Knowledge

Laser beam welding

Source šŸ“

266:, much shorter than gas lasers used for welding, and as a result require that operators wear special eyewear or use special screens to prevent retina damage. Nd:YAG lasers can operate in both pulsed and continuous mode, but the other types are limited to pulsed mode. The original and still popular solid-state design is a single crystal shaped as a rod approximately 20 mm in diameter and 200 mm long, and the ends are ground flat. This rod is surrounded by a 3003: 31: 278:. When flashed, a pulse of light lasting about two milliseconds is emitted by the laser. Disk shaped crystals are growing in popularity in the industry, and flashlamps are giving way to diodes due to their high efficiency. Typical power output for ruby lasers is 10–20 W, while the Nd:YAG laser outputs between 0.04–6,000 W. To deliver the laser beam to the weld area, fiber optics are usually employed. 748: 1225: 330:
in prediction of welding parameters such as depth of fusion, cooling rates, and residual stresses. Due to the complexity of the pulsed laser process, it is necessary to employ a procedure that involves a development cycle. The cycle involves constructing a mathematical model, calculating a thermal cycle using numerical modeling techniques like either
497: 151:(GMAW). This combination allows for greater positioning flexibility, since GMAW supplies molten metal to fill the joint, and due to the use of a laser, increases the welding speed over what is normally possible with GMAW. Weld quality tends to be higher as well, since the potential for undercutting is reduced. 1088: 759:
analogous to an air pocket. The air pocket is in a state of flux. Forces such as the recoil pressure of the evaporated metal open the keyhole while gravity (aka hydrostatic forces) and metal surface tension tend to collapse it. At even higher power densities, the vapor can be ionized to form a plasma.
381:
Rosenthal point source assumption leaves an infinitely high temperature discontinuity which is addressed by assuming a Gaussian distribution instead. Radiant energy is also not uniformly distributed within the beam. Some devices produce Gaussian energy distributions, whereas others can be bimodal. A
1845:
The physics of pulsed laser can be very complex and therefore, some simplifying assumptions need to be made to either speed up calculation or compensate for a lack of materials properties. The temperature-dependence of material properties such as specific heat are ignored to minimize computing time.
758:
Lasers can weld in one of two modes: conduction and keyhole. Which mode is in operation depends on whether the power density is sufficiently high enough to cause evaporation. Conduction mode occurs below the vaporization point while keyhole mode occurs above the vaporization point. The keyhole is
377:
is absorbed and turned into heat for welding. Some of the radiant energy is absorbed in the plasma created by vaporizing and then subsequently ionizing the gas. In addition, the absorptivity is affected by the wavelength of the beam, the surface composition of the material being welded, the angle of
329:
Pulsed-laser welding has advantages over continuous wave (CW) laser welding. Some of these advantages are lower porosity and less spatter. Pulsed-laser welding also has some disadvantages such as causing hot cracking in aluminum alloys. Thermal analysis of the pulsed-laser welding process can assist
316:
Modern laser beam welding machines can be grouped into two types. In the traditional type, the laser output is moved to follow the seam. This is usually achieved with a robot. In many modern applications, remote laser beam welding is used. In this method, the laser beam is moved along the seam with
36: 35: 32: 1493:
Unlike CW (Continuous Wave) laser welding which involves one moving thermal cycle, pulsed laser involves repetitively impinging on the same spot, thus creating multiple overlapping thermal cycles. A method of addressing this is to add a step function that multiplies the heat flux by one when the
37: 1696: 80:
and high heating and cooling rates. The spot size of the laser can vary between 0.2 mm and 13 mm, though only smaller sizes are used for welding. The depth of penetration is proportional to the amount of power supplied, but is also dependent on the location of the
34: 1792: 905: 291:
gas laser beam is 10.6 Ī¼m, deep infrared, i.e. 'heat'. Fiber optic cable absorbs and is destroyed by this wavelength, so a rigid lens and mirror delivery system is used. Power outputs for gas lasers can be much higher than solid-state lasers, reaching
743:{\displaystyle \alpha _{\theta }=1-R_{\theta }=1-0.5{{1+(1-\epsilon \cos \theta )^{2} \over {1+{1+\epsilon \cos \theta )^{2}}}}+{{{\epsilon ^{2}}-2\epsilon \cos \theta +2\cos ^{2}\theta } \over {\epsilon ^{2}}+2\epsilon \cos \theta +2\cos ^{2}\theta }}} 1533:, where Ī“= the Kronecker delta, qe=experimentally determined heat flux. The problem with this method, is it does not allow you to see the effect of pulse duration. One way of solving this is to a use a modifier that is time-dependent function such as: 1484: 1220:{\displaystyle {\partial {\overrightarrow {v}} \over \partial t}+({\overrightarrow {v}}*\bigtriangledown ){\overrightarrow {v}}=-{1 \over \rho }\bigtriangledown P+v\bigtriangledown {\overrightarrow {v}}+\beta {\overrightarrow {g}}\Delta T} 1297: 1033: 286:
Gas lasers use high-voltage, low-current power sources to supply the energy needed to excite the gas mixture used as a lasing medium. These lasers can operate in both continuous and pulsed mode, and the wavelength of the
489:
Using a temperature distribution instead of a point source assumption allows for easier calculation of temperature-dependent material properties such as absorptivity. On the irradiated surface, when a keyhole is formed,
88:
A continuous or pulsed laser beam may be used depending upon the application. Millisecond-long pulses are used to weld thin materials such as razor blades while continuous laser systems are employed for deep welds.
