Knowledge

Wire chamber

Source 📝

344: 332: 70: 119: 93:). The chamber is filled with gas, such as an argon/methane mix, so that any ionizing particle that passes through the tube will ionize surrounding gaseous atoms and produce ion pairs, consisting of positive ions and electrons. These are accelerated by the electric field across the chamber, preventing recombination; the electrons are accelerated to the anode, and the positive ions to the cathode. At the anode a phenomenon known as a 420: 142:). This invention resulted in him winning the Nobel Prize for Physics in 1992. The chamber was an advancement of the earlier bubble chamber rate of detection of only one or two particles every second to 1000 particle detections every second. The MWPC produced electronic signals from particle detection, allowing scientists to examine data via computers. The multi-wire chamber is a development of the 282:
If one also precisely measures the timing of the current pulses of the wires and takes into account that the ions need some time to drift to the nearest wire, one can infer the distance at which the particle passed the wire. This greatly increases the accuracy of the path reconstruction and is known
305:
to the wires of the other, both orthogonal to the beam direction, a more precise detection of the position is obtained. If an additional simple detector (like the one used in a veto counter) is used to detect, with poor or null positional resolution, the particle at a fixed distance before or after
97:
occurs. This results in a measurable current flow for each original ionising event which is proportional to the ionisation energy deposited by the detected particle. By separately measuring the current pulses from each wire, the particle trajectory can be found. Adaptations of this basic design are
290:
A drift chamber functions by balancing the loss of energy from particles caused by impacts with particles of gas with the accretion of energy created with high-energy electrical fields in use to cause the particle acceleration. Design is similar to the multi-wire proportional chamber but with a
306:
the wires, a tri-dimensional reconstruction can be made and the speed of the particle deduced from the difference in time of the passage of the particle in the different parts of the detector. This setup gives us a detector called a
273:
The development of the chamber enabled scientists to study the trajectories of particles with much-improved precision, and also for the first time to observe and study the rarer interactions that occur through particle interaction.
635:
Degrange, B.; Guillon, J.; Moreau, F.; Nguyen-Khac, U.; De La Taille, C.; Tisserant, S.; Verderi, M. (1992). "Low energy calorimetry in a multiwire chamber filled with tetramethylsilane".
291:
greater distance between central-layer wires. The detection of charged particles within the chamber is possible by the ionizing of gas particles due to the motion of the charged particle.
255:
were then examined.) A wire chamber is a chamber with many parallel wires, arranged as a grid and put on high voltage, with the metal casing being on ground potential. As in the
862: 251:, it became desirable to have a detector with fast electronic read-out. (In bubble chambers, photographic exposures were made and the resulting printed 295: 57:
and can give positional information on their trajectory, by tracking the trails of gaseous ionization. The technique was an improvement over the
343: 485: 801:
