1105: 1101: 1048: 1044: 1020: 1016: 995:(27): 6266–75. 981: 977: 946: 942: 919: 915: 891: 887: 864: 860: 853: 839: 835: 804: 800: 777: 773: 742: 735: 712: 708: 684: 678: 671: 648: 644: 618: 612: 605: 601: 593:tetrahydrofuran 584: 559: 526: 509: 502: 490: 486: 457: 452: 450:Research trends 445: 441: 437: 418: 388: 386:Guest molecules 376: 369: 365: 361: 357: 353: 349: 339: 334: 326: 301: 278: 245: 233: 198: 159: 155: 151: 133: 101:crystallization 93: 73: 17: 12: 11: 5: 1361: 1351: 1350: 1345: 1330: 1329: 1310:(2): 688–764. 1294: 1287: 1254: 1197: 1177: 1156: 1146:. Wiley-VCH. 1135: 1113: 1109: 1099: 1042: 1014: 975: 956:(22): 5650–2. 940: 913: 885: 858: 851: 843:Modern Physics 833: 798: 771: 733: 706: 669: 642: 602: 600: 597: 583: 580: 575:ferromagnetism 571:ferrimagnetism 558: 555: 525: 522: 508: 505: 500: 488: 484: 456: 453: 451: 448: 443: 439: 435: 417: 414: 410:carbon dioxide 387: 384: 375: 372: 367: 363: 359: 355: 351: 347: 338: 335: 333: 330: 325: 322: 300: 297: 277: 274: 244: 241: 232: 229: 197: 194: 192:distribution. 157: 153: 149: 142:periodic table 132: 129: 115:are relevant. 92: 89: 72: 69: 65:dimensionality 37:organometallic 15: 9: 6: 4: 3: 2: 1360: 1349: 1346: 1344: 1341: 1340: 1338: 1325: 1321: 1317: 1313: 1309: 1305: 1298: 1290: 1284: 1280: 1276: 1272: 1265: 1263: 1261: 1259: 1250: 1246: 1241: 1236: 1232: 1228: 1224: 1220: 1217:(1): 014108. 1216: 1212: 1208: 1201: 1195: 1191: 1187: 1181: 1174: 1170: 1167:. Wiley-VCH. 1166: 1160: 1153: 1149: 1145: 1139: 1131: 1127: 1123: 1119: 1116:(2,4-pyda)". 1103: 1095: 1091: 1086: 1081: 1077: 1073: 1069: 1065: 1061: 1057: 1053: 1046: 1038: 1034: 1030: 1026: 1018: 1010: 1006: 1002: 998: 994: 990: 986: 979: 971: 967: 963: 959: 955: 951: 944: 936: 932: 928: 924: 917: 909: 905: 901: 897: 889: 881: 877: 873: 869: 862: 854: 848: 844: 837: 829: 825: 821: 817: 813: 809: 802: 794: 790: 786: 782: 775: 767: 763: 759: 755: 751: 747: 740: 738: 729: 725: 721: 717: 710: 702: 698: 694: 690: 683: 676: 674: 665: 661: 657: 653: 646: 637: 632: 628: 624: 617: 610: 608: 603: 596: 594: 589: 579: 576: 572: 568: 564: 554: 551: 550:semiconductor 547: 543: 539: 530: 521: 519: 515: 504: 503:gas storage. 498: 492: 482: 478: 474: 470: 466: 462: 447: 432: 430: 425: 423: 413: 411: 407: 403: 392: 383: 381: 371: 345: 332:Other factors 329: 324:Ligand length 321: 318: 317:conformations 309: 305: 296: 294: 289: 287: 283: 273: 271: 267: 263: 258: 253: 249: 248:Alkali metals 240: 237: 228: 226: 222: 218: 214: 210: 206: 202: 193: 191: 187: 183: 182:hybridization 179: 175: 171: 167: 147: 143: 137: 131:Metal centers 128: 120: 116: 114: 110: 106: 102: 98: 97:self-assembly 88: 86: 82: 81:Prussian blue 78: 77:Alfred Werner 68: 66: 61: 58: 56: 52: 47: 45: 41: 38: 34: 30: 21: 1307: 1303: 1297: 1270: 1214: 1210: 1200: 1185: 1180: 1164: 1159: 1143: 1138: 1121: 1117: 1102: 1059: 1055: 1045: 1028: 1025:CrystEngComm 1024: 1017: 992: 988: 984: 978: 953: 949: 943: 929:(5–6): 661. 