1538: 183:, expanded to development of open source laser welding systems. Such systems have been fully characterized and can be used in a wide scale of applications while reducing conventional manufacturing costs. 750:, where Īµ is a function of dielectric constant, electric conductivity, and laser frequency. Īø is the angle of incidence. Understanding the absorption efficiency is key to calculating thermal effects. 1082: 60:. The beam provides a concentrated heat source, allowing for narrow, deep welds and high welding rates. The process is frequently used in high volume and precision requiring applications using 33: 2068: 1710: 765: 457: 1981:
Reinhart, G., Munzert, U. and Vogl, W., 2008. A programming system for robot-based remote-laser-welding with conventional optics. CIRP Annals-Manufacturing Technology, 57(1), pp.37-40.
1837:
Results can be validated by specific experimental observations or trends from generic experiments. These experiments have involved metallographic verification of the depth of fusion.
1819: 1326: 321:, so that the robotic arm does not need to follow the seam any more. The advantages of remote laser welding are the higher speed and the higher precision of the welding process. 1990:
Kim, P., Rhee, S. and Lee, C.H., 1999. Automatic teaching of welding robot for free-formed seam using laser vision sensor. Optics and Lasers in Engineering, 31(3), pp.173-182.
1531: 1359: 484: 116:. The speed of welding is proportional to the amount of power supplied but also depends on the type and thickness of the workpieces. The high power capability of 1346: 1231: 1849:
The liquid temperature can be overestimated if the amount of heat loss due to mass loss from vapor leaving the liquid-metal interface is not accounted for.
308:, the main medium is the optical fiber itself. They are capable of power up to 50 kW and are increasingly being used for robotic industrial welding. 1890:
Cieslak, M. (1988). "On the weldability, composition, and hardness of pulsed and continuous Nd: YAG laser welds in aluminum alloys 6061, 5456, and 5086".
918: 2387: 915:
is the equilibrium temperature at the liquid-vapor interface. Using the assumption that the vapor flow is limited to sonic velocities, one gets that
2041:
Sabbaghzadeh, Jamshid; Azizi, Maryam; Torkamany, M. Javad (2008). "Numerical and experimental investigation of seam welding with a pulsed laser".
2349: 1486:, where kn=the thermal conductivity normal to the surface impinged on by the laser, h=convective heat transfer coefficient for air, Ļƒ is the 2203:
Chen, Guibo; Gu, Xiuying; Bi, Juan (2016). "Numerical analysis of thermal effect in aluminum alloy by repetition frequency pulsed laser".
1829:
Incrementing is done by discretizing the governing equations presented in the previous steps and applying the next time and length steps.
1691:{\displaystyle f(n)={\begin{cases}1,&{\text{if }}n/v\leq t\leq n/v+\tau \\0,&{\text{if }}n/v+\tau \leq t\leq (n+1)/v\end{cases}}} 2322: 494:(the almost complete absorption of the beam energy due to multiple reflection within the keyhole cavity) occurs and can be modeled by 2963: 112:. Due to high cooling rates, cracking is a concern when welding high-carbon steels. The weld quality is high, similar to that of 2380: 1048: 2122: 2069:
Open Source Laser Polymer Welding System: Design and Characterization of Linear Low-Density Polyethylene Multilayer Welds
1348:=viscosity, Ī²=thermal expansion coefficient, g=gravity, and F is the volume fraction of fluid in a simulation grid cell. 2003:
Cline, H. E.; Anthony, T. R. (1977-09-01). "Heat treating and melting material with a scanning laser or electron beam".
1356:
In order to determine the boundary temperature at the laser impingement surface, you would apply an equation like this.
2373: 2342: 2300: 2285: 2270: 1787:{\displaystyle \rho C_{p}({\partial T \over \partial t}+{\overrightarrow {v}}\bigtriangledown T)=k\bigtriangledown T} 120:
make them especially suitable for high volume applications. LBW is particularly dominant in the automotive industry.
900:{\displaystyle {dP \over dT}={d\Delta H_{LV} \over dT\Delta V_{LV}}\thickapprox {d\Delta H_{LV} \over T_{LV}V_{LV}}} 2702: 385: 338:(FDM) or analytical models with simplifying assumptions, and validating the model by experimental measurements. 2872: 2318:
Weld morphology and thermal modeling in dual-beam laser welding; research article from the 2002 Welding Journal
1707:
2nd Law to obtain the internal temperature distribution. Assuming no internal heat generation, the solution is
1487: 97: 17: 1949: 1494:
beam is on but multiplies the heat flux by zero when the beam is off. One way to achieve this is by using a
2525: 2335: 1925: 1797: 1304: 165: 3032: 2928: 2470: 164:
Although laser beam welding can be accomplished by hand, most systems are automated and use a system of
2732: 2447: 180: 64:, as in the automotive and aeronautics industries. It is based on keyhole or penetration mode welding. 2462: 382:
Gaussian energy distribution can be applied by multiplying the power density by a function like this:
1562: 3027: 2437: 1490:
for radiation, and Īµ is the emissivity of the material being welded on, q is laser beam heat flux.
1479:{\displaystyle k_{n}{\partial T \over \partial n}-q+h(T-T_{o})+\sigma \epsilon (T^{4}-T_{o}^{2})=0} 253:
Regardless of type, however, when the medium is excited, it emits photons and forms the laser beam.
76:(EBW), laser beam welding has high power density (on the order of 1 MW/cm) resulting in small 1501: 2664: 2412: 2902: 2722: 2520: 2427: 1858: 352: 169: 85:: penetration is maximized when the focal point is slightly below the surface of the workpiece 2790: 2505: 2500: 2475: 2452: 2432: 335: 331: 148: 113: 73: 2897: 2780: 2768: 2695: 2571: 2515: 462: 144: 1292:{\displaystyle {\partial F \over \partial t}+({\overrightarrow {v}}*\bigtriangledown )F=0} 8: 2948: 2867: 2807: 2727: 2480: 348:
Calculating the recoil pressure based on temperatures and a Clausius-Clapeyron equation.