Kotwal, Ashutosh V; Gerberich, Heather K; Hays, Christopher (2003). "Identification of cosmic rays using drift chamber hit timing".
331: 61:
particle detection method, which used photographic techniques, as it allowed high speed electronics to track the particle path.
887: 892: 746: 515: 779: 580:
Muller, Richard; Derenzo, Stephen; Smadja, Gerard; Smith, Dennis; Smits, Robert; Zaklad, Haim; Alvarez, Luis (1971).
701: 227: 73:
A wire chamber with anode wires (W) and cathode (−) plates (P). The particles travelling along trajectory T will
877: 350: 106:
chambers. The drift chamber can also be subdivided into ranges of specific use in the chamber designs known as
31: 897: 374: 17: 263:
wire, respectively. By marking off the wires which had a pulse of current, one can see the particle's path.
907: 369: 447: 902: 847: 549: 730: 107: 575: 769: 724: 843: 482: 810: 734: 683: 644: 593: 581: 555: 403: 46: 298:. The chamber contains argon and ethane gas, and wires separated by 3.56-millimetre gaps. 8: 240: 814: 738: 687: 648: 597: 617: 94: 78: 822: 479:
The Polish Language School for Foreign Students - Adam Mickiewicz University in Poznań
259:, a particle leaves a trace of ions and electrons, which drift toward the case or the 839: 775: 742: 695: 656: 609: 379: 221: 621: 533: 266:
The chamber has a very good relative time resolution, good positional accuracy, and
818: 691: 652: 601: 50: 478: 502: 489: 127: 89:)s, which run through a chamber with conductive walls held at a lower potential ( 670:
Schotanus P; Van Eijk CWE; Hollander RW; CWE Van Eijk (1988). "Detection of LaF
669: 605: 384: 364: 318: 256: 244: 58: 882: 871: 462: 435: 143: 248: 77:
gas to produce ion pairs with free electrons which are multiplied by the
69: 30:"Multiwire" redirects here. For the electrical connection technique, see 154:
In a typical experiment, the chamber contains a mixture of these gases:
85:
The multi-wire chamber uses an array of wires at a positive dc voltage (
302: 252: 243:
experiments, it is used to observe a particle's path. For a long time,
118: 613: 180: 404:
Principles of operation of multiwire proportional and drift chambers
576:
Stanford University ( U.S. Department of Energy Office of Science )
325:, which measure the drift time for a known location of ionisation. 294:
The Fermilab detector CDF II contains a drift chamber called the
110:, microstrip gas, and those types of detectors that use silicon. 90: 674::Nd scintillation light in a photosensitive multiwire chamber". 634: 422:
Physics - C4: Particle Physics Major Option - Particle Detectors
81:
effect at the anode wires to produce measurable current pulses.
74: 54: 27:
Proportional counter that detects charged particles and photons
803:
Nuclear Instruments and Methods in Physics Research Section A
722: 676:
Nuclear Instruments and Methods in Physics Research Section A
637:
Nuclear Instruments and Methods in Physics Research Section A
214: 202: 158: 86: 835: 458: 767: 131: 130:, while at the European Organization for Nuclear Research ( 726:
The particle odyssey: a journey to the heart of the matter
474: 579: 247:
were used for this purpose, but with the improvement of
317:
For measuring the velocity of the electrons in a gas (
301:
If two drift chambers are used with the wires of one
574:
S.E.Derenzo - SLAC National Accelerator Laboratory,
