Knowledge

Laser-hybrid welding

Source đź“ť

183:
as a keyhole. The extraordinary feature of the weld seam is its high depth-to-width ratio. The energy-flow density of the freely burning arc is slightly more than 100 kW/cm. Unlike a dual process where two separate weld processes act in succession, hybrid welding may be viewed as a combination of both weld processes acting simultaneously in one and the same process zone. Depending on the kind of arc or laser process used, and depending on the process parameters, the two systems will influence each other in different ways.
937: 22: 196:
required for this is thus determined by the temperature-dependent absorption and by the amount of energy lost by conduction into the rest of the workpiece. In laser-hybrid welding, using MIG, vaporisation takes place not only from the surface of the workpiece but also from the filler wire, so that more metal vapor is available to facilitate the absorption of the laser radiation.
204:
Over the years a great deal of research has been done to understand fatigue behavior, particularly for new techniques like laser-hybrid welding, but knowledge is still limited. Laser-hybrid welding is an advanced welding technology that creates narrow deep welds and offers greater freedom to control
195:
surfaces. This can be achieved by preheating the material. In the hybrid process, the arc heats the metal, helping the laser beam to couple in. After the vaporisation temperature has been reached, the vapor cavity is formed, and nearly all radiation energy can be put into the workpiece. The energy
182:
For welding metallic objects, the laser beam is focused to obtain intensities of more than 1 MW/cm. When the laser beam hits the surface of the material, this spot is heated up to vaporization temperature, and a vapor cavity is formed in the weld metal due to the escaping metal vapor. This is known
157:
Laser welding not only requires high laser power but also a high quality beam to obtain the desired "deep-weld effect". The resulting higher quality of beam can be exploited either to obtain a smaller focus diameter or a larger focal distance. A variety of laser types are used for this process, in
148:
Whereas in the early days laser sources still had to prove their suitability for industrial use, today they are standard equipment in many manufacturing enterprises. The combination of laser welding with another weld process is called a "hybrid welding process". This means that a laser beam and an
186:
The combination of the laser process and the arc process results in an increase in both weld penetration depth and welding speed (as compared to each process alone). The metal vapor escaping from the vapor cavity acts upon the arc plasma. Absorption of the laser radiation in the processing plasma
132:
The combination of laser light and an electrical arc into an amalgamated welding process has existed since the 1970s, but has only recently been used in industrial applications. There are three main types of hybrid welding process, depending on the arc used:
190:
Absorption of the laser radiation is substantially influenced by the temperature of the workpiece surface. Before the laser welding process can start, the initial reflectance must be overcome, especially on
145:
augmented laser welding. While TIG-augmented laser welding was the first to be researched, MIG is the first to go into industry and is commonly known as hybrid laser welding.
187:
remains negligible. Depending on the ratio of the two power inputs, the character of the overall process may be mainly determined either by the laser or by the arc.
205:
the weld surface geometry. Therefore, fatigue analysis and life prediction of hybrid weld joints has become more important and is the subject of ongoing research.