2597: 2535: 2485: 2442: 2417: 2317: 2312: 2174: 1907: 1331: 491: 77: 2162: 2968: 2842: 2817: 2639: 2634: 2296: 2281: 2266: 2178: 2166: 2118: 2020: 1911: 193: 2054: 3037: 2978: 2943: 2923: 2892: 2495: 2396: 2212: 2158: 2110: 2050: 2012: 1899: 1704: 1028:{\displaystyle P_{r}\approxeq 0.54P_{o}exp(\Delta H_{LV}{T-T_{LV} \over RTT_{LV}})} 907:, where P is the equilibrium vapor pressure, T is the liquid surface temperature, H 3006: 2887: 2877: 2688: 2607: 1495: 101: 2216: 2146: 2983: 2973: 2933: 2882: 2800: 2753: 2737: 2602: 2566: 2067:
John J. Laureto, Serguei V. Dessiatoun, Michael M. Ohadi and Joshua M. Pearce.
374: 318: 243: 212: 82: 2114: 56:
technique used to join pieces of metal or thermoplastics through the use of a
3021: 2938: 2918: 2859: 2785: 2581: 2576: 2540: 2490: 2422: 2170: 2024: 131: 127:
the laser beam can be transmitted through air rather than requiring a vacuum
2958: 2827: 2822: 2763: 2561: 2530: 2358: 1043:
This pertains to keyhole profiles. Fluid flow velocities are determined by
762:
The recoil pressure is determined by using the Clausius-Clapeyron equation.
93: 2147:"Mechanism of keyhole formation and stability in stationary laser welding" 207:
The first type uses one of several solid media, including synthetic ruby (
172:. Laser welding can also be coupled with milling to form a finished part. 2988: 2849: 2832: 2812: 2612: 2404: 305: 2837: 2659: 2654: 2313:
Dual beam laser welding; research article from the 2002 Welding Journal
2239:
Frewin (January 1999). "Finite Element Model of Pulsed Laser Welding".
1903: 267: 263: 197: 61: 1794:, where k=thermal conductivity, Ļ=density, Cp=specific heat capacity, 2953: 2795: 2775: 2758: 2649: 2644: 2556: 2016: 220: 216: 117: 2323:
Laser welding articles from the Industrial Laser Solutions Magazine
239: 208: 109: 105: 2145:
Lee, Jae Y.; Ko, Sung H.; Farson, Dave F.; Yoo, Choong D. (2002).
2669: 2629: 275: 262:
Solid-state lasers operate at wavelengths on the order of 1 
224: 53: 1700:
where v= pulse frequency, n=0,1, 2,...,v-1), Ļ„= pulse duration.
2327: 341:
A methodology combining some of the published models involves:
235: 228: 201: 176: 147:, combines the laser of LBW with an arc welding method such as 1035:, where Po is atmospheric pressure and Pr is recoil pressure. 459:, where r is the radial distance from the center of the beam, 2711: 1703:
Next, you would apply this boundary condition and solve for
271: 57: 2295:
5th ed. Upper Saddle River, New Jersey: Pearson Education.
1684: 324: 2040: 1840: 2680: 1950:"Laser Beam Welding - an overview | ScienceDirect Topics" 1077:{\displaystyle \bigtriangledown *{\overrightarrow {v}}=0} 123:
Some of the advantages of LBW in comparison to EBW are:
293: 1885: 1883: 2265:. Upper Saddle River, New Jersey: Pearson Education. 1800: 1713: 1541: 1504: 1362: 1334: 1328:
is the velocity vector, P=pressure, Ļ= mass density,
1307: 1234: 1091: 1051: 921: 768: 500: 465: 388: 1880: 1813: 1786: 1690: 1525: 1478: 1340: 1320: 1291: 1219: 1076: 1027: 899: 742: 478: 451: 3019: 378:incidence, and the temperature of the material. 2291:Kalpakjian, Serope and Schmid,Steven R.(2006). 2105:Steen, William M.; Mazumder, Jyotirmoy (2010). 219:in glass (Nd:glass), and the most common type, 92:LBW is a versatile process, capable of welding 2234: 2232: 2230: 2228: 2226: 2144: 351:Calculate the fluid flow velocities using the 2696: 2381: 2343: 2261:Cary, Howard B. and Scott C. Helzer (2005). 2104: 2100: 2098: 2096: 2094: 2036: 2034: 2198: 2196: 2194: 2192: 2190: 2188: 2002: 1998: 1996: 345:Determining the power absorption efficiency. 41:A robot performs remote fibre laser welding. 2223: 2140: 2138: 2136: 2134: 452:{\displaystyle f(r)=\exp(-r^{2}/a_{o}^{2})} 2703: 2689: 2388: 2374: 2350: 2336: 2091: 2031: 192:The two types of lasers commonly used are 2185: 1993: 358:Calculating the temperature distribution. 