516:"Milestones:CERN Experimental Instrumentation, 1968" 800: 863:Heidelberg lecture on research ionisation chambers 723:F. E. Close; M. Marten; C. Sutton (11 Nov 2004). 869: 768:W. Blum; W. Riegler; L. Rolandi (4 Oct 2008). 32:Printed circuit board § Multiwire boards 702:Research on particle imaging detectors p.537 436:PHY304 Particle Physics Sheffield University 337:Cut-away showing interior of a drift chamber 704:World Scientific, 1995 Retrieved 2012-02-28 544: 542: 122:Equipotential line and field line in a MWPC 483:European Organization for Nuclear Research 414: 412: 539: 534:Research and Development Accomplishments 117: 68: 209:The chamber could also be filled with: 14: 870: 771:Particle detection with drift chambers 409: 582:"Liquid-Filled Proportional Counter" 321:) there are special drift chambers, 418: 24: 475:Computers in Physics, Sep/Oct 1992 25: 919: 856: 713:T. Ferbel. CERN report, 1977,> 277: 342: 330: 829: 794: 761: 716: 707: 663: 628: 434:was located via Dr. C.N. Booth 425:. Oxford University. p. 11 228:tetrakis(dimethylamino)ethylene 136:multi-wire proportional chamber 43:multi-wire proportional chamber 568: 508: 495: 468: 459:University of Manchester - HEP 452: 440: 396: 134:), invented and developed the 113: 64: 13: 1: 888:Experimental particle physics 823:10.1016/S0168-9002(03)01371-8 390: 375:Micropattern gaseous detector 149: 893:Ionising radiation detectors 696:10.1016/0168-9002(88)90780-2 657:10.1016/0168-9002(92)90652-K 532:- U.S. Department of Energy 7: 520:IEEE Global History Network 370:Gaseous ionization detector 358: 10: 924: 606:10.1103/PhysRevLett.27.532 29: 351:Musée des Arts et Métiers 270:operation (Ferbel 1977). 100:thin gap, resistive plate 731:Oxford University Press 586:Physical Review Letters 323:velocity drift chambers 308:time projection chamber 234: 123: 82: 878:Astroparticle physics 349:Drift chamber at the 296:Central Outer Tracker 121: 72: 898:Laboratory equipment 850:Retrieved 2012-02-12 556:University of Surrey 536:Retrieved 2012-02-23 505:Retrieved 2012-02-25 492:Retrieved 2012-02-25 465:Retrieved 2012-02-28 449:Retrieved 2012-02-28 406:Retrieved 2012-02-25 47:proportional counter 815:2003NIMPA.506..110K 739:2002pojh.book.....C 688:1988NIMPA.272..913S 649:1992NIMPA.311..539D 598:1971PhRvL..27..532M 402:F. Sauli (1977), - 241:high-energy physics 908:Particle detectors 700:; > G. Charpak 488:2012-02-14 at the 124: 95:Townsend avalanche 83: 79:Townsend avalanche 748:978-0-19-860943-8 380:Particle detector 222:tetramethylsilane 51:charged particles 16:(Redirected from 915: 851: 833: 827: 826: 809:(1–2): 110–118. 798: 792: 791: 789: 788: 765: 759: 758: 756: 755: 720: 714: 711: 705: 699: 667: 661: 660: 632: 626: 625: 572: 566: 565: 563: 562: 546: 537: 531: 529: 527: 512: 506: 499: 493: 472: 466: 456: 450: 444: 438: 433: 431: 430: 416: 407: 400: 346: 334: 198: 196: 195: 192: 189: 176: 174: 173: 170: 167: 21: 923: 922: 918: 917: 916: 914: 913: 912: 903:Nuclear physics 868: 867: 859: 854: 834: 830: 799: 795: 786: 784: 782: 766: 762: 753: 751: 749: 721: 717: 712: 708: 673: 668: 664: 633: 629: 573: 569: 560: 558: 548: 547: 540: 525: 523: 514: 513: 509: 500: 496: 490:Wayback Machine 473: 469: 457: 453: 445: 441: 428: 426: 417: 410: 401: 397: 393: 361: 354: 347: 338: 335: 280: 245:bubble chambers 237: 193: 190: 187: 186: 184: 171: 168: 165: 164: 162: 152: 128:Georges Charpak 116: 108:time projection 67: 35: 28: 23: 22: 15: 12: 11: 5: 921: 911: 910: 905: 900: 895: 890: 885: 880: 866: 865: 858: 857:External links 855: 853: 852: 828: 793: 780: 760: 747: 715: 706: 682:(3): 913–916. 671: 662: 627: 592:(8): 532–535. 