321: 283: 86: 897: 58: 314: 39: 65: 223: 72: 307: 276: 162:
where the laser light can be transmitted via a water-cooled glass fiber. The beam is projected onto the workpiece by
105: 636: 54: 806: 43: 459: 269: 966: 862: 404: 666: 381: 396: 961: 371: 134: 79: 598: 346: 142: 32: 836: 656: 454: 361: 256: 149:
electrical arc act simultaneously in one welding zone, influencing and supporting each other.
724: 439: 434: 409: 386: 366: 831: 714: 702: 629: 505: 171: 8: 882: 801: 741: 661: 414: 531: 469: 444: 419: 376: 351: 122: 902: 776: 751: 573: 568: 971: 912: 877: 857: 826: 429: 330: 940: 821: 811: 622: 541: 917: 907: 867: 816: 734: 687: 671: 536: 500: 955: 872: 852: 793: 719: 515: 510: 474: 424: 356: 231: 892: 761: 756: 697: 495: 464: 292: 922: 783: 766: 746: 546: 338: 126: 771: 593: 588: 163: 138: 887: 729: 709: 692: 583: 578: 490: 174:
can also be used where the beam is transmitted via lens or mirrors.
21: 192: 603: 563: 261: 167: 159: 645: 121:
is a type of welding process that combines the principles of
614: 46:. Unsourced material may be challenged and removed. 953: 630: 315: 277: 224:"Laser-Hybrid Welding Drives VW Improvements" 637: 623: 322: 308: 284: 270: 106:Learn how and when to remove this message 898:Multiple-prism grating laser oscillator 177: 954: 618: 303: 265: 44:adding citations to reliable sources 15: 199: 13: 14: 983: 936: 935: 291: 221: 20: 382:Shielded metal (Stick/MMA/SMAW) 372:Gas tungsten (Heliarc/TIG/GTAW) 31:needs additional citations for 807:Amplified spontaneous emission 367:Gas metal (Microwire/MIG/GMAW) 215: 1: 208: 347:Atomic hydrogen (Athydo/AHW) 7: 863:Chirped pulse amplification 329: 250: 10: 988: 667:List of laser applications 644: 931: 845: 792: 680: 652: 559: 524: 483: 405:Electric resistance (ERW) 395: 337: 299: 152: 657:List of laser articles 257:List of laser articles 55:"Laser-hybrid welding" 599:Tools and terminology 832:Population inversion 178:Laser-hybrid process 172:Carbon dioxide laser 119:Laser-hybrid welding 40:improve this article 883:Laser beam profiler 802:Active laser medium 742:Free-electron laser 662:List of laser types 435:Friction stir (FSW) 410:Electron-beam (EBW) 234:on 12 December 2008 967:Laser applications 532:Heat-affected zone 460:Oxyacetylene (OAW) 123:laser beam welding 949: 948: 903:Optical amplifier 752:Solid-state laser 612: 611: 555: 554: 415:Electroslag (ESW) 362:Flux-cored (FCAW) 116: 115: 108: 90: 979: 939: 938: 913:Optical isolator 878:Injection seeder 858:Beam homogenizer 837:Ultrashort pulse 827:Lasing threshold 639: 632: 625: 616: 615: 445:Laser beam (LBW) 352:Electrogas (EGW) 324: 317: 310: 301: 300: 286: 279: 272: 263: 262: 244: 243: 241: 239: 230:. Archived from 219: 200:Fatigue behavior 111: 104: 100: 97: 91: 89: 48: 24: 16: 987: 986: 982: 981: 980: 978: 977: 976: 962:Laser machining 952: 951: 950: 945: 927: 841: 822:Laser linewidth 812:Continuous wave 788: 681:Types of lasers 676: 648: 643: 613: 608: 551: 542:Residual stress 520: 479: 397:Other processes 391: 387:Submerged (SAW) 333: 328: 295: 290: 253: 248: 247: 237: 235: 228:Welding Journal 220: 216: 211: 202: 180: 155: 112: 101: 95: 92: 49: 47: 37: 25: 12: 11: 5: 985: 975: 974: 969: 964: 947: 946: 944: 943: 932: 929: 928: 926: 925: 920: 918:Output coupler 915: 910: 908:Optical cavity 905: 900: 895: 890: 885: 880: 875: 870: 868:Gain-switching 865: 860: 855: 849: 847: 843: 842: 840: 839: 834: 829: 824: 819: 817:Laser ablation 814: 809: 804: 798: 796: 790: 789: 787: 786: 781: 780: 779: 774: 769: 764: 759: 749: 744: 739: 738: 737: 732: 727: 722: 717: 715:Carbon dioxide 707: 706: 705: 703:Liquid-crystal 700: 690: 688:Chemical laser 684: 682: 678: 677: 675: 674: 672:Laser acronyms 669: 664: 659: 653: 650: 649: 642: 641: 634: 627: 619: 610: 609: 607: 606: 601: 596: 591: 586: 581: 576: 571: 566: 560: 557: 556: 553: 552: 550: 