234:Gas lasers use mixtures of gases such as 2293:Manufacturing Engineering and Technology 2202: 2131: 325:Thermal modeling of pulsed-laser welding 29: 2964:Multiple-prism grating laser oscillator 1889: 1841:Consequences of simplifying assumptions 14: 3020: 2238: 311: 179:project, which historically worked on 2684: 2369: 2331: 2151:Journal of Physics D: Applied Physics 2079:(3), 14; doi: 10.3390/machines4030014 1926:"Ensuring the Quality of Laser Welds" 1814:{\displaystyle {\overrightarrow {v}}} 1321:{\displaystyle {\overrightarrow {v}}} 911:is the latent heat of vaporization, T 159: 130:the process is easily automated with 361:Increment time and repeat steps 1ā€“4. 139:LBW results in higher quality welds 24: 1741: 1733: 1384: 1376: 1246: 1238: 1211: 1110: 1095: 960: 850: 822: 798: 25: 3049: 2306: 841: 3002: 3001: 2357: 2448:Shielded metal (Stick/MMA/SMAW) 2438:Gas tungsten (Heliarc/TIG/GTAW) 2255: 2082: 2061: 2055:10.1016/j.optlastec.2007.05.005 2873:Amplified spontaneous emission 2433:Gas metal (Microwire/MIG/GMAW) 1984: 1975: 1966: 1942: 1918: 1871: 1769: 1727: 1670: 1658: 1551: 1545: 1467: 1436: 1424: 1405: 1277: 1258: 1141: 1122: 1022: 957: 611: 574: 552: 446: 410: 398: 392: 257: 13: 1: 2043:Optics & Laser Technology 1864: 1498:which modifies q as follows: 2413:Atomic hydrogen (Athydo/AHW) 1892:Metallurgical Transactions B 1526:{\displaystyle q=\delta *qe} 166:computer aided manufacturing 154: 67: 7: 2929:Chirped pulse amplification 2395: 2280:. New York: CRC Press LLC. 2217:10.1016/j.ijleo.2016.08.010 2163:10.1088/0022-3727/35/13/320 1852: 486:=beam radius or spot size. 10: 3054: 2733:List of laser applications 2710: 2278:Welding processes handbook 2005:Journal of Applied Physics 181:fused filament fabrication 2997: 2911: 2858: 2746: 2718: 2625: 2590: 2549: 2471:Electric resistance (ERW) 2461: 2403: 2365: 2263:Modern Welding Technology 2115:10.1007/978-1-84996-062-5 2107:Laser Material Processing 1832: 1824: 1488:Stefanā€“Boltzmann constant 1351: 1038: 753: 368: 332:finite elemental modeling 186: 1821:=fluid velocity vector. 336:finite difference method 299: 136:x-rays are not generated 204:lasers) and gas lasers. 2723:List of laser articles 2088:Cary and Helzer, p 209 1877:Cary and Helzer, p 210 1859:Laser metal deposition 1815: 1788: 1692: 1527: 1480: 1342: 1322: 1293: 1221: 1078: 1029: 901: 744: 480: 453: 353:volume of fluid method 281: 170:computer aided designs 42: 2665:Tools and terminology 2276:Weman, Klas (2003). 1954:www.sciencedirect.com 1816: 1789: 1693: 1528: 1481: 1343: 1323: 1294: 1222: 1079: 1030: 902: 745: 481: 479:{\displaystyle a_{o}} 454: 364:Validating of results 149:gas metal arc welding 143:A derivative of LBW, 114:electron beam welding 74:electron-beam welding 40: 2898:Population inversion 1798: 1711: 1539: 1502: 1360: 1332: 1305: 1232: 1089: 1049: 919: 766: 498: 463: 386: 145:laser-hybrid welding 2949:Laser beam profiler 2868:Active laser medium 2808:Free-electron laser 2728:List of laser types 2501:Friction stir (FSW) 2476:Electron-beam (EBW) 2211:(20): 10115ā€“10121. 1466: 445: 312:Laser beam delivery 250:laser) as a medium. 78:heat-affected zones 3033:Laser applications 2598:Heat-affected zone 2526:Oxyacetylene (OAW) 1904:10.1007/BF02654217 1811: 1784: 1688: 1683: 1523: 1476: 1452: 1338: 1318: 1289: 1217: 1074: 1025: 897: 740: 492:Fresnel reflection 476: 449: 431: 194:solid-state lasers 160:Automation and CAM 46:Laser beam welding 43: 3015: 3014: 2969:Optical amplifier 2818:Solid-state laser 2678: 2677: 2621: 2620: 2481:Electroslag (ESW) 2428:Flux-cored (FCAW) 2124:978-1-84996-061-8 1809: 1761: 1748: 1630: 1576: 1391: 1341:{\displaystyle v} 1316: 1269: 1253: 1209: 1193: 1168: 1152: 1133: 1117: 1106: 1066: 1020: 895: 839: 787: 737: 622: 132:robotic machinery 38: 27:Welding technique 16:(Redirected from 3045: 3005: 3004: 2979:Optical isolator 2944:Injection seeder 2924:Beam homogenizer 2903:Ultrashort pulse 2893:Lasing threshold 2705: 2698: 2691: 2682: 2681: 2511:Laser beam (LBW) 2418:Electrogas (EGW) 2390: 2383: 2376: 2367: 2366: 2352: 2345: 2338: 2329: 2328: 2249: 2248: 2236: 2221: 2220: 2200: 2183: 2182: 2142: 2129: 2128: 2102: 2089: 2086: 2080: 2065: 2059: 2058: 2038: 2029: 2028: 2017:10.1063/1.324261 2011:(9): 3895ā€“3900. 