567: 538: 507: 501:H. Johnston - 494: 467: 451: 439: 408: 394: 392: 389: 388: 387: 385:Wilson chamber 382: 377: 372: 367: 365:Bubble chamber 360: 357: 356: 355: 348: 341: 339: 336: 329: 319:drift velocity 279: 278:Drift chambers 276: 268:self-triggered 257:Geiger counter 236: 233: 232: 231: 230:(TMAE) vapour. 225: 218: 207: 206: 200: 178: 151: 148: 115: 112: 66: 63: 59:bubble chamber 26: 9: 6: 4: 3: 2: 920: 909: 906: 904: 901: 899: 896: 894: 891: 889: 886: 884: 881: 879: 876: 875: 873: 864: 861: 860: 849: 845: 841: 837: 832: 824: 820: 816: 812: 808: 804: 797: 783: 781:9783540766841 777: 773: 772: 764: 750: 744: 740: 736: 732: 728: 727: 719: 710: 703: 697: 693: 689: 685: 681: 677: 666: 658: 654: 650: 646: 642: 638: 631: 623: 619: 615: 611: 607: 603: 599: 595: 591: 587: 583: 577: 571: 557: 554:. Guildford: 553: 552: 545: 543: 535: 521: 517: 511: 504: 503:Physics world 498: 491: 487: 484: 480: 476: 471: 464: 460: 455: 448: 443: 437: 424: 423: 415: 413: 405: 399: 395: 386: 383: 381: 378: 376: 373: 371: 368: 366: 363: 362: 352: 345: 340: 333: 328: 327: 326: 324: 320: 315: 313: 309: 304: 299: 297: 292: 288: 286: 285:drift chamber 275: 271: 269: 264: 262: 258: 254: 250: 246: 242: 229: 226: 223: 219: 216: 212: 211: 210: 204: 201: 182: 179: 160: 157: 156: 155: 147: 145: 144:spark chamber 141: 137: 133: 129: 120: 111: 109: 105: 101: 96: 92: 88: 80: 76: 71: 62: 60: 56: 52: 49:that detects 48: 45:is a type of 44: 40: 33: 19: 18:Drift chamber 831: 806: 802: 796: 785:. Retrieved 774:. Springer. 770: 763: 752:. Retrieved 725: 718: 709: 679: 675: 665: 640: 636: 630: 589: 585: 570: 559:. Retrieved 550: 524:. Retrieved 519: 510: 497: 470: 454: 442: 427:. Retrieved 421: 398: 322: 316: 311: 307: 300: 293: 289: 284: 281: 272: 267: 265: 260: 238: 208: 183:(just under 153: 139: 135: 125: 103: 99: 84: 42: 39:wire chamber 38: 36: 446:I. Kisel - 253:photographs 249:electronics 114:Development 65:Description 872:Categories 787:2012-02-28 754:2012-02-12 643:(3): 539. 561:2012-02-28 429:2012-02-25 391:References 303:orthogonal 150:Fill gases 848:J. L. Lee 419:W.Frass. 181:isobutane 126:In 1968, 840:glossary 836:Fermilab 622:54908183 526:4 August 486:Archived 359:See also 353:in Paris 811:Bibcode 735:Bibcode 684:Bibcode 645:Bibcode 594:Bibcode 551:Physics 261:nearest 220:liquid 213:liquid 197:⁠ 185:⁠ 175:⁠ 163:⁠ 161:(about 91:cathode 55:photons 778:  745:  620:  614:942298 612:  522:. IEEE 205:(0.5%) 75:ionize 844:photo 618:S2CID 283:as a 215:xenon 203:freon 159:argon 104:drift 87:anode 883:CERN 776:ISBN 743:ISBN 610:OSTI 528:2011 239:For 224:; or 140:MWPC 132:CERN 102:and 98:the 53:and 819:doi 807:506 692:doi 680:272 653:doi 641:311 602:doi 463:101 314:). 312:TPC 235:Use 41:or 874:: 846:- 838:- 817:. 805:. 741:. 733:. 729:. 690:. 678:. 651:. 639:. 616:. 608:. 600:. 590:27 588:. 584:. 578:; 541:^ 518:. 481:- 477:- 461:- 411:^ 287:. 146:. 37:A 842:- 825:. 821:: 813:: 790:. 757:. 737:: 698:. 694:: 686:: 672:3 659:. 655:: 647:: 624:. 604:: 596:: 564:. 530:. 432:. 310:( 217:; 199:) 194:3 191:/ 188:1 177:) 172:3 169:/ 166:2 138:( 34:. 20:)

Index

Drift chamber
Printed circuit board § Multiwire boards
proportional counter
charged particles
photons
bubble chamber

ionize
Townsend avalanche
anode
cathode
Townsend avalanche
time projection

Georges Charpak
CERN
spark chamber
argon
isobutane
freon
xenon
tetramethylsilane
tetrakis(dimethylamino)ethylene
high-energy physics
bubble chambers
electronics
photographs
Geiger counter
Central Outer Tracker
orthogonal

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.