926: 922: 916: 899: 895: 888: 871: 867: 861: 842: 836: 811: 808:Chem. Eur. J 807: 801: 784: 780: 774: 749: 745: 719: 715: 709: 692: 688: 655: 651: 645: 626: 622: 585: 560: 535: 510: 507:Luminescence 493: 491:adsorption. 477:intercalated 458: 433: 426: 419: 416:Applications 398: 377: 340: 327: 313: 290: 279: 246: 234: 199: 163: 125: 99:, involving 94: 75:The work of 74: 62: 59: 48: 28: 26: 1031:(22): 121. 629:(8): 1715. 236:Lanthanides 231:Lanthanides 103:of a metal 1337:Categories 1124:(3): 837. 902:(2): 426. 599:References 481:adsorption 344:counterion 337:Counterion 293:phosphorus 257:counterion 184:model and 563:magnetism 557:Magnetism 546:d-orbital 366:and AgSbF 266:strontium 217:hybridize 33:inorganic 1343:Polymers 1324:20804195 1249:27877934 1094:20161370 1009:20520918 970:12401066 828:14613146 766:15114565 465:zeolites 406:nitrogen 205:orbitals 1240:5099803 1219:Bibcode 1085:2778864 1064:Bibcode 588:solvent 395:spaced. 362:, AgAsF 354:, AgClO 276:Ligands 262:calcium 152:O B. •H 71:History 44:ligands 40:polymer 1322:  1285:  1247:  1237:  1092:  1082:  1023:bpp". 1007:  985:versus 968:  849:  826:  764:  573:, and 473:guests 402:oxygen 358:, AgPF 350:, AgBF 286:ligand 270:barium 215:, can 156:O C.•H 31:is an 685:(PDF) 619:(PDF) 438:Ni(NH 1320:PMID 1283:ISBN 1245:PMID 1112:(OH) 1108:β-Cd 1090:PMID 1005:PMID 966:PMID 847:ISBN 824:PMID 762:PMID 475:are 250:and 209:atom 172:and 111:and 105:salt 83:and 1312:doi 1308:111 1275:doi 1235:PMC 1227:doi 1190:doi 1169:doi 1148:doi 1126:doi 1080:PMC 1072:doi 1060:182 1033:doi 997:doi 958:doi 931:doi 927:254 904:doi 900:362 876:doi 872:322 816:doi 789:doi 785:250 754:doi 724:doi 720:249 697:doi 693:252 660:doi 631:doi 518:LED 272:). 268:to 264:to 213:ion 211:or 35:or 1339:: 1318:. 1306:. 1281:. 1257:^ 1243:. 1233:. 1225:. 1213:. 1209:. 1120:. 1088:. 1078:. 1070:. 1058:. 1054:. 1027:. 1003:. 993:39 991:. 964:. 954:41 952:. 925:. 898:. 870:. 822:. 810:. 783:. 760:. 750:43 748:. 736:^ 718:. 691:. 687:. 672:^ 654:. 627:85 625:. 621:. 606:^ 569:, 565:. 485:60 408:, 404:, 380:pH 288:. 87:. 27:A 1326:. 1314:: 1291:. 1277:: 1251:. 1229:: 1221:: 1215:9 1192:: 1175:. 1171:: 1154:. 1150:: 1132:. 1128:: 1122:5 1114:2 1110:2 1096:. 1074:: 1066:: 1039:. 1035:: 1029:4 1011:. 999:: 972:. 960:: 937:. 933:: 910:. 906:: 882:. 878:: 855:. 830:. 818:: 812:9 795:. 791:: 768:. 756:: 730:. 726:: 703:. 699:: 666:. 662:: 656:9 639:. 633:: 501:2 489:2 444:2 442:) 440:3 436:4 368:6 364:6 360:6 356:4 352:4 348:3 158:2 154:2 150:2 144:(

Index


inorganic
organometallic
polymer
ligands
coordination complexes
metal-organic frameworks
dimensionality
Alfred Werner
Prussian blue
Hofmann clathrates
self-assembly
crystallization
salt
crystal engineering
molecular self-assembly


periodic table
alkaline earth metals
coordination number
coordination number
coordination geometry
electron density
hybridization
molecular orbital theory
electron density
Transition metals
orbitals
atom

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.