2000: 1991: 1988: 1982: 1979: 1973: 1970: 1964: 1963: 1961: 1960: 1946: 1940: 1939: 1937: 1936: 1922: 1916: 1915: 1887: 1878: 1875: 1820: 1818: 1817: 1812: 1810: 1802: 1793: 1791: 1790: 1785: 1762: 1754: 1749: 1747: 1739: 1731: 1726: 1725: 1697: 1695: 1694: 1689: 1687: 1686: 1677: 1639: 1631: 1628: 1605: 1585: 1577: 1574: 1532: 1530: 1529: 1524: 1485: 1483: 1482: 1477: 1465: 1460: 1448: 1447: 1423: 1422: 1392: 1390: 1382: 1374: 1372: 1371: 1347: 1345: 1344: 1339: 1327: 1325: 1324: 1319: 1317: 1309: 1298: 1296: 1295: 1290: 1270: 1262: 1254: 1252: 1244: 1236: 1226: 1224: 1223: 1218: 1210: 1202: 1194: 1186: 1169: 1161: 1153: 1145: 1134: 1126: 1118: 1116: 1108: 1107: 1099: 1093: 1083: 1081: 1080: 1075: 1067: 1059: 1034: 1032: 1031: 1026: 1021: 1019: 1018: 1017: 998: 997: 996: 977: 975: 974: 947: 946: 931: 930: 906: 904: 903: 898: 896: 894: 893: 892: 880: 879: 866: 865: 864: 845: 840: 838: 837: 836: 814: 813: 812: 793: 788: 786: 778: 770: 749: 747: 746: 741: 739: 738: 736: 729: 728: 695: 694: 693: 682: 675: 674: 641: 640: 639: 628: 623: 621: 620: 619: 618: 583: 582: 581: 544: 529: 528: 510: 509: 485: 483: 482: 477: 475: 474: 458: 456: 455: 450: 444: 439: 430: 425: 424: 39: 21: 3053: 3052: 3048: 3047: 3046: 3044: 3043: 3042: 3028:Laser machining 3018: 3017: 3016: 3011: 2993: 2907: 2888:Laser linewidth 2878:Continuous wave 2854: 2747:Types of lasers 2742: 2714: 2709: 2679: 2674: 2617: 2608:Residual stress 2586: 2545: 2463:Other processes 2457: 2453:Submerged (SAW) 2399: 2394: 2361: 2356: 2309: 2258: 2253: 2252: 2241:Welding Journal 2237: 2224: 2201: 2186: 2143: 2132: 2125: 2103: 2092: 2087: 2083: 2066: 2062: 2039: 2032: 2001: 1994: 1989: 1985: 1980: 1976: 1971: 1967: 1958: 1956: 1948: 1947: 1943: 1934: 1932: 1924: 1923: 1919: 1888: 1881: 1876: 1872: 1867: 1855: 1843: 1835: 1827: 1801: 1799: 1796: 1795: 1753: 1740: 1732: 1730: 1721: 1717: 1712: 1709: 1708: 1682: 1681: 1673: 1635: 1627: 1625: 1616: 1615: 1601: 1581: 1573: 1571: 1558: 1557: 1540: 1537: 1536: 1503: 1500: 1499: 1496:Kronecker delta 1461: 1456: 1443: 1439: 1418: 1414: 1383: 1375: 1373: 1367: 1363: 1361: 1358: 1357: 1354: 1333: 1330: 1329: 1308: 1306: 1303: 1302: 1261: 1245: 1237: 1235: 1233: 1230: 1229: 1201: 1185: 1160: 1144: 1125: 1109: 1098: 1094: 1092: 1090: 1087: 1086: 1058: 1050: 1047: 1046: 1041: 1010: 1006: 999: 989: 985: 978: 976: 967: 963: 942: 938: 926: 922: 920: 917: 916: 914: 910: 885: 881: 872: 868: 867: 857: 853: 846: 844: 829: 825: 815: 805: 801: 794: 792: 779: 771: 769: 767: 764: 763: 756: 724: 720: 689: 685: 684: 683: 670: 666: 635: 631: 630: 629: 627: 614: 610: 591: 584: 577: 573: 545: 543: 542: 524: 520: 505: 501: 499: 496: 495: 470: 466: 464: 461: 460: 440: 435: 426: 420: 416: 387: 384: 383: 371: 327: 314: 302: 290: 284: 260: 249: 189: 162: 157: 102:stainless steel 70: 30: 28: 23: 22: 15: 12: 11: 5: 3051: 3041: 3040: 3035: 3030: 3013: 3012: 3010: 3009: 2998: 2995: 2994: 2992: 2991: 2986: 2984:Output coupler 2981: 2976: 2974:Optical cavity 2971: 2966: 2961: 2956: 2951: 2946: 2941: 2936: 2934:Gain-switching 2931: 2926: 2921: 2915: 2913: 2909: 2908: 2906: 2905: 2900: 2895: 2890: 2885: 2883:Laser ablation 2880: 2875: 2870: 2864: 2862: 2856: 2855: 2853: 2852: 2847: 2846: 2845: 2840: 2835: 2830: 2825: 2815: 2810: 2805: 2804: 2803: 2798: 2793: 2788: 2783: 2781:Carbon dioxide 2773: 2772: 2771: 2769:Liquid-crystal 2766: 2756: 2754:Chemical laser 2750: 2748: 2744: 2743: 2741: 2740: 2738:Laser acronyms 2735: 2730: 2725: 2719: 2716: 2715: 2708: 2707: 2700: 2693: 2685: 2676: 2675: 2673: 2672: 2667: 2662: 2657: 2652: 2647: 2642: 2637: 2632: 2626: 2623: 2622: 2619: 2618: 2616: 2615: 2610: 2605: 2603:Photokeratitis 2600: 2594: 2592: 2588: 2587: 2585: 2584: 2579: 2574: 2569: 2564: 2559: 2553: 2551: 2547: 2546: 2544: 2543: 2538: 2533: 2528: 2523: 2521:Magnetic pulse 2518: 2513: 2508: 2503: 2498: 2493: 2488: 2483: 2478: 2473: 2467: 2465: 2459: 2458: 2456: 2455: 2450: 2445: 2440: 2435: 2430: 2425: 2420: 2415: 2409: 2407: 2401: 2400: 2393: 2392: 2385: 2378: 2370: 2363: 2362: 2355: 2354: 2347: 2340: 2332: 2326: 2325: 2320: 2315: 2308: 2307:External links 2305: 2304: 2303: 2289: 2274: 2257: 2254: 2251: 2250: 2222: 2184: 2130: 2123: 2090: 2081: 2060: 2049:(2): 289ā€“296. 