549: 544: 539: 537:Photokeratitis 534: 528: 526: 522: 521: 519: 518: 513: 508: 503: 498: 493: 487: 485: 481: 480: 478: 477: 472: 467: 462: 457: 455:Magnetic pulse 452: 447: 442: 437: 432: 427: 422: 417: 412: 407: 401: 399: 393: 392: 390: 389: 384: 379: 374: 369: 364: 359: 354: 349: 343: 341: 335: 334: 327: 326: 319: 312: 304: 297: 296: 289: 288: 281: 274: 266: 260: 259: 252: 249: 246: 245: 213: 212: 210: 207: 201: 198: 179: 176: 154: 151: 114: 113: 28: 26: 19: 9: 6: 4: 3: 2: 984: 973: 970: 968: 965: 963: 960: 959: 957: 942: 934: 933: 930: 924: 921: 919: 916: 914: 911: 909: 906: 904: 901: 899: 896: 894: 891: 889: 886: 884: 881: 879: 876: 874: 873:Gaussian beam 871: 869: 866: 864: 861: 859: 856: 854: 853:Beam expander 851: 850: 848: 844: 838: 835: 833: 830: 828: 825: 823: 820: 818: 815: 813: 810: 808: 805: 803: 800: 799: 797: 795: 794:Laser physics 791: 785: 782: 778: 775: 773: 770: 768: 765: 763: 760: 758: 755: 754: 753: 750: 748: 745: 743: 740: 736: 733: 731: 728: 726: 723: 721: 718: 716: 713: 712: 711: 708: 704: 701: 699: 696: 695: 694: 691: 689: 686: 685: 683: 679: 673: 670: 668: 665: 663: 660: 658: 655: 654: 651: 647: 640: 635: 633: 628: 626: 621: 620: 617: 605: 602: 600: 597: 595: 592: 590: 587: 585: 582: 580: 577: 575: 572: 570: 567: 565: 562: 561: 558: 548: 545: 543: 540: 538: 535: 533: 530: 529: 527: 525:Related terms 523: 517: 516:Shielding gas 514: 512: 509: 507: 504: 502: 499: 497: 494: 492: 489: 488: 486: 482: 476: 473: 471: 468: 466: 463: 461: 458: 456: 453: 451: 448: 446: 443: 441: 440:Friction stud 438: 436: 433: 431: 428: 426: 423: 421: 418: 416: 413: 411: 408: 406: 403: 402: 400: 398: 394: 388: 385: 383: 380: 378: 375: 373: 370: 368: 365: 363: 360: 358: 355: 353: 350: 348: 345: 344: 342: 340: 336: 332: 325: 320: 318: 313: 311: 306: 305: 302: 298: 294: 287: 282: 280: 275: 273: 268: 267: 264: 258: 255: 254: 233: 229: 225: 218: 214: 206: 197: 194: 188: 184: 175: 173: 169: 166:and focusing 165: 161: 150: 146: 144: 140: 136: 130: 128: 124: 120: 110: 107: 99: 96:November 2013 88: 85: 81: 78: 74: 71: 67: 64: 60: 57: â€“  56: 52: 51:Find sources: 45: 41: 35: 34: 29:This article 27: 23: 18: 17: 893:Mode locking 846:Laser optics 506:Power supply 496:Filler metal 450:Laser-hybrid 449: 377:Plasma (PAW) 293:Metalworking 236:. Retrieved 232:the original 227: 217: 203: 189: 185: 181: 156: 147: 131: 118: 117: 102: 93: 83: 76: 69: 62: 50: 38:Please help 33:verification 30: 923:Q-switching 784:X-ray laser 777:Ti-sapphire 747:Laser diode 725:Helium–neon 569:Fabrication 547:Weldability 339:Arc welding 238:18 November 164:collimating 158:particular 127:arc welding 956:Categories 589:Metallurgy 470:Ultrasonic 465:Spot (RSW) 420:Exothermic 209:References 139:plasma arc 66:newspapers 888:M squared 710:Gas laser 693:Dye laser 584:Machining 579:Jewellery 491:Electrode 484:Equipment 222:Graf, T. 941:Category 735:Nitrogen 594:Smithing 430:Friction 251:See also 193:aluminum 972:Welding 720:Excimer 604:Welding 574:Forming 564:Casting 331:Welding 80:scholar 762:Nd:YAG 757:Er:YAG 698:Bubble 646:Lasers 501:Helmet 168:optics 160:Nd:YAG 82:  75:  68:  61:  53:  767:Raman 511:Robot 475:Upset 425:Forge 357:Flash 153:Laser 87:JSTOR 73:books 772:Ruby 240:2013 125:and 59:news 730:Ion 143:MIG 141:or 135:TIG 42:by 958:: 226:. 170:. 137:, 129:. 638:e 631:t 624:v 323:e 316:t 309:v 285:e 278:t 271:v 242:. 109:) 103:( 98:) 94:( 84:· 77:· 70:· 63:· 36:.

Index


verification
improve this article
adding citations to reliable sources
"Laser-hybrid welding"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
laser beam welding
arc welding
TIG
plasma arc
MIG
Nd:YAG
collimating
optics
Carbon dioxide laser
aluminum
"Laser-Hybrid Welding Drives VW Improvements"
the original
List of laser articles
v
t
e
Metalworking
v
t

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