2030: 1992: 1983: 1974: 1965: 1941: 1917: 1898:(2): 319ā€“329. 1879: 1869: 1868: 1866: 1863: 1862: 1861: 1854: 1851: 1842: 1839: 1834: 1831: 1826: 1823: 1808: 1805: 1783: 1780: 1777: 1774: 1771: 1768: 1765: 1760: 1757: 1752: 1746: 1743: 1738: 1735: 1729: 1724: 1720: 1716: 1685: 1680: 1676: 1672: 1669: 1666: 1663: 1660: 1657: 1654: 1651: 1648: 1645: 1642: 1638: 1634: 1626: 1624: 1621: 1618: 1617: 1614: 1611: 1608: 1604: 1600: 1597: 1594: 1591: 1588: 1584: 1580: 1572: 1570: 1567: 1564: 1563: 1561: 1556: 1553: 1550: 1547: 1544: 1522: 1519: 1516: 1513: 1510: 1507: 1475: 1472: 1469: 1464: 1459: 1455: 1451: 1446: 1442: 1438: 1435: 1432: 1429: 1426: 1421: 1417: 1413: 1410: 1407: 1404: 1401: 1398: 1395: 1389: 1386: 1381: 1378: 1370: 1366: 1353: 1350: 1337: 1315: 1312: 1288: 1285: 1282: 1279: 1276: 1273: 1268: 1265: 1260: 1257: 1251: 1248: 1243: 1240: 1216: 1213: 1208: 1205: 1200: 1197: 1192: 1189: 1184: 1181: 1178: 1175: 1172: 1167: 1164: 1159: 1156: 1151: 1148: 1143: 1140: 1137: 1132: 1129: 1124: 1121: 1115: 1112: 1105: 1102: 1097: 1073: 1070: 1065: 1062: 1057: 1054: 1040: 1037: 1024: 1016: 1013: 1009: 1005: 1002: 995: 992: 988: 984: 981: 973: 970: 966: 962: 959: 956: 953: 950: 945: 941: 937: 934: 929: 925: 912: 908: 891: 888: 884: 878: 875: 871: 863: 860: 856: 852: 849: 843: 835: 832: 828: 824: 821: 818: 811: 808: 804: 800: 797: 791: 785: 782: 777: 774: 755: 752: 735: 732: 727: 723: 719: 716: 713: 710: 707: 704: 701: 698: 692: 688: 681: 678: 673: 669: 665: 662: 659: 656: 653: 650: 647: 644: 638: 634: 626: 617: 613: 609: 606: 603: 600: 597: 594: 590: 587: 580: 576: 572: 569: 566: 563: 560: 557: 554: 551: 548: 541: 538: 535: 532: 527: 523: 519: 516: 513: 508: 504: 473: 469: 448: 443: 438: 434: 429: 423: 419: 415: 412: 409: 406: 403: 400: 397: 394: 391: 375:radiant energy 370: 367: 366: 365: 362: 359: 356: 349: 346: 326: 323: 317:the help of a 313: 310: 301: 298: 288: 283: 280: 259: 256: 255: 254: 251: 247: 244:carbon dioxide 232: 213:aluminum oxide 205: 188: 185: 161: 158: 156: 153: 141: 140: 137: 134: 128: 69: 66: 26: 9: 6: 4: 3: 2: 3050: 3039: 3036: 3034: 3031: 3029: 3026: 3025: 3023: 3008: 3000: 2999: 2996: 2990: 2987: 2985: 2982: 2980: 2977: 2975: 2972: 2970: 2967: 2965: 2962: 2960: 2957: 2955: 2952: 2950: 2947: 2945: 2942: 2940: 2939:Gaussian beam 2937: 2935: 2932: 2930: 2927: 2925: 2922: 2920: 2919:Beam expander 2917: 2916: 2914: 2910: 2904: 2901: 2899: 2896: 2894: 2891: 2889: 2886: 2884: 2881: 2879: 2876: 2874: 2871: 2869: 2866: 2865: 2863: 2861: 2860:Laser physics 2857: 2851: 2848: 2844: 2841: 2839: 2836: 2834: 2831: 2829: 2826: 2824: 2821: 2820: 2819: 2816: 2814: 2811: 2809: 2806: 2802: 2799: 2797: 2794: 2792: 2789: 2787: 2784: 2782: 2779: 2778: 2777: 2774: 2770: 2767: 2765: 2762: 2761: 2760: 2757: 2755: 2752: 2751: 2749: 2745: 2739: 2736: 2734: 2731: 2729: 2726: 2724: 2721: 2720: 2717: 2713: 2706: 2701: 2699: 2694: 2692: 2687: 2686: 2683: 2671: 2668: 2666: 2663: 2661: 2658: 2656: 2653: 2651: 2648: 2646: 2643: 2641: 2638: 2636: 2633: 2631: 2628: 2627: 2624: 2614: 2611: 2609: 2606: 2604: 2601: 2599: 2596: 2595: 2593: 2591:Related terms 2589: 2583: 2582:Shielding gas 2580: 2578: 2575: 2573: 2570: 2568: 2565: 2563: 2560: 2558: 2555: 2554: 2552: 2548: 2542: 2539: 2537: 2534: 2532: 2529: 2527: 2524: 2522: 2519: 2517: 2514: 2512: 2509: 2507: 2506:Friction stud 2504: 2502: 2499: 2497: 2494: 2492: 2489: 2487: 2484: 2482: 2479: 2477: 2474: 2472: 2469: 2468: 2466: 2464: 2460: 2454: 2451: 2449: 2446: 2444: 2441: 2439: 2436: 2434: 2431: 2429: 2426: 2424: 2421: 2419: 2416: 2414: 2411: 2410: 2408: 2406: 2402: 2398: 2391: 2386: 2384: 2379: 2377: 2372: 2371: 2368: 2364: 2360: 2353: 2348: 2346: 2341: 2339: 2334: 2333: 2330: 2324: 2321: 2319: 2316: 2314: 2311: 2310: 2302: 2301:0-13-148965-8 2298: 2294: 2290: 2287: 2286:0-8493-1773-8 2283: 2279: 2275: 2272: 2271:0-13-113029-3 2268: 2264: 2260: 2259: 2246: 2242: 2235: 2233: 2231: 2229: 2227: 2218: 2214: 2210: 2206: 2199: 2197: 2195: 2193: 2191: 2189: 2180: 2176: 2172: 2168: 2164: 2160: 2156: 2152: 2148: 2141: 2139: 2137: 2135: 2126: 2120: 2116: 2112: 2108: 2101: 2099: 2097: 2095: 2085: 2078: 2074: 2070: 2064: 2056: 2052: 2048: 2044: 2037: 2035: 2026: 2022: 2018: 2014: 2010: 2006: 1999: 1997: 1987: 1978: 1969: 1955: 1951: 1945: 1931: 1927: 1921: 1913: 1909: 1905: 1901: 1897: 1893: 1886: 1884: 1874: 1870: 1860: 1857: 1856: 1850: 1847: 1838: 1830: 1822: 1806: 1803: 1781: 1778: 1775: 1772: 1766: 1763: 1758: 1755: 1750: 1744: 1736: 1722: 1718: 1714: 1706: 1701: 1698: 1678: 1674: 1667: 1664: 1661: 1655: 1652: 1649: 1646: 1643: 1640: 1636: 1632: 1622: 1619: 1612: 1609: 1606: 1602: 1598: 1595: 1592: 1589: 1586: 1582: 1578: 1568: 1565: 1559: 1554: 1548: 1542: 1534: 1520: 1517: 1514: 1511: 1508: 1505: 1497: 1491: 1489: 1473: 1470: 1462: 1457: 1453: 1449: 1444: 1440: 1433: 1430: 1427: 1419: 1415: 1411: 1408: 1402: 1399: 1396: 1393: 1387: 1379: 1368: 1364: 1349: 1335: 1313: 1310: 1299: 1286: 1283: 1280: 1274: 1271: 1266: 1263: 1255: 1249: 1241: 1227: 1214: 1206: 1203: 1198: 1195: 1190: 1187: 1182: 1179: 1176: 1173: 1170: 1165: 1162: 1157: 1154: 1149: 1146: 1138: 1135: 1130: 1127: 1119: 1113: 1103: 1100: 1084: 1071: 1068: 1063: 1060: 1055: 1052: 1044: 1036: 1014: 1011: 1007: 1003: 1000: 993: 990: 986: 982: 979: 971: 968: 964: 954: 951: 948: 943: 939: 935: 932: 927: 923: 889: 886: 882: 876: 873: 869: 861: 858: 854: 847: 833: 830: 826: 819: 816: 809: 806: 802: 795: 789: 783: 780: 775: 772: 760: 751: 733: 730: 725: 721: 717: 714: 711: 708: 705: 702: 699: 696: 690: 686: 679: 676: 671: 667: 663: 660: 657: 654: 651: 648: 645: 642: 636: 632: 624: 615: 607: 604: 601: 598: 595: 592: 588: 585: 578: 570: 567: 564: 561: 558: 555: 549: 546: 539: 536: 533: 530: 525: 521: 517: 514: 511: 506: 502: 493: 487: 471: 467: 441: 436: 432: 427: 421: 417: 413: 407: 404: 401: 395: 389: 379: 376: 363: 360: 357: 354: 350: 347: 344: 343: 342: 339: 337: 333: 322: 320: 319:laser scanner 309: 307: 297: 295: 279: 277: 273: 269: 265: 252: 245: 241: 237: 233: 230: 226: 222: 218: 214: 210: 206: 203: 199: 195: 191: 190: 184: 182: 178: 173: 171: 167: 152: 150: 146: 138: 135: 133: 129: 126: 125: 124: 121: 119: 115: 111: 107: 103: 99: 95: 94:carbon steels 90: 86: 84: 79: 75: 65: 63: 59: 55: 51: 47: 19: 18:Laser welding 2959:Mode locking 2912:Laser optics 2572:Power supply 2562:Filler metal 2516:Laser-hybrid 2510: 2443:Plasma (PAW) 2359:Metalworking 2292: 2277: 2262: 2256:Bibliography 2244: 2240: 2208: 2204: 2157:(13): 1570. 2154: 2150: 2106: 2084: 2076: 2072: 2063: 2046: 2042: 2008: 2004: 1986: 1977: 1968: 1957:. Retrieved 1953: 1944: 1933:. Retrieved 1929: 1920: 1895: 1891: 1873: 1848: 1844: 1836: 1828: 1702: 1699: 1535: 1492: 1355: 1300: 1228: 1085: 1045: 1042: 761: 757: 488: 380: 372: 340: 328: 315: 306:fiber lasers 303: 285: 261: 196:(especially 175:In 2016 the 174: 163: 142: 122: 91: 87: 71: 49: 45: 44: 2989:Q-switching 2850:X-ray laser 2843:Ti-sapphire 2813:Laser diode 2791:Heliumā€“neon 2635:Fabrication 2613:Weldability 2405:Arc welding 1972:Weman, p 98 270:containing 258:Solid state 198:ruby lasers 98:HSLA steels 83:focal point 3022:Categories 2655:Metallurgy 2536:Ultrasonic 2531:Spot (RSW) 2486:Exothermic 1959:2022-05-31 1935:2022-05-31 1865:References 268:flash tube 264:micrometer 118:gas lasers 62:automation 2954:M squared 2776:Gas laser 2759:Dye laser 2650:Machining 2645:Jewellery 2557:Electrode 2550:Equipment 2179:250782960 2171:0022-3727 2025:0021-8979 1912:135498572 1807:→ 1779:▽ 1764:▽ 1759:→ 1742:∂ 1734:∂ 1715:ρ 1705:Fourier's 1656:≤ 1650:≤ 1647:τ 1613:τ 1596:≤ 1590:≤ 1515:∗ 1512:δ 1450:− 1434:ϵ 1431:σ 1412:− 1394:− 1385:∂ 1377:∂ 1314:→ 1275:▽ 1272:∗ 1267:→ 1247:∂ 1239:∂ 1212:Δ 1207:→ 1199:β 1191:→ 1183:▽ 1171:▽ 1166:ρ 1158:− 1150:→ 1139:▽ 1136:∗ 1131:→ 1111:∂ 1104:→ 1096:∂ 1064:→ 1056:∗ 1053:▽ 983:− 961:Δ 933:≊ 851:Δ 842:≈ 823:Δ 799:Δ 734:θ 731:⁡ 712:θ 709:⁡ 703:ϵ 687:ϵ 680:θ 677:⁡ 658:θ 655:⁡ 649:ϵ 643:− 633:ϵ 608:θ 605:⁡ 599:ϵ 571:θ 568:⁡ 562:ϵ 559:− 537:− 526:θ 518:− 507:θ 503:α 414:− 408:⁡ 334:(FEM) or 231:(Nd:YAG). 227:aluminum 221:neodymium 217:neodymium 168:based on 155:Equipment 68:Operation 3007:Category 2801:Nitrogen 2660:Smithing 2496:Friction 2073:Machines 1853:See also 1629:if  1575:if  373:Not all 292:25  240:nitrogen 209:chromium 110:titanium 106:aluminum 3038:Welding 2786:Excimer 2670:Welding 2640:Forming 2630:Casting 2397:Welding 2247:: 15ā€“2. 1930:Element 276:krypton 225:yttrium 54:welding 52:) is a 2828:Nd:YAG 2823:Er:YAG 2764:Bubble 2712:Lasers 2567:Helmet 2299:  2284:  2269:  2177:  2169:  2121:  2075:2016, 2023:  1910:  1833:Step 6 1825:Step 5 1352:Step 4 1301:where 1039:Step 3 754:Step 2 369:Step 1 355:(VOF). 242:, and 236:helium 229:garnet 202:Nd:YAG 187:Lasers 177:RepRap 108:, and 2833:Raman 2577:Robot 2541:Upset 2491:Forge 2423:Flash 2205:Optik 2175:S2CID 1908:S2CID 300:Fiber 272:xenon 72:Like 58:laser 2838:Ruby 2297:ISBN 2282:ISBN 2267:ISBN 2167:ISSN 2119:ISBN 2021:ISSN 936:0.54 200:and 2796:Ion 2213:doi 2209:127 2159:doi 2111:doi 2051:doi 2013:doi 1900:doi 722:cos 706:cos 668:cos 652:cos 602:cos 565:cos 540:0.5 405:exp 304:In 282:Gas 274:or 246:(CO 223:in 215:), 211:in 50:LBW 3024:: 2245:78 2243:. 2225:^ 2207:. 2187:^ 2173:. 2165:. 2155:35 2153:. 2149:. 2133:^ 2117:. 2109:. 2093:^ 2071:. 2047:40 2045:. 2033:^ 2019:. 2009:48 2007:. 1995:^ 1952:. 1928:. 1906:. 1894:. 1882:^ 913:LV 909:LV 296:. 294:kW 287:CO 238:, 104:, 100:, 96:, 2704:e 2697:t 2690:v 2389:e 2382:t 2375:v 2351:e 2344:t 2337:v 2288:. 2273:. 2219:. 2215:: 2181:. 2161:: 2127:. 2113:: 2077:4 2057:. 2053:: 2027:. 2015:: 1962:. 1938:. 1914:. 1902:: 1896:9 1804:v 1782:T 1776:k 1773:= 1770:) 1767:T 1756:v 1751:+ 1745:t 1737:T 1728:( 1723:p 1719:C 1679:v 1675:/ 1671:) 1668:1 1665:+ 1662:n 1659:( 1653:t 1644:+ 1641:v 1637:/ 1633:n 1623:, 1620:0 1610:+ 1607:v 1603:/ 1599:n 1593:t 1587:v 1583:/ 1579:n 1569:, 1566:1 1560:{ 1555:= 1552:) 1549:n 1546:( 1543:f 1521:e 1518:q 1509:= 1506:q 1474:0 1471:= 1468:) 1463:2 1458:o 1454:T 1445:4 1441:T 1437:( 1428:+ 1425:) 1420:o 1416:T 1409:T 1406:( 1403:h 1400:+ 1397:q 1388:n 1380:T 1369:n 1365:k 1336:v 1311:v 1287:0 1284:= 1281:F 1278:) 1264:v 1259:( 1256:+ 1250:t 1242:F 1215:T 1204:g 1196:+ 1188:v 1180:v 1177:+ 1174:P 1163:1 1155:= 1147:v 1142:) 1128:v 1123:( 1120:+ 1114:t 1101:v 1072:0 1069:= 1061:v 1023:) 1015:V 1012:L 1008:T 1004:T 1001:R 994:V 991:L 987:T 980:T 972:V 969:L 965:H 958:( 955:p 952:x 949:e 944:o 940:P 928:r 924:P 890:V 887:L 883:V 877:V 874:L 870:T 862:V 859:L 855:H 848:d 834:V 831:L 827:V 820:T 817:d 810:V 807:L 803:H 796:d 790:= 784:T 781:d 776:P 773:d 726:2 718:2 715:+ 700:2 697:+ 691:2 672:2 664:2 661:+ 646:2 637:2 625:+ 616:2 612:) 596:+ 593:1 589:+ 586:1 579:2 575:) 556:1 553:( 550:+ 547:1 534:1 531:= 522:R 515:1 512:= 472:o 468:a 447:) 442:2 437:o 433:a 428:/ 422:2 418:r 411:( 402:= 399:) 396:r 393:( 390:f 289:2 248:2 48:( 20:)

Index

Laser welding
welding
laser
automation
electron-beam welding
heat-affected zones
focal point
carbon steels
HSLA steels
stainless steel
aluminum
titanium
electron beam welding
gas lasers
robotic machinery
laser-hybrid welding
gas metal arc welding
computer aided manufacturing
computer aided designs
RepRap
fused filament fabrication
solid-state lasers
ruby lasers
Nd:YAG
chromium
aluminum oxide
neodymium
neodymium
yttrium
garnet